The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/sparc64/sparc64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Jake Burkholder.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   35  *      from: FreeBSD: src/sys/i386/i386/machdep.c,v 1.477 2001/08/27
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD$");
   40 
   41 #include "opt_compat.h"
   42 #include "opt_ddb.h"
   43 #include "opt_kstack_pages.h"
   44 #include "opt_msgbuf.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/malloc.h>
   48 #include <sys/proc.h>
   49 #include <sys/systm.h>
   50 #include <sys/bio.h>
   51 #include <sys/buf.h>
   52 #include <sys/bus.h>
   53 #include <sys/cpu.h>
   54 #include <sys/cons.h>
   55 #include <sys/eventhandler.h>
   56 #include <sys/exec.h>
   57 #include <sys/imgact.h>
   58 #include <sys/interrupt.h>
   59 #include <sys/kdb.h>
   60 #include <sys/kernel.h>
   61 #include <sys/ktr.h>
   62 #include <sys/linker.h>
   63 #include <sys/lock.h>
   64 #include <sys/msgbuf.h>
   65 #include <sys/mutex.h>
   66 #include <sys/pcpu.h>
   67 #include <sys/ptrace.h>
   68 #include <sys/reboot.h>
   69 #include <sys/signalvar.h>
   70 #include <sys/smp.h>
   71 #include <sys/sysent.h>
   72 #include <sys/sysproto.h>
   73 #include <sys/timetc.h>
   74 #include <sys/ucontext.h>
   75 
   76 #include <dev/ofw/openfirm.h>
   77 
   78 #include <vm/vm.h>
   79 #include <vm/vm_extern.h>
   80 #include <vm/vm_kern.h>
   81 #include <vm/vm_page.h>
   82 #include <vm/vm_map.h>
   83 #include <vm/vm_object.h>
   84 #include <vm/vm_pager.h>
   85 #include <vm/vm_param.h>
   86 
   87 #include <ddb/ddb.h>
   88 
   89 #include <machine/bus.h>
   90 #include <machine/cache.h>
   91 #include <machine/clock.h>
   92 #include <machine/cmt.h>
   93 #include <machine/cpu.h>
   94 #include <machine/fireplane.h>
   95 #include <machine/fp.h>
   96 #include <machine/fsr.h>
   97 #include <machine/intr_machdep.h>
   98 #include <machine/jbus.h>
   99 #include <machine/md_var.h>
  100 #include <machine/metadata.h>
  101 #include <machine/ofw_machdep.h>
  102 #include <machine/ofw_mem.h>
  103 #include <machine/pcb.h>
  104 #include <machine/pmap.h>
  105 #include <machine/pstate.h>
  106 #include <machine/reg.h>
  107 #include <machine/sigframe.h>
  108 #include <machine/smp.h>
  109 #include <machine/tick.h>
  110 #include <machine/tlb.h>
  111 #include <machine/tstate.h>
  112 #include <machine/upa.h>
  113 #include <machine/ver.h>
  114 
  115 typedef int ofw_vec_t(void *);
  116 
  117 #ifdef DDB
  118 extern vm_offset_t ksym_start, ksym_end;
  119 #endif
  120 
  121 int dtlb_slots;
  122 int itlb_slots;
  123 struct tlb_entry *kernel_tlbs;
  124 int kernel_tlb_slots;
  125 
  126 int cold = 1;
  127 long Maxmem;
  128 long realmem;
  129 
  130 char pcpu0[PCPU_PAGES * PAGE_SIZE];
  131 struct trapframe frame0;
  132 
  133 vm_offset_t kstack0;
  134 vm_paddr_t kstack0_phys;
  135 
  136 struct kva_md_info kmi;
  137 
  138 u_long ofw_vec;
  139 u_long ofw_tba;
  140 u_int tba_taken_over;
  141 
  142 char sparc64_model[32];
  143 
  144 static int cpu_use_vis = 1;
  145 
  146 cpu_block_copy_t *cpu_block_copy;
  147 cpu_block_zero_t *cpu_block_zero;
  148 
  149 static phandle_t find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl);
  150 void sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3,
  151     ofw_vec_t *vec);
  152 static void sparc64_shutdown_final(void *dummy, int howto);
  153 
  154 static void cpu_startup(void *arg);
  155 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  156 
  157 CTASSERT((1 << INT_SHIFT) == sizeof(int));
  158 CTASSERT((1 << PTR_SHIFT) == sizeof(char *));
  159 
  160 CTASSERT(sizeof(struct reg) == 256);
  161 CTASSERT(sizeof(struct fpreg) == 272);
  162 CTASSERT(sizeof(struct __mcontext) == 512);
  163 
  164 CTASSERT((sizeof(struct pcb) & (64 - 1)) == 0);
  165 CTASSERT((offsetof(struct pcb, pcb_kfp) & (64 - 1)) == 0);
  166 CTASSERT((offsetof(struct pcb, pcb_ufp) & (64 - 1)) == 0);
  167 CTASSERT(sizeof(struct pcb) <= ((KSTACK_PAGES * PAGE_SIZE) / 8));
  168 
  169 CTASSERT(sizeof(struct pcpu) <= ((PCPU_PAGES * PAGE_SIZE) / 2));
  170 
  171 static void
  172 cpu_startup(void *arg)
  173 {
  174         vm_paddr_t physsz;
  175         int i;
  176 
  177         physsz = 0;
  178         for (i = 0; i < sparc64_nmemreg; i++)
  179                 physsz += sparc64_memreg[i].mr_size;
  180         printf("real memory  = %lu (%lu MB)\n", physsz,
  181             physsz / (1024 * 1024));
  182         realmem = (long)physsz / PAGE_SIZE;
  183 
  184         vm_ksubmap_init(&kmi);
  185 
  186         bufinit();
  187         vm_pager_bufferinit();
  188 
  189         EVENTHANDLER_REGISTER(shutdown_final, sparc64_shutdown_final, NULL,
  190             SHUTDOWN_PRI_LAST);
  191 
  192         printf("avail memory = %lu (%lu MB)\n", cnt.v_free_count * PAGE_SIZE,
  193             cnt.v_free_count / ((1024 * 1024) / PAGE_SIZE));
  194 
  195         if (bootverbose)
  196                 printf("machine: %s\n", sparc64_model);
  197 
  198         cpu_identify(rdpr(ver), PCPU_GET(clock), curcpu);
  199 }
  200 
  201 void
  202 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
  203 {
  204         struct intr_request *ir;
  205         int i;
  206 
  207         pcpu->pc_irtail = &pcpu->pc_irhead;
  208         for (i = 0; i < IR_FREE; i++) {
  209                 ir = &pcpu->pc_irpool[i];
  210                 ir->ir_next = pcpu->pc_irfree;
  211                 pcpu->pc_irfree = ir;
  212         }
  213 }
  214 
  215 void
  216 spinlock_enter(void)
  217 {
  218         struct thread *td;
  219         register_t pil;
  220 
  221         td = curthread;
  222         if (td->td_md.md_spinlock_count == 0) {
  223                 pil = rdpr(pil);
  224                 wrpr(pil, 0, PIL_TICK);
  225                 td->td_md.md_spinlock_count = 1;
  226                 td->td_md.md_saved_pil = pil;
  227         } else
  228                 td->td_md.md_spinlock_count++;
  229         critical_enter();
  230 }
  231 
  232 void
  233 spinlock_exit(void)
  234 {
  235         struct thread *td;
  236         register_t pil;
  237 
  238         td = curthread;
  239         critical_exit();
  240         pil = td->td_md.md_saved_pil;
  241         td->td_md.md_spinlock_count--;
  242         if (td->td_md.md_spinlock_count == 0)
  243                 wrpr(pil, pil, 0);
  244 }
  245 
  246 static phandle_t
  247 find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl)
  248 {
  249         char type[sizeof("cpu")];
  250         phandle_t child;
  251         uint32_t cpuid;
  252 
  253         for (; node != 0; node = OF_peer(node)) {
  254                 child = OF_child(node);
  255                 if (child > 0) {
  256                         child = find_bsp(child, bspid, cpu_impl);
  257                         if (child > 0)
  258                                 return (child);
  259                 } else {
  260                         if (OF_getprop(node, "device_type", type,
  261                             sizeof(type)) <= 0)
  262                                 continue;
  263                         if (strcmp(type, "cpu") != 0)
  264                                 continue;
  265                         if (OF_getprop(node, cpu_cpuid_prop(cpu_impl), &cpuid,
  266                             sizeof(cpuid)) <= 0)
  267                                 continue;
  268                         if (cpuid == bspid)
  269                                 return (node);
  270                 }
  271         }
  272         return (0);
  273 }
  274 
  275 char *
  276 cpu_cpuid_prop(u_int cpu_impl)
  277 {
  278 
  279         switch (cpu_impl) {
  280         case CPU_IMPL_SPARC64:
  281         case CPU_IMPL_SPARC64V:
  282         case CPU_IMPL_ULTRASPARCI:
  283         case CPU_IMPL_ULTRASPARCII:
  284         case CPU_IMPL_ULTRASPARCIIi:
  285         case CPU_IMPL_ULTRASPARCIIe:
  286                 return ("upa-portid");
  287         case CPU_IMPL_ULTRASPARCIII:
  288         case CPU_IMPL_ULTRASPARCIIIp:
  289         case CPU_IMPL_ULTRASPARCIIIi:
  290         case CPU_IMPL_ULTRASPARCIIIip:
  291                 return ("portid");
  292         case CPU_IMPL_ULTRASPARCIV:
  293         case CPU_IMPL_ULTRASPARCIVp:
  294                 return ("cpuid");
  295         default:
  296                 return ("");
  297         }
  298 }
  299 
  300 uint32_t
  301 cpu_get_mid(u_int cpu_impl)
  302 {
  303 
  304         switch (cpu_impl) {
  305         case CPU_IMPL_SPARC64:
  306         case CPU_IMPL_SPARC64V:
  307         case CPU_IMPL_ULTRASPARCI:
  308         case CPU_IMPL_ULTRASPARCII:
  309         case CPU_IMPL_ULTRASPARCIIi:
  310         case CPU_IMPL_ULTRASPARCIIe:
  311                 return (UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG)));
  312         case CPU_IMPL_ULTRASPARCIII:
  313         case CPU_IMPL_ULTRASPARCIIIp:
  314                 return (FIREPLANE_CR_GET_AID(ldxa(AA_FIREPLANE_CONFIG,
  315                     ASI_FIREPLANE_CONFIG_REG)));
  316         case CPU_IMPL_ULTRASPARCIIIi:
  317         case CPU_IMPL_ULTRASPARCIIIip:
  318                 return (JBUS_CR_GET_JID(ldxa(0, ASI_JBUS_CONFIG_REG)));
  319         case CPU_IMPL_ULTRASPARCIV:
  320         case CPU_IMPL_ULTRASPARCIVp:
  321                 return (INTR_ID_GET_ID(ldxa(AA_INTR_ID, ASI_INTR_ID)));
  322         default:
  323                 return (0);
  324         }
  325 }
  326 
  327 void
  328 sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3, ofw_vec_t *vec)
  329 {
  330         char *env;
  331         struct pcpu *pc;
  332         vm_offset_t end;
  333         vm_offset_t va;
  334         caddr_t kmdp;
  335         phandle_t root;
  336         u_int cpu_impl;
  337 
  338         end = 0;
  339         kmdp = NULL;
  340 
  341         /*
  342          * Find out what kind of CPU we have first, for anything that changes
  343          * behaviour.
  344          */
  345         cpu_impl = VER_IMPL(rdpr(ver));
  346 
  347         /*
  348          * Do CPU-specific initialization.
  349          */
  350         if (cpu_impl >= CPU_IMPL_ULTRASPARCIII)
  351                 cheetah_init(cpu_impl);
  352         else if (cpu_impl == CPU_IMPL_SPARC64V)
  353                 zeus_init(cpu_impl);
  354 
  355         /*
  356          * Clear (S)TICK timer (including NPT).
  357          */
  358         tick_clear(cpu_impl);
  359 
  360         /*
  361          * UltraSparc II[e,i] based systems come up with the tick interrupt
  362          * enabled and a handler that resets the tick counter, causing DELAY()
  363          * to not work properly when used early in boot.
  364          * UltraSPARC III based systems come up with the system tick interrupt
  365          * enabled, causing an interrupt storm on startup since they are not
  366          * handled.
  367          */
  368         tick_stop(cpu_impl);
  369 
  370         /*
  371          * Initialize Open Firmware (needed for console).
  372          */
  373         OF_init(vec);
  374 
  375         /*
  376          * Parse metadata if present and fetch parameters.  Must be before the
  377          * console is inited so cninit gets the right value of boothowto.
  378          */
  379         if (mdp != NULL) {
  380                 preload_metadata = mdp;
  381                 kmdp = preload_search_by_type("elf kernel");
  382                 if (kmdp != NULL) {
  383                         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
  384                         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
  385                         end = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
  386                         kernel_tlb_slots = MD_FETCH(kmdp, MODINFOMD_DTLB_SLOTS,
  387                             int);
  388                         kernel_tlbs = (void *)preload_search_info(kmdp,
  389                             MODINFO_METADATA | MODINFOMD_DTLB);
  390                 }
  391         }
  392 
  393         init_param1();
  394 
  395         /*
  396          * Prime our per-CPU data page for use.  Note, we are using it for
  397          * our stack, so don't pass the real size (PAGE_SIZE) to pcpu_init
  398          * or it'll zero it out from under us.
  399          */
  400         pc = (struct pcpu *)(pcpu0 + (PCPU_PAGES * PAGE_SIZE)) - 1;
  401         pcpu_init(pc, 0, sizeof(struct pcpu));
  402         pc->pc_addr = (vm_offset_t)pcpu0;
  403         pc->pc_impl = cpu_impl;
  404         pc->pc_mid = cpu_get_mid(cpu_impl);
  405         pc->pc_tlb_ctx = TLB_CTX_USER_MIN;
  406         pc->pc_tlb_ctx_min = TLB_CTX_USER_MIN;
  407         pc->pc_tlb_ctx_max = TLB_CTX_USER_MAX;
  408 
  409         /*
  410          * Determine the OFW node and frequency of the BSP (and ensure the
  411          * BSP is in the device tree in the first place).
  412          */
  413         root = OF_peer(0);
  414         pc->pc_node = find_bsp(root, pc->pc_mid, cpu_impl);
  415         if (pc->pc_node == 0)
  416                 OF_exit();
  417         if (OF_getprop(pc->pc_node, "clock-frequency", &pc->pc_clock,
  418             sizeof(pc->pc_clock)) <= 0)
  419                 OF_exit();
  420 
  421         /*
  422          * Provide a DELAY() that works before PCPU_REG is set.  We can't
  423          * set PCPU_REG without also taking over the trap table or the
  424          * firmware will overwrite it.  Unfortunately, it's way to early
  425          * to also take over the trap table at this point.
  426          */
  427         clock_boot = pc->pc_clock;
  428         delay_func = delay_boot;
  429 
  430         /*
  431          * Initialize the console before printing anything.
  432          * NB: the low-level console drivers require a working DELAY() at
  433          * this point.
  434          */
  435         cninit();
  436 
  437         /*
  438          * Panic if there is no metadata.  Most likely the kernel was booted
  439          * directly, instead of through loader(8).
  440          */
  441         if (mdp == NULL || kmdp == NULL || end == 0 ||
  442             kernel_tlb_slots == 0 || kernel_tlbs == NULL) {
  443                 printf("sparc64_init: missing loader metadata.\n"
  444                     "This probably means you are not using loader(8).\n");
  445                 panic("sparc64_init");
  446         }
  447 
  448         /*
  449          * Work around the broken loader behavior of not demapping no
  450          * longer used kernel TLB slots when unloading the kernel or
  451          * modules.
  452          */
  453         for (va = KERNBASE + (kernel_tlb_slots - 1) * PAGE_SIZE_4M;
  454             va >= roundup2(end, PAGE_SIZE_4M); va -= PAGE_SIZE_4M) {
  455                 if (bootverbose)
  456                         printf("demapping unused kernel TLB slot "
  457                             "(va %#lx - %#lx)\n", va, va + PAGE_SIZE_4M - 1);
  458                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  459                     ASI_DMMU_DEMAP, 0);
  460                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  461                     ASI_IMMU_DEMAP, 0);
  462                 flush(KERNBASE);
  463                 kernel_tlb_slots--;
  464         }
  465 
  466         /*
  467          * Determine the TLB slot maxima, which are expected to be
  468          * equal across all CPUs.
  469          * NB: for cheetah-class CPUs, these properties only refer
  470          * to the t16s.
  471          */
  472         if (OF_getprop(pc->pc_node, "#dtlb-entries", &dtlb_slots,
  473             sizeof(dtlb_slots)) == -1)
  474                 panic("sparc64_init: cannot determine number of dTLB slots");
  475         if (OF_getprop(pc->pc_node, "#itlb-entries", &itlb_slots,
  476             sizeof(itlb_slots)) == -1)
  477                 panic("sparc64_init: cannot determine number of iTLB slots");
  478 
  479         /*
  480          * Initialize and enable the caches.  Note that his may include
  481          * applying workarounds.
  482          */
  483         cache_init(pc);
  484         cache_enable(cpu_impl);
  485         uma_set_align(pc->pc_cache.dc_linesize - 1);
  486 
  487         cpu_block_copy = bcopy;
  488         cpu_block_zero = bzero;
  489         getenv_int("machdep.use_vis", &cpu_use_vis);
  490         if (cpu_use_vis) {
  491                 switch (cpu_impl) {
  492                 case CPU_IMPL_SPARC64:
  493                 case CPU_IMPL_ULTRASPARCI:
  494                 case CPU_IMPL_ULTRASPARCII:
  495                 case CPU_IMPL_ULTRASPARCIIi:
  496                 case CPU_IMPL_ULTRASPARCIIe:
  497                 case CPU_IMPL_ULTRASPARCIII:    /* NB: we've disabled P$. */
  498                 case CPU_IMPL_ULTRASPARCIIIp:
  499                 case CPU_IMPL_ULTRASPARCIIIi:
  500                 case CPU_IMPL_ULTRASPARCIV:
  501                 case CPU_IMPL_ULTRASPARCIVp:
  502                 case CPU_IMPL_ULTRASPARCIIIip:
  503                         cpu_block_copy = spitfire_block_copy;
  504                         cpu_block_zero = spitfire_block_zero;
  505                         break;
  506                 case CPU_IMPL_SPARC64V:
  507                         cpu_block_copy = zeus_block_copy;
  508                         cpu_block_zero = zeus_block_zero;
  509                         break;
  510                 }
  511         }
  512 
  513 #ifdef SMP
  514         mp_init(cpu_impl);
  515 #endif
  516 
  517         /*
  518          * Initialize virtual memory and calculate physmem.
  519          */
  520         pmap_bootstrap(cpu_impl);
  521 
  522         /*
  523          * Initialize tunables.
  524          */
  525         init_param2(physmem);
  526         env = getenv("kernelname");
  527         if (env != NULL) {
  528                 strlcpy(kernelname, env, sizeof(kernelname));
  529                 freeenv(env);
  530         }
  531 
  532         /*
  533          * Initialize the interrupt tables.
  534          */
  535         intr_init1();
  536 
  537         /*
  538          * Initialize proc0, set kstack0, frame0, curthread and curpcb.
  539          */
  540         proc_linkup0(&proc0, &thread0);
  541         proc0.p_md.md_sigtramp = NULL;
  542         proc0.p_md.md_utrap = NULL;
  543         thread0.td_kstack = kstack0;
  544         thread0.td_pcb = (struct pcb *)
  545             (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
  546         frame0.tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_PRIV;
  547         thread0.td_frame = &frame0;
  548         pc->pc_curthread = &thread0;
  549         pc->pc_curpcb = thread0.td_pcb;
  550 
  551         /*
  552          * Initialize global registers.
  553          */
  554         cpu_setregs(pc);
  555 
  556         /*
  557          * Take over the trap table via the PROM.  Using the PROM for this
  558          * is necessary in order to set obp-control-relinquished to true
  559          * within the PROM so obtaining /virtual-memory/translations doesn't
  560          * trigger a fatal reset error or worse things further down the road.
  561          * XXX it should be possible to use this solely instead of writing
  562          * %tba in cpu_setregs().  Doing so causes a hang however.
  563          */
  564         sun4u_set_traptable(tl0_base);
  565 
  566         /*
  567          * It's now safe to use the real DELAY().
  568          */
  569         delay_func = delay_tick;
  570 
  571         /*
  572          * Initialize the message buffer (after setting trap table).
  573          */
  574         msgbufinit(msgbufp, MSGBUF_SIZE);
  575 
  576         /*
  577          * Initialize mutexes.
  578          */
  579         mutex_init();
  580 
  581         /*
  582          * Finish the interrupt initialization now that mutexes work and
  583          * enable them.
  584          */
  585         intr_init2();
  586         wrpr(pil, 0, 0);
  587         wrpr(pstate, 0, PSTATE_KERNEL);
  588 
  589         /*
  590          * Finish pmap initialization now that we're ready for mutexes.
  591          */
  592         PMAP_LOCK_INIT(kernel_pmap);
  593 
  594         OF_getprop(root, "name", sparc64_model, sizeof(sparc64_model) - 1);
  595 
  596         kdb_init();
  597 
  598 #ifdef KDB
  599         if (boothowto & RB_KDB)
  600                 kdb_enter_why(KDB_WHY_BOOTFLAGS,
  601                     "Boot flags requested debugger");
  602 #endif
  603 }
  604 
  605 void
  606 set_openfirm_callback(ofw_vec_t *vec)
  607 {
  608 
  609         ofw_tba = rdpr(tba);
  610         ofw_vec = (u_long)vec;
  611 }
  612 
  613 void
  614 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  615 {
  616         struct trapframe *tf;
  617         struct sigframe *sfp;
  618         struct sigacts *psp;
  619         struct sigframe sf;
  620         struct thread *td;
  621         struct frame *fp;
  622         struct proc *p;
  623         u_long sp;
  624         int oonstack;
  625         int sig;
  626 
  627         oonstack = 0;
  628         td = curthread;
  629         p = td->td_proc;
  630         PROC_LOCK_ASSERT(p, MA_OWNED);
  631         sig = ksi->ksi_signo;
  632         psp = p->p_sigacts;
  633         mtx_assert(&psp->ps_mtx, MA_OWNED);
  634         tf = td->td_frame;
  635         sp = tf->tf_sp + SPOFF;
  636         oonstack = sigonstack(sp);
  637 
  638         CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
  639             catcher, sig);
  640 
  641         /* Make sure we have a signal trampoline to return to. */
  642         if (p->p_md.md_sigtramp == NULL) {
  643                 /*
  644                  * No signal trampoline... kill the process.
  645                  */
  646                 CTR0(KTR_SIG, "sendsig: no sigtramp");
  647                 printf("sendsig: %s is too old, rebuild it\n", p->p_comm);
  648                 sigexit(td, sig);
  649                 /* NOTREACHED */
  650         }
  651 
  652         /* Save user context. */
  653         bzero(&sf, sizeof(sf));
  654         get_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
  655         sf.sf_uc.uc_sigmask = *mask;
  656         sf.sf_uc.uc_stack = td->td_sigstk;
  657         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
  658             ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  659 
  660         /* Allocate and validate space for the signal handler context. */
  661         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  662             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  663                 sfp = (struct sigframe *)(td->td_sigstk.ss_sp +
  664                     td->td_sigstk.ss_size - sizeof(struct sigframe));
  665         } else
  666                 sfp = (struct sigframe *)sp - 1;
  667         mtx_unlock(&psp->ps_mtx);
  668         PROC_UNLOCK(p);
  669 
  670         fp = (struct frame *)sfp - 1;
  671 
  672         /* Translate the signal if appropriate. */
  673         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  674                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  675 
  676         /* Build the argument list for the signal handler. */
  677         tf->tf_out[0] = sig;
  678         tf->tf_out[2] = (register_t)&sfp->sf_uc;
  679         tf->tf_out[4] = (register_t)catcher;
  680         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  681                 /* Signal handler installed with SA_SIGINFO. */
  682                 tf->tf_out[1] = (register_t)&sfp->sf_si;
  683 
  684                 /* Fill in POSIX parts. */
  685                 sf.sf_si = ksi->ksi_info;
  686                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  687         } else {
  688                 /* Old FreeBSD-style arguments. */
  689                 tf->tf_out[1] = ksi->ksi_code;
  690                 tf->tf_out[3] = (register_t)ksi->ksi_addr;
  691         }
  692 
  693         /* Copy the sigframe out to the user's stack. */
  694         if (rwindow_save(td) != 0 || copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
  695             suword(&fp->fr_in[6], tf->tf_out[6]) != 0) {
  696                 /*
  697                  * Something is wrong with the stack pointer.
  698                  * ...Kill the process.
  699                  */
  700                 CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp);
  701                 PROC_LOCK(p);
  702                 sigexit(td, SIGILL);
  703                 /* NOTREACHED */
  704         }
  705 
  706         tf->tf_tpc = (u_long)p->p_md.md_sigtramp;
  707         tf->tf_tnpc = tf->tf_tpc + 4;
  708         tf->tf_sp = (u_long)fp - SPOFF;
  709 
  710         CTR3(KTR_SIG, "sendsig: return td=%p pc=%#lx sp=%#lx", td, tf->tf_tpc,
  711             tf->tf_sp);
  712 
  713         PROC_LOCK(p);
  714         mtx_lock(&psp->ps_mtx);
  715 }
  716 
  717 #ifndef _SYS_SYSPROTO_H_
  718 struct sigreturn_args {
  719         ucontext_t *ucp;
  720 };
  721 #endif
  722 
  723 /*
  724  * MPSAFE
  725  */
  726 int
  727 sigreturn(struct thread *td, struct sigreturn_args *uap)
  728 {
  729         struct proc *p;
  730         mcontext_t *mc;
  731         ucontext_t uc;
  732         int error;
  733 
  734         p = td->td_proc;
  735         if (rwindow_save(td)) {
  736                 PROC_LOCK(p);
  737                 sigexit(td, SIGILL);
  738         }
  739 
  740         CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
  741         if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
  742                 CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
  743                 return (EFAULT);
  744         }
  745 
  746         mc = &uc.uc_mcontext;
  747         error = set_mcontext(td, mc);
  748         if (error != 0)
  749                 return (error);
  750 
  751         PROC_LOCK(p);
  752         td->td_sigmask = uc.uc_sigmask;
  753         SIG_CANTMASK(td->td_sigmask);
  754         signotify(td);
  755         PROC_UNLOCK(p);
  756 
  757         CTR4(KTR_SIG, "sigreturn: return td=%p pc=%#lx sp=%#lx tstate=%#lx",
  758             td, mc->mc_tpc, mc->mc_sp, mc->mc_tstate);
  759         return (EJUSTRETURN);
  760 }
  761 
  762 /*
  763  * Construct a PCB from a trapframe. This is called from kdb_trap() where
  764  * we want to start a backtrace from the function that caused us to enter
  765  * the debugger. We have the context in the trapframe, but base the trace
  766  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
  767  * enough for a backtrace.
  768  */
  769 void
  770 makectx(struct trapframe *tf, struct pcb *pcb)
  771 {
  772 
  773         pcb->pcb_pc = tf->tf_tpc;
  774         pcb->pcb_sp = tf->tf_sp;
  775 }
  776 
  777 int
  778 get_mcontext(struct thread *td, mcontext_t *mc, int flags)
  779 {
  780         struct trapframe *tf;
  781         struct pcb *pcb;
  782 
  783         tf = td->td_frame;
  784         pcb = td->td_pcb;
  785         /*
  786          * Copy the registers which will be restored by tl0_ret() from the
  787          * trapframe.
  788          * Note that we skip %g7 which is used as the userland TLS register
  789          * and %wstate.
  790          */
  791         mc->mc_flags = _MC_VERSION;
  792         mc->mc_global[1] = tf->tf_global[1];
  793         mc->mc_global[2] = tf->tf_global[2];
  794         mc->mc_global[3] = tf->tf_global[3];
  795         mc->mc_global[4] = tf->tf_global[4];
  796         mc->mc_global[5] = tf->tf_global[5];
  797         mc->mc_global[6] = tf->tf_global[6];
  798         if (flags & GET_MC_CLEAR_RET) {
  799                 mc->mc_out[0] = 0;
  800                 mc->mc_out[1] = 0;
  801         } else {
  802                 mc->mc_out[0] = tf->tf_out[0];
  803                 mc->mc_out[1] = tf->tf_out[1];
  804         }
  805         mc->mc_out[2] = tf->tf_out[2];
  806         mc->mc_out[3] = tf->tf_out[3];
  807         mc->mc_out[4] = tf->tf_out[4];
  808         mc->mc_out[5] = tf->tf_out[5];
  809         mc->mc_out[6] = tf->tf_out[6];
  810         mc->mc_out[7] = tf->tf_out[7];
  811         mc->mc_fprs = tf->tf_fprs;
  812         mc->mc_fsr = tf->tf_fsr;
  813         mc->mc_gsr = tf->tf_gsr;
  814         mc->mc_tnpc = tf->tf_tnpc;
  815         mc->mc_tpc = tf->tf_tpc;
  816         mc->mc_tstate = tf->tf_tstate;
  817         mc->mc_y = tf->tf_y;
  818         critical_enter();
  819         if ((tf->tf_fprs & FPRS_FEF) != 0) {
  820                 savefpctx(pcb->pcb_ufp);
  821                 tf->tf_fprs &= ~FPRS_FEF;
  822                 pcb->pcb_flags |= PCB_FEF;
  823         }
  824         if ((pcb->pcb_flags & PCB_FEF) != 0) {
  825                 bcopy(pcb->pcb_ufp, mc->mc_fp, sizeof(mc->mc_fp));
  826                 mc->mc_fprs |= FPRS_FEF;
  827         }
  828         critical_exit();
  829         return (0);
  830 }
  831 
  832 int
  833 set_mcontext(struct thread *td, const mcontext_t *mc)
  834 {
  835         struct trapframe *tf;
  836         struct pcb *pcb;
  837 
  838         if (!TSTATE_SECURE(mc->mc_tstate) ||
  839             (mc->mc_flags & ((1L << _MC_VERSION_BITS) - 1)) != _MC_VERSION)
  840                 return (EINVAL);
  841         tf = td->td_frame;
  842         pcb = td->td_pcb;
  843         /* Make sure the windows are spilled first. */
  844         flushw();
  845         /*
  846          * Copy the registers which will be restored by tl0_ret() to the
  847          * trapframe.
  848          * Note that we skip %g7 which is used as the userland TLS register
  849          * and %wstate.
  850          */
  851         tf->tf_global[1] = mc->mc_global[1];
  852         tf->tf_global[2] = mc->mc_global[2];
  853         tf->tf_global[3] = mc->mc_global[3];
  854         tf->tf_global[4] = mc->mc_global[4];
  855         tf->tf_global[5] = mc->mc_global[5];
  856         tf->tf_global[6] = mc->mc_global[6];
  857         tf->tf_out[0] = mc->mc_out[0];
  858         tf->tf_out[1] = mc->mc_out[1];
  859         tf->tf_out[2] = mc->mc_out[2];
  860         tf->tf_out[3] = mc->mc_out[3];
  861         tf->tf_out[4] = mc->mc_out[4];
  862         tf->tf_out[5] = mc->mc_out[5];
  863         tf->tf_out[6] = mc->mc_out[6];
  864         tf->tf_out[7] = mc->mc_out[7];
  865         tf->tf_fprs = mc->mc_fprs;
  866         tf->tf_fsr = mc->mc_fsr;
  867         tf->tf_gsr = mc->mc_gsr;
  868         tf->tf_tnpc = mc->mc_tnpc;
  869         tf->tf_tpc = mc->mc_tpc;
  870         tf->tf_tstate = mc->mc_tstate;
  871         tf->tf_y = mc->mc_y;
  872         if ((mc->mc_fprs & FPRS_FEF) != 0) {
  873                 tf->tf_fprs = 0;
  874                 bcopy(mc->mc_fp, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
  875                 pcb->pcb_flags |= PCB_FEF;
  876         }
  877         return (0);
  878 }
  879 
  880 /*
  881  * Exit the kernel and execute a firmware call that will not return, as
  882  * specified by the arguments.
  883  */
  884 void
  885 cpu_shutdown(void *args)
  886 {
  887 
  888 #ifdef SMP
  889         cpu_mp_shutdown();
  890 #endif
  891         openfirmware_exit(args);
  892 }
  893 
  894 /* Get current clock frequency for the given CPU ID. */
  895 int
  896 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  897 {
  898         struct pcpu *pc;
  899 
  900         pc = pcpu_find(cpu_id);
  901         if (pc == NULL || rate == NULL)
  902                 return (EINVAL);
  903         *rate = pc->pc_clock;
  904         return (0);
  905 }
  906 
  907 /*
  908  * Duplicate OF_exit() with a different firmware call function that restores
  909  * the trap table, otherwise a RED state exception is triggered in at least
  910  * some firmware versions.
  911  */
  912 void
  913 cpu_halt(void)
  914 {
  915         static struct {
  916                 cell_t name;
  917                 cell_t nargs;
  918                 cell_t nreturns;
  919         } args = {
  920                 (cell_t)"exit",
  921                 0,
  922                 0
  923         };
  924 
  925         cpu_shutdown(&args);
  926 }
  927 
  928 static void
  929 sparc64_shutdown_final(void *dummy, int howto)
  930 {
  931         static struct {
  932                 cell_t name;
  933                 cell_t nargs;
  934                 cell_t nreturns;
  935         } args = {
  936                 (cell_t)"SUNW,power-off",
  937                 0,
  938                 0
  939         };
  940 
  941         /* Turn the power off? */
  942         if ((howto & RB_POWEROFF) != 0)
  943                 cpu_shutdown(&args);
  944         /* In case of halt, return to the firmware. */
  945         if ((howto & RB_HALT) != 0)
  946                 cpu_halt();
  947 }
  948 
  949 void
  950 cpu_idle(void)
  951 {
  952 
  953         /* Insert code to halt (until next interrupt) for the idle loop. */
  954 }
  955 
  956 int
  957 ptrace_set_pc(struct thread *td, u_long addr)
  958 {
  959 
  960         td->td_frame->tf_tpc = addr;
  961         td->td_frame->tf_tnpc = addr + 4;
  962         return (0);
  963 }
  964 
  965 int
  966 ptrace_single_step(struct thread *td)
  967 {
  968 
  969         /* TODO; */
  970         return (0);
  971 }
  972 
  973 int
  974 ptrace_clear_single_step(struct thread *td)
  975 {
  976 
  977         /* TODO; */
  978         return (0);
  979 }
  980 
  981 void
  982 exec_setregs(struct thread *td, u_long entry, u_long stack, u_long ps_strings)
  983 {
  984         struct trapframe *tf;
  985         struct pcb *pcb;
  986         struct proc *p;
  987         u_long sp;
  988 
  989         /* XXX no cpu_exec */
  990         p = td->td_proc;
  991         p->p_md.md_sigtramp = NULL;
  992         if (p->p_md.md_utrap != NULL) {
  993                 utrap_free(p->p_md.md_utrap);
  994                 p->p_md.md_utrap = NULL;
  995         }
  996 
  997         pcb = td->td_pcb;
  998         tf = td->td_frame;
  999         sp = rounddown(stack, 16);
 1000         bzero(pcb, sizeof(*pcb));
 1001         bzero(tf, sizeof(*tf));
 1002         tf->tf_out[0] = stack;
 1003         tf->tf_out[3] = p->p_sysent->sv_psstrings;
 1004         tf->tf_out[6] = sp - SPOFF - sizeof(struct frame);
 1005         tf->tf_tnpc = entry + 4;
 1006         tf->tf_tpc = entry;
 1007         tf->tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_MM_TSO;
 1008 
 1009         td->td_retval[0] = tf->tf_out[0];
 1010         td->td_retval[1] = tf->tf_out[1];
 1011 }
 1012 
 1013 int
 1014 fill_regs(struct thread *td, struct reg *regs)
 1015 {
 1016 
 1017         bcopy(td->td_frame, regs, sizeof(*regs));
 1018         return (0);
 1019 }
 1020 
 1021 int
 1022 set_regs(struct thread *td, struct reg *regs)
 1023 {
 1024         struct trapframe *tf;
 1025 
 1026         if (!TSTATE_SECURE(regs->r_tstate))
 1027                 return (EINVAL);
 1028         tf = td->td_frame;
 1029         regs->r_wstate = tf->tf_wstate;
 1030         bcopy(regs, tf, sizeof(*regs));
 1031         return (0);
 1032 }
 1033 
 1034 int
 1035 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 1036 {
 1037 
 1038         return (ENOSYS);
 1039 }
 1040 
 1041 int
 1042 set_dbregs(struct thread *td, struct dbreg *dbregs)
 1043 {
 1044 
 1045         return (ENOSYS);
 1046 }
 1047 
 1048 int
 1049 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 1050 {
 1051         struct trapframe *tf;
 1052         struct pcb *pcb;
 1053 
 1054         pcb = td->td_pcb;
 1055         tf = td->td_frame;
 1056         bcopy(pcb->pcb_ufp, fpregs->fr_regs, sizeof(fpregs->fr_regs));
 1057         fpregs->fr_fsr = tf->tf_fsr;
 1058         fpregs->fr_gsr = tf->tf_gsr;
 1059         return (0);
 1060 }
 1061 
 1062 int
 1063 set_fpregs(struct thread *td, struct fpreg *fpregs)
 1064 {
 1065         struct trapframe *tf;
 1066         struct pcb *pcb;
 1067 
 1068         pcb = td->td_pcb;
 1069         tf = td->td_frame;
 1070         tf->tf_fprs &= ~FPRS_FEF;
 1071         bcopy(fpregs->fr_regs, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
 1072         tf->tf_fsr = fpregs->fr_fsr;
 1073         tf->tf_gsr = fpregs->fr_gsr;
 1074         return (0);
 1075 }
 1076 
 1077 struct md_utrap *
 1078 utrap_alloc(void)
 1079 {
 1080         struct md_utrap *ut;
 1081 
 1082         ut = malloc(sizeof(struct md_utrap), M_SUBPROC, M_WAITOK | M_ZERO);
 1083         ut->ut_refcnt = 1;
 1084         return (ut);
 1085 }
 1086 
 1087 void
 1088 utrap_free(struct md_utrap *ut)
 1089 {
 1090         int refcnt;
 1091 
 1092         if (ut == NULL)
 1093                 return;
 1094         mtx_pool_lock(mtxpool_sleep, ut);
 1095         ut->ut_refcnt--;
 1096         refcnt = ut->ut_refcnt;
 1097         mtx_pool_unlock(mtxpool_sleep, ut);
 1098         if (refcnt == 0)
 1099                 free(ut, M_SUBPROC);
 1100 }
 1101 
 1102 struct md_utrap *
 1103 utrap_hold(struct md_utrap *ut)
 1104 {
 1105 
 1106         if (ut == NULL)
 1107                 return (NULL);
 1108         mtx_pool_lock(mtxpool_sleep, ut);
 1109         ut->ut_refcnt++;
 1110         mtx_pool_unlock(mtxpool_sleep, ut);
 1111         return (ut);
 1112 }

Cache object: ef2503bc49b6794afcb19fe934b42048


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.