The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/sparc64/sparc64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Jake Burkholder.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   35  *      from: FreeBSD: src/sys/i386/i386/machdep.c,v 1.477 2001/08/27
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD: releng/7.3/sys/sparc64/sparc64/machdep.c 202403 2010-01-15 16:55:00Z marius $");
   40 
   41 #include "opt_compat.h"
   42 #include "opt_ddb.h"
   43 #include "opt_kstack_pages.h"
   44 #include "opt_msgbuf.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/malloc.h>
   48 #include <sys/proc.h>
   49 #include <sys/systm.h>
   50 #include <sys/bio.h>
   51 #include <sys/buf.h>
   52 #include <sys/bus.h>
   53 #include <sys/cpu.h>
   54 #include <sys/cons.h>
   55 #include <sys/eventhandler.h>
   56 #include <sys/exec.h>
   57 #include <sys/imgact.h>
   58 #include <sys/interrupt.h>
   59 #include <sys/kdb.h>
   60 #include <sys/kernel.h>
   61 #include <sys/ktr.h>
   62 #include <sys/linker.h>
   63 #include <sys/lock.h>
   64 #include <sys/msgbuf.h>
   65 #include <sys/mutex.h>
   66 #include <sys/pcpu.h>
   67 #include <sys/ptrace.h>
   68 #include <sys/reboot.h>
   69 #include <sys/signalvar.h>
   70 #include <sys/smp.h>
   71 #include <sys/sysent.h>
   72 #include <sys/sysproto.h>
   73 #include <sys/timetc.h>
   74 #include <sys/ucontext.h>
   75 
   76 #include <dev/ofw/openfirm.h>
   77 
   78 #include <vm/vm.h>
   79 #include <vm/vm_extern.h>
   80 #include <vm/vm_kern.h>
   81 #include <vm/vm_page.h>
   82 #include <vm/vm_map.h>
   83 #include <vm/vm_object.h>
   84 #include <vm/vm_pager.h>
   85 #include <vm/vm_param.h>
   86 
   87 #include <ddb/ddb.h>
   88 
   89 #include <machine/bus.h>
   90 #include <machine/cache.h>
   91 #include <machine/clock.h>
   92 #include <machine/cpu.h>
   93 #include <machine/fp.h>
   94 #include <machine/fsr.h>
   95 #include <machine/intr_machdep.h>
   96 #include <machine/md_var.h>
   97 #include <machine/metadata.h>
   98 #include <machine/ofw_machdep.h>
   99 #include <machine/ofw_mem.h>
  100 #include <machine/pcb.h>
  101 #include <machine/pmap.h>
  102 #include <machine/pstate.h>
  103 #include <machine/reg.h>
  104 #include <machine/sigframe.h>
  105 #include <machine/smp.h>
  106 #include <machine/tick.h>
  107 #include <machine/tlb.h>
  108 #include <machine/tstate.h>
  109 #include <machine/upa.h>
  110 #include <machine/ver.h>
  111 
  112 typedef int ofw_vec_t(void *);
  113 
  114 #ifdef DDB
  115 extern vm_offset_t ksym_start, ksym_end;
  116 #endif
  117 
  118 int dtlb_slots;
  119 int itlb_slots;
  120 struct tlb_entry *kernel_tlbs;
  121 int kernel_tlb_slots;
  122 
  123 int cold = 1;
  124 long Maxmem;
  125 long realmem;
  126 
  127 char pcpu0[PCPU_PAGES * PAGE_SIZE];
  128 struct trapframe frame0;
  129 
  130 vm_offset_t kstack0;
  131 vm_paddr_t kstack0_phys;
  132 
  133 struct kva_md_info kmi;
  134 
  135 u_long ofw_vec;
  136 u_long ofw_tba;
  137 
  138 char sparc64_model[32];
  139 
  140 static int cpu_use_vis = 1;
  141 
  142 cpu_block_copy_t *cpu_block_copy;
  143 cpu_block_zero_t *cpu_block_zero;
  144 
  145 void sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3,
  146     ofw_vec_t *vec);
  147 void sparc64_shutdown_final(void *dummy, int howto);
  148 
  149 static void cpu_startup(void *);
  150 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  151 
  152 CTASSERT((1 << INT_SHIFT) == sizeof(int));
  153 CTASSERT((1 << PTR_SHIFT) == sizeof(char *));
  154 
  155 CTASSERT(sizeof(struct reg) == 256);
  156 CTASSERT(sizeof(struct fpreg) == 272);
  157 CTASSERT(sizeof(struct __mcontext) == 512);
  158 
  159 CTASSERT((sizeof(struct pcb) & (64 - 1)) == 0);
  160 CTASSERT((offsetof(struct pcb, pcb_kfp) & (64 - 1)) == 0);
  161 CTASSERT((offsetof(struct pcb, pcb_ufp) & (64 - 1)) == 0);
  162 CTASSERT(sizeof(struct pcb) <= ((KSTACK_PAGES * PAGE_SIZE) / 8));
  163 
  164 CTASSERT(sizeof(struct pcpu) <= ((PCPU_PAGES * PAGE_SIZE) / 2));
  165 
  166 static void
  167 cpu_startup(void *arg)
  168 {
  169         vm_paddr_t physsz;
  170         int i;
  171 
  172         physsz = 0;
  173         for (i = 0; i < sparc64_nmemreg; i++)
  174                 physsz += sparc64_memreg[i].mr_size;
  175         printf("real memory  = %lu (%lu MB)\n", physsz,
  176             physsz / (1024 * 1024));
  177         realmem = (long)physsz / PAGE_SIZE;
  178 
  179         vm_ksubmap_init(&kmi);
  180 
  181         bufinit();
  182         vm_pager_bufferinit();
  183 
  184         EVENTHANDLER_REGISTER(shutdown_final, sparc64_shutdown_final, NULL,
  185             SHUTDOWN_PRI_LAST);
  186 
  187         printf("avail memory = %lu (%lu MB)\n", cnt.v_free_count * PAGE_SIZE,
  188             cnt.v_free_count / ((1024 * 1024) / PAGE_SIZE));
  189 
  190         if (bootverbose)
  191                 printf("machine: %s\n", sparc64_model);
  192 
  193         cpu_identify(rdpr(ver), PCPU_GET(clock), curcpu);
  194 }
  195 
  196 void
  197 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
  198 {
  199         struct intr_request *ir;
  200         int i;
  201 
  202         pcpu->pc_irtail = &pcpu->pc_irhead;
  203         for (i = 0; i < IR_FREE; i++) {
  204                 ir = &pcpu->pc_irpool[i];
  205                 ir->ir_next = pcpu->pc_irfree;
  206                 pcpu->pc_irfree = ir;
  207         }
  208 }
  209 
  210 void
  211 spinlock_enter(void)
  212 {
  213         struct thread *td;
  214         register_t pil;
  215 
  216         td = curthread;
  217         if (td->td_md.md_spinlock_count == 0) {
  218                 pil = rdpr(pil);
  219                 wrpr(pil, 0, PIL_TICK);
  220                 td->td_md.md_saved_pil = pil;
  221         }
  222         td->td_md.md_spinlock_count++;
  223         critical_enter();
  224 }
  225 
  226 void
  227 spinlock_exit(void)
  228 {
  229         struct thread *td;
  230 
  231         td = curthread;
  232         critical_exit();
  233         td->td_md.md_spinlock_count--;
  234         if (td->td_md.md_spinlock_count == 0)
  235                 wrpr(pil, td->td_md.md_saved_pil, 0);
  236 }
  237 
  238 void
  239 sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3, ofw_vec_t *vec)
  240 {
  241         char type[8];
  242         char *env;
  243         struct pcpu *pc;
  244         vm_offset_t end;
  245         vm_offset_t va;
  246         caddr_t kmdp;
  247         phandle_t child;
  248         phandle_t root;
  249         uint32_t portid;
  250 
  251         end = 0;
  252         kmdp = NULL;
  253 
  254         /*
  255          * Find out what kind of CPU we have first, for anything that changes
  256          * behaviour.
  257          */
  258         cpu_impl = VER_IMPL(rdpr(ver));
  259 
  260         /*
  261          * Do CPU-specific Initialization.
  262          */
  263         if (cpu_impl >= CPU_IMPL_ULTRASPARCIII)
  264                 cheetah_init();
  265 
  266         /*
  267          * Clear (S)TICK timer (including NPT).
  268          */
  269         tick_clear();
  270 
  271         /*
  272          * UltraSparc II[e,i] based systems come up with the tick interrupt
  273          * enabled and a handler that resets the tick counter, causing DELAY()
  274          * to not work properly when used early in boot.
  275          * UltraSPARC III based systems come up with the system tick interrupt
  276          * enabled, causing an interrupt storm on startup since they are not
  277          * handled.
  278          */
  279         tick_stop();
  280 
  281         /*
  282          * Initialize Open Firmware (needed for console).
  283          */
  284         OF_init(vec);
  285 
  286         /*
  287          * Parse metadata if present and fetch parameters.  Must be before the
  288          * console is inited so cninit gets the right value of boothowto.
  289          */
  290         if (mdp != NULL) {
  291                 preload_metadata = mdp;
  292                 kmdp = preload_search_by_type("elf kernel");
  293                 if (kmdp != NULL) {
  294                         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
  295                         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
  296                         end = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
  297                         kernel_tlb_slots = MD_FETCH(kmdp, MODINFOMD_DTLB_SLOTS,
  298                             int);
  299                         kernel_tlbs = (void *)preload_search_info(kmdp,
  300                             MODINFO_METADATA | MODINFOMD_DTLB);
  301                 }
  302         }
  303 
  304         init_param1();
  305 
  306         /*
  307          * Prime our per-CPU data page for use.  Note, we are using it for
  308          * our stack, so don't pass the real size (PAGE_SIZE) to pcpu_init
  309          * or it'll zero it out from under us.
  310          */
  311         pc = (struct pcpu *)(pcpu0 + (PCPU_PAGES * PAGE_SIZE)) - 1;
  312         pcpu_init(pc, 0, sizeof(struct pcpu));
  313         pc->pc_addr = (vm_offset_t)pcpu0;
  314         pc->pc_mid = UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG));
  315         pc->pc_tlb_ctx = TLB_CTX_USER_MIN;
  316         pc->pc_tlb_ctx_min = TLB_CTX_USER_MIN;
  317         pc->pc_tlb_ctx_max = TLB_CTX_USER_MAX;
  318 
  319         /*
  320          * Determine the OFW node and frequency of the BSP (and ensure the
  321          * BSP is in the device tree in the first place).
  322          */
  323         pc->pc_node = 0;
  324         root = OF_peer(0);
  325         for (child = OF_child(root); child != 0; child = OF_peer(child)) {
  326                 if (OF_getprop(child, "device_type", type, sizeof(type)) <= 0)
  327                         continue;
  328                 if (strcmp(type, "cpu") != 0)
  329                         continue;
  330                 if (OF_getprop(child, cpu_impl < CPU_IMPL_ULTRASPARCIII ?
  331                     "upa-portid" : "portid", &portid, sizeof(portid)) <= 0)
  332                         continue;
  333                 if (portid == pc->pc_mid) {
  334                         pc->pc_node = child;
  335                         break;
  336                 }
  337         }
  338         if (pc->pc_node == 0)
  339                 OF_exit();
  340         if (OF_getprop(child, "clock-frequency", &pc->pc_clock,
  341             sizeof(pc->pc_clock)) <= 0)
  342                 OF_exit();
  343 
  344         /*
  345          * Provide a DELAY() that works before PCPU_REG is set.  We can't
  346          * set PCPU_REG without also taking over the trap table or the
  347          * firmware will overwrite it.  Unfortunately, it's way to early
  348          * to also take over the trap table at this point.
  349          */
  350         clock_boot = pc->pc_clock;
  351         delay_func = delay_boot;
  352 
  353         /*
  354          * Initialize the console before printing anything.
  355          * NB: the low-level console drivers require a working DELAY() at
  356          * this point.
  357          */
  358         cninit();
  359 
  360         /*
  361          * Panic if there is no metadata.  Most likely the kernel was booted
  362          * directly, instead of through loader(8).
  363          */
  364         if (mdp == NULL || kmdp == NULL || end == 0 ||
  365             kernel_tlb_slots == 0 || kernel_tlbs == NULL) {
  366                 printf("sparc64_init: missing loader metadata.\n"
  367                     "This probably means you are not using loader(8).\n");
  368                 panic("sparc64_init");
  369         }
  370 
  371         /*
  372          * Work around the broken loader behavior of not demapping no
  373          * longer used kernel TLB slots when unloading the kernel or
  374          * modules.
  375          */
  376         for (va = KERNBASE + (kernel_tlb_slots - 1) * PAGE_SIZE_4M;
  377             va >= roundup2(end, PAGE_SIZE_4M); va -= PAGE_SIZE_4M) {
  378                 if (bootverbose)
  379                         printf("demapping unused kernel TLB slot "
  380                             "(va %#lx - %#lx)\n", va, va + PAGE_SIZE_4M - 1);
  381                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  382                     ASI_DMMU_DEMAP, 0);
  383                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  384                     ASI_IMMU_DEMAP, 0);
  385                 flush(KERNBASE);
  386                 kernel_tlb_slots--;
  387         }
  388 
  389         /*
  390          * Determine the TLB slot maxima, which are expected to be
  391          * equal across all CPUs.
  392          * NB: for Cheetah-class CPUs, these properties only refer
  393          * to the t16s.
  394          */
  395         if (OF_getprop(pc->pc_node, "#dtlb-entries", &dtlb_slots,
  396             sizeof(dtlb_slots)) == -1)
  397                 panic("sparc64_init: cannot determine number of dTLB slots");
  398         if (OF_getprop(pc->pc_node, "#itlb-entries", &itlb_slots,
  399             sizeof(itlb_slots)) == -1)
  400                 panic("sparc64_init: cannot determine number of iTLB slots");
  401 
  402         cache_init(pc);
  403         cache_enable();
  404         uma_set_align(pc->pc_cache.dc_linesize - 1);
  405 
  406         cpu_block_copy = bcopy;
  407         cpu_block_zero = bzero;
  408         getenv_int("machdep.use_vis", &cpu_use_vis);
  409         if (cpu_use_vis) {
  410                 switch (cpu_impl) {
  411                 case CPU_IMPL_SPARC64:
  412                 case CPU_IMPL_ULTRASPARCI:
  413                 case CPU_IMPL_ULTRASPARCII:
  414                 case CPU_IMPL_ULTRASPARCIIi:
  415                 case CPU_IMPL_ULTRASPARCIIe:
  416                 case CPU_IMPL_ULTRASPARCIII:    /* NB: we've disabled P$. */
  417                 case CPU_IMPL_ULTRASPARCIIIp:
  418                 case CPU_IMPL_ULTRASPARCIIIi:
  419                 case CPU_IMPL_ULTRASPARCIV:
  420                 case CPU_IMPL_ULTRASPARCIVp:
  421                 case CPU_IMPL_ULTRASPARCIIIip:
  422                         cpu_block_copy = spitfire_block_copy;
  423                         cpu_block_zero = spitfire_block_zero;
  424                         break;
  425                 }
  426         }
  427 
  428 #ifdef SMP
  429         mp_init();
  430 #endif
  431 
  432         /*
  433          * Initialize virtual memory and calculate physmem.
  434          */
  435         pmap_bootstrap();
  436 
  437         /*
  438          * Initialize tunables.
  439          */
  440         init_param2(physmem);
  441         env = getenv("kernelname");
  442         if (env != NULL) {
  443                 strlcpy(kernelname, env, sizeof(kernelname));
  444                 freeenv(env);
  445         }
  446 
  447         /*
  448          * Initialize the interrupt tables.
  449          */
  450         intr_init1();
  451 
  452         /*
  453          * Initialize proc0, set kstack0, frame0, curthread and curpcb.
  454          */
  455         proc_linkup0(&proc0, &thread0);
  456         proc0.p_md.md_sigtramp = NULL;
  457         proc0.p_md.md_utrap = NULL;
  458         thread0.td_kstack = kstack0;
  459         thread0.td_pcb = (struct pcb *)
  460             (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
  461         frame0.tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_PRIV;
  462         thread0.td_frame = &frame0;
  463         pc->pc_curthread = &thread0;
  464         pc->pc_curpcb = thread0.td_pcb;
  465 
  466         /*
  467          * Initialize global registers.
  468          */
  469         cpu_setregs(pc);
  470 
  471         /*
  472          * Take over the trap table via the PROM.  Using the PROM for this
  473          * is necessary in order to set obp-control-relinquished to true
  474          * within the PROM so obtaining /virtual-memory/translations doesn't
  475          * trigger a fatal reset error or worse things further down the road.
  476          * XXX it should be possible to use this soley instead of writing
  477          * %tba in cpu_setregs().  Doing so causes a hang however.
  478          */
  479         sun4u_set_traptable(tl0_base);
  480 
  481         /*
  482          * It's now safe to use the real DELAY().
  483          */
  484         delay_func = delay_tick;
  485 
  486         /*
  487          * Initialize the message buffer (after setting trap table).
  488          */
  489         msgbufinit(msgbufp, MSGBUF_SIZE);
  490 
  491         mutex_init();
  492         intr_init2();
  493 
  494         /*
  495          * Finish pmap initialization now that we're ready for mutexes.
  496          */
  497         PMAP_LOCK_INIT(kernel_pmap);
  498 
  499         OF_getprop(root, "name", sparc64_model, sizeof(sparc64_model) - 1);
  500 
  501         kdb_init();
  502 
  503 #ifdef KDB
  504         if (boothowto & RB_KDB)
  505                 kdb_enter_why(KDB_WHY_BOOTFLAGS,
  506                     "Boot flags requested debugger");
  507 #endif
  508 }
  509 
  510 void
  511 set_openfirm_callback(ofw_vec_t *vec)
  512 {
  513 
  514         ofw_tba = rdpr(tba);
  515         ofw_vec = (u_long)vec;
  516 }
  517 
  518 void
  519 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  520 {
  521         struct trapframe *tf;
  522         struct sigframe *sfp;
  523         struct sigacts *psp;
  524         struct sigframe sf;
  525         struct thread *td;
  526         struct frame *fp;
  527         struct proc *p;
  528         u_long sp;
  529         int oonstack;
  530         int sig;
  531 
  532         oonstack = 0;
  533         td = curthread;
  534         p = td->td_proc;
  535         PROC_LOCK_ASSERT(p, MA_OWNED);
  536         sig = ksi->ksi_signo;
  537         psp = p->p_sigacts;
  538         mtx_assert(&psp->ps_mtx, MA_OWNED);
  539         tf = td->td_frame;
  540         sp = tf->tf_sp + SPOFF;
  541         oonstack = sigonstack(sp);
  542 
  543         CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
  544             catcher, sig);
  545 
  546         /* Make sure we have a signal trampoline to return to. */
  547         if (p->p_md.md_sigtramp == NULL) {
  548                 /*
  549                  * No signal trampoline... kill the process.
  550                  */
  551                 CTR0(KTR_SIG, "sendsig: no sigtramp");
  552                 printf("sendsig: %s is too old, rebuild it\n", p->p_comm);
  553                 sigexit(td, sig);
  554                 /* NOTREACHED */
  555         }
  556 
  557         /* Save user context. */
  558         bzero(&sf, sizeof(sf));
  559         get_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
  560         sf.sf_uc.uc_sigmask = *mask;
  561         sf.sf_uc.uc_stack = td->td_sigstk;
  562         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
  563             ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  564 
  565         /* Allocate and validate space for the signal handler context. */
  566         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  567             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  568                 sfp = (struct sigframe *)(td->td_sigstk.ss_sp +
  569                     td->td_sigstk.ss_size - sizeof(struct sigframe));
  570         } else
  571                 sfp = (struct sigframe *)sp - 1;
  572         mtx_unlock(&psp->ps_mtx);
  573         PROC_UNLOCK(p);
  574 
  575         fp = (struct frame *)sfp - 1;
  576 
  577         /* Translate the signal if appropriate. */
  578         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  579                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  580 
  581         /* Build the argument list for the signal handler. */
  582         tf->tf_out[0] = sig;
  583         tf->tf_out[2] = (register_t)&sfp->sf_uc;
  584         tf->tf_out[4] = (register_t)catcher;
  585         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  586                 /* Signal handler installed with SA_SIGINFO. */
  587                 tf->tf_out[1] = (register_t)&sfp->sf_si;
  588 
  589                 /* Fill in POSIX parts. */
  590                 sf.sf_si = ksi->ksi_info;
  591                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  592         } else {
  593                 /* Old FreeBSD-style arguments. */
  594                 tf->tf_out[1] = ksi->ksi_code;
  595                 tf->tf_out[3] = (register_t)ksi->ksi_addr;
  596         }
  597 
  598         /* Copy the sigframe out to the user's stack. */
  599         if (rwindow_save(td) != 0 || copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
  600             suword(&fp->fr_in[6], tf->tf_out[6]) != 0) {
  601                 /*
  602                  * Something is wrong with the stack pointer.
  603                  * ...Kill the process.
  604                  */
  605                 CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp);
  606                 PROC_LOCK(p);
  607                 sigexit(td, SIGILL);
  608                 /* NOTREACHED */
  609         }
  610 
  611         tf->tf_tpc = (u_long)p->p_md.md_sigtramp;
  612         tf->tf_tnpc = tf->tf_tpc + 4;
  613         tf->tf_sp = (u_long)fp - SPOFF;
  614 
  615         CTR3(KTR_SIG, "sendsig: return td=%p pc=%#lx sp=%#lx", td, tf->tf_tpc,
  616             tf->tf_sp);
  617 
  618         PROC_LOCK(p);
  619         mtx_lock(&psp->ps_mtx);
  620 }
  621 
  622 #ifndef _SYS_SYSPROTO_H_
  623 struct sigreturn_args {
  624         ucontext_t *ucp;
  625 };
  626 #endif
  627 
  628 /*
  629  * MPSAFE
  630  */
  631 int
  632 sigreturn(struct thread *td, struct sigreturn_args *uap)
  633 {
  634         struct proc *p;
  635         mcontext_t *mc;
  636         ucontext_t uc;
  637         int error;
  638 
  639         p = td->td_proc;
  640         if (rwindow_save(td)) {
  641                 PROC_LOCK(p);
  642                 sigexit(td, SIGILL);
  643         }
  644 
  645         CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
  646         if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
  647                 CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
  648                 return (EFAULT);
  649         }
  650 
  651         mc = &uc.uc_mcontext;
  652         error = set_mcontext(td, mc);
  653         if (error != 0)
  654                 return (error);
  655 
  656         PROC_LOCK(p);
  657         td->td_sigmask = uc.uc_sigmask;
  658         SIG_CANTMASK(td->td_sigmask);
  659         signotify(td);
  660         PROC_UNLOCK(p);
  661 
  662         CTR4(KTR_SIG, "sigreturn: return td=%p pc=%#lx sp=%#lx tstate=%#lx",
  663             td, mc->mc_tpc, mc->mc_sp, mc->mc_tstate);
  664         return (EJUSTRETURN);
  665 }
  666 
  667 /*
  668  * Construct a PCB from a trapframe. This is called from kdb_trap() where
  669  * we want to start a backtrace from the function that caused us to enter
  670  * the debugger. We have the context in the trapframe, but base the trace
  671  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
  672  * enough for a backtrace.
  673  */
  674 void
  675 makectx(struct trapframe *tf, struct pcb *pcb)
  676 {
  677 
  678         pcb->pcb_pc = tf->tf_tpc;
  679         pcb->pcb_sp = tf->tf_sp;
  680 }
  681 
  682 int
  683 get_mcontext(struct thread *td, mcontext_t *mc, int flags)
  684 {
  685         struct trapframe *tf;
  686         struct pcb *pcb;
  687 
  688         tf = td->td_frame;
  689         pcb = td->td_pcb;
  690         /*
  691          * Copy the registers which will be restored by tl0_ret() from the
  692          * trapframe.
  693          * Note that we skip %g7 which is used as the userland TLS register
  694          * and %wstate.
  695          */
  696         mc->mc_flags = _MC_VERSION;
  697         mc->mc_global[1] = tf->tf_global[1];
  698         mc->mc_global[2] = tf->tf_global[2];
  699         mc->mc_global[3] = tf->tf_global[3];
  700         mc->mc_global[4] = tf->tf_global[4];
  701         mc->mc_global[5] = tf->tf_global[5];
  702         mc->mc_global[6] = tf->tf_global[6];
  703         if (flags & GET_MC_CLEAR_RET) {
  704                 mc->mc_out[0] = 0;
  705                 mc->mc_out[1] = 0;
  706         } else {
  707                 mc->mc_out[0] = tf->tf_out[0];
  708                 mc->mc_out[1] = tf->tf_out[1];
  709         }
  710         mc->mc_out[2] = tf->tf_out[2];
  711         mc->mc_out[3] = tf->tf_out[3];
  712         mc->mc_out[4] = tf->tf_out[4];
  713         mc->mc_out[5] = tf->tf_out[5];
  714         mc->mc_out[6] = tf->tf_out[6];
  715         mc->mc_out[7] = tf->tf_out[7];
  716         mc->mc_fprs = tf->tf_fprs;
  717         mc->mc_fsr = tf->tf_fsr;
  718         mc->mc_gsr = tf->tf_gsr;
  719         mc->mc_tnpc = tf->tf_tnpc;
  720         mc->mc_tpc = tf->tf_tpc;
  721         mc->mc_tstate = tf->tf_tstate;
  722         mc->mc_y = tf->tf_y;
  723         critical_enter();
  724         if ((tf->tf_fprs & FPRS_FEF) != 0) {
  725                 savefpctx(pcb->pcb_ufp);
  726                 tf->tf_fprs &= ~FPRS_FEF;
  727                 pcb->pcb_flags |= PCB_FEF;
  728         }
  729         if ((pcb->pcb_flags & PCB_FEF) != 0) {
  730                 bcopy(pcb->pcb_ufp, mc->mc_fp, sizeof(mc->mc_fp));
  731                 mc->mc_fprs |= FPRS_FEF;
  732         }
  733         critical_exit();
  734         return (0);
  735 }
  736 
  737 int
  738 set_mcontext(struct thread *td, const mcontext_t *mc)
  739 {
  740         struct trapframe *tf;
  741         struct pcb *pcb;
  742 
  743         if (!TSTATE_SECURE(mc->mc_tstate) ||
  744             (mc->mc_flags & ((1L << _MC_VERSION_BITS) - 1)) != _MC_VERSION)
  745                 return (EINVAL);
  746         tf = td->td_frame;
  747         pcb = td->td_pcb;
  748         /* Make sure the windows are spilled first. */
  749         flushw();
  750         /*
  751          * Copy the registers which will be restored by tl0_ret() to the
  752          * trapframe.
  753          * Note that we skip %g7 which is used as the userland TLS register
  754          * and %wstate.
  755          */
  756         tf->tf_global[1] = mc->mc_global[1];
  757         tf->tf_global[2] = mc->mc_global[2];
  758         tf->tf_global[3] = mc->mc_global[3];
  759         tf->tf_global[4] = mc->mc_global[4];
  760         tf->tf_global[5] = mc->mc_global[5];
  761         tf->tf_global[6] = mc->mc_global[6];
  762         tf->tf_out[0] = mc->mc_out[0];
  763         tf->tf_out[1] = mc->mc_out[1];
  764         tf->tf_out[2] = mc->mc_out[2];
  765         tf->tf_out[3] = mc->mc_out[3];
  766         tf->tf_out[4] = mc->mc_out[4];
  767         tf->tf_out[5] = mc->mc_out[5];
  768         tf->tf_out[6] = mc->mc_out[6];
  769         tf->tf_out[7] = mc->mc_out[7];
  770         tf->tf_fprs = mc->mc_fprs;
  771         tf->tf_fsr = mc->mc_fsr;
  772         tf->tf_gsr = mc->mc_gsr;
  773         tf->tf_tnpc = mc->mc_tnpc;
  774         tf->tf_tpc = mc->mc_tpc;
  775         tf->tf_tstate = mc->mc_tstate;
  776         tf->tf_y = mc->mc_y;
  777         if ((mc->mc_fprs & FPRS_FEF) != 0) {
  778                 tf->tf_fprs = 0;
  779                 bcopy(mc->mc_fp, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
  780                 pcb->pcb_flags |= PCB_FEF;
  781         }
  782         return (0);
  783 }
  784 
  785 /*
  786  * Exit the kernel and execute a firmware call that will not return, as
  787  * specified by the arguments.
  788  */
  789 void
  790 cpu_shutdown(void *args)
  791 {
  792 
  793 #ifdef SMP
  794         cpu_mp_shutdown();
  795 #endif
  796         openfirmware_exit(args);
  797 }
  798 
  799 /* Get current clock frequency for the given CPU ID. */
  800 int
  801 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  802 {
  803         struct pcpu *pc;
  804 
  805         pc = pcpu_find(cpu_id);
  806         if (pc == NULL || rate == NULL)
  807                 return (EINVAL);
  808         *rate = pc->pc_clock;
  809         return (0);
  810 }
  811 
  812 /*
  813  * Duplicate OF_exit() with a different firmware call function that restores
  814  * the trap table, otherwise a RED state exception is triggered in at least
  815  * some firmware versions.
  816  */
  817 void
  818 cpu_halt(void)
  819 {
  820         static struct {
  821                 cell_t name;
  822                 cell_t nargs;
  823                 cell_t nreturns;
  824         } args = {
  825                 (cell_t)"exit",
  826                 0,
  827                 0
  828         };
  829 
  830         cpu_shutdown(&args);
  831 }
  832 
  833 void
  834 sparc64_shutdown_final(void *dummy, int howto)
  835 {
  836         static struct {
  837                 cell_t name;
  838                 cell_t nargs;
  839                 cell_t nreturns;
  840         } args = {
  841                 (cell_t)"SUNW,power-off",
  842                 0,
  843                 0
  844         };
  845 
  846         /* Turn the power off? */
  847         if ((howto & RB_POWEROFF) != 0)
  848                 cpu_shutdown(&args);
  849         /* In case of halt, return to the firmware. */
  850         if ((howto & RB_HALT) != 0)
  851                 cpu_halt();
  852 }
  853 
  854 void
  855 cpu_idle(void)
  856 {
  857 
  858         /* Insert code to halt (until next interrupt) for the idle loop. */
  859 }
  860 
  861 int
  862 ptrace_set_pc(struct thread *td, u_long addr)
  863 {
  864 
  865         td->td_frame->tf_tpc = addr;
  866         td->td_frame->tf_tnpc = addr + 4;
  867         return (0);
  868 }
  869 
  870 int
  871 ptrace_single_step(struct thread *td)
  872 {
  873 
  874         /* TODO; */
  875         return (0);
  876 }
  877 
  878 int
  879 ptrace_clear_single_step(struct thread *td)
  880 {
  881 
  882         /* TODO; */
  883         return (0);
  884 }
  885 
  886 void
  887 exec_setregs(struct thread *td, u_long entry, u_long stack, u_long ps_strings)
  888 {
  889         struct trapframe *tf;
  890         struct pcb *pcb;
  891         struct proc *p;
  892         u_long sp;
  893 
  894         /* XXX no cpu_exec */
  895         p = td->td_proc;
  896         p->p_md.md_sigtramp = NULL;
  897         if (p->p_md.md_utrap != NULL) {
  898                 utrap_free(p->p_md.md_utrap);
  899                 p->p_md.md_utrap = NULL;
  900         }
  901 
  902         pcb = td->td_pcb;
  903         tf = td->td_frame;
  904         sp = rounddown(stack, 16);
  905         bzero(pcb, sizeof(*pcb));
  906         bzero(tf, sizeof(*tf));
  907         tf->tf_out[0] = stack;
  908         tf->tf_out[3] = p->p_sysent->sv_psstrings;
  909         tf->tf_out[6] = sp - SPOFF - sizeof(struct frame);
  910         tf->tf_tnpc = entry + 4;
  911         tf->tf_tpc = entry;
  912         tf->tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_MM_TSO;
  913 
  914         td->td_retval[0] = tf->tf_out[0];
  915         td->td_retval[1] = tf->tf_out[1];
  916 }
  917 
  918 int
  919 fill_regs(struct thread *td, struct reg *regs)
  920 {
  921 
  922         bcopy(td->td_frame, regs, sizeof(*regs));
  923         return (0);
  924 }
  925 
  926 int
  927 set_regs(struct thread *td, struct reg *regs)
  928 {
  929         struct trapframe *tf;
  930 
  931         if (!TSTATE_SECURE(regs->r_tstate))
  932                 return (EINVAL);
  933         tf = td->td_frame;
  934         regs->r_wstate = tf->tf_wstate;
  935         bcopy(regs, tf, sizeof(*regs));
  936         return (0);
  937 }
  938 
  939 int
  940 fill_dbregs(struct thread *td, struct dbreg *dbregs)
  941 {
  942 
  943         return (ENOSYS);
  944 }
  945 
  946 int
  947 set_dbregs(struct thread *td, struct dbreg *dbregs)
  948 {
  949 
  950         return (ENOSYS);
  951 }
  952 
  953 int
  954 fill_fpregs(struct thread *td, struct fpreg *fpregs)
  955 {
  956         struct trapframe *tf;
  957         struct pcb *pcb;
  958 
  959         pcb = td->td_pcb;
  960         tf = td->td_frame;
  961         bcopy(pcb->pcb_ufp, fpregs->fr_regs, sizeof(fpregs->fr_regs));
  962         fpregs->fr_fsr = tf->tf_fsr;
  963         fpregs->fr_gsr = tf->tf_gsr;
  964         return (0);
  965 }
  966 
  967 int
  968 set_fpregs(struct thread *td, struct fpreg *fpregs)
  969 {
  970         struct trapframe *tf;
  971         struct pcb *pcb;
  972 
  973         pcb = td->td_pcb;
  974         tf = td->td_frame;
  975         tf->tf_fprs &= ~FPRS_FEF;
  976         bcopy(fpregs->fr_regs, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
  977         tf->tf_fsr = fpregs->fr_fsr;
  978         tf->tf_gsr = fpregs->fr_gsr;
  979         return (0);
  980 }
  981 
  982 struct md_utrap *
  983 utrap_alloc(void)
  984 {
  985         struct md_utrap *ut;
  986 
  987         ut = malloc(sizeof(struct md_utrap), M_SUBPROC, M_WAITOK | M_ZERO);
  988         ut->ut_refcnt = 1;
  989         return (ut);
  990 }
  991 
  992 void
  993 utrap_free(struct md_utrap *ut)
  994 {
  995         int refcnt;
  996 
  997         if (ut == NULL)
  998                 return;
  999         mtx_pool_lock(mtxpool_sleep, ut);
 1000         ut->ut_refcnt--;
 1001         refcnt = ut->ut_refcnt;
 1002         mtx_pool_unlock(mtxpool_sleep, ut);
 1003         if (refcnt == 0)
 1004                 free(ut, M_SUBPROC);
 1005 }
 1006 
 1007 struct md_utrap *
 1008 utrap_hold(struct md_utrap *ut)
 1009 {
 1010 
 1011         if (ut == NULL)
 1012                 return (NULL);
 1013         mtx_pool_lock(mtxpool_sleep, ut);
 1014         ut->ut_refcnt++;
 1015         mtx_pool_unlock(mtxpool_sleep, ut);
 1016         return (ut);
 1017 }

Cache object: 1a770575b9dfd66aeac66af756a2a364


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.