The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/sparc64/sparc64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Jake Burkholder.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   35  *      from: FreeBSD: src/sys/i386/i386/machdep.c,v 1.477 2001/08/27
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD: releng/7.4/sys/sparc64/sparc64/machdep.c 213953 2010-10-17 11:51:59Z marius $");
   40 
   41 #include "opt_compat.h"
   42 #include "opt_ddb.h"
   43 #include "opt_kstack_pages.h"
   44 #include "opt_msgbuf.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/malloc.h>
   48 #include <sys/proc.h>
   49 #include <sys/systm.h>
   50 #include <sys/bio.h>
   51 #include <sys/buf.h>
   52 #include <sys/bus.h>
   53 #include <sys/cpu.h>
   54 #include <sys/cons.h>
   55 #include <sys/eventhandler.h>
   56 #include <sys/exec.h>
   57 #include <sys/imgact.h>
   58 #include <sys/interrupt.h>
   59 #include <sys/kdb.h>
   60 #include <sys/kernel.h>
   61 #include <sys/ktr.h>
   62 #include <sys/linker.h>
   63 #include <sys/lock.h>
   64 #include <sys/msgbuf.h>
   65 #include <sys/mutex.h>
   66 #include <sys/pcpu.h>
   67 #include <sys/ptrace.h>
   68 #include <sys/reboot.h>
   69 #include <sys/signalvar.h>
   70 #include <sys/smp.h>
   71 #include <sys/sysent.h>
   72 #include <sys/sysproto.h>
   73 #include <sys/timetc.h>
   74 #include <sys/ucontext.h>
   75 
   76 #include <dev/ofw/openfirm.h>
   77 
   78 #include <vm/vm.h>
   79 #include <vm/vm_extern.h>
   80 #include <vm/vm_kern.h>
   81 #include <vm/vm_page.h>
   82 #include <vm/vm_map.h>
   83 #include <vm/vm_object.h>
   84 #include <vm/vm_pager.h>
   85 #include <vm/vm_param.h>
   86 
   87 #include <ddb/ddb.h>
   88 
   89 #include <machine/bus.h>
   90 #include <machine/cache.h>
   91 #include <machine/clock.h>
   92 #include <machine/cmt.h>
   93 #include <machine/cpu.h>
   94 #include <machine/fireplane.h>
   95 #include <machine/fp.h>
   96 #include <machine/fsr.h>
   97 #include <machine/intr_machdep.h>
   98 #include <machine/jbus.h>
   99 #include <machine/md_var.h>
  100 #include <machine/metadata.h>
  101 #include <machine/ofw_machdep.h>
  102 #include <machine/ofw_mem.h>
  103 #include <machine/pcb.h>
  104 #include <machine/pmap.h>
  105 #include <machine/pstate.h>
  106 #include <machine/reg.h>
  107 #include <machine/sigframe.h>
  108 #include <machine/smp.h>
  109 #include <machine/tick.h>
  110 #include <machine/tlb.h>
  111 #include <machine/tstate.h>
  112 #include <machine/upa.h>
  113 #include <machine/ver.h>
  114 
  115 typedef int ofw_vec_t(void *);
  116 
  117 #ifdef DDB
  118 extern vm_offset_t ksym_start, ksym_end;
  119 #endif
  120 
  121 int dtlb_slots;
  122 int itlb_slots;
  123 struct tlb_entry *kernel_tlbs;
  124 int kernel_tlb_slots;
  125 
  126 int cold = 1;
  127 long Maxmem;
  128 long realmem;
  129 
  130 char pcpu0[PCPU_PAGES * PAGE_SIZE];
  131 struct trapframe frame0;
  132 
  133 vm_offset_t kstack0;
  134 vm_paddr_t kstack0_phys;
  135 
  136 struct kva_md_info kmi;
  137 
  138 u_long ofw_vec;
  139 u_long ofw_tba;
  140 u_int tba_taken_over;
  141 
  142 char sparc64_model[32];
  143 
  144 static int cpu_use_vis = 1;
  145 
  146 cpu_block_copy_t *cpu_block_copy;
  147 cpu_block_zero_t *cpu_block_zero;
  148 
  149 static phandle_t find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl);
  150 void sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3,
  151     ofw_vec_t *vec);
  152 static void sparc64_shutdown_final(void *dummy, int howto);
  153 
  154 static void cpu_startup(void *arg);
  155 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  156 
  157 CTASSERT((1 << INT_SHIFT) == sizeof(int));
  158 CTASSERT((1 << PTR_SHIFT) == sizeof(char *));
  159 
  160 CTASSERT(sizeof(struct reg) == 256);
  161 CTASSERT(sizeof(struct fpreg) == 272);
  162 CTASSERT(sizeof(struct __mcontext) == 512);
  163 
  164 CTASSERT((sizeof(struct pcb) & (64 - 1)) == 0);
  165 CTASSERT((offsetof(struct pcb, pcb_kfp) & (64 - 1)) == 0);
  166 CTASSERT((offsetof(struct pcb, pcb_ufp) & (64 - 1)) == 0);
  167 CTASSERT(sizeof(struct pcb) <= ((KSTACK_PAGES * PAGE_SIZE) / 8));
  168 
  169 CTASSERT(sizeof(struct pcpu) <= ((PCPU_PAGES * PAGE_SIZE) / 2));
  170 
  171 static void
  172 cpu_startup(void *arg)
  173 {
  174         vm_paddr_t physsz;
  175         int i;
  176 
  177         physsz = 0;
  178         for (i = 0; i < sparc64_nmemreg; i++)
  179                 physsz += sparc64_memreg[i].mr_size;
  180         printf("real memory  = %lu (%lu MB)\n", physsz,
  181             physsz / (1024 * 1024));
  182         realmem = (long)physsz / PAGE_SIZE;
  183 
  184         vm_ksubmap_init(&kmi);
  185 
  186         bufinit();
  187         vm_pager_bufferinit();
  188 
  189         EVENTHANDLER_REGISTER(shutdown_final, sparc64_shutdown_final, NULL,
  190             SHUTDOWN_PRI_LAST);
  191 
  192         printf("avail memory = %lu (%lu MB)\n", cnt.v_free_count * PAGE_SIZE,
  193             cnt.v_free_count / ((1024 * 1024) / PAGE_SIZE));
  194 
  195         if (bootverbose)
  196                 printf("machine: %s\n", sparc64_model);
  197 
  198         cpu_identify(rdpr(ver), PCPU_GET(clock), curcpu);
  199 }
  200 
  201 void
  202 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
  203 {
  204         struct intr_request *ir;
  205         int i;
  206 
  207         pcpu->pc_irtail = &pcpu->pc_irhead;
  208         for (i = 0; i < IR_FREE; i++) {
  209                 ir = &pcpu->pc_irpool[i];
  210                 ir->ir_next = pcpu->pc_irfree;
  211                 pcpu->pc_irfree = ir;
  212         }
  213 }
  214 
  215 void
  216 spinlock_enter(void)
  217 {
  218         struct thread *td;
  219         register_t pil;
  220 
  221         td = curthread;
  222         if (td->td_md.md_spinlock_count == 0) {
  223                 pil = rdpr(pil);
  224                 wrpr(pil, 0, PIL_TICK);
  225                 td->td_md.md_saved_pil = pil;
  226         }
  227         td->td_md.md_spinlock_count++;
  228         critical_enter();
  229 }
  230 
  231 void
  232 spinlock_exit(void)
  233 {
  234         struct thread *td;
  235 
  236         td = curthread;
  237         critical_exit();
  238         td->td_md.md_spinlock_count--;
  239         if (td->td_md.md_spinlock_count == 0)
  240                 wrpr(pil, td->td_md.md_saved_pil, 0);
  241 }
  242 
  243 static phandle_t
  244 find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl)
  245 {
  246         char type[sizeof("cpu")];
  247         phandle_t child;
  248         uint32_t cpuid;
  249 
  250         for (; node != 0; node = OF_peer(node)) {
  251                 child = OF_child(node);
  252                 if (child > 0) {
  253                         child = find_bsp(child, bspid, cpu_impl);
  254                         if (child > 0)
  255                                 return (child);
  256                 } else {
  257                         if (OF_getprop(node, "device_type", type,
  258                             sizeof(type)) <= 0)
  259                                 continue;
  260                         if (strcmp(type, "cpu") != 0)
  261                                 continue;
  262                         if (OF_getprop(node, cpu_cpuid_prop(cpu_impl), &cpuid,
  263                             sizeof(cpuid)) <= 0)
  264                                 continue;
  265                         if (cpuid == bspid)
  266                                 return (node);
  267                 }
  268         }
  269         return (0);
  270 }
  271 
  272 char *
  273 cpu_cpuid_prop(u_int cpu_impl)
  274 {
  275 
  276         switch (cpu_impl) {
  277         case CPU_IMPL_SPARC64:
  278         case CPU_IMPL_SPARC64V:
  279         case CPU_IMPL_ULTRASPARCI:
  280         case CPU_IMPL_ULTRASPARCII:
  281         case CPU_IMPL_ULTRASPARCIIi:
  282         case CPU_IMPL_ULTRASPARCIIe:
  283                 return ("upa-portid");
  284         case CPU_IMPL_ULTRASPARCIII:
  285         case CPU_IMPL_ULTRASPARCIIIp:
  286         case CPU_IMPL_ULTRASPARCIIIi:
  287         case CPU_IMPL_ULTRASPARCIIIip:
  288                 return ("portid");
  289         case CPU_IMPL_ULTRASPARCIV:
  290         case CPU_IMPL_ULTRASPARCIVp:
  291                 return ("cpuid");
  292         default:
  293                 return ("");
  294         }
  295 }
  296 
  297 uint32_t
  298 cpu_get_mid(u_int cpu_impl)
  299 {
  300 
  301         switch (cpu_impl) {
  302         case CPU_IMPL_SPARC64:
  303         case CPU_IMPL_SPARC64V:
  304         case CPU_IMPL_ULTRASPARCI:
  305         case CPU_IMPL_ULTRASPARCII:
  306         case CPU_IMPL_ULTRASPARCIIi:
  307         case CPU_IMPL_ULTRASPARCIIe:
  308                 return (UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG)));
  309         case CPU_IMPL_ULTRASPARCIII:
  310         case CPU_IMPL_ULTRASPARCIIIp:
  311                 return (FIREPLANE_CR_GET_AID(ldxa(AA_FIREPLANE_CONFIG,
  312                     ASI_FIREPLANE_CONFIG_REG)));
  313         case CPU_IMPL_ULTRASPARCIIIi:
  314         case CPU_IMPL_ULTRASPARCIIIip:
  315                 return (JBUS_CR_GET_JID(ldxa(0, ASI_JBUS_CONFIG_REG)));
  316         case CPU_IMPL_ULTRASPARCIV:
  317         case CPU_IMPL_ULTRASPARCIVp:
  318                 return (INTR_ID_GET_ID(ldxa(AA_INTR_ID, ASI_INTR_ID)));
  319         default:
  320                 return (0);
  321         }
  322 }
  323 
  324 void
  325 sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3, ofw_vec_t *vec)
  326 {
  327         char *env;
  328         struct pcpu *pc;
  329         vm_offset_t end;
  330         vm_offset_t va;
  331         caddr_t kmdp;
  332         phandle_t root;
  333         u_int cpu_impl;
  334 
  335         end = 0;
  336         kmdp = NULL;
  337 
  338         /*
  339          * Find out what kind of CPU we have first, for anything that changes
  340          * behaviour.
  341          */
  342         cpu_impl = VER_IMPL(rdpr(ver));
  343 
  344         /*
  345          * Do CPU-specific initialization.
  346          */
  347         if (cpu_impl == CPU_IMPL_SPARC64V ||
  348             cpu_impl >= CPU_IMPL_ULTRASPARCIII)
  349                 cheetah_init(cpu_impl);
  350 
  351         /*
  352          * Clear (S)TICK timer (including NPT).
  353          */
  354         tick_clear(cpu_impl);
  355 
  356         /*
  357          * UltraSparc II[e,i] based systems come up with the tick interrupt
  358          * enabled and a handler that resets the tick counter, causing DELAY()
  359          * to not work properly when used early in boot.
  360          * UltraSPARC III based systems come up with the system tick interrupt
  361          * enabled, causing an interrupt storm on startup since they are not
  362          * handled.
  363          */
  364         tick_stop(cpu_impl);
  365 
  366         /*
  367          * Initialize Open Firmware (needed for console).
  368          */
  369         OF_init(vec);
  370 
  371         /*
  372          * Parse metadata if present and fetch parameters.  Must be before the
  373          * console is inited so cninit gets the right value of boothowto.
  374          */
  375         if (mdp != NULL) {
  376                 preload_metadata = mdp;
  377                 kmdp = preload_search_by_type("elf kernel");
  378                 if (kmdp != NULL) {
  379                         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
  380                         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
  381                         end = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
  382                         kernel_tlb_slots = MD_FETCH(kmdp, MODINFOMD_DTLB_SLOTS,
  383                             int);
  384                         kernel_tlbs = (void *)preload_search_info(kmdp,
  385                             MODINFO_METADATA | MODINFOMD_DTLB);
  386                 }
  387         }
  388 
  389         init_param1();
  390 
  391         /*
  392          * Prime our per-CPU data page for use.  Note, we are using it for
  393          * our stack, so don't pass the real size (PAGE_SIZE) to pcpu_init
  394          * or it'll zero it out from under us.
  395          */
  396         pc = (struct pcpu *)(pcpu0 + (PCPU_PAGES * PAGE_SIZE)) - 1;
  397         pcpu_init(pc, 0, sizeof(struct pcpu));
  398         pc->pc_addr = (vm_offset_t)pcpu0;
  399         pc->pc_impl = cpu_impl;
  400         pc->pc_mid = cpu_get_mid(cpu_impl);
  401         pc->pc_tlb_ctx = TLB_CTX_USER_MIN;
  402         pc->pc_tlb_ctx_min = TLB_CTX_USER_MIN;
  403         pc->pc_tlb_ctx_max = TLB_CTX_USER_MAX;
  404 
  405         /*
  406          * Determine the OFW node and frequency of the BSP (and ensure the
  407          * BSP is in the device tree in the first place).
  408          */
  409         root = OF_peer(0);
  410         pc->pc_node = find_bsp(root, pc->pc_mid, cpu_impl);
  411         if (pc->pc_node == 0)
  412                 OF_exit();
  413         if (OF_getprop(pc->pc_node, "clock-frequency", &pc->pc_clock,
  414             sizeof(pc->pc_clock)) <= 0)
  415                 OF_exit();
  416 
  417         /*
  418          * Provide a DELAY() that works before PCPU_REG is set.  We can't
  419          * set PCPU_REG without also taking over the trap table or the
  420          * firmware will overwrite it.  Unfortunately, it's way to early
  421          * to also take over the trap table at this point.
  422          */
  423         clock_boot = pc->pc_clock;
  424         delay_func = delay_boot;
  425 
  426         /*
  427          * Initialize the console before printing anything.
  428          * NB: the low-level console drivers require a working DELAY() at
  429          * this point.
  430          */
  431         cninit();
  432 
  433         /*
  434          * Panic if there is no metadata.  Most likely the kernel was booted
  435          * directly, instead of through loader(8).
  436          */
  437         if (mdp == NULL || kmdp == NULL || end == 0 ||
  438             kernel_tlb_slots == 0 || kernel_tlbs == NULL) {
  439                 printf("sparc64_init: missing loader metadata.\n"
  440                     "This probably means you are not using loader(8).\n");
  441                 panic("sparc64_init");
  442         }
  443 
  444         /*
  445          * Work around the broken loader behavior of not demapping no
  446          * longer used kernel TLB slots when unloading the kernel or
  447          * modules.
  448          */
  449         for (va = KERNBASE + (kernel_tlb_slots - 1) * PAGE_SIZE_4M;
  450             va >= roundup2(end, PAGE_SIZE_4M); va -= PAGE_SIZE_4M) {
  451                 if (bootverbose)
  452                         printf("demapping unused kernel TLB slot "
  453                             "(va %#lx - %#lx)\n", va, va + PAGE_SIZE_4M - 1);
  454                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  455                     ASI_DMMU_DEMAP, 0);
  456                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  457                     ASI_IMMU_DEMAP, 0);
  458                 flush(KERNBASE);
  459                 kernel_tlb_slots--;
  460         }
  461 
  462         /*
  463          * Determine the TLB slot maxima, which are expected to be
  464          * equal across all CPUs.
  465          * NB: for cheetah-class CPUs, these properties only refer
  466          * to the t16s.
  467          */
  468         if (OF_getprop(pc->pc_node, "#dtlb-entries", &dtlb_slots,
  469             sizeof(dtlb_slots)) == -1)
  470                 panic("sparc64_init: cannot determine number of dTLB slots");
  471         if (OF_getprop(pc->pc_node, "#itlb-entries", &itlb_slots,
  472             sizeof(itlb_slots)) == -1)
  473                 panic("sparc64_init: cannot determine number of iTLB slots");
  474 
  475         /*
  476          * Initialize and enable the caches.  Note that his may include
  477          * applying workarounds.
  478          */
  479         cache_init(pc);
  480         cache_enable(cpu_impl);
  481         uma_set_align(pc->pc_cache.dc_linesize - 1);
  482 
  483         cpu_block_copy = bcopy;
  484         cpu_block_zero = bzero;
  485         getenv_int("machdep.use_vis", &cpu_use_vis);
  486         if (cpu_use_vis) {
  487                 switch (cpu_impl) {
  488                 case CPU_IMPL_SPARC64:
  489                 case CPU_IMPL_ULTRASPARCI:
  490                 case CPU_IMPL_ULTRASPARCII:
  491                 case CPU_IMPL_ULTRASPARCIIi:
  492                 case CPU_IMPL_ULTRASPARCIIe:
  493                 case CPU_IMPL_ULTRASPARCIII:    /* NB: we've disabled P$. */
  494                 case CPU_IMPL_ULTRASPARCIIIp:
  495                 case CPU_IMPL_ULTRASPARCIIIi:
  496                 case CPU_IMPL_ULTRASPARCIV:
  497                 case CPU_IMPL_ULTRASPARCIVp:
  498                 case CPU_IMPL_ULTRASPARCIIIip:
  499                         cpu_block_copy = spitfire_block_copy;
  500                         cpu_block_zero = spitfire_block_zero;
  501                         break;
  502                 case CPU_IMPL_SPARC64V:
  503                         cpu_block_copy = zeus_block_copy;
  504                         cpu_block_zero = zeus_block_zero;
  505                         break;
  506                 }
  507         }
  508 
  509 #ifdef SMP
  510         mp_init(cpu_impl);
  511 #endif
  512 
  513         /*
  514          * Initialize virtual memory and calculate physmem.
  515          */
  516         pmap_bootstrap(cpu_impl);
  517 
  518         /*
  519          * Initialize tunables.
  520          */
  521         init_param2(physmem);
  522         env = getenv("kernelname");
  523         if (env != NULL) {
  524                 strlcpy(kernelname, env, sizeof(kernelname));
  525                 freeenv(env);
  526         }
  527 
  528         /*
  529          * Initialize the interrupt tables.
  530          */
  531         intr_init1();
  532 
  533         /*
  534          * Initialize proc0, set kstack0, frame0, curthread and curpcb.
  535          */
  536         proc_linkup0(&proc0, &thread0);
  537         proc0.p_md.md_sigtramp = NULL;
  538         proc0.p_md.md_utrap = NULL;
  539         thread0.td_kstack = kstack0;
  540         thread0.td_pcb = (struct pcb *)
  541             (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
  542         frame0.tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_PRIV;
  543         thread0.td_frame = &frame0;
  544         pc->pc_curthread = &thread0;
  545         pc->pc_curpcb = thread0.td_pcb;
  546 
  547         /*
  548          * Initialize global registers.
  549          */
  550         cpu_setregs(pc);
  551 
  552         /*
  553          * Take over the trap table via the PROM.  Using the PROM for this
  554          * is necessary in order to set obp-control-relinquished to true
  555          * within the PROM so obtaining /virtual-memory/translations doesn't
  556          * trigger a fatal reset error or worse things further down the road.
  557          * XXX it should be possible to use this soley instead of writing
  558          * %tba in cpu_setregs().  Doing so causes a hang however.
  559          */
  560         sun4u_set_traptable(tl0_base);
  561 
  562         /*
  563          * It's now safe to use the real DELAY().
  564          */
  565         delay_func = delay_tick;
  566 
  567         /*
  568          * Initialize the message buffer (after setting trap table).
  569          */
  570         msgbufinit(msgbufp, MSGBUF_SIZE);
  571 
  572         /*
  573          * Initialize mutexes.
  574          */
  575         mutex_init();
  576 
  577         /*
  578          * Finish the interrupt initialization now that mutexes work and
  579          * enable them.
  580          */
  581         intr_init2();
  582         wrpr(pil, 0, 0);
  583         wrpr(pstate, 0, PSTATE_KERNEL);
  584 
  585         /*
  586          * Finish pmap initialization now that we're ready for mutexes.
  587          */
  588         PMAP_LOCK_INIT(kernel_pmap);
  589 
  590         OF_getprop(root, "name", sparc64_model, sizeof(sparc64_model) - 1);
  591 
  592         kdb_init();
  593 
  594 #ifdef KDB
  595         if (boothowto & RB_KDB)
  596                 kdb_enter_why(KDB_WHY_BOOTFLAGS,
  597                     "Boot flags requested debugger");
  598 #endif
  599 }
  600 
  601 void
  602 set_openfirm_callback(ofw_vec_t *vec)
  603 {
  604 
  605         ofw_tba = rdpr(tba);
  606         ofw_vec = (u_long)vec;
  607 }
  608 
  609 void
  610 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  611 {
  612         struct trapframe *tf;
  613         struct sigframe *sfp;
  614         struct sigacts *psp;
  615         struct sigframe sf;
  616         struct thread *td;
  617         struct frame *fp;
  618         struct proc *p;
  619         u_long sp;
  620         int oonstack;
  621         int sig;
  622 
  623         oonstack = 0;
  624         td = curthread;
  625         p = td->td_proc;
  626         PROC_LOCK_ASSERT(p, MA_OWNED);
  627         sig = ksi->ksi_signo;
  628         psp = p->p_sigacts;
  629         mtx_assert(&psp->ps_mtx, MA_OWNED);
  630         tf = td->td_frame;
  631         sp = tf->tf_sp + SPOFF;
  632         oonstack = sigonstack(sp);
  633 
  634         CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
  635             catcher, sig);
  636 
  637         /* Make sure we have a signal trampoline to return to. */
  638         if (p->p_md.md_sigtramp == NULL) {
  639                 /*
  640                  * No signal trampoline... kill the process.
  641                  */
  642                 CTR0(KTR_SIG, "sendsig: no sigtramp");
  643                 printf("sendsig: %s is too old, rebuild it\n", p->p_comm);
  644                 sigexit(td, sig);
  645                 /* NOTREACHED */
  646         }
  647 
  648         /* Save user context. */
  649         bzero(&sf, sizeof(sf));
  650         get_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
  651         sf.sf_uc.uc_sigmask = *mask;
  652         sf.sf_uc.uc_stack = td->td_sigstk;
  653         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
  654             ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  655 
  656         /* Allocate and validate space for the signal handler context. */
  657         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  658             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  659                 sfp = (struct sigframe *)(td->td_sigstk.ss_sp +
  660                     td->td_sigstk.ss_size - sizeof(struct sigframe));
  661         } else
  662                 sfp = (struct sigframe *)sp - 1;
  663         mtx_unlock(&psp->ps_mtx);
  664         PROC_UNLOCK(p);
  665 
  666         fp = (struct frame *)sfp - 1;
  667 
  668         /* Translate the signal if appropriate. */
  669         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  670                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  671 
  672         /* Build the argument list for the signal handler. */
  673         tf->tf_out[0] = sig;
  674         tf->tf_out[2] = (register_t)&sfp->sf_uc;
  675         tf->tf_out[4] = (register_t)catcher;
  676         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  677                 /* Signal handler installed with SA_SIGINFO. */
  678                 tf->tf_out[1] = (register_t)&sfp->sf_si;
  679 
  680                 /* Fill in POSIX parts. */
  681                 sf.sf_si = ksi->ksi_info;
  682                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  683         } else {
  684                 /* Old FreeBSD-style arguments. */
  685                 tf->tf_out[1] = ksi->ksi_code;
  686                 tf->tf_out[3] = (register_t)ksi->ksi_addr;
  687         }
  688 
  689         /* Copy the sigframe out to the user's stack. */
  690         if (rwindow_save(td) != 0 || copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
  691             suword(&fp->fr_in[6], tf->tf_out[6]) != 0) {
  692                 /*
  693                  * Something is wrong with the stack pointer.
  694                  * ...Kill the process.
  695                  */
  696                 CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp);
  697                 PROC_LOCK(p);
  698                 sigexit(td, SIGILL);
  699                 /* NOTREACHED */
  700         }
  701 
  702         tf->tf_tpc = (u_long)p->p_md.md_sigtramp;
  703         tf->tf_tnpc = tf->tf_tpc + 4;
  704         tf->tf_sp = (u_long)fp - SPOFF;
  705 
  706         CTR3(KTR_SIG, "sendsig: return td=%p pc=%#lx sp=%#lx", td, tf->tf_tpc,
  707             tf->tf_sp);
  708 
  709         PROC_LOCK(p);
  710         mtx_lock(&psp->ps_mtx);
  711 }
  712 
  713 #ifndef _SYS_SYSPROTO_H_
  714 struct sigreturn_args {
  715         ucontext_t *ucp;
  716 };
  717 #endif
  718 
  719 /*
  720  * MPSAFE
  721  */
  722 int
  723 sigreturn(struct thread *td, struct sigreturn_args *uap)
  724 {
  725         struct proc *p;
  726         mcontext_t *mc;
  727         ucontext_t uc;
  728         int error;
  729 
  730         p = td->td_proc;
  731         if (rwindow_save(td)) {
  732                 PROC_LOCK(p);
  733                 sigexit(td, SIGILL);
  734         }
  735 
  736         CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
  737         if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
  738                 CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
  739                 return (EFAULT);
  740         }
  741 
  742         mc = &uc.uc_mcontext;
  743         error = set_mcontext(td, mc);
  744         if (error != 0)
  745                 return (error);
  746 
  747         PROC_LOCK(p);
  748         td->td_sigmask = uc.uc_sigmask;
  749         SIG_CANTMASK(td->td_sigmask);
  750         signotify(td);
  751         PROC_UNLOCK(p);
  752 
  753         CTR4(KTR_SIG, "sigreturn: return td=%p pc=%#lx sp=%#lx tstate=%#lx",
  754             td, mc->mc_tpc, mc->mc_sp, mc->mc_tstate);
  755         return (EJUSTRETURN);
  756 }
  757 
  758 /*
  759  * Construct a PCB from a trapframe. This is called from kdb_trap() where
  760  * we want to start a backtrace from the function that caused us to enter
  761  * the debugger. We have the context in the trapframe, but base the trace
  762  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
  763  * enough for a backtrace.
  764  */
  765 void
  766 makectx(struct trapframe *tf, struct pcb *pcb)
  767 {
  768 
  769         pcb->pcb_pc = tf->tf_tpc;
  770         pcb->pcb_sp = tf->tf_sp;
  771 }
  772 
  773 int
  774 get_mcontext(struct thread *td, mcontext_t *mc, int flags)
  775 {
  776         struct trapframe *tf;
  777         struct pcb *pcb;
  778 
  779         tf = td->td_frame;
  780         pcb = td->td_pcb;
  781         /*
  782          * Copy the registers which will be restored by tl0_ret() from the
  783          * trapframe.
  784          * Note that we skip %g7 which is used as the userland TLS register
  785          * and %wstate.
  786          */
  787         mc->mc_flags = _MC_VERSION;
  788         mc->mc_global[1] = tf->tf_global[1];
  789         mc->mc_global[2] = tf->tf_global[2];
  790         mc->mc_global[3] = tf->tf_global[3];
  791         mc->mc_global[4] = tf->tf_global[4];
  792         mc->mc_global[5] = tf->tf_global[5];
  793         mc->mc_global[6] = tf->tf_global[6];
  794         if (flags & GET_MC_CLEAR_RET) {
  795                 mc->mc_out[0] = 0;
  796                 mc->mc_out[1] = 0;
  797         } else {
  798                 mc->mc_out[0] = tf->tf_out[0];
  799                 mc->mc_out[1] = tf->tf_out[1];
  800         }
  801         mc->mc_out[2] = tf->tf_out[2];
  802         mc->mc_out[3] = tf->tf_out[3];
  803         mc->mc_out[4] = tf->tf_out[4];
  804         mc->mc_out[5] = tf->tf_out[5];
  805         mc->mc_out[6] = tf->tf_out[6];
  806         mc->mc_out[7] = tf->tf_out[7];
  807         mc->mc_fprs = tf->tf_fprs;
  808         mc->mc_fsr = tf->tf_fsr;
  809         mc->mc_gsr = tf->tf_gsr;
  810         mc->mc_tnpc = tf->tf_tnpc;
  811         mc->mc_tpc = tf->tf_tpc;
  812         mc->mc_tstate = tf->tf_tstate;
  813         mc->mc_y = tf->tf_y;
  814         critical_enter();
  815         if ((tf->tf_fprs & FPRS_FEF) != 0) {
  816                 savefpctx(pcb->pcb_ufp);
  817                 tf->tf_fprs &= ~FPRS_FEF;
  818                 pcb->pcb_flags |= PCB_FEF;
  819         }
  820         if ((pcb->pcb_flags & PCB_FEF) != 0) {
  821                 bcopy(pcb->pcb_ufp, mc->mc_fp, sizeof(mc->mc_fp));
  822                 mc->mc_fprs |= FPRS_FEF;
  823         }
  824         critical_exit();
  825         return (0);
  826 }
  827 
  828 int
  829 set_mcontext(struct thread *td, const mcontext_t *mc)
  830 {
  831         struct trapframe *tf;
  832         struct pcb *pcb;
  833 
  834         if (!TSTATE_SECURE(mc->mc_tstate) ||
  835             (mc->mc_flags & ((1L << _MC_VERSION_BITS) - 1)) != _MC_VERSION)
  836                 return (EINVAL);
  837         tf = td->td_frame;
  838         pcb = td->td_pcb;
  839         /* Make sure the windows are spilled first. */
  840         flushw();
  841         /*
  842          * Copy the registers which will be restored by tl0_ret() to the
  843          * trapframe.
  844          * Note that we skip %g7 which is used as the userland TLS register
  845          * and %wstate.
  846          */
  847         tf->tf_global[1] = mc->mc_global[1];
  848         tf->tf_global[2] = mc->mc_global[2];
  849         tf->tf_global[3] = mc->mc_global[3];
  850         tf->tf_global[4] = mc->mc_global[4];
  851         tf->tf_global[5] = mc->mc_global[5];
  852         tf->tf_global[6] = mc->mc_global[6];
  853         tf->tf_out[0] = mc->mc_out[0];
  854         tf->tf_out[1] = mc->mc_out[1];
  855         tf->tf_out[2] = mc->mc_out[2];
  856         tf->tf_out[3] = mc->mc_out[3];
  857         tf->tf_out[4] = mc->mc_out[4];
  858         tf->tf_out[5] = mc->mc_out[5];
  859         tf->tf_out[6] = mc->mc_out[6];
  860         tf->tf_out[7] = mc->mc_out[7];
  861         tf->tf_fprs = mc->mc_fprs;
  862         tf->tf_fsr = mc->mc_fsr;
  863         tf->tf_gsr = mc->mc_gsr;
  864         tf->tf_tnpc = mc->mc_tnpc;
  865         tf->tf_tpc = mc->mc_tpc;
  866         tf->tf_tstate = mc->mc_tstate;
  867         tf->tf_y = mc->mc_y;
  868         if ((mc->mc_fprs & FPRS_FEF) != 0) {
  869                 tf->tf_fprs = 0;
  870                 bcopy(mc->mc_fp, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
  871                 pcb->pcb_flags |= PCB_FEF;
  872         }
  873         return (0);
  874 }
  875 
  876 /*
  877  * Exit the kernel and execute a firmware call that will not return, as
  878  * specified by the arguments.
  879  */
  880 void
  881 cpu_shutdown(void *args)
  882 {
  883 
  884 #ifdef SMP
  885         cpu_mp_shutdown();
  886 #endif
  887         openfirmware_exit(args);
  888 }
  889 
  890 /* Get current clock frequency for the given CPU ID. */
  891 int
  892 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  893 {
  894         struct pcpu *pc;
  895 
  896         pc = pcpu_find(cpu_id);
  897         if (pc == NULL || rate == NULL)
  898                 return (EINVAL);
  899         *rate = pc->pc_clock;
  900         return (0);
  901 }
  902 
  903 /*
  904  * Duplicate OF_exit() with a different firmware call function that restores
  905  * the trap table, otherwise a RED state exception is triggered in at least
  906  * some firmware versions.
  907  */
  908 void
  909 cpu_halt(void)
  910 {
  911         static struct {
  912                 cell_t name;
  913                 cell_t nargs;
  914                 cell_t nreturns;
  915         } args = {
  916                 (cell_t)"exit",
  917                 0,
  918                 0
  919         };
  920 
  921         cpu_shutdown(&args);
  922 }
  923 
  924 static void
  925 sparc64_shutdown_final(void *dummy, int howto)
  926 {
  927         static struct {
  928                 cell_t name;
  929                 cell_t nargs;
  930                 cell_t nreturns;
  931         } args = {
  932                 (cell_t)"SUNW,power-off",
  933                 0,
  934                 0
  935         };
  936 
  937         /* Turn the power off? */
  938         if ((howto & RB_POWEROFF) != 0)
  939                 cpu_shutdown(&args);
  940         /* In case of halt, return to the firmware. */
  941         if ((howto & RB_HALT) != 0)
  942                 cpu_halt();
  943 }
  944 
  945 void
  946 cpu_idle(void)
  947 {
  948 
  949         /* Insert code to halt (until next interrupt) for the idle loop. */
  950 }
  951 
  952 int
  953 ptrace_set_pc(struct thread *td, u_long addr)
  954 {
  955 
  956         td->td_frame->tf_tpc = addr;
  957         td->td_frame->tf_tnpc = addr + 4;
  958         return (0);
  959 }
  960 
  961 int
  962 ptrace_single_step(struct thread *td)
  963 {
  964 
  965         /* TODO; */
  966         return (0);
  967 }
  968 
  969 int
  970 ptrace_clear_single_step(struct thread *td)
  971 {
  972 
  973         /* TODO; */
  974         return (0);
  975 }
  976 
  977 void
  978 exec_setregs(struct thread *td, u_long entry, u_long stack, u_long ps_strings)
  979 {
  980         struct trapframe *tf;
  981         struct pcb *pcb;
  982         struct proc *p;
  983         u_long sp;
  984 
  985         /* XXX no cpu_exec */
  986         p = td->td_proc;
  987         p->p_md.md_sigtramp = NULL;
  988         if (p->p_md.md_utrap != NULL) {
  989                 utrap_free(p->p_md.md_utrap);
  990                 p->p_md.md_utrap = NULL;
  991         }
  992 
  993         pcb = td->td_pcb;
  994         tf = td->td_frame;
  995         sp = rounddown(stack, 16);
  996         bzero(pcb, sizeof(*pcb));
  997         bzero(tf, sizeof(*tf));
  998         tf->tf_out[0] = stack;
  999         tf->tf_out[3] = p->p_sysent->sv_psstrings;
 1000         tf->tf_out[6] = sp - SPOFF - sizeof(struct frame);
 1001         tf->tf_tnpc = entry + 4;
 1002         tf->tf_tpc = entry;
 1003         tf->tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_MM_TSO;
 1004 
 1005         td->td_retval[0] = tf->tf_out[0];
 1006         td->td_retval[1] = tf->tf_out[1];
 1007 }
 1008 
 1009 int
 1010 fill_regs(struct thread *td, struct reg *regs)
 1011 {
 1012 
 1013         bcopy(td->td_frame, regs, sizeof(*regs));
 1014         return (0);
 1015 }
 1016 
 1017 int
 1018 set_regs(struct thread *td, struct reg *regs)
 1019 {
 1020         struct trapframe *tf;
 1021 
 1022         if (!TSTATE_SECURE(regs->r_tstate))
 1023                 return (EINVAL);
 1024         tf = td->td_frame;
 1025         regs->r_wstate = tf->tf_wstate;
 1026         bcopy(regs, tf, sizeof(*regs));
 1027         return (0);
 1028 }
 1029 
 1030 int
 1031 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 1032 {
 1033 
 1034         return (ENOSYS);
 1035 }
 1036 
 1037 int
 1038 set_dbregs(struct thread *td, struct dbreg *dbregs)
 1039 {
 1040 
 1041         return (ENOSYS);
 1042 }
 1043 
 1044 int
 1045 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 1046 {
 1047         struct trapframe *tf;
 1048         struct pcb *pcb;
 1049 
 1050         pcb = td->td_pcb;
 1051         tf = td->td_frame;
 1052         bcopy(pcb->pcb_ufp, fpregs->fr_regs, sizeof(fpregs->fr_regs));
 1053         fpregs->fr_fsr = tf->tf_fsr;
 1054         fpregs->fr_gsr = tf->tf_gsr;
 1055         return (0);
 1056 }
 1057 
 1058 int
 1059 set_fpregs(struct thread *td, struct fpreg *fpregs)
 1060 {
 1061         struct trapframe *tf;
 1062         struct pcb *pcb;
 1063 
 1064         pcb = td->td_pcb;
 1065         tf = td->td_frame;
 1066         tf->tf_fprs &= ~FPRS_FEF;
 1067         bcopy(fpregs->fr_regs, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
 1068         tf->tf_fsr = fpregs->fr_fsr;
 1069         tf->tf_gsr = fpregs->fr_gsr;
 1070         return (0);
 1071 }
 1072 
 1073 struct md_utrap *
 1074 utrap_alloc(void)
 1075 {
 1076         struct md_utrap *ut;
 1077 
 1078         ut = malloc(sizeof(struct md_utrap), M_SUBPROC, M_WAITOK | M_ZERO);
 1079         ut->ut_refcnt = 1;
 1080         return (ut);
 1081 }
 1082 
 1083 void
 1084 utrap_free(struct md_utrap *ut)
 1085 {
 1086         int refcnt;
 1087 
 1088         if (ut == NULL)
 1089                 return;
 1090         mtx_pool_lock(mtxpool_sleep, ut);
 1091         ut->ut_refcnt--;
 1092         refcnt = ut->ut_refcnt;
 1093         mtx_pool_unlock(mtxpool_sleep, ut);
 1094         if (refcnt == 0)
 1095                 free(ut, M_SUBPROC);
 1096 }
 1097 
 1098 struct md_utrap *
 1099 utrap_hold(struct md_utrap *ut)
 1100 {
 1101 
 1102         if (ut == NULL)
 1103                 return (NULL);
 1104         mtx_pool_lock(mtxpool_sleep, ut);
 1105         ut->ut_refcnt++;
 1106         mtx_pool_unlock(mtxpool_sleep, ut);
 1107         return (ut);
 1108 }

Cache object: 60f863342a04be0f38c6615a0d4ef3df


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.