The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/sparc64/sparc64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Jake Burkholder.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   35  *      from: FreeBSD: src/sys/i386/i386/machdep.c,v 1.477 2001/08/27
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD: releng/8.0/sys/sparc64/sparc64/machdep.c 195149 2009-06-28 22:42:51Z marius $");
   40 
   41 #include "opt_compat.h"
   42 #include "opt_ddb.h"
   43 #include "opt_kstack_pages.h"
   44 #include "opt_msgbuf.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/malloc.h>
   48 #include <sys/proc.h>
   49 #include <sys/systm.h>
   50 #include <sys/bio.h>
   51 #include <sys/buf.h>
   52 #include <sys/bus.h>
   53 #include <sys/cpu.h>
   54 #include <sys/cons.h>
   55 #include <sys/eventhandler.h>
   56 #include <sys/exec.h>
   57 #include <sys/imgact.h>
   58 #include <sys/interrupt.h>
   59 #include <sys/kdb.h>
   60 #include <sys/kernel.h>
   61 #include <sys/ktr.h>
   62 #include <sys/linker.h>
   63 #include <sys/lock.h>
   64 #include <sys/msgbuf.h>
   65 #include <sys/mutex.h>
   66 #include <sys/pcpu.h>
   67 #include <sys/ptrace.h>
   68 #include <sys/reboot.h>
   69 #include <sys/signalvar.h>
   70 #include <sys/smp.h>
   71 #include <sys/sysent.h>
   72 #include <sys/sysproto.h>
   73 #include <sys/timetc.h>
   74 #include <sys/ucontext.h>
   75 
   76 #include <dev/ofw/openfirm.h>
   77 
   78 #include <vm/vm.h>
   79 #include <vm/vm_extern.h>
   80 #include <vm/vm_kern.h>
   81 #include <vm/vm_page.h>
   82 #include <vm/vm_map.h>
   83 #include <vm/vm_object.h>
   84 #include <vm/vm_pager.h>
   85 #include <vm/vm_param.h>
   86 
   87 #include <ddb/ddb.h>
   88 
   89 #include <machine/bus.h>
   90 #include <machine/cache.h>
   91 #include <machine/clock.h>
   92 #include <machine/cpu.h>
   93 #include <machine/fp.h>
   94 #include <machine/fsr.h>
   95 #include <machine/intr_machdep.h>
   96 #include <machine/md_var.h>
   97 #include <machine/metadata.h>
   98 #include <machine/ofw_machdep.h>
   99 #include <machine/ofw_mem.h>
  100 #include <machine/pcb.h>
  101 #include <machine/pmap.h>
  102 #include <machine/pstate.h>
  103 #include <machine/reg.h>
  104 #include <machine/sigframe.h>
  105 #include <machine/smp.h>
  106 #include <machine/tick.h>
  107 #include <machine/tlb.h>
  108 #include <machine/tstate.h>
  109 #include <machine/upa.h>
  110 #include <machine/ver.h>
  111 
  112 typedef int ofw_vec_t(void *);
  113 
  114 #ifdef DDB
  115 extern vm_offset_t ksym_start, ksym_end;
  116 #endif
  117 
  118 int dtlb_slots;
  119 int itlb_slots;
  120 struct tlb_entry *kernel_tlbs;
  121 int kernel_tlb_slots;
  122 
  123 int cold = 1;
  124 long Maxmem;
  125 long realmem;
  126 
  127 void *dpcpu0;
  128 char pcpu0[PCPU_PAGES * PAGE_SIZE];
  129 struct trapframe frame0;
  130 
  131 vm_offset_t kstack0;
  132 vm_paddr_t kstack0_phys;
  133 
  134 struct kva_md_info kmi;
  135 
  136 u_long ofw_vec;
  137 u_long ofw_tba;
  138 
  139 char sparc64_model[32];
  140 
  141 static int cpu_use_vis = 1;
  142 
  143 cpu_block_copy_t *cpu_block_copy;
  144 cpu_block_zero_t *cpu_block_zero;
  145 
  146 void sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3,
  147     ofw_vec_t *vec);
  148 void sparc64_shutdown_final(void *dummy, int howto);
  149 
  150 static void cpu_startup(void *);
  151 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  152 
  153 CTASSERT((1 << INT_SHIFT) == sizeof(int));
  154 CTASSERT((1 << PTR_SHIFT) == sizeof(char *));
  155 
  156 CTASSERT(sizeof(struct reg) == 256);
  157 CTASSERT(sizeof(struct fpreg) == 272);
  158 CTASSERT(sizeof(struct __mcontext) == 512);
  159 
  160 CTASSERT((sizeof(struct pcb) & (64 - 1)) == 0);
  161 CTASSERT((offsetof(struct pcb, pcb_kfp) & (64 - 1)) == 0);
  162 CTASSERT((offsetof(struct pcb, pcb_ufp) & (64 - 1)) == 0);
  163 CTASSERT(sizeof(struct pcb) <= ((KSTACK_PAGES * PAGE_SIZE) / 8));
  164 
  165 CTASSERT(sizeof(struct pcpu) <= ((PCPU_PAGES * PAGE_SIZE) / 2));
  166 
  167 static void
  168 cpu_startup(void *arg)
  169 {
  170         vm_paddr_t physsz;
  171         int i;
  172 
  173         physsz = 0;
  174         for (i = 0; i < sparc64_nmemreg; i++)
  175                 physsz += sparc64_memreg[i].mr_size;
  176         printf("real memory  = %lu (%lu MB)\n", physsz,
  177             physsz / (1024 * 1024));
  178         realmem = (long)physsz / PAGE_SIZE;
  179 
  180         vm_ksubmap_init(&kmi);
  181 
  182         bufinit();
  183         vm_pager_bufferinit();
  184 
  185         EVENTHANDLER_REGISTER(shutdown_final, sparc64_shutdown_final, NULL,
  186             SHUTDOWN_PRI_LAST);
  187 
  188         printf("avail memory = %lu (%lu MB)\n", cnt.v_free_count * PAGE_SIZE,
  189             cnt.v_free_count / ((1024 * 1024) / PAGE_SIZE));
  190 
  191         if (bootverbose)
  192                 printf("machine: %s\n", sparc64_model);
  193 
  194         cpu_identify(rdpr(ver), PCPU_GET(clock), curcpu);
  195 }
  196 
  197 void
  198 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
  199 {
  200         struct intr_request *ir;
  201         int i;
  202 
  203         pcpu->pc_irtail = &pcpu->pc_irhead;
  204         for (i = 0; i < IR_FREE; i++) {
  205                 ir = &pcpu->pc_irpool[i];
  206                 ir->ir_next = pcpu->pc_irfree;
  207                 pcpu->pc_irfree = ir;
  208         }
  209 }
  210 
  211 void
  212 spinlock_enter(void)
  213 {
  214         struct thread *td;
  215         register_t pil;
  216 
  217         td = curthread;
  218         if (td->td_md.md_spinlock_count == 0) {
  219                 pil = rdpr(pil);
  220                 wrpr(pil, 0, PIL_TICK);
  221                 td->td_md.md_saved_pil = pil;
  222         }
  223         td->td_md.md_spinlock_count++;
  224         critical_enter();
  225 }
  226 
  227 void
  228 spinlock_exit(void)
  229 {
  230         struct thread *td;
  231 
  232         td = curthread;
  233         critical_exit();
  234         td->td_md.md_spinlock_count--;
  235         if (td->td_md.md_spinlock_count == 0)
  236                 wrpr(pil, td->td_md.md_saved_pil, 0);
  237 }
  238 
  239 void
  240 sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3, ofw_vec_t *vec)
  241 {
  242         char type[8];
  243         char *env;
  244         struct pcpu *pc;
  245         vm_offset_t end;
  246         vm_offset_t va;
  247         caddr_t kmdp;
  248         phandle_t child;
  249         phandle_t root;
  250         uint32_t portid;
  251 
  252         end = 0;
  253         kmdp = NULL;
  254 
  255         /*
  256          * Find out what kind of CPU we have first, for anything that changes
  257          * behaviour.
  258          */
  259         cpu_impl = VER_IMPL(rdpr(ver));
  260 
  261         /*
  262          * Do CPU-specific Initialization.
  263          */
  264         if (cpu_impl >= CPU_IMPL_ULTRASPARCIII)
  265                 cheetah_init();
  266 
  267         /*
  268          * Clear (S)TICK timer (including NPT).
  269          */
  270         tick_clear();
  271 
  272         /*
  273          * UltraSparc II[e,i] based systems come up with the tick interrupt
  274          * enabled and a handler that resets the tick counter, causing DELAY()
  275          * to not work properly when used early in boot.
  276          * UltraSPARC III based systems come up with the system tick interrupt
  277          * enabled, causing an interrupt storm on startup since they are not
  278          * handled.
  279          */
  280         tick_stop();
  281 
  282         /*
  283          * Set up Open Firmware entry points.
  284          */
  285         ofw_tba = rdpr(tba);
  286         ofw_vec = (u_long)vec;
  287 
  288         /*
  289          * Parse metadata if present and fetch parameters.  Must be before the
  290          * console is inited so cninit gets the right value of boothowto.
  291          */
  292         if (mdp != NULL) {
  293                 preload_metadata = mdp;
  294                 kmdp = preload_search_by_type("elf kernel");
  295                 if (kmdp != NULL) {
  296                         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
  297                         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
  298                         end = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
  299                         kernel_tlb_slots = MD_FETCH(kmdp, MODINFOMD_DTLB_SLOTS,
  300                             int);
  301                         kernel_tlbs = (void *)preload_search_info(kmdp,
  302                             MODINFO_METADATA | MODINFOMD_DTLB);
  303                 }
  304         }
  305 
  306         init_param1();
  307 
  308         /*
  309          * Initialize Open Firmware (needed for console).
  310          */
  311         OF_install(OFW_STD_DIRECT, 0);
  312         OF_init(ofw_entry);
  313 
  314         /*
  315          * Prime our per-CPU data page for use.  Note, we are using it for
  316          * our stack, so don't pass the real size (PAGE_SIZE) to pcpu_init
  317          * or it'll zero it out from under us.
  318          */
  319         pc = (struct pcpu *)(pcpu0 + (PCPU_PAGES * PAGE_SIZE)) - 1;
  320         pcpu_init(pc, 0, sizeof(struct pcpu));
  321         pc->pc_addr = (vm_offset_t)pcpu0;
  322         pc->pc_mid = UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG));
  323         pc->pc_tlb_ctx = TLB_CTX_USER_MIN;
  324         pc->pc_tlb_ctx_min = TLB_CTX_USER_MIN;
  325         pc->pc_tlb_ctx_max = TLB_CTX_USER_MAX;
  326 
  327         /*
  328          * Determine the OFW node and frequency of the BSP (and ensure the
  329          * BSP is in the device tree in the first place).
  330          */
  331         pc->pc_node = 0;
  332         root = OF_peer(0);
  333         for (child = OF_child(root); child != 0; child = OF_peer(child)) {
  334                 if (OF_getprop(child, "device_type", type, sizeof(type)) <= 0)
  335                         continue;
  336                 if (strcmp(type, "cpu") != 0)
  337                         continue;
  338                 if (OF_getprop(child, cpu_impl < CPU_IMPL_ULTRASPARCIII ?
  339                     "upa-portid" : "portid", &portid, sizeof(portid)) <= 0)
  340                         continue;
  341                 if (portid == pc->pc_mid) {
  342                         pc->pc_node = child;
  343                         break;
  344                 }
  345         }
  346         if (pc->pc_node == 0)
  347                 OF_exit();
  348         if (OF_getprop(child, "clock-frequency", &pc->pc_clock,
  349             sizeof(pc->pc_clock)) <= 0)
  350                 OF_exit();
  351 
  352         /*
  353          * Provide a DELAY() that works before PCPU_REG is set.  We can't
  354          * set PCPU_REG without also taking over the trap table or the
  355          * firmware will overwrite it.  Unfortunately, it's way to early
  356          * to also take over the trap table at this point.
  357          */
  358         clock_boot = pc->pc_clock;
  359         delay_func = delay_boot;
  360 
  361         /*
  362          * Initialize the console before printing anything.
  363          * NB: the low-level console drivers require a working DELAY() at
  364          * this point.
  365          */
  366         cninit();
  367 
  368         /*
  369          * Panic if there is no metadata.  Most likely the kernel was booted
  370          * directly, instead of through loader(8).
  371          */
  372         if (mdp == NULL || kmdp == NULL || end == 0 ||
  373             kernel_tlb_slots == 0 || kernel_tlbs == NULL) {
  374                 printf("sparc64_init: missing loader metadata.\n"
  375                     "This probably means you are not using loader(8).\n");
  376                 panic("sparc64_init");
  377         }
  378 
  379         /*
  380          * Work around the broken loader behavior of not demapping no
  381          * longer used kernel TLB slots when unloading the kernel or
  382          * modules.
  383          */
  384         for (va = KERNBASE + (kernel_tlb_slots - 1) * PAGE_SIZE_4M;
  385             va >= roundup2(end, PAGE_SIZE_4M); va -= PAGE_SIZE_4M) {
  386                 printf("demapping unused kernel TLB slot (va %#lx - %#lx)\n",
  387                     va, va + PAGE_SIZE_4M - 1);
  388                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  389                     ASI_DMMU_DEMAP, 0);
  390                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  391                     ASI_IMMU_DEMAP, 0);
  392                 flush(KERNBASE);
  393                 kernel_tlb_slots--;
  394         }
  395 
  396         /*
  397          * Determine the TLB slot maxima, which are expected to be
  398          * equal across all CPUs.
  399          * NB: for Cheetah-class CPUs, these properties only refer
  400          * to the t16s.
  401          */
  402         if (OF_getprop(pc->pc_node, "#dtlb-entries", &dtlb_slots,
  403             sizeof(dtlb_slots)) == -1)
  404                 panic("sparc64_init: cannot determine number of dTLB slots");
  405         if (OF_getprop(pc->pc_node, "#itlb-entries", &itlb_slots,
  406             sizeof(itlb_slots)) == -1)
  407                 panic("sparc64_init: cannot determine number of iTLB slots");
  408 
  409         cache_init(pc);
  410         cache_enable();
  411         uma_set_align(pc->pc_cache.dc_linesize - 1);
  412 
  413         cpu_block_copy = bcopy;
  414         cpu_block_zero = bzero;
  415         getenv_int("machdep.use_vis", &cpu_use_vis);
  416         if (cpu_use_vis) {
  417                 switch (cpu_impl) {
  418                 case CPU_IMPL_SPARC64:
  419                 case CPU_IMPL_ULTRASPARCI:
  420                 case CPU_IMPL_ULTRASPARCII:
  421                 case CPU_IMPL_ULTRASPARCIIi:
  422                 case CPU_IMPL_ULTRASPARCIIe:
  423                 case CPU_IMPL_ULTRASPARCIII:    /* NB: we've disabled P$. */
  424                 case CPU_IMPL_ULTRASPARCIIIp:
  425                 case CPU_IMPL_ULTRASPARCIIIi:
  426                 case CPU_IMPL_ULTRASPARCIV:
  427                 case CPU_IMPL_ULTRASPARCIVp:
  428                 case CPU_IMPL_ULTRASPARCIIIip:
  429                         cpu_block_copy = spitfire_block_copy;
  430                         cpu_block_zero = spitfire_block_zero;
  431                         break;
  432                 }
  433         }
  434 
  435 #ifdef SMP
  436         mp_init();
  437 #endif
  438 
  439         /*
  440          * Initialize virtual memory and calculate physmem.
  441          */
  442         pmap_bootstrap();
  443 
  444         /*
  445          * Initialize tunables.
  446          */
  447         init_param2(physmem);
  448         env = getenv("kernelname");
  449         if (env != NULL) {
  450                 strlcpy(kernelname, env, sizeof(kernelname));
  451                 freeenv(env);
  452         }
  453 
  454         /*
  455          * Initialize the interrupt tables.
  456          */
  457         intr_init1();
  458 
  459         /*
  460          * Initialize proc0, set kstack0, frame0, curthread and curpcb.
  461          */
  462         proc_linkup0(&proc0, &thread0);
  463         proc0.p_md.md_sigtramp = NULL;
  464         proc0.p_md.md_utrap = NULL;
  465         thread0.td_kstack = kstack0;
  466         thread0.td_pcb = (struct pcb *)
  467             (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
  468         frame0.tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_PRIV;
  469         thread0.td_frame = &frame0;
  470         pc->pc_curthread = &thread0;
  471         pc->pc_curpcb = thread0.td_pcb;
  472 
  473         /*
  474          * Initialize global registers.
  475          */
  476         cpu_setregs(pc);
  477 
  478         /*
  479          * Take over the trap table via the PROM.  Using the PROM for this
  480          * is necessary in order to set obp-control-relinquished to true
  481          * within the PROM so obtaining /virtual-memory/translations doesn't
  482          * trigger a fatal reset error or worse things further down the road.
  483          * XXX it should be possible to use this soley instead of writing
  484          * %tba in cpu_setregs().  Doing so causes a hang however.
  485          */
  486         sun4u_set_traptable(tl0_base);
  487 
  488         /*
  489          * It's now safe to use the real DELAY().
  490          */
  491         delay_func = delay_tick;
  492 
  493         /*
  494          * Initialize the dynamic per-CPU area for the BSP and the message
  495          * buffer (after setting the trap table).
  496          */
  497         dpcpu_init(dpcpu0, 0);
  498         msgbufinit(msgbufp, MSGBUF_SIZE);
  499 
  500         mutex_init();
  501         intr_init2();
  502 
  503         /*
  504          * Finish pmap initialization now that we're ready for mutexes.
  505          */
  506         PMAP_LOCK_INIT(kernel_pmap);
  507 
  508         OF_getprop(root, "name", sparc64_model, sizeof(sparc64_model) - 1);
  509 
  510         kdb_init();
  511 
  512 #ifdef KDB
  513         if (boothowto & RB_KDB)
  514                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
  515 #endif
  516 }
  517 
  518 void
  519 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  520 {
  521         struct trapframe *tf;
  522         struct sigframe *sfp;
  523         struct sigacts *psp;
  524         struct sigframe sf;
  525         struct thread *td;
  526         struct frame *fp;
  527         struct proc *p;
  528         u_long sp;
  529         int oonstack;
  530         int sig;
  531 
  532         oonstack = 0;
  533         td = curthread;
  534         p = td->td_proc;
  535         PROC_LOCK_ASSERT(p, MA_OWNED);
  536         sig = ksi->ksi_signo;
  537         psp = p->p_sigacts;
  538         mtx_assert(&psp->ps_mtx, MA_OWNED);
  539         tf = td->td_frame;
  540         sp = tf->tf_sp + SPOFF;
  541         oonstack = sigonstack(sp);
  542 
  543         CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
  544             catcher, sig);
  545 
  546         /* Make sure we have a signal trampoline to return to. */
  547         if (p->p_md.md_sigtramp == NULL) {
  548                 /*
  549                  * No signal trampoline... kill the process.
  550                  */
  551                 CTR0(KTR_SIG, "sendsig: no sigtramp");
  552                 printf("sendsig: %s is too old, rebuild it\n", p->p_comm);
  553                 sigexit(td, sig);
  554                 /* NOTREACHED */
  555         }
  556 
  557         /* Save user context. */
  558         bzero(&sf, sizeof(sf));
  559         get_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
  560         sf.sf_uc.uc_sigmask = *mask;
  561         sf.sf_uc.uc_stack = td->td_sigstk;
  562         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
  563             ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  564 
  565         /* Allocate and validate space for the signal handler context. */
  566         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  567             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  568                 sfp = (struct sigframe *)(td->td_sigstk.ss_sp +
  569                     td->td_sigstk.ss_size - sizeof(struct sigframe));
  570         } else
  571                 sfp = (struct sigframe *)sp - 1;
  572         mtx_unlock(&psp->ps_mtx);
  573         PROC_UNLOCK(p);
  574 
  575         fp = (struct frame *)sfp - 1;
  576 
  577         /* Translate the signal if appropriate. */
  578         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  579                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  580 
  581         /* Build the argument list for the signal handler. */
  582         tf->tf_out[0] = sig;
  583         tf->tf_out[2] = (register_t)&sfp->sf_uc;
  584         tf->tf_out[4] = (register_t)catcher;
  585         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  586                 /* Signal handler installed with SA_SIGINFO. */
  587                 tf->tf_out[1] = (register_t)&sfp->sf_si;
  588 
  589                 /* Fill in POSIX parts. */
  590                 sf.sf_si = ksi->ksi_info;
  591                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  592         } else {
  593                 /* Old FreeBSD-style arguments. */
  594                 tf->tf_out[1] = ksi->ksi_code;
  595                 tf->tf_out[3] = (register_t)ksi->ksi_addr;
  596         }
  597 
  598         /* Copy the sigframe out to the user's stack. */
  599         if (rwindow_save(td) != 0 || copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
  600             suword(&fp->fr_in[6], tf->tf_out[6]) != 0) {
  601                 /*
  602                  * Something is wrong with the stack pointer.
  603                  * ...Kill the process.
  604                  */
  605                 CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp);
  606                 PROC_LOCK(p);
  607                 sigexit(td, SIGILL);
  608                 /* NOTREACHED */
  609         }
  610 
  611         tf->tf_tpc = (u_long)p->p_md.md_sigtramp;
  612         tf->tf_tnpc = tf->tf_tpc + 4;
  613         tf->tf_sp = (u_long)fp - SPOFF;
  614 
  615         CTR3(KTR_SIG, "sendsig: return td=%p pc=%#lx sp=%#lx", td, tf->tf_tpc,
  616             tf->tf_sp);
  617 
  618         PROC_LOCK(p);
  619         mtx_lock(&psp->ps_mtx);
  620 }
  621 
  622 #ifndef _SYS_SYSPROTO_H_
  623 struct sigreturn_args {
  624         ucontext_t *ucp;
  625 };
  626 #endif
  627 
  628 /*
  629  * MPSAFE
  630  */
  631 int
  632 sigreturn(struct thread *td, struct sigreturn_args *uap)
  633 {
  634         struct proc *p;
  635         mcontext_t *mc;
  636         ucontext_t uc;
  637         int error;
  638 
  639         p = td->td_proc;
  640         if (rwindow_save(td)) {
  641                 PROC_LOCK(p);
  642                 sigexit(td, SIGILL);
  643         }
  644 
  645         CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
  646         if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
  647                 CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
  648                 return (EFAULT);
  649         }
  650 
  651         mc = &uc.uc_mcontext;
  652         error = set_mcontext(td, mc);
  653         if (error != 0)
  654                 return (error);
  655 
  656         PROC_LOCK(p);
  657         td->td_sigmask = uc.uc_sigmask;
  658         SIG_CANTMASK(td->td_sigmask);
  659         signotify(td);
  660         PROC_UNLOCK(p);
  661 
  662         CTR4(KTR_SIG, "sigreturn: return td=%p pc=%#lx sp=%#lx tstate=%#lx",
  663             td, mc->mc_tpc, mc->mc_sp, mc->mc_tstate);
  664         return (EJUSTRETURN);
  665 }
  666 
  667 #ifdef COMPAT_FREEBSD4
  668 int
  669 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
  670 {
  671 
  672         return sigreturn(td, (struct sigreturn_args *)uap);
  673 }
  674 #endif
  675 
  676 /*
  677  * Construct a PCB from a trapframe. This is called from kdb_trap() where
  678  * we want to start a backtrace from the function that caused us to enter
  679  * the debugger. We have the context in the trapframe, but base the trace
  680  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
  681  * enough for a backtrace.
  682  */
  683 void
  684 makectx(struct trapframe *tf, struct pcb *pcb)
  685 {
  686 
  687         pcb->pcb_pc = tf->tf_tpc;
  688         pcb->pcb_sp = tf->tf_sp;
  689 }
  690 
  691 int
  692 get_mcontext(struct thread *td, mcontext_t *mc, int flags)
  693 {
  694         struct trapframe *tf;
  695         struct pcb *pcb;
  696 
  697         tf = td->td_frame;
  698         pcb = td->td_pcb;
  699         bcopy(tf, mc, sizeof(*tf));
  700         if (flags & GET_MC_CLEAR_RET) {
  701                 mc->mc_out[0] = 0;
  702                 mc->mc_out[1] = 0;
  703         }
  704         mc->mc_flags = _MC_VERSION;
  705         critical_enter();
  706         if ((tf->tf_fprs & FPRS_FEF) != 0) {
  707                 savefpctx(pcb->pcb_ufp);
  708                 tf->tf_fprs &= ~FPRS_FEF;
  709                 pcb->pcb_flags |= PCB_FEF;
  710         }
  711         if ((pcb->pcb_flags & PCB_FEF) != 0) {
  712                 bcopy(pcb->pcb_ufp, mc->mc_fp, sizeof(mc->mc_fp));
  713                 mc->mc_fprs |= FPRS_FEF;
  714         }
  715         critical_exit();
  716         return (0);
  717 }
  718 
  719 int
  720 set_mcontext(struct thread *td, const mcontext_t *mc)
  721 {
  722         struct trapframe *tf;
  723         struct pcb *pcb;
  724         uint64_t wstate;
  725 
  726         if (!TSTATE_SECURE(mc->mc_tstate) ||
  727             (mc->mc_flags & ((1L << _MC_VERSION_BITS) - 1)) != _MC_VERSION)
  728                 return (EINVAL);
  729         tf = td->td_frame;
  730         pcb = td->td_pcb;
  731         /* Make sure the windows are spilled first. */
  732         flushw();
  733         wstate = tf->tf_wstate;
  734         bcopy(mc, tf, sizeof(*tf));
  735         tf->tf_wstate = wstate;
  736         if ((mc->mc_fprs & FPRS_FEF) != 0) {
  737                 tf->tf_fprs = 0;
  738                 bcopy(mc->mc_fp, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
  739                 pcb->pcb_flags |= PCB_FEF;
  740         }
  741         return (0);
  742 }
  743 
  744 /*
  745  * Exit the kernel and execute a firmware call that will not return, as
  746  * specified by the arguments.
  747  */
  748 void
  749 cpu_shutdown(void *args)
  750 {
  751 
  752 #ifdef SMP
  753         cpu_mp_shutdown();
  754 #endif
  755         ofw_exit(args);
  756 }
  757 
  758 /*
  759  * Flush the D-cache for non-DMA I/O so that the I-cache can
  760  * be made coherent later.
  761  */
  762 void
  763 cpu_flush_dcache(void *ptr, size_t len)
  764 {
  765 
  766         /* TBD */
  767 }
  768 
  769 /* Get current clock frequency for the given CPU ID. */
  770 int
  771 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  772 {
  773         struct pcpu *pc;
  774 
  775         pc = pcpu_find(cpu_id);
  776         if (pc == NULL || rate == NULL)
  777                 return (EINVAL);
  778         *rate = pc->pc_clock;
  779         return (0);
  780 }
  781 
  782 /*
  783  * Duplicate OF_exit() with a different firmware call function that restores
  784  * the trap table, otherwise a RED state exception is triggered in at least
  785  * some firmware versions.
  786  */
  787 void
  788 cpu_halt(void)
  789 {
  790         static struct {
  791                 cell_t name;
  792                 cell_t nargs;
  793                 cell_t nreturns;
  794         } args = {
  795                 (cell_t)"exit",
  796                 0,
  797                 0
  798         };
  799 
  800         cpu_shutdown(&args);
  801 }
  802 
  803 void
  804 sparc64_shutdown_final(void *dummy, int howto)
  805 {
  806         static struct {
  807                 cell_t name;
  808                 cell_t nargs;
  809                 cell_t nreturns;
  810         } args = {
  811                 (cell_t)"SUNW,power-off",
  812                 0,
  813                 0
  814         };
  815 
  816         /* Turn the power off? */
  817         if ((howto & RB_POWEROFF) != 0)
  818                 cpu_shutdown(&args);
  819         /* In case of halt, return to the firmware. */
  820         if ((howto & RB_HALT) != 0)
  821                 cpu_halt();
  822 }
  823 
  824 void
  825 cpu_idle(int busy)
  826 {
  827 
  828         /* Insert code to halt (until next interrupt) for the idle loop. */
  829 }
  830 
  831 int
  832 cpu_idle_wakeup(int cpu)
  833 {
  834 
  835         return (0);
  836 }
  837 
  838 int
  839 ptrace_set_pc(struct thread *td, u_long addr)
  840 {
  841 
  842         td->td_frame->tf_tpc = addr;
  843         td->td_frame->tf_tnpc = addr + 4;
  844         return (0);
  845 }
  846 
  847 int
  848 ptrace_single_step(struct thread *td)
  849 {
  850 
  851         /* TODO; */
  852         return (0);
  853 }
  854 
  855 int
  856 ptrace_clear_single_step(struct thread *td)
  857 {
  858 
  859         /* TODO; */
  860         return (0);
  861 }
  862 
  863 void
  864 exec_setregs(struct thread *td, u_long entry, u_long stack, u_long ps_strings)
  865 {
  866         struct trapframe *tf;
  867         struct pcb *pcb;
  868         struct proc *p;
  869         u_long sp;
  870 
  871         /* XXX no cpu_exec */
  872         p = td->td_proc;
  873         p->p_md.md_sigtramp = NULL;
  874         if (p->p_md.md_utrap != NULL) {
  875                 utrap_free(p->p_md.md_utrap);
  876                 p->p_md.md_utrap = NULL;
  877         }
  878 
  879         pcb = td->td_pcb;
  880         tf = td->td_frame;
  881         sp = rounddown(stack, 16);
  882         bzero(pcb, sizeof(*pcb));
  883         bzero(tf, sizeof(*tf));
  884         tf->tf_out[0] = stack;
  885         tf->tf_out[3] = p->p_sysent->sv_psstrings;
  886         tf->tf_out[6] = sp - SPOFF - sizeof(struct frame);
  887         tf->tf_tnpc = entry + 4;
  888         tf->tf_tpc = entry;
  889         tf->tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_MM_TSO;
  890 
  891         td->td_retval[0] = tf->tf_out[0];
  892         td->td_retval[1] = tf->tf_out[1];
  893 }
  894 
  895 int
  896 fill_regs(struct thread *td, struct reg *regs)
  897 {
  898 
  899         bcopy(td->td_frame, regs, sizeof(*regs));
  900         return (0);
  901 }
  902 
  903 int
  904 set_regs(struct thread *td, struct reg *regs)
  905 {
  906         struct trapframe *tf;
  907 
  908         if (!TSTATE_SECURE(regs->r_tstate))
  909                 return (EINVAL);
  910         tf = td->td_frame;
  911         regs->r_wstate = tf->tf_wstate;
  912         bcopy(regs, tf, sizeof(*regs));
  913         return (0);
  914 }
  915 
  916 int
  917 fill_dbregs(struct thread *td, struct dbreg *dbregs)
  918 {
  919 
  920         return (ENOSYS);
  921 }
  922 
  923 int
  924 set_dbregs(struct thread *td, struct dbreg *dbregs)
  925 {
  926 
  927         return (ENOSYS);
  928 }
  929 
  930 int
  931 fill_fpregs(struct thread *td, struct fpreg *fpregs)
  932 {
  933         struct trapframe *tf;
  934         struct pcb *pcb;
  935 
  936         pcb = td->td_pcb;
  937         tf = td->td_frame;
  938         bcopy(pcb->pcb_ufp, fpregs->fr_regs, sizeof(fpregs->fr_regs));
  939         fpregs->fr_fsr = tf->tf_fsr;
  940         fpregs->fr_gsr = tf->tf_gsr;
  941         return (0);
  942 }
  943 
  944 int
  945 set_fpregs(struct thread *td, struct fpreg *fpregs)
  946 {
  947         struct trapframe *tf;
  948         struct pcb *pcb;
  949 
  950         pcb = td->td_pcb;
  951         tf = td->td_frame;
  952         tf->tf_fprs &= ~FPRS_FEF;
  953         bcopy(fpregs->fr_regs, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
  954         tf->tf_fsr = fpregs->fr_fsr;
  955         tf->tf_gsr = fpregs->fr_gsr;
  956         return (0);
  957 }
  958 
  959 struct md_utrap *
  960 utrap_alloc(void)
  961 {
  962         struct md_utrap *ut;
  963 
  964         ut = malloc(sizeof(struct md_utrap), M_SUBPROC, M_WAITOK | M_ZERO);
  965         ut->ut_refcnt = 1;
  966         return (ut);
  967 }
  968 
  969 void
  970 utrap_free(struct md_utrap *ut)
  971 {
  972         int refcnt;
  973 
  974         if (ut == NULL)
  975                 return;
  976         mtx_pool_lock(mtxpool_sleep, ut);
  977         ut->ut_refcnt--;
  978         refcnt = ut->ut_refcnt;
  979         mtx_pool_unlock(mtxpool_sleep, ut);
  980         if (refcnt == 0)
  981                 free(ut, M_SUBPROC);
  982 }
  983 
  984 struct md_utrap *
  985 utrap_hold(struct md_utrap *ut)
  986 {
  987 
  988         if (ut == NULL)
  989                 return (NULL);
  990         mtx_pool_lock(mtxpool_sleep, ut);
  991         ut->ut_refcnt++;
  992         mtx_pool_unlock(mtxpool_sleep, ut);
  993         return (ut);
  994 }

Cache object: 798dbb501225f525bbe7899f4187d81a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.