The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/sparc64/sparc64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Jake Burkholder.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   35  *      from: FreeBSD: src/sys/i386/i386/machdep.c,v 1.477 2001/08/27
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD: releng/11.0/sys/sparc64/sparc64/machdep.c 294930 2016-01-27 17:55:01Z jhb $");
   40 
   41 #include "opt_compat.h"
   42 #include "opt_ddb.h"
   43 #include "opt_kstack_pages.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/malloc.h>
   47 #include <sys/proc.h>
   48 #include <sys/systm.h>
   49 #include <sys/bio.h>
   50 #include <sys/buf.h>
   51 #include <sys/bus.h>
   52 #include <sys/cpu.h>
   53 #include <sys/cons.h>
   54 #include <sys/eventhandler.h>
   55 #include <sys/exec.h>
   56 #include <sys/imgact.h>
   57 #include <sys/interrupt.h>
   58 #include <sys/kdb.h>
   59 #include <sys/kernel.h>
   60 #include <sys/ktr.h>
   61 #include <sys/linker.h>
   62 #include <sys/lock.h>
   63 #include <sys/msgbuf.h>
   64 #include <sys/mutex.h>
   65 #include <sys/pcpu.h>
   66 #include <sys/ptrace.h>
   67 #include <sys/reboot.h>
   68 #include <sys/rwlock.h>
   69 #include <sys/signalvar.h>
   70 #include <sys/smp.h>
   71 #include <sys/syscallsubr.h>
   72 #include <sys/sysent.h>
   73 #include <sys/sysproto.h>
   74 #include <sys/timetc.h>
   75 #include <sys/ucontext.h>
   76 
   77 #include <dev/ofw/openfirm.h>
   78 
   79 #include <vm/vm.h>
   80 #include <vm/vm_extern.h>
   81 #include <vm/vm_kern.h>
   82 #include <vm/vm_page.h>
   83 #include <vm/vm_map.h>
   84 #include <vm/vm_object.h>
   85 #include <vm/vm_pager.h>
   86 #include <vm/vm_param.h>
   87 
   88 #include <ddb/ddb.h>
   89 
   90 #include <machine/bus.h>
   91 #include <machine/cache.h>
   92 #include <machine/cmt.h>
   93 #include <machine/cpu.h>
   94 #include <machine/fireplane.h>
   95 #include <machine/fp.h>
   96 #include <machine/fsr.h>
   97 #include <machine/intr_machdep.h>
   98 #include <machine/jbus.h>
   99 #include <machine/md_var.h>
  100 #include <machine/metadata.h>
  101 #include <machine/ofw_machdep.h>
  102 #include <machine/ofw_mem.h>
  103 #include <machine/pcb.h>
  104 #include <machine/pmap.h>
  105 #include <machine/pstate.h>
  106 #include <machine/reg.h>
  107 #include <machine/sigframe.h>
  108 #include <machine/smp.h>
  109 #include <machine/tick.h>
  110 #include <machine/tlb.h>
  111 #include <machine/tstate.h>
  112 #include <machine/upa.h>
  113 #include <machine/ver.h>
  114 
  115 typedef int ofw_vec_t(void *);
  116 
  117 int dtlb_slots;
  118 int itlb_slots;
  119 struct tlb_entry *kernel_tlbs;
  120 int kernel_tlb_slots;
  121 
  122 int cold = 1;
  123 long Maxmem;
  124 long realmem;
  125 
  126 void *dpcpu0;
  127 char pcpu0[PCPU_PAGES * PAGE_SIZE];
  128 struct trapframe frame0;
  129 
  130 vm_offset_t kstack0;
  131 vm_paddr_t kstack0_phys;
  132 
  133 struct kva_md_info kmi;
  134 
  135 u_long ofw_vec;
  136 u_long ofw_tba;
  137 u_int tba_taken_over;
  138 
  139 char sparc64_model[32];
  140 
  141 static int cpu_use_vis = 1;
  142 
  143 cpu_block_copy_t *cpu_block_copy;
  144 cpu_block_zero_t *cpu_block_zero;
  145 
  146 static phandle_t find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl);
  147 void sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3,
  148     ofw_vec_t *vec);
  149 static void sparc64_shutdown_final(void *dummy, int howto);
  150 
  151 static void cpu_startup(void *arg);
  152 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  153 
  154 CTASSERT((1 << INT_SHIFT) == sizeof(int));
  155 CTASSERT((1 << PTR_SHIFT) == sizeof(char *));
  156 
  157 CTASSERT(sizeof(struct reg) == 256);
  158 CTASSERT(sizeof(struct fpreg) == 272);
  159 CTASSERT(sizeof(struct __mcontext) == 512);
  160 
  161 CTASSERT((sizeof(struct pcb) & (64 - 1)) == 0);
  162 CTASSERT((offsetof(struct pcb, pcb_kfp) & (64 - 1)) == 0);
  163 CTASSERT((offsetof(struct pcb, pcb_ufp) & (64 - 1)) == 0);
  164 CTASSERT(sizeof(struct pcb) <= ((KSTACK_PAGES * PAGE_SIZE) / 8));
  165 
  166 CTASSERT(sizeof(struct pcpu) <= ((PCPU_PAGES * PAGE_SIZE) / 2));
  167 
  168 static void
  169 cpu_startup(void *arg)
  170 {
  171         vm_paddr_t physsz;
  172         int i;
  173 
  174         physsz = 0;
  175         for (i = 0; i < sparc64_nmemreg; i++)
  176                 physsz += sparc64_memreg[i].mr_size;
  177         printf("real memory  = %lu (%lu MB)\n", physsz,
  178             physsz / (1024 * 1024));
  179         realmem = (long)physsz / PAGE_SIZE;
  180 
  181         vm_ksubmap_init(&kmi);
  182 
  183         bufinit();
  184         vm_pager_bufferinit();
  185 
  186         EVENTHANDLER_REGISTER(shutdown_final, sparc64_shutdown_final, NULL,
  187             SHUTDOWN_PRI_LAST);
  188 
  189         printf("avail memory = %lu (%lu MB)\n", vm_cnt.v_free_count * PAGE_SIZE,
  190             vm_cnt.v_free_count / ((1024 * 1024) / PAGE_SIZE));
  191 
  192         if (bootverbose)
  193                 printf("machine: %s\n", sparc64_model);
  194 
  195         cpu_identify(rdpr(ver), PCPU_GET(clock), curcpu);
  196 }
  197 
  198 void
  199 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
  200 {
  201         struct intr_request *ir;
  202         int i;
  203 
  204         pcpu->pc_irtail = &pcpu->pc_irhead;
  205         for (i = 0; i < IR_FREE; i++) {
  206                 ir = &pcpu->pc_irpool[i];
  207                 ir->ir_next = pcpu->pc_irfree;
  208                 pcpu->pc_irfree = ir;
  209         }
  210 }
  211 
  212 void
  213 spinlock_enter(void)
  214 {
  215         struct thread *td;
  216         register_t pil;
  217 
  218         td = curthread;
  219         if (td->td_md.md_spinlock_count == 0) {
  220                 pil = rdpr(pil);
  221                 wrpr(pil, 0, PIL_TICK);
  222                 td->td_md.md_spinlock_count = 1;
  223                 td->td_md.md_saved_pil = pil;
  224         } else
  225                 td->td_md.md_spinlock_count++;
  226         critical_enter();
  227 }
  228 
  229 void
  230 spinlock_exit(void)
  231 {
  232         struct thread *td;
  233         register_t pil;
  234 
  235         td = curthread;
  236         critical_exit();
  237         pil = td->td_md.md_saved_pil;
  238         td->td_md.md_spinlock_count--;
  239         if (td->td_md.md_spinlock_count == 0)
  240                 wrpr(pil, pil, 0);
  241 }
  242 
  243 static phandle_t
  244 find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl)
  245 {
  246         char type[sizeof("cpu")];
  247         phandle_t child;
  248         uint32_t portid;
  249 
  250         for (; node != 0; node = OF_peer(node)) {
  251                 child = OF_child(node);
  252                 if (child > 0) {
  253                         child = find_bsp(child, bspid, cpu_impl);
  254                         if (child > 0)
  255                                 return (child);
  256                 } else {
  257                         if (OF_getprop(node, "device_type", type,
  258                             sizeof(type)) <= 0)
  259                                 continue;
  260                         if (strcmp(type, "cpu") != 0)
  261                                 continue;
  262                         if (OF_getprop(node, cpu_portid_prop(cpu_impl),
  263                             &portid, sizeof(portid)) <= 0)
  264                                 continue;
  265                         if (portid == bspid)
  266                                 return (node);
  267                 }
  268         }
  269         return (0);
  270 }
  271 
  272 const char *
  273 cpu_portid_prop(u_int cpu_impl)
  274 {
  275 
  276         switch (cpu_impl) {
  277         case CPU_IMPL_SPARC64:
  278         case CPU_IMPL_SPARC64V:
  279         case CPU_IMPL_ULTRASPARCI:
  280         case CPU_IMPL_ULTRASPARCII:
  281         case CPU_IMPL_ULTRASPARCIIi:
  282         case CPU_IMPL_ULTRASPARCIIe:
  283                 return ("upa-portid");
  284         case CPU_IMPL_ULTRASPARCIII:
  285         case CPU_IMPL_ULTRASPARCIIIp:
  286         case CPU_IMPL_ULTRASPARCIIIi:
  287         case CPU_IMPL_ULTRASPARCIIIip:
  288                 return ("portid");
  289         case CPU_IMPL_ULTRASPARCIV:
  290         case CPU_IMPL_ULTRASPARCIVp:
  291                 return ("cpuid");
  292         default:
  293                 return ("");
  294         }
  295 }
  296 
  297 uint32_t
  298 cpu_get_mid(u_int cpu_impl)
  299 {
  300 
  301         switch (cpu_impl) {
  302         case CPU_IMPL_SPARC64:
  303         case CPU_IMPL_SPARC64V:
  304         case CPU_IMPL_ULTRASPARCI:
  305         case CPU_IMPL_ULTRASPARCII:
  306         case CPU_IMPL_ULTRASPARCIIi:
  307         case CPU_IMPL_ULTRASPARCIIe:
  308                 return (UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG)));
  309         case CPU_IMPL_ULTRASPARCIII:
  310         case CPU_IMPL_ULTRASPARCIIIp:
  311                 return (FIREPLANE_CR_GET_AID(ldxa(AA_FIREPLANE_CONFIG,
  312                     ASI_FIREPLANE_CONFIG_REG)));
  313         case CPU_IMPL_ULTRASPARCIIIi:
  314         case CPU_IMPL_ULTRASPARCIIIip:
  315                 return (JBUS_CR_GET_JID(ldxa(0, ASI_JBUS_CONFIG_REG)));
  316         case CPU_IMPL_ULTRASPARCIV:
  317         case CPU_IMPL_ULTRASPARCIVp:
  318                 return (INTR_ID_GET_ID(ldxa(AA_INTR_ID, ASI_INTR_ID)));
  319         default:
  320                 return (0);
  321         }
  322 }
  323 
  324 void
  325 sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3, ofw_vec_t *vec)
  326 {
  327         char *env;
  328         struct pcpu *pc;
  329         vm_offset_t end;
  330         vm_offset_t va;
  331         caddr_t kmdp;
  332         phandle_t root;
  333         u_int cpu_impl;
  334 
  335         end = 0;
  336         kmdp = NULL;
  337 
  338         /*
  339          * Find out what kind of CPU we have first, for anything that changes
  340          * behaviour.
  341          */
  342         cpu_impl = VER_IMPL(rdpr(ver));
  343 
  344         /*
  345          * Do CPU-specific initialization.
  346          */
  347         if (cpu_impl >= CPU_IMPL_ULTRASPARCIII)
  348                 cheetah_init(cpu_impl);
  349         else if (cpu_impl == CPU_IMPL_SPARC64V)
  350                 zeus_init(cpu_impl);
  351 
  352         /*
  353          * Clear (S)TICK timer (including NPT).
  354          */
  355         tick_clear(cpu_impl);
  356 
  357         /*
  358          * UltraSparc II[e,i] based systems come up with the tick interrupt
  359          * enabled and a handler that resets the tick counter, causing DELAY()
  360          * to not work properly when used early in boot.
  361          * UltraSPARC III based systems come up with the system tick interrupt
  362          * enabled, causing an interrupt storm on startup since they are not
  363          * handled.
  364          */
  365         tick_stop(cpu_impl);
  366 
  367         /*
  368          * Set up Open Firmware entry points.
  369          */
  370         ofw_tba = rdpr(tba);
  371         ofw_vec = (u_long)vec;
  372 
  373         /*
  374          * Parse metadata if present and fetch parameters.  Must be before the
  375          * console is inited so cninit() gets the right value of boothowto.
  376          */
  377         if (mdp != NULL) {
  378                 preload_metadata = mdp;
  379                 kmdp = preload_search_by_type("elf kernel");
  380                 if (kmdp != NULL) {
  381                         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
  382                         init_static_kenv(MD_FETCH(kmdp, MODINFOMD_ENVP, char *),
  383                             0);
  384                         end = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
  385                         kernel_tlb_slots = MD_FETCH(kmdp, MODINFOMD_DTLB_SLOTS,
  386                             int);
  387                         kernel_tlbs = (void *)preload_search_info(kmdp,
  388                             MODINFO_METADATA | MODINFOMD_DTLB);
  389                 }
  390         }
  391 
  392         init_param1();
  393 
  394         /*
  395          * Initialize Open Firmware (needed for console).
  396          */
  397         OF_install(OFW_STD_DIRECT, 0);
  398         OF_init(ofw_entry);
  399 
  400         /*
  401          * Prime our per-CPU data page for use.  Note, we are using it for
  402          * our stack, so don't pass the real size (PAGE_SIZE) to pcpu_init
  403          * or it'll zero it out from under us.
  404          */
  405         pc = (struct pcpu *)(pcpu0 + (PCPU_PAGES * PAGE_SIZE)) - 1;
  406         pcpu_init(pc, 0, sizeof(struct pcpu));
  407         pc->pc_addr = (vm_offset_t)pcpu0;
  408         pc->pc_impl = cpu_impl;
  409         pc->pc_mid = cpu_get_mid(cpu_impl);
  410         pc->pc_tlb_ctx = TLB_CTX_USER_MIN;
  411         pc->pc_tlb_ctx_min = TLB_CTX_USER_MIN;
  412         pc->pc_tlb_ctx_max = TLB_CTX_USER_MAX;
  413 
  414         /*
  415          * Determine the OFW node and frequency of the BSP (and ensure the
  416          * BSP is in the device tree in the first place).
  417          */
  418         root = OF_peer(0);
  419         pc->pc_node = find_bsp(root, pc->pc_mid, cpu_impl);
  420         if (pc->pc_node == 0)
  421                 OF_panic("%s: cannot find boot CPU node", __func__);
  422         if (OF_getprop(pc->pc_node, "clock-frequency", &pc->pc_clock,
  423             sizeof(pc->pc_clock)) <= 0)
  424                 OF_panic("%s: cannot determine boot CPU clock", __func__);
  425 
  426         /*
  427          * Panic if there is no metadata.  Most likely the kernel was booted
  428          * directly, instead of through loader(8).
  429          */
  430         if (mdp == NULL || kmdp == NULL || end == 0 ||
  431             kernel_tlb_slots == 0 || kernel_tlbs == NULL)
  432                 OF_panic("%s: missing loader metadata.\nThis probably means "
  433                     "you are not using loader(8).", __func__);
  434 
  435         /*
  436          * Work around the broken loader behavior of not demapping no
  437          * longer used kernel TLB slots when unloading the kernel or
  438          * modules.
  439          */
  440         for (va = KERNBASE + (kernel_tlb_slots - 1) * PAGE_SIZE_4M;
  441             va >= roundup2(end, PAGE_SIZE_4M); va -= PAGE_SIZE_4M) {
  442                 if (bootverbose)
  443                         OF_printf("demapping unused kernel TLB slot "
  444                             "(va %#lx - %#lx)\n", va, va + PAGE_SIZE_4M - 1);
  445                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  446                     ASI_DMMU_DEMAP, 0);
  447                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  448                     ASI_IMMU_DEMAP, 0);
  449                 flush(KERNBASE);
  450                 kernel_tlb_slots--;
  451         }
  452 
  453         /*
  454          * Determine the TLB slot maxima, which are expected to be
  455          * equal across all CPUs.
  456          * NB: for cheetah-class CPUs, these properties only refer
  457          * to the t16s.
  458          */
  459         if (OF_getprop(pc->pc_node, "#dtlb-entries", &dtlb_slots,
  460             sizeof(dtlb_slots)) == -1)
  461                 OF_panic("%s: cannot determine number of dTLB slots",
  462                     __func__);
  463         if (OF_getprop(pc->pc_node, "#itlb-entries", &itlb_slots,
  464             sizeof(itlb_slots)) == -1)
  465                 OF_panic("%s: cannot determine number of iTLB slots",
  466                     __func__);
  467 
  468         /*
  469          * Initialize and enable the caches.  Note that this may include
  470          * applying workarounds.
  471          */
  472         cache_init(pc);
  473         cache_enable(cpu_impl);
  474         uma_set_align(pc->pc_cache.dc_linesize - 1);
  475 
  476         cpu_block_copy = bcopy;
  477         cpu_block_zero = bzero;
  478         getenv_int("machdep.use_vis", &cpu_use_vis);
  479         if (cpu_use_vis) {
  480                 switch (cpu_impl) {
  481                 case CPU_IMPL_SPARC64:
  482                 case CPU_IMPL_ULTRASPARCI:
  483                 case CPU_IMPL_ULTRASPARCII:
  484                 case CPU_IMPL_ULTRASPARCIIi:
  485                 case CPU_IMPL_ULTRASPARCIIe:
  486                 case CPU_IMPL_ULTRASPARCIII:    /* NB: we've disabled P$. */
  487                 case CPU_IMPL_ULTRASPARCIIIp:
  488                 case CPU_IMPL_ULTRASPARCIIIi:
  489                 case CPU_IMPL_ULTRASPARCIV:
  490                 case CPU_IMPL_ULTRASPARCIVp:
  491                 case CPU_IMPL_ULTRASPARCIIIip:
  492                         cpu_block_copy = spitfire_block_copy;
  493                         cpu_block_zero = spitfire_block_zero;
  494                         break;
  495                 case CPU_IMPL_SPARC64V:
  496                         cpu_block_copy = zeus_block_copy;
  497                         cpu_block_zero = zeus_block_zero;
  498                         break;
  499                 }
  500         }
  501 
  502 #ifdef SMP
  503         mp_init();
  504 #endif
  505 
  506         /*
  507          * Initialize virtual memory and calculate physmem.
  508          */
  509         pmap_bootstrap(cpu_impl);
  510 
  511         /*
  512          * Initialize tunables.
  513          */
  514         init_param2(physmem);
  515         env = kern_getenv("kernelname");
  516         if (env != NULL) {
  517                 strlcpy(kernelname, env, sizeof(kernelname));
  518                 freeenv(env);
  519         }
  520 
  521         /*
  522          * Initialize the interrupt tables.
  523          */
  524         intr_init1();
  525 
  526         /*
  527          * Initialize proc0, set kstack0, frame0, curthread and curpcb.
  528          */
  529         proc_linkup0(&proc0, &thread0);
  530         proc0.p_md.md_sigtramp = NULL;
  531         proc0.p_md.md_utrap = NULL;
  532         thread0.td_kstack = kstack0;
  533         thread0.td_kstack_pages = KSTACK_PAGES;
  534         thread0.td_pcb = (struct pcb *)
  535             (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
  536         frame0.tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_PRIV;
  537         thread0.td_frame = &frame0;
  538         pc->pc_curthread = &thread0;
  539         pc->pc_curpcb = thread0.td_pcb;
  540 
  541         /*
  542          * Initialize global registers.
  543          */
  544         cpu_setregs(pc);
  545 
  546         /*
  547          * Take over the trap table via the PROM.  Using the PROM for this
  548          * is necessary in order to set obp-control-relinquished to true
  549          * within the PROM so obtaining /virtual-memory/translations doesn't
  550          * trigger a fatal reset error or worse things further down the road.
  551          * XXX it should be possible to use this solely instead of writing
  552          * %tba in cpu_setregs().  Doing so causes a hang however.
  553          *
  554          * NB: the low-level console drivers require a working DELAY() and
  555          * some compiler optimizations may cause the curthread accesses of
  556          * mutex(9) to be factored out even if the latter aren't actually
  557          * called.  Both of these require PCPU_REG to be set.  However, we
  558          * can't set PCPU_REG without also taking over the trap table or the
  559          * firmware will overwrite it.
  560          */
  561         sun4u_set_traptable(tl0_base);
  562 
  563         /*
  564          * Initialize the dynamic per-CPU area for the BSP and the message
  565          * buffer (after setting the trap table).
  566          */
  567         dpcpu_init(dpcpu0, 0);
  568         msgbufinit(msgbufp, msgbufsize);
  569 
  570         /*
  571          * Initialize mutexes.
  572          */
  573         mutex_init();
  574 
  575         /*
  576          * Initialize console now that we have a reasonable set of system
  577          * services.
  578          */
  579         cninit();
  580 
  581         /*
  582          * Finish the interrupt initialization now that mutexes work and
  583          * enable them.
  584          */
  585         intr_init2();
  586         wrpr(pil, 0, 0);
  587         wrpr(pstate, 0, PSTATE_KERNEL);
  588 
  589         OF_getprop(root, "name", sparc64_model, sizeof(sparc64_model) - 1);
  590 
  591         kdb_init();
  592 
  593 #ifdef KDB
  594         if (boothowto & RB_KDB)
  595                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
  596 #endif
  597 }
  598 
  599 void
  600 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  601 {
  602         struct trapframe *tf;
  603         struct sigframe *sfp;
  604         struct sigacts *psp;
  605         struct sigframe sf;
  606         struct thread *td;
  607         struct frame *fp;
  608         struct proc *p;
  609         u_long sp;
  610         int oonstack;
  611         int sig;
  612 
  613         oonstack = 0;
  614         td = curthread;
  615         p = td->td_proc;
  616         PROC_LOCK_ASSERT(p, MA_OWNED);
  617         sig = ksi->ksi_signo;
  618         psp = p->p_sigacts;
  619         mtx_assert(&psp->ps_mtx, MA_OWNED);
  620         tf = td->td_frame;
  621         sp = tf->tf_sp + SPOFF;
  622         oonstack = sigonstack(sp);
  623 
  624         CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
  625             catcher, sig);
  626 
  627         /* Make sure we have a signal trampoline to return to. */
  628         if (p->p_md.md_sigtramp == NULL) {
  629                 /*
  630                  * No signal trampoline... kill the process.
  631                  */
  632                 CTR0(KTR_SIG, "sendsig: no sigtramp");
  633                 printf("sendsig: %s is too old, rebuild it\n", p->p_comm);
  634                 sigexit(td, sig);
  635                 /* NOTREACHED */
  636         }
  637 
  638         /* Save user context. */
  639         bzero(&sf, sizeof(sf));
  640         get_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
  641         sf.sf_uc.uc_sigmask = *mask;
  642         sf.sf_uc.uc_stack = td->td_sigstk;
  643         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
  644             ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  645 
  646         /* Allocate and validate space for the signal handler context. */
  647         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  648             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  649                 sfp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp +
  650                     td->td_sigstk.ss_size - sizeof(struct sigframe));
  651         } else
  652                 sfp = (struct sigframe *)sp - 1;
  653         mtx_unlock(&psp->ps_mtx);
  654         PROC_UNLOCK(p);
  655 
  656         fp = (struct frame *)sfp - 1;
  657 
  658         /* Build the argument list for the signal handler. */
  659         tf->tf_out[0] = sig;
  660         tf->tf_out[2] = (register_t)&sfp->sf_uc;
  661         tf->tf_out[4] = (register_t)catcher;
  662         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  663                 /* Signal handler installed with SA_SIGINFO. */
  664                 tf->tf_out[1] = (register_t)&sfp->sf_si;
  665 
  666                 /* Fill in POSIX parts. */
  667                 sf.sf_si = ksi->ksi_info;
  668                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  669         } else {
  670                 /* Old FreeBSD-style arguments. */
  671                 tf->tf_out[1] = ksi->ksi_code;
  672                 tf->tf_out[3] = (register_t)ksi->ksi_addr;
  673         }
  674 
  675         /* Copy the sigframe out to the user's stack. */
  676         if (rwindow_save(td) != 0 || copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
  677             suword(&fp->fr_in[6], tf->tf_out[6]) != 0) {
  678                 /*
  679                  * Something is wrong with the stack pointer.
  680                  * ...Kill the process.
  681                  */
  682                 CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp);
  683                 PROC_LOCK(p);
  684                 sigexit(td, SIGILL);
  685                 /* NOTREACHED */
  686         }
  687 
  688         tf->tf_tpc = (u_long)p->p_md.md_sigtramp;
  689         tf->tf_tnpc = tf->tf_tpc + 4;
  690         tf->tf_sp = (u_long)fp - SPOFF;
  691 
  692         CTR3(KTR_SIG, "sendsig: return td=%p pc=%#lx sp=%#lx", td, tf->tf_tpc,
  693             tf->tf_sp);
  694 
  695         PROC_LOCK(p);
  696         mtx_lock(&psp->ps_mtx);
  697 }
  698 
  699 #ifndef _SYS_SYSPROTO_H_
  700 struct sigreturn_args {
  701         ucontext_t *ucp;
  702 };
  703 #endif
  704 
  705 /*
  706  * MPSAFE
  707  */
  708 int
  709 sys_sigreturn(struct thread *td, struct sigreturn_args *uap)
  710 {
  711         struct proc *p;
  712         mcontext_t *mc;
  713         ucontext_t uc;
  714         int error;
  715 
  716         p = td->td_proc;
  717         if (rwindow_save(td)) {
  718                 PROC_LOCK(p);
  719                 sigexit(td, SIGILL);
  720         }
  721 
  722         CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
  723         if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
  724                 CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
  725                 return (EFAULT);
  726         }
  727 
  728         mc = &uc.uc_mcontext;
  729         error = set_mcontext(td, mc);
  730         if (error != 0)
  731                 return (error);
  732 
  733         kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
  734 
  735         CTR4(KTR_SIG, "sigreturn: return td=%p pc=%#lx sp=%#lx tstate=%#lx",
  736             td, mc->_mc_tpc, mc->_mc_sp, mc->_mc_tstate);
  737         return (EJUSTRETURN);
  738 }
  739 
  740 /*
  741  * Construct a PCB from a trapframe. This is called from kdb_trap() where
  742  * we want to start a backtrace from the function that caused us to enter
  743  * the debugger. We have the context in the trapframe, but base the trace
  744  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
  745  * enough for a backtrace.
  746  */
  747 void
  748 makectx(struct trapframe *tf, struct pcb *pcb)
  749 {
  750 
  751         pcb->pcb_pc = tf->tf_tpc;
  752         pcb->pcb_sp = tf->tf_sp;
  753 }
  754 
  755 int
  756 get_mcontext(struct thread *td, mcontext_t *mc, int flags)
  757 {
  758         struct trapframe *tf;
  759         struct pcb *pcb;
  760 
  761         tf = td->td_frame;
  762         pcb = td->td_pcb;
  763         /*
  764          * Copy the registers which will be restored by tl0_ret() from the
  765          * trapframe.
  766          * Note that we skip %g7 which is used as the userland TLS register
  767          * and %wstate.
  768          */
  769         mc->_mc_flags = _MC_VERSION;
  770         mc->mc_global[1] = tf->tf_global[1];
  771         mc->mc_global[2] = tf->tf_global[2];
  772         mc->mc_global[3] = tf->tf_global[3];
  773         mc->mc_global[4] = tf->tf_global[4];
  774         mc->mc_global[5] = tf->tf_global[5];
  775         mc->mc_global[6] = tf->tf_global[6];
  776         if (flags & GET_MC_CLEAR_RET) {
  777                 mc->mc_out[0] = 0;
  778                 mc->mc_out[1] = 0;
  779         } else {
  780                 mc->mc_out[0] = tf->tf_out[0];
  781                 mc->mc_out[1] = tf->tf_out[1];
  782         }
  783         mc->mc_out[2] = tf->tf_out[2];
  784         mc->mc_out[3] = tf->tf_out[3];
  785         mc->mc_out[4] = tf->tf_out[4];
  786         mc->mc_out[5] = tf->tf_out[5];
  787         mc->mc_out[6] = tf->tf_out[6];
  788         mc->mc_out[7] = tf->tf_out[7];
  789         mc->_mc_fprs = tf->tf_fprs;
  790         mc->_mc_fsr = tf->tf_fsr;
  791         mc->_mc_gsr = tf->tf_gsr;
  792         mc->_mc_tnpc = tf->tf_tnpc;
  793         mc->_mc_tpc = tf->tf_tpc;
  794         mc->_mc_tstate = tf->tf_tstate;
  795         mc->_mc_y = tf->tf_y;
  796         critical_enter();
  797         if ((tf->tf_fprs & FPRS_FEF) != 0) {
  798                 savefpctx(pcb->pcb_ufp);
  799                 tf->tf_fprs &= ~FPRS_FEF;
  800                 pcb->pcb_flags |= PCB_FEF;
  801         }
  802         if ((pcb->pcb_flags & PCB_FEF) != 0) {
  803                 bcopy(pcb->pcb_ufp, mc->mc_fp, sizeof(mc->mc_fp));
  804                 mc->_mc_fprs |= FPRS_FEF;
  805         }
  806         critical_exit();
  807         return (0);
  808 }
  809 
  810 int
  811 set_mcontext(struct thread *td, mcontext_t *mc)
  812 {
  813         struct trapframe *tf;
  814         struct pcb *pcb;
  815 
  816         if (!TSTATE_SECURE(mc->_mc_tstate) ||
  817             (mc->_mc_flags & ((1L << _MC_VERSION_BITS) - 1)) != _MC_VERSION)
  818                 return (EINVAL);
  819         tf = td->td_frame;
  820         pcb = td->td_pcb;
  821         /* Make sure the windows are spilled first. */
  822         flushw();
  823         /*
  824          * Copy the registers which will be restored by tl0_ret() to the
  825          * trapframe.
  826          * Note that we skip %g7 which is used as the userland TLS register
  827          * and %wstate.
  828          */
  829         tf->tf_global[1] = mc->mc_global[1];
  830         tf->tf_global[2] = mc->mc_global[2];
  831         tf->tf_global[3] = mc->mc_global[3];
  832         tf->tf_global[4] = mc->mc_global[4];
  833         tf->tf_global[5] = mc->mc_global[5];
  834         tf->tf_global[6] = mc->mc_global[6];
  835         tf->tf_out[0] = mc->mc_out[0];
  836         tf->tf_out[1] = mc->mc_out[1];
  837         tf->tf_out[2] = mc->mc_out[2];
  838         tf->tf_out[3] = mc->mc_out[3];
  839         tf->tf_out[4] = mc->mc_out[4];
  840         tf->tf_out[5] = mc->mc_out[5];
  841         tf->tf_out[6] = mc->mc_out[6];
  842         tf->tf_out[7] = mc->mc_out[7];
  843         tf->tf_fprs = mc->_mc_fprs;
  844         tf->tf_fsr = mc->_mc_fsr;
  845         tf->tf_gsr = mc->_mc_gsr;
  846         tf->tf_tnpc = mc->_mc_tnpc;
  847         tf->tf_tpc = mc->_mc_tpc;
  848         tf->tf_tstate = mc->_mc_tstate;
  849         tf->tf_y = mc->_mc_y;
  850         if ((mc->_mc_fprs & FPRS_FEF) != 0) {
  851                 tf->tf_fprs = 0;
  852                 bcopy(mc->mc_fp, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
  853                 pcb->pcb_flags |= PCB_FEF;
  854         }
  855         return (0);
  856 }
  857 
  858 /*
  859  * Exit the kernel and execute a firmware call that will not return, as
  860  * specified by the arguments.
  861  */
  862 void
  863 cpu_shutdown(void *args)
  864 {
  865 
  866 #ifdef SMP
  867         cpu_mp_shutdown();
  868 #endif
  869         ofw_exit(args);
  870 }
  871 
  872 /*
  873  * Flush the D-cache for non-DMA I/O so that the I-cache can
  874  * be made coherent later.
  875  */
  876 void
  877 cpu_flush_dcache(void *ptr, size_t len)
  878 {
  879 
  880         /* TBD */
  881 }
  882 
  883 /* Get current clock frequency for the given CPU ID. */
  884 int
  885 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  886 {
  887         struct pcpu *pc;
  888 
  889         pc = pcpu_find(cpu_id);
  890         if (pc == NULL || rate == NULL)
  891                 return (EINVAL);
  892         *rate = pc->pc_clock;
  893         return (0);
  894 }
  895 
  896 /*
  897  * Duplicate OF_exit() with a different firmware call function that restores
  898  * the trap table, otherwise a RED state exception is triggered in at least
  899  * some firmware versions.
  900  */
  901 void
  902 cpu_halt(void)
  903 {
  904         static struct {
  905                 cell_t name;
  906                 cell_t nargs;
  907                 cell_t nreturns;
  908         } args = {
  909                 (cell_t)"exit",
  910                 0,
  911                 0
  912         };
  913 
  914         cpu_shutdown(&args);
  915 }
  916 
  917 static void
  918 sparc64_shutdown_final(void *dummy, int howto)
  919 {
  920         static struct {
  921                 cell_t name;
  922                 cell_t nargs;
  923                 cell_t nreturns;
  924         } args = {
  925                 (cell_t)"SUNW,power-off",
  926                 0,
  927                 0
  928         };
  929 
  930         /* Turn the power off? */
  931         if ((howto & RB_POWEROFF) != 0)
  932                 cpu_shutdown(&args);
  933         /* In case of halt, return to the firmware. */
  934         if ((howto & RB_HALT) != 0)
  935                 cpu_halt();
  936 }
  937 
  938 void
  939 cpu_idle(int busy)
  940 {
  941 
  942         /* Insert code to halt (until next interrupt) for the idle loop. */
  943 }
  944 
  945 int
  946 cpu_idle_wakeup(int cpu)
  947 {
  948 
  949         return (1);
  950 }
  951 
  952 int
  953 ptrace_set_pc(struct thread *td, u_long addr)
  954 {
  955 
  956         td->td_frame->tf_tpc = addr;
  957         td->td_frame->tf_tnpc = addr + 4;
  958         return (0);
  959 }
  960 
  961 int
  962 ptrace_single_step(struct thread *td)
  963 {
  964 
  965         /* TODO; */
  966         return (0);
  967 }
  968 
  969 int
  970 ptrace_clear_single_step(struct thread *td)
  971 {
  972 
  973         /* TODO; */
  974         return (0);
  975 }
  976 
  977 void
  978 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
  979 {
  980         struct trapframe *tf;
  981         struct pcb *pcb;
  982         struct proc *p;
  983         u_long sp;
  984 
  985         /* XXX no cpu_exec */
  986         p = td->td_proc;
  987         p->p_md.md_sigtramp = NULL;
  988         if (p->p_md.md_utrap != NULL) {
  989                 utrap_free(p->p_md.md_utrap);
  990                 p->p_md.md_utrap = NULL;
  991         }
  992 
  993         pcb = td->td_pcb;
  994         tf = td->td_frame;
  995         sp = rounddown(stack, 16);
  996         bzero(pcb, sizeof(*pcb));
  997         bzero(tf, sizeof(*tf));
  998         tf->tf_out[0] = stack;
  999         tf->tf_out[3] = p->p_sysent->sv_psstrings;
 1000         tf->tf_out[6] = sp - SPOFF - sizeof(struct frame);
 1001         tf->tf_tnpc = imgp->entry_addr + 4;
 1002         tf->tf_tpc = imgp->entry_addr;
 1003         /*
 1004          * While we could adhere to the memory model indicated in the ELF
 1005          * header, it turns out that just always using TSO performs best.
 1006          */
 1007         tf->tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_MM_TSO;
 1008 
 1009         td->td_retval[0] = tf->tf_out[0];
 1010         td->td_retval[1] = tf->tf_out[1];
 1011 }
 1012 
 1013 int
 1014 fill_regs(struct thread *td, struct reg *regs)
 1015 {
 1016 
 1017         bcopy(td->td_frame, regs, sizeof(*regs));
 1018         return (0);
 1019 }
 1020 
 1021 int
 1022 set_regs(struct thread *td, struct reg *regs)
 1023 {
 1024         struct trapframe *tf;
 1025 
 1026         if (!TSTATE_SECURE(regs->r_tstate))
 1027                 return (EINVAL);
 1028         tf = td->td_frame;
 1029         regs->r_wstate = tf->tf_wstate;
 1030         bcopy(regs, tf, sizeof(*regs));
 1031         return (0);
 1032 }
 1033 
 1034 int
 1035 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 1036 {
 1037 
 1038         return (ENOSYS);
 1039 }
 1040 
 1041 int
 1042 set_dbregs(struct thread *td, struct dbreg *dbregs)
 1043 {
 1044 
 1045         return (ENOSYS);
 1046 }
 1047 
 1048 int
 1049 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 1050 {
 1051         struct trapframe *tf;
 1052         struct pcb *pcb;
 1053 
 1054         pcb = td->td_pcb;
 1055         tf = td->td_frame;
 1056         bcopy(pcb->pcb_ufp, fpregs->fr_regs, sizeof(fpregs->fr_regs));
 1057         fpregs->fr_fsr = tf->tf_fsr;
 1058         fpregs->fr_gsr = tf->tf_gsr;
 1059         return (0);
 1060 }
 1061 
 1062 int
 1063 set_fpregs(struct thread *td, struct fpreg *fpregs)
 1064 {
 1065         struct trapframe *tf;
 1066         struct pcb *pcb;
 1067 
 1068         pcb = td->td_pcb;
 1069         tf = td->td_frame;
 1070         tf->tf_fprs &= ~FPRS_FEF;
 1071         bcopy(fpregs->fr_regs, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
 1072         tf->tf_fsr = fpregs->fr_fsr;
 1073         tf->tf_gsr = fpregs->fr_gsr;
 1074         return (0);
 1075 }
 1076 
 1077 struct md_utrap *
 1078 utrap_alloc(void)
 1079 {
 1080         struct md_utrap *ut;
 1081 
 1082         ut = malloc(sizeof(struct md_utrap), M_SUBPROC, M_WAITOK | M_ZERO);
 1083         ut->ut_refcnt = 1;
 1084         return (ut);
 1085 }
 1086 
 1087 void
 1088 utrap_free(struct md_utrap *ut)
 1089 {
 1090         int refcnt;
 1091 
 1092         if (ut == NULL)
 1093                 return;
 1094         mtx_pool_lock(mtxpool_sleep, ut);
 1095         ut->ut_refcnt--;
 1096         refcnt = ut->ut_refcnt;
 1097         mtx_pool_unlock(mtxpool_sleep, ut);
 1098         if (refcnt == 0)
 1099                 free(ut, M_SUBPROC);
 1100 }
 1101 
 1102 struct md_utrap *
 1103 utrap_hold(struct md_utrap *ut)
 1104 {
 1105 
 1106         if (ut == NULL)
 1107                 return (NULL);
 1108         mtx_pool_lock(mtxpool_sleep, ut);
 1109         ut->ut_refcnt++;
 1110         mtx_pool_unlock(mtxpool_sleep, ut);
 1111         return (ut);
 1112 }

Cache object: 481722466c1467b43b7f89841c6b39c7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.