The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/sparc64/sparc64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Jake Burkholder.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   35  *      from: FreeBSD: src/sys/i386/i386/machdep.c,v 1.477 2001/08/27
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD$");
   40 
   41 #include "opt_compat.h"
   42 #include "opt_ddb.h"
   43 #include "opt_kstack_pages.h"
   44 #include "opt_msgbuf.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/malloc.h>
   48 #include <sys/proc.h>
   49 #include <sys/systm.h>
   50 #include <sys/bio.h>
   51 #include <sys/buf.h>
   52 #include <sys/bus.h>
   53 #include <sys/cpu.h>
   54 #include <sys/cons.h>
   55 #include <sys/eventhandler.h>
   56 #include <sys/exec.h>
   57 #include <sys/imgact.h>
   58 #include <sys/interrupt.h>
   59 #include <sys/kdb.h>
   60 #include <sys/kernel.h>
   61 #include <sys/ktr.h>
   62 #include <sys/linker.h>
   63 #include <sys/lock.h>
   64 #include <sys/msgbuf.h>
   65 #include <sys/mutex.h>
   66 #include <sys/pcpu.h>
   67 #include <sys/ptrace.h>
   68 #include <sys/reboot.h>
   69 #include <sys/signalvar.h>
   70 #include <sys/smp.h>
   71 #include <sys/sysent.h>
   72 #include <sys/sysproto.h>
   73 #include <sys/timetc.h>
   74 #include <sys/ucontext.h>
   75 
   76 #include <dev/ofw/openfirm.h>
   77 
   78 #include <vm/vm.h>
   79 #include <vm/vm_extern.h>
   80 #include <vm/vm_kern.h>
   81 #include <vm/vm_page.h>
   82 #include <vm/vm_map.h>
   83 #include <vm/vm_object.h>
   84 #include <vm/vm_pager.h>
   85 #include <vm/vm_param.h>
   86 
   87 #include <ddb/ddb.h>
   88 
   89 #include <machine/bus.h>
   90 #include <machine/cache.h>
   91 #include <machine/clock.h>
   92 #include <machine/cpu.h>
   93 #include <machine/fp.h>
   94 #include <machine/fsr.h>
   95 #include <machine/intr_machdep.h>
   96 #include <machine/md_var.h>
   97 #include <machine/metadata.h>
   98 #include <machine/ofw_machdep.h>
   99 #include <machine/ofw_mem.h>
  100 #include <machine/pcb.h>
  101 #include <machine/pmap.h>
  102 #include <machine/pstate.h>
  103 #include <machine/reg.h>
  104 #include <machine/sigframe.h>
  105 #include <machine/smp.h>
  106 #include <machine/tick.h>
  107 #include <machine/tlb.h>
  108 #include <machine/tstate.h>
  109 #include <machine/upa.h>
  110 #include <machine/ver.h>
  111 
  112 typedef int ofw_vec_t(void *);
  113 
  114 #ifdef DDB
  115 extern vm_offset_t ksym_start, ksym_end;
  116 #endif
  117 
  118 int dtlb_slots;
  119 int itlb_slots;
  120 struct tlb_entry *kernel_tlbs;
  121 int kernel_tlb_slots;
  122 
  123 int cold = 1;
  124 long Maxmem;
  125 long realmem;
  126 
  127 char pcpu0[PCPU_PAGES * PAGE_SIZE];
  128 struct trapframe frame0;
  129 
  130 vm_offset_t kstack0;
  131 vm_paddr_t kstack0_phys;
  132 
  133 struct kva_md_info kmi;
  134 
  135 u_long ofw_vec;
  136 u_long ofw_tba;
  137 
  138 char sparc64_model[32];
  139 
  140 static int cpu_use_vis = 1;
  141 
  142 cpu_block_copy_t *cpu_block_copy;
  143 cpu_block_zero_t *cpu_block_zero;
  144 
  145 void sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3,
  146     ofw_vec_t *vec);
  147 void sparc64_shutdown_final(void *dummy, int howto);
  148 
  149 static void cpu_startup(void *);
  150 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  151 
  152 CTASSERT((1 << INT_SHIFT) == sizeof(int));
  153 CTASSERT((1 << PTR_SHIFT) == sizeof(char *));
  154 
  155 CTASSERT(sizeof(struct reg) == 256);
  156 CTASSERT(sizeof(struct fpreg) == 272);
  157 CTASSERT(sizeof(struct __mcontext) == 512);
  158 
  159 CTASSERT((sizeof(struct pcb) & (64 - 1)) == 0);
  160 CTASSERT((offsetof(struct pcb, pcb_kfp) & (64 - 1)) == 0);
  161 CTASSERT((offsetof(struct pcb, pcb_ufp) & (64 - 1)) == 0);
  162 CTASSERT(sizeof(struct pcb) <= ((KSTACK_PAGES * PAGE_SIZE) / 8));
  163 
  164 CTASSERT(sizeof(struct pcpu) <= ((PCPU_PAGES * PAGE_SIZE) / 2));
  165 
  166 static void
  167 cpu_startup(void *arg)
  168 {
  169         vm_paddr_t physsz;
  170         int i;
  171 
  172         physsz = 0;
  173         for (i = 0; i < sparc64_nmemreg; i++)
  174                 physsz += sparc64_memreg[i].mr_size;
  175         printf("real memory  = %lu (%lu MB)\n", physsz,
  176             physsz / (1024 * 1024));
  177         realmem = (long)physsz / PAGE_SIZE;
  178 
  179         vm_ksubmap_init(&kmi);
  180 
  181         bufinit();
  182         vm_pager_bufferinit();
  183 
  184         EVENTHANDLER_REGISTER(shutdown_final, sparc64_shutdown_final, NULL,
  185             SHUTDOWN_PRI_LAST);
  186 
  187         printf("avail memory = %lu (%lu MB)\n", cnt.v_free_count * PAGE_SIZE,
  188             cnt.v_free_count / ((1024 * 1024) / PAGE_SIZE));
  189 
  190         if (bootverbose)
  191                 printf("machine: %s\n", sparc64_model);
  192 
  193         cpu_identify(rdpr(ver), PCPU_GET(clock), curcpu);
  194 }
  195 
  196 void
  197 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
  198 {
  199         struct intr_request *ir;
  200         int i;
  201 
  202         pcpu->pc_irtail = &pcpu->pc_irhead;
  203         for (i = 0; i < IR_FREE; i++) {
  204                 ir = &pcpu->pc_irpool[i];
  205                 ir->ir_next = pcpu->pc_irfree;
  206                 pcpu->pc_irfree = ir;
  207         }
  208 }
  209 
  210 void
  211 spinlock_enter(void)
  212 {
  213         struct thread *td;
  214         register_t pil;
  215 
  216         td = curthread;
  217         if (td->td_md.md_spinlock_count == 0) {
  218                 pil = rdpr(pil);
  219                 wrpr(pil, 0, PIL_TICK);
  220                 td->td_md.md_saved_pil = pil;
  221         }
  222         td->td_md.md_spinlock_count++;
  223         critical_enter();
  224 }
  225 
  226 void
  227 spinlock_exit(void)
  228 {
  229         struct thread *td;
  230 
  231         td = curthread;
  232         critical_exit();
  233         td->td_md.md_spinlock_count--;
  234         if (td->td_md.md_spinlock_count == 0)
  235                 wrpr(pil, td->td_md.md_saved_pil, 0);
  236 }
  237 
  238 void
  239 sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3, ofw_vec_t *vec)
  240 {
  241         char type[8];
  242         char *env;
  243         struct pcpu *pc;
  244         vm_offset_t end;
  245         caddr_t kmdp;
  246         phandle_t child;
  247         phandle_t root;
  248         uint32_t portid;
  249 
  250         end = 0;
  251         kmdp = NULL;
  252 
  253         /*
  254          * Find out what kind of CPU we have first, for anything that changes
  255          * behaviour.
  256          */
  257         cpu_impl = VER_IMPL(rdpr(ver));
  258 
  259         /*
  260          * Do CPU-specific Initialization.
  261          */
  262         if (cpu_impl >= CPU_IMPL_ULTRASPARCIII)
  263                 cheetah_init();
  264 
  265         /*
  266          * Clear (S)TICK timer (including NPT).
  267          */
  268         tick_clear();
  269 
  270         /*
  271          * UltraSparc II[e,i] based systems come up with the tick interrupt
  272          * enabled and a handler that resets the tick counter, causing DELAY()
  273          * to not work properly when used early in boot.
  274          * UltraSPARC III based systems come up with the system tick interrupt
  275          * enabled, causing an interrupt storm on startup since they are not
  276          * handled.
  277          */
  278         tick_stop();
  279 
  280         /*
  281          * Initialize Open Firmware (needed for console).
  282          */
  283         OF_init(vec);
  284 
  285         /*
  286          * Parse metadata if present and fetch parameters.  Must be before the
  287          * console is inited so cninit gets the right value of boothowto.
  288          */
  289         if (mdp != NULL) {
  290                 preload_metadata = mdp;
  291                 kmdp = preload_search_by_type("elf kernel");
  292                 if (kmdp != NULL) {
  293                         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
  294                         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
  295                         end = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
  296                         kernel_tlb_slots = MD_FETCH(kmdp, MODINFOMD_DTLB_SLOTS,
  297                             int);
  298                         kernel_tlbs = (void *)preload_search_info(kmdp,
  299                             MODINFO_METADATA | MODINFOMD_DTLB);
  300                 }
  301         }
  302 
  303         init_param1();
  304 
  305         /*
  306          * Prime our per-CPU data page for use.  Note, we are using it for
  307          * our stack, so don't pass the real size (PAGE_SIZE) to pcpu_init
  308          * or it'll zero it out from under us.
  309          */
  310         pc = (struct pcpu *)(pcpu0 + (PCPU_PAGES * PAGE_SIZE)) - 1;
  311         pcpu_init(pc, 0, sizeof(struct pcpu));
  312         pc->pc_addr = (vm_offset_t)pcpu0;
  313         pc->pc_mid = UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG));
  314         pc->pc_tlb_ctx = TLB_CTX_USER_MIN;
  315         pc->pc_tlb_ctx_min = TLB_CTX_USER_MIN;
  316         pc->pc_tlb_ctx_max = TLB_CTX_USER_MAX;
  317 
  318         /*
  319          * Determine the OFW node and frequency of the BSP (and ensure the
  320          * BSP is in the device tree in the first place).
  321          */
  322         pc->pc_node = 0;
  323         root = OF_peer(0);
  324         for (child = OF_child(root); child != 0; child = OF_peer(child)) {
  325                 if (OF_getprop(child, "device_type", type, sizeof(type)) <= 0)
  326                         continue;
  327                 if (strcmp(type, "cpu") != 0)
  328                         continue;
  329                 if (OF_getprop(child, cpu_impl < CPU_IMPL_ULTRASPARCIII ?
  330                     "upa-portid" : "portid", &portid, sizeof(portid)) <= 0)
  331                         continue;
  332                 if (portid == pc->pc_mid) {
  333                         pc->pc_node = child;
  334                         break;
  335                 }
  336         }
  337         if (pc->pc_node == 0)
  338                 OF_exit();
  339         if (OF_getprop(child, "clock-frequency", &pc->pc_clock,
  340             sizeof(pc->pc_clock)) <= 0)
  341                 OF_exit();
  342 
  343         /*
  344          * Provide a DELAY() that works before PCPU_REG is set.  We can't
  345          * set PCPU_REG without also taking over the trap table or the
  346          * firmware will overwrite it.  Unfortunately, it's way to early
  347          * to also take over the trap table at this point.
  348          */
  349         clock_boot = pc->pc_clock;
  350         delay_func = delay_boot;
  351 
  352         /*
  353          * Initialize the console before printing anything.
  354          * NB: the low-level console drivers require a working DELAY() at
  355          * this point.
  356          */
  357         cninit();
  358 
  359         /*
  360          * Panic if there is no metadata.  Most likely the kernel was booted
  361          * directly, instead of through loader(8).
  362          */
  363         if (mdp == NULL || kmdp == NULL) {
  364                 printf("sparc64_init: no loader metadata.\n"
  365                     "This probably means you are not using loader(8).\n");
  366                 panic("sparc64_init");
  367         }
  368 
  369         /*
  370          * Sanity check the kernel end, which is important.
  371          */
  372         if (end == 0) {
  373                 printf("sparc64_init: warning, kernel end not specified.\n"
  374                     "Attempting to continue anyway.\n");
  375                 end = (vm_offset_t)_end;
  376         }
  377 
  378         /*
  379          * Determine the TLB slot maxima, which are expected to be
  380          * equal across all CPUs.
  381          * NB: for Cheetah-class CPUs, these properties only refer
  382          * to the t16s.
  383          */
  384         if (OF_getprop(pc->pc_node, "#dtlb-entries", &dtlb_slots,
  385             sizeof(dtlb_slots)) == -1)
  386                 panic("sparc64_init: cannot determine number of dTLB slots");
  387         if (OF_getprop(pc->pc_node, "#itlb-entries", &itlb_slots,
  388             sizeof(itlb_slots)) == -1)
  389                 panic("sparc64_init: cannot determine number of iTLB slots");
  390 
  391         cache_init(pc);
  392         cache_enable();
  393         uma_set_align(pc->pc_cache.dc_linesize - 1);
  394 
  395         cpu_block_copy = bcopy;
  396         cpu_block_zero = bzero;
  397         getenv_int("machdep.use_vis", &cpu_use_vis);
  398         if (cpu_use_vis) {
  399                 switch (cpu_impl) {
  400                 case CPU_IMPL_SPARC64:
  401                 case CPU_IMPL_ULTRASPARCI:
  402                 case CPU_IMPL_ULTRASPARCII:
  403                 case CPU_IMPL_ULTRASPARCIIi:
  404                 case CPU_IMPL_ULTRASPARCIIe:
  405                 case CPU_IMPL_ULTRASPARCIII:    /* NB: we've disabled P$. */
  406                 case CPU_IMPL_ULTRASPARCIIIp:
  407                 case CPU_IMPL_ULTRASPARCIIIi:
  408                 case CPU_IMPL_ULTRASPARCIV:
  409                 case CPU_IMPL_ULTRASPARCIVp:
  410                 case CPU_IMPL_ULTRASPARCIIIip:
  411                         cpu_block_copy = spitfire_block_copy;
  412                         cpu_block_zero = spitfire_block_zero;
  413                         break;
  414                 }
  415         }
  416 
  417 #ifdef SMP
  418         mp_init();
  419 #endif
  420 
  421         /*
  422          * Initialize virtual memory and calculate physmem.
  423          */
  424         pmap_bootstrap(end);
  425 
  426         /*
  427          * Initialize tunables.
  428          */
  429         init_param2(physmem);
  430         env = getenv("kernelname");
  431         if (env != NULL) {
  432                 strlcpy(kernelname, env, sizeof(kernelname));
  433                 freeenv(env);
  434         }
  435 
  436         /*
  437          * Initialize the interrupt tables.
  438          */
  439         intr_init1();
  440 
  441         /*
  442          * Initialize proc0, set kstack0, frame0, curthread and curpcb.
  443          */
  444         proc_linkup0(&proc0, &thread0);
  445         proc0.p_md.md_sigtramp = NULL;
  446         proc0.p_md.md_utrap = NULL;
  447         thread0.td_kstack = kstack0;
  448         thread0.td_pcb = (struct pcb *)
  449             (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
  450         frame0.tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_PRIV;
  451         thread0.td_frame = &frame0;
  452         pc->pc_curthread = &thread0;
  453         pc->pc_curpcb = thread0.td_pcb;
  454 
  455         /*
  456          * Initialize global registers.
  457          */
  458         cpu_setregs(pc);
  459 
  460         /*
  461          * Take over the trap table via the PROM.  Using the PROM for this
  462          * is necessary in order to set obp-control-relinquished to true
  463          * within the PROM so obtaining /virtual-memory/translations doesn't
  464          * trigger a fatal reset error or worse things further down the road.
  465          * XXX it should be possible to use this soley instead of writing
  466          * %tba in cpu_setregs().  Doing so causes a hang however.
  467          */
  468         sun4u_set_traptable(tl0_base);
  469 
  470         /*
  471          * It's now safe to use the real DELAY().
  472          */
  473         delay_func = delay_tick;
  474 
  475         /*
  476          * Initialize the message buffer (after setting trap table).
  477          */
  478         msgbufinit(msgbufp, MSGBUF_SIZE);
  479 
  480         mutex_init();
  481         intr_init2();
  482 
  483         /*
  484          * Finish pmap initialization now that we're ready for mutexes.
  485          */
  486         PMAP_LOCK_INIT(kernel_pmap);
  487 
  488         OF_getprop(root, "name", sparc64_model, sizeof(sparc64_model) - 1);
  489 
  490         kdb_init();
  491 
  492 #ifdef KDB
  493         if (boothowto & RB_KDB)
  494                 kdb_enter_why(KDB_WHY_BOOTFLAGS,
  495                     "Boot flags requested debugger");
  496 #endif
  497 }
  498 
  499 void
  500 set_openfirm_callback(ofw_vec_t *vec)
  501 {
  502 
  503         ofw_tba = rdpr(tba);
  504         ofw_vec = (u_long)vec;
  505 }
  506 
  507 void
  508 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  509 {
  510         struct trapframe *tf;
  511         struct sigframe *sfp;
  512         struct sigacts *psp;
  513         struct sigframe sf;
  514         struct thread *td;
  515         struct frame *fp;
  516         struct proc *p;
  517         u_long sp;
  518         int oonstack;
  519         int sig;
  520 
  521         oonstack = 0;
  522         td = curthread;
  523         p = td->td_proc;
  524         PROC_LOCK_ASSERT(p, MA_OWNED);
  525         sig = ksi->ksi_signo;
  526         psp = p->p_sigacts;
  527         mtx_assert(&psp->ps_mtx, MA_OWNED);
  528         tf = td->td_frame;
  529         sp = tf->tf_sp + SPOFF;
  530         oonstack = sigonstack(sp);
  531 
  532         CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
  533             catcher, sig);
  534 
  535         /* Make sure we have a signal trampoline to return to. */
  536         if (p->p_md.md_sigtramp == NULL) {
  537                 /*
  538                  * No signal trampoline... kill the process.
  539                  */
  540                 CTR0(KTR_SIG, "sendsig: no sigtramp");
  541                 printf("sendsig: %s is too old, rebuild it\n", p->p_comm);
  542                 sigexit(td, sig);
  543                 /* NOTREACHED */
  544         }
  545 
  546         /* Save user context. */
  547         bzero(&sf, sizeof(sf));
  548         get_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
  549         sf.sf_uc.uc_sigmask = *mask;
  550         sf.sf_uc.uc_stack = td->td_sigstk;
  551         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
  552             ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  553 
  554         /* Allocate and validate space for the signal handler context. */
  555         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  556             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  557                 sfp = (struct sigframe *)(td->td_sigstk.ss_sp +
  558                     td->td_sigstk.ss_size - sizeof(struct sigframe));
  559         } else
  560                 sfp = (struct sigframe *)sp - 1;
  561         mtx_unlock(&psp->ps_mtx);
  562         PROC_UNLOCK(p);
  563 
  564         fp = (struct frame *)sfp - 1;
  565 
  566         /* Translate the signal if appropriate. */
  567         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  568                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  569 
  570         /* Build the argument list for the signal handler. */
  571         tf->tf_out[0] = sig;
  572         tf->tf_out[2] = (register_t)&sfp->sf_uc;
  573         tf->tf_out[4] = (register_t)catcher;
  574         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  575                 /* Signal handler installed with SA_SIGINFO. */
  576                 tf->tf_out[1] = (register_t)&sfp->sf_si;
  577 
  578                 /* Fill in POSIX parts. */
  579                 sf.sf_si = ksi->ksi_info;
  580                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  581         } else {
  582                 /* Old FreeBSD-style arguments. */
  583                 tf->tf_out[1] = ksi->ksi_code;
  584                 tf->tf_out[3] = (register_t)ksi->ksi_addr;
  585         }
  586 
  587         /* Copy the sigframe out to the user's stack. */
  588         if (rwindow_save(td) != 0 || copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
  589             suword(&fp->fr_in[6], tf->tf_out[6]) != 0) {
  590                 /*
  591                  * Something is wrong with the stack pointer.
  592                  * ...Kill the process.
  593                  */
  594                 CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp);
  595                 PROC_LOCK(p);
  596                 sigexit(td, SIGILL);
  597                 /* NOTREACHED */
  598         }
  599 
  600         tf->tf_tpc = (u_long)p->p_md.md_sigtramp;
  601         tf->tf_tnpc = tf->tf_tpc + 4;
  602         tf->tf_sp = (u_long)fp - SPOFF;
  603 
  604         CTR3(KTR_SIG, "sendsig: return td=%p pc=%#lx sp=%#lx", td, tf->tf_tpc,
  605             tf->tf_sp);
  606 
  607         PROC_LOCK(p);
  608         mtx_lock(&psp->ps_mtx);
  609 }
  610 
  611 #ifndef _SYS_SYSPROTO_H_
  612 struct sigreturn_args {
  613         ucontext_t *ucp;
  614 };
  615 #endif
  616 
  617 /*
  618  * MPSAFE
  619  */
  620 int
  621 sigreturn(struct thread *td, struct sigreturn_args *uap)
  622 {
  623         struct proc *p;
  624         mcontext_t *mc;
  625         ucontext_t uc;
  626         int error;
  627 
  628         p = td->td_proc;
  629         if (rwindow_save(td)) {
  630                 PROC_LOCK(p);
  631                 sigexit(td, SIGILL);
  632         }
  633 
  634         CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
  635         if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
  636                 CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
  637                 return (EFAULT);
  638         }
  639 
  640         mc = &uc.uc_mcontext;
  641         error = set_mcontext(td, mc);
  642         if (error != 0)
  643                 return (error);
  644 
  645         PROC_LOCK(p);
  646         td->td_sigmask = uc.uc_sigmask;
  647         SIG_CANTMASK(td->td_sigmask);
  648         signotify(td);
  649         PROC_UNLOCK(p);
  650 
  651         CTR4(KTR_SIG, "sigreturn: return td=%p pc=%#lx sp=%#lx tstate=%#lx",
  652             td, mc->mc_tpc, mc->mc_sp, mc->mc_tstate);
  653         return (EJUSTRETURN);
  654 }
  655 
  656 #ifdef COMPAT_FREEBSD4
  657 int
  658 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
  659 {
  660 
  661         return sigreturn(td, (struct sigreturn_args *)uap);
  662 }
  663 #endif
  664 
  665 /*
  666  * Construct a PCB from a trapframe. This is called from kdb_trap() where
  667  * we want to start a backtrace from the function that caused us to enter
  668  * the debugger. We have the context in the trapframe, but base the trace
  669  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
  670  * enough for a backtrace.
  671  */
  672 void
  673 makectx(struct trapframe *tf, struct pcb *pcb)
  674 {
  675 
  676         pcb->pcb_pc = tf->tf_tpc;
  677         pcb->pcb_sp = tf->tf_sp;
  678 }
  679 
  680 int
  681 get_mcontext(struct thread *td, mcontext_t *mc, int flags)
  682 {
  683         struct trapframe *tf;
  684         struct pcb *pcb;
  685 
  686         tf = td->td_frame;
  687         pcb = td->td_pcb;
  688         bcopy(tf, mc, sizeof(*tf));
  689         if (flags & GET_MC_CLEAR_RET) {
  690                 mc->mc_out[0] = 0;
  691                 mc->mc_out[1] = 0;
  692         }
  693         mc->mc_flags = _MC_VERSION;
  694         critical_enter();
  695         if ((tf->tf_fprs & FPRS_FEF) != 0) {
  696                 savefpctx(pcb->pcb_ufp);
  697                 tf->tf_fprs &= ~FPRS_FEF;
  698                 pcb->pcb_flags |= PCB_FEF;
  699         }
  700         if ((pcb->pcb_flags & PCB_FEF) != 0) {
  701                 bcopy(pcb->pcb_ufp, mc->mc_fp, sizeof(mc->mc_fp));
  702                 mc->mc_fprs |= FPRS_FEF;
  703         }
  704         critical_exit();
  705         return (0);
  706 }
  707 
  708 int
  709 set_mcontext(struct thread *td, const mcontext_t *mc)
  710 {
  711         struct trapframe *tf;
  712         struct pcb *pcb;
  713         uint64_t wstate;
  714 
  715         if (!TSTATE_SECURE(mc->mc_tstate) ||
  716             (mc->mc_flags & ((1L << _MC_VERSION_BITS) - 1)) != _MC_VERSION)
  717                 return (EINVAL);
  718         tf = td->td_frame;
  719         pcb = td->td_pcb;
  720         /* Make sure the windows are spilled first. */
  721         flushw();
  722         wstate = tf->tf_wstate;
  723         bcopy(mc, tf, sizeof(*tf));
  724         tf->tf_wstate = wstate;
  725         if ((mc->mc_fprs & FPRS_FEF) != 0) {
  726                 tf->tf_fprs = 0;
  727                 bcopy(mc->mc_fp, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
  728                 pcb->pcb_flags |= PCB_FEF;
  729         }
  730         return (0);
  731 }
  732 
  733 /*
  734  * Exit the kernel and execute a firmware call that will not return, as
  735  * specified by the arguments.
  736  */
  737 void
  738 cpu_shutdown(void *args)
  739 {
  740 
  741 #ifdef SMP
  742         cpu_mp_shutdown();
  743 #endif
  744         openfirmware_exit(args);
  745 }
  746 
  747 /* Get current clock frequency for the given CPU ID. */
  748 int
  749 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  750 {
  751         struct pcpu *pc;
  752 
  753         pc = pcpu_find(cpu_id);
  754         if (pc == NULL || rate == NULL)
  755                 return (EINVAL);
  756         *rate = pc->pc_clock;
  757         return (0);
  758 }
  759 
  760 /*
  761  * Duplicate OF_exit() with a different firmware call function that restores
  762  * the trap table, otherwise a RED state exception is triggered in at least
  763  * some firmware versions.
  764  */
  765 void
  766 cpu_halt(void)
  767 {
  768         static struct {
  769                 cell_t name;
  770                 cell_t nargs;
  771                 cell_t nreturns;
  772         } args = {
  773                 (cell_t)"exit",
  774                 0,
  775                 0
  776         };
  777 
  778         cpu_shutdown(&args);
  779 }
  780 
  781 void
  782 sparc64_shutdown_final(void *dummy, int howto)
  783 {
  784         static struct {
  785                 cell_t name;
  786                 cell_t nargs;
  787                 cell_t nreturns;
  788         } args = {
  789                 (cell_t)"SUNW,power-off",
  790                 0,
  791                 0
  792         };
  793 
  794         /* Turn the power off? */
  795         if ((howto & RB_POWEROFF) != 0)
  796                 cpu_shutdown(&args);
  797         /* In case of halt, return to the firmware. */
  798         if ((howto & RB_HALT) != 0)
  799                 cpu_halt();
  800 }
  801 
  802 void
  803 cpu_idle(void)
  804 {
  805 
  806         /* Insert code to halt (until next interrupt) for the idle loop. */
  807 }
  808 
  809 int
  810 ptrace_set_pc(struct thread *td, u_long addr)
  811 {
  812 
  813         td->td_frame->tf_tpc = addr;
  814         td->td_frame->tf_tnpc = addr + 4;
  815         return (0);
  816 }
  817 
  818 int
  819 ptrace_single_step(struct thread *td)
  820 {
  821 
  822         /* TODO; */
  823         return (0);
  824 }
  825 
  826 int
  827 ptrace_clear_single_step(struct thread *td)
  828 {
  829 
  830         /* TODO; */
  831         return (0);
  832 }
  833 
  834 void
  835 exec_setregs(struct thread *td, u_long entry, u_long stack, u_long ps_strings)
  836 {
  837         struct trapframe *tf;
  838         struct pcb *pcb;
  839         struct proc *p;
  840         u_long sp;
  841 
  842         /* XXX no cpu_exec */
  843         p = td->td_proc;
  844         p->p_md.md_sigtramp = NULL;
  845         if (p->p_md.md_utrap != NULL) {
  846                 utrap_free(p->p_md.md_utrap);
  847                 p->p_md.md_utrap = NULL;
  848         }
  849 
  850         pcb = td->td_pcb;
  851         tf = td->td_frame;
  852         sp = rounddown(stack, 16);
  853         bzero(pcb, sizeof(*pcb));
  854         bzero(tf, sizeof(*tf));
  855         tf->tf_out[0] = stack;
  856         tf->tf_out[3] = p->p_sysent->sv_psstrings;
  857         tf->tf_out[6] = sp - SPOFF - sizeof(struct frame);
  858         tf->tf_tnpc = entry + 4;
  859         tf->tf_tpc = entry;
  860         tf->tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_MM_TSO;
  861 
  862         td->td_retval[0] = tf->tf_out[0];
  863         td->td_retval[1] = tf->tf_out[1];
  864 }
  865 
  866 int
  867 fill_regs(struct thread *td, struct reg *regs)
  868 {
  869 
  870         bcopy(td->td_frame, regs, sizeof(*regs));
  871         return (0);
  872 }
  873 
  874 int
  875 set_regs(struct thread *td, struct reg *regs)
  876 {
  877         struct trapframe *tf;
  878 
  879         if (!TSTATE_SECURE(regs->r_tstate))
  880                 return (EINVAL);
  881         tf = td->td_frame;
  882         regs->r_wstate = tf->tf_wstate;
  883         bcopy(regs, tf, sizeof(*regs));
  884         return (0);
  885 }
  886 
  887 int
  888 fill_dbregs(struct thread *td, struct dbreg *dbregs)
  889 {
  890 
  891         return (ENOSYS);
  892 }
  893 
  894 int
  895 set_dbregs(struct thread *td, struct dbreg *dbregs)
  896 {
  897 
  898         return (ENOSYS);
  899 }
  900 
  901 int
  902 fill_fpregs(struct thread *td, struct fpreg *fpregs)
  903 {
  904         struct trapframe *tf;
  905         struct pcb *pcb;
  906 
  907         pcb = td->td_pcb;
  908         tf = td->td_frame;
  909         bcopy(pcb->pcb_ufp, fpregs->fr_regs, sizeof(fpregs->fr_regs));
  910         fpregs->fr_fsr = tf->tf_fsr;
  911         fpregs->fr_gsr = tf->tf_gsr;
  912         return (0);
  913 }
  914 
  915 int
  916 set_fpregs(struct thread *td, struct fpreg *fpregs)
  917 {
  918         struct trapframe *tf;
  919         struct pcb *pcb;
  920 
  921         pcb = td->td_pcb;
  922         tf = td->td_frame;
  923         tf->tf_fprs &= ~FPRS_FEF;
  924         bcopy(fpregs->fr_regs, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
  925         tf->tf_fsr = fpregs->fr_fsr;
  926         tf->tf_gsr = fpregs->fr_gsr;
  927         return (0);
  928 }
  929 
  930 struct md_utrap *
  931 utrap_alloc(void)
  932 {
  933         struct md_utrap *ut;
  934 
  935         ut = malloc(sizeof(struct md_utrap), M_SUBPROC, M_WAITOK | M_ZERO);
  936         ut->ut_refcnt = 1;
  937         return (ut);
  938 }
  939 
  940 void
  941 utrap_free(struct md_utrap *ut)
  942 {
  943         int refcnt;
  944 
  945         if (ut == NULL)
  946                 return;
  947         mtx_pool_lock(mtxpool_sleep, ut);
  948         ut->ut_refcnt--;
  949         refcnt = ut->ut_refcnt;
  950         mtx_pool_unlock(mtxpool_sleep, ut);
  951         if (refcnt == 0)
  952                 free(ut, M_SUBPROC);
  953 }
  954 
  955 struct md_utrap *
  956 utrap_hold(struct md_utrap *ut)
  957 {
  958 
  959         if (ut == NULL)
  960                 return (NULL);
  961         mtx_pool_lock(mtxpool_sleep, ut);
  962         ut->ut_refcnt++;
  963         mtx_pool_unlock(mtxpool_sleep, ut);
  964         return (ut);
  965 }

Cache object: ed9a3d4c4eb780f7812ada5c9d9893ec


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.