The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/sparc64/sparc64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Jake Burkholder.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   35  *      from: FreeBSD: src/sys/i386/i386/machdep.c,v 1.477 2001/08/27
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD: releng/8.2/sys/sparc64/sparc64/machdep.c 213952 2010-10-17 11:51:55Z marius $");
   40 
   41 #include "opt_compat.h"
   42 #include "opt_ddb.h"
   43 #include "opt_kstack_pages.h"
   44 #include "opt_msgbuf.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/malloc.h>
   48 #include <sys/proc.h>
   49 #include <sys/systm.h>
   50 #include <sys/bio.h>
   51 #include <sys/buf.h>
   52 #include <sys/bus.h>
   53 #include <sys/cpu.h>
   54 #include <sys/cons.h>
   55 #include <sys/eventhandler.h>
   56 #include <sys/exec.h>
   57 #include <sys/imgact.h>
   58 #include <sys/interrupt.h>
   59 #include <sys/kdb.h>
   60 #include <sys/kernel.h>
   61 #include <sys/ktr.h>
   62 #include <sys/linker.h>
   63 #include <sys/lock.h>
   64 #include <sys/msgbuf.h>
   65 #include <sys/mutex.h>
   66 #include <sys/pcpu.h>
   67 #include <sys/ptrace.h>
   68 #include <sys/reboot.h>
   69 #include <sys/signalvar.h>
   70 #include <sys/smp.h>
   71 #include <sys/sysent.h>
   72 #include <sys/sysproto.h>
   73 #include <sys/timetc.h>
   74 #include <sys/ucontext.h>
   75 
   76 #include <dev/ofw/openfirm.h>
   77 
   78 #include <vm/vm.h>
   79 #include <vm/vm_extern.h>
   80 #include <vm/vm_kern.h>
   81 #include <vm/vm_page.h>
   82 #include <vm/vm_map.h>
   83 #include <vm/vm_object.h>
   84 #include <vm/vm_pager.h>
   85 #include <vm/vm_param.h>
   86 
   87 #include <ddb/ddb.h>
   88 
   89 #include <machine/bus.h>
   90 #include <machine/cache.h>
   91 #include <machine/clock.h>
   92 #include <machine/cmt.h>
   93 #include <machine/cpu.h>
   94 #include <machine/fireplane.h>
   95 #include <machine/fp.h>
   96 #include <machine/fsr.h>
   97 #include <machine/intr_machdep.h>
   98 #include <machine/jbus.h>
   99 #include <machine/md_var.h>
  100 #include <machine/metadata.h>
  101 #include <machine/ofw_machdep.h>
  102 #include <machine/ofw_mem.h>
  103 #include <machine/pcb.h>
  104 #include <machine/pmap.h>
  105 #include <machine/pstate.h>
  106 #include <machine/reg.h>
  107 #include <machine/sigframe.h>
  108 #include <machine/smp.h>
  109 #include <machine/tick.h>
  110 #include <machine/tlb.h>
  111 #include <machine/tstate.h>
  112 #include <machine/upa.h>
  113 #include <machine/ver.h>
  114 
  115 typedef int ofw_vec_t(void *);
  116 
  117 #ifdef DDB
  118 extern vm_offset_t ksym_start, ksym_end;
  119 #endif
  120 
  121 int dtlb_slots;
  122 int itlb_slots;
  123 struct tlb_entry *kernel_tlbs;
  124 int kernel_tlb_slots;
  125 
  126 int cold = 1;
  127 long Maxmem;
  128 long realmem;
  129 
  130 void *dpcpu0;
  131 char pcpu0[PCPU_PAGES * PAGE_SIZE];
  132 struct trapframe frame0;
  133 
  134 vm_offset_t kstack0;
  135 vm_paddr_t kstack0_phys;
  136 
  137 struct kva_md_info kmi;
  138 
  139 u_long ofw_vec;
  140 u_long ofw_tba;
  141 u_int tba_taken_over;
  142 
  143 char sparc64_model[32];
  144 
  145 static int cpu_use_vis = 1;
  146 
  147 cpu_block_copy_t *cpu_block_copy;
  148 cpu_block_zero_t *cpu_block_zero;
  149 
  150 static phandle_t find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl);
  151 void sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3,
  152     ofw_vec_t *vec);
  153 static void sparc64_shutdown_final(void *dummy, int howto);
  154 
  155 static void cpu_startup(void *arg);
  156 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  157 
  158 CTASSERT((1 << INT_SHIFT) == sizeof(int));
  159 CTASSERT((1 << PTR_SHIFT) == sizeof(char *));
  160 
  161 CTASSERT(sizeof(struct reg) == 256);
  162 CTASSERT(sizeof(struct fpreg) == 272);
  163 CTASSERT(sizeof(struct __mcontext) == 512);
  164 
  165 CTASSERT((sizeof(struct pcb) & (64 - 1)) == 0);
  166 CTASSERT((offsetof(struct pcb, pcb_kfp) & (64 - 1)) == 0);
  167 CTASSERT((offsetof(struct pcb, pcb_ufp) & (64 - 1)) == 0);
  168 CTASSERT(sizeof(struct pcb) <= ((KSTACK_PAGES * PAGE_SIZE) / 8));
  169 
  170 CTASSERT(sizeof(struct pcpu) <= ((PCPU_PAGES * PAGE_SIZE) / 2));
  171 
  172 static void
  173 cpu_startup(void *arg)
  174 {
  175         vm_paddr_t physsz;
  176         int i;
  177 
  178         physsz = 0;
  179         for (i = 0; i < sparc64_nmemreg; i++)
  180                 physsz += sparc64_memreg[i].mr_size;
  181         printf("real memory  = %lu (%lu MB)\n", physsz,
  182             physsz / (1024 * 1024));
  183         realmem = (long)physsz / PAGE_SIZE;
  184 
  185         vm_ksubmap_init(&kmi);
  186 
  187         bufinit();
  188         vm_pager_bufferinit();
  189 
  190         EVENTHANDLER_REGISTER(shutdown_final, sparc64_shutdown_final, NULL,
  191             SHUTDOWN_PRI_LAST);
  192 
  193         printf("avail memory = %lu (%lu MB)\n", cnt.v_free_count * PAGE_SIZE,
  194             cnt.v_free_count / ((1024 * 1024) / PAGE_SIZE));
  195 
  196         if (bootverbose)
  197                 printf("machine: %s\n", sparc64_model);
  198 
  199         cpu_identify(rdpr(ver), PCPU_GET(clock), curcpu);
  200 }
  201 
  202 void
  203 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
  204 {
  205         struct intr_request *ir;
  206         int i;
  207 
  208         pcpu->pc_irtail = &pcpu->pc_irhead;
  209         for (i = 0; i < IR_FREE; i++) {
  210                 ir = &pcpu->pc_irpool[i];
  211                 ir->ir_next = pcpu->pc_irfree;
  212                 pcpu->pc_irfree = ir;
  213         }
  214 }
  215 
  216 void
  217 spinlock_enter(void)
  218 {
  219         struct thread *td;
  220         register_t pil;
  221 
  222         td = curthread;
  223         if (td->td_md.md_spinlock_count == 0) {
  224                 pil = rdpr(pil);
  225                 wrpr(pil, 0, PIL_TICK);
  226                 td->td_md.md_saved_pil = pil;
  227         }
  228         td->td_md.md_spinlock_count++;
  229         critical_enter();
  230 }
  231 
  232 void
  233 spinlock_exit(void)
  234 {
  235         struct thread *td;
  236 
  237         td = curthread;
  238         critical_exit();
  239         td->td_md.md_spinlock_count--;
  240         if (td->td_md.md_spinlock_count == 0)
  241                 wrpr(pil, td->td_md.md_saved_pil, 0);
  242 }
  243 
  244 static phandle_t
  245 find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl)
  246 {
  247         char type[sizeof("cpu")];
  248         phandle_t child;
  249         uint32_t cpuid;
  250 
  251         for (; node != 0; node = OF_peer(node)) {
  252                 child = OF_child(node);
  253                 if (child > 0) {
  254                         child = find_bsp(child, bspid, cpu_impl);
  255                         if (child > 0)
  256                                 return (child);
  257                 } else {
  258                         if (OF_getprop(node, "device_type", type,
  259                             sizeof(type)) <= 0)
  260                                 continue;
  261                         if (strcmp(type, "cpu") != 0)
  262                                 continue;
  263                         if (OF_getprop(node, cpu_cpuid_prop(cpu_impl), &cpuid,
  264                             sizeof(cpuid)) <= 0)
  265                                 continue;
  266                         if (cpuid == bspid)
  267                                 return (node);
  268                 }
  269         }
  270         return (0);
  271 }
  272 
  273 const char *
  274 cpu_cpuid_prop(u_int cpu_impl)
  275 {
  276 
  277         switch (cpu_impl) {
  278         case CPU_IMPL_SPARC64:
  279         case CPU_IMPL_SPARC64V:
  280         case CPU_IMPL_ULTRASPARCI:
  281         case CPU_IMPL_ULTRASPARCII:
  282         case CPU_IMPL_ULTRASPARCIIi:
  283         case CPU_IMPL_ULTRASPARCIIe:
  284                 return ("upa-portid");
  285         case CPU_IMPL_ULTRASPARCIII:
  286         case CPU_IMPL_ULTRASPARCIIIp:
  287         case CPU_IMPL_ULTRASPARCIIIi:
  288         case CPU_IMPL_ULTRASPARCIIIip:
  289                 return ("portid");
  290         case CPU_IMPL_ULTRASPARCIV:
  291         case CPU_IMPL_ULTRASPARCIVp:
  292                 return ("cpuid");
  293         default:
  294                 return ("");
  295         }
  296 }
  297 
  298 uint32_t
  299 cpu_get_mid(u_int cpu_impl)
  300 {
  301 
  302         switch (cpu_impl) {
  303         case CPU_IMPL_SPARC64:
  304         case CPU_IMPL_SPARC64V:
  305         case CPU_IMPL_ULTRASPARCI:
  306         case CPU_IMPL_ULTRASPARCII:
  307         case CPU_IMPL_ULTRASPARCIIi:
  308         case CPU_IMPL_ULTRASPARCIIe:
  309                 return (UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG)));
  310         case CPU_IMPL_ULTRASPARCIII:
  311         case CPU_IMPL_ULTRASPARCIIIp:
  312                 return (FIREPLANE_CR_GET_AID(ldxa(AA_FIREPLANE_CONFIG,
  313                     ASI_FIREPLANE_CONFIG_REG)));
  314         case CPU_IMPL_ULTRASPARCIIIi:
  315         case CPU_IMPL_ULTRASPARCIIIip:
  316                 return (JBUS_CR_GET_JID(ldxa(0, ASI_JBUS_CONFIG_REG)));
  317         case CPU_IMPL_ULTRASPARCIV:
  318         case CPU_IMPL_ULTRASPARCIVp:
  319                 return (INTR_ID_GET_ID(ldxa(AA_INTR_ID, ASI_INTR_ID)));
  320         default:
  321                 return (0);
  322         }
  323 }
  324 
  325 void
  326 sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3, ofw_vec_t *vec)
  327 {
  328         char *env;
  329         struct pcpu *pc;
  330         vm_offset_t end;
  331         vm_offset_t va;
  332         caddr_t kmdp;
  333         phandle_t root;
  334         u_int cpu_impl;
  335 
  336         end = 0;
  337         kmdp = NULL;
  338 
  339         /*
  340          * Find out what kind of CPU we have first, for anything that changes
  341          * behaviour.
  342          */
  343         cpu_impl = VER_IMPL(rdpr(ver));
  344 
  345         /*
  346          * Do CPU-specific initialization.
  347          */
  348         if (cpu_impl == CPU_IMPL_SPARC64V ||
  349             cpu_impl >= CPU_IMPL_ULTRASPARCIII)
  350                 cheetah_init(cpu_impl);
  351 
  352         /*
  353          * Clear (S)TICK timer (including NPT).
  354          */
  355         tick_clear(cpu_impl);
  356 
  357         /*
  358          * UltraSparc II[e,i] based systems come up with the tick interrupt
  359          * enabled and a handler that resets the tick counter, causing DELAY()
  360          * to not work properly when used early in boot.
  361          * UltraSPARC III based systems come up with the system tick interrupt
  362          * enabled, causing an interrupt storm on startup since they are not
  363          * handled.
  364          */
  365         tick_stop(cpu_impl);
  366 
  367         /*
  368          * Set up Open Firmware entry points.
  369          */
  370         ofw_tba = rdpr(tba);
  371         ofw_vec = (u_long)vec;
  372 
  373         /*
  374          * Parse metadata if present and fetch parameters.  Must be before the
  375          * console is inited so cninit gets the right value of boothowto.
  376          */
  377         if (mdp != NULL) {
  378                 preload_metadata = mdp;
  379                 kmdp = preload_search_by_type("elf kernel");
  380                 if (kmdp != NULL) {
  381                         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
  382                         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
  383                         end = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
  384                         kernel_tlb_slots = MD_FETCH(kmdp, MODINFOMD_DTLB_SLOTS,
  385                             int);
  386                         kernel_tlbs = (void *)preload_search_info(kmdp,
  387                             MODINFO_METADATA | MODINFOMD_DTLB);
  388                 }
  389         }
  390 
  391         init_param1();
  392 
  393         /*
  394          * Initialize Open Firmware (needed for console).
  395          */
  396         OF_install(OFW_STD_DIRECT, 0);
  397         OF_init(ofw_entry);
  398 
  399         /*
  400          * Prime our per-CPU data page for use.  Note, we are using it for
  401          * our stack, so don't pass the real size (PAGE_SIZE) to pcpu_init
  402          * or it'll zero it out from under us.
  403          */
  404         pc = (struct pcpu *)(pcpu0 + (PCPU_PAGES * PAGE_SIZE)) - 1;
  405         pcpu_init(pc, 0, sizeof(struct pcpu));
  406         pc->pc_addr = (vm_offset_t)pcpu0;
  407         pc->pc_impl = cpu_impl;
  408         pc->pc_mid = cpu_get_mid(cpu_impl);
  409         pc->pc_tlb_ctx = TLB_CTX_USER_MIN;
  410         pc->pc_tlb_ctx_min = TLB_CTX_USER_MIN;
  411         pc->pc_tlb_ctx_max = TLB_CTX_USER_MAX;
  412 
  413         /*
  414          * Determine the OFW node and frequency of the BSP (and ensure the
  415          * BSP is in the device tree in the first place).
  416          */
  417         root = OF_peer(0);
  418         pc->pc_node = find_bsp(root, pc->pc_mid, cpu_impl);
  419         if (pc->pc_node == 0)
  420                 OF_exit();
  421         if (OF_getprop(pc->pc_node, "clock-frequency", &pc->pc_clock,
  422             sizeof(pc->pc_clock)) <= 0)
  423                 OF_exit();
  424 
  425         /*
  426          * Provide a DELAY() that works before PCPU_REG is set.  We can't
  427          * set PCPU_REG without also taking over the trap table or the
  428          * firmware will overwrite it.  Unfortunately, it's way to early
  429          * to also take over the trap table at this point.
  430          */
  431         clock_boot = pc->pc_clock;
  432         delay_func = delay_boot;
  433 
  434         /*
  435          * Initialize the console before printing anything.
  436          * NB: the low-level console drivers require a working DELAY() at
  437          * this point.
  438          */
  439         cninit();
  440 
  441         /*
  442          * Panic if there is no metadata.  Most likely the kernel was booted
  443          * directly, instead of through loader(8).
  444          */
  445         if (mdp == NULL || kmdp == NULL || end == 0 ||
  446             kernel_tlb_slots == 0 || kernel_tlbs == NULL) {
  447                 printf("sparc64_init: missing loader metadata.\n"
  448                     "This probably means you are not using loader(8).\n");
  449                 panic("sparc64_init");
  450         }
  451 
  452         /*
  453          * Work around the broken loader behavior of not demapping no
  454          * longer used kernel TLB slots when unloading the kernel or
  455          * modules.
  456          */
  457         for (va = KERNBASE + (kernel_tlb_slots - 1) * PAGE_SIZE_4M;
  458             va >= roundup2(end, PAGE_SIZE_4M); va -= PAGE_SIZE_4M) {
  459                 if (bootverbose)
  460                         printf("demapping unused kernel TLB slot "
  461                             "(va %#lx - %#lx)\n", va, va + PAGE_SIZE_4M - 1);
  462                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  463                     ASI_DMMU_DEMAP, 0);
  464                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  465                     ASI_IMMU_DEMAP, 0);
  466                 flush(KERNBASE);
  467                 kernel_tlb_slots--;
  468         }
  469 
  470         /*
  471          * Determine the TLB slot maxima, which are expected to be
  472          * equal across all CPUs.
  473          * NB: for cheetah-class CPUs, these properties only refer
  474          * to the t16s.
  475          */
  476         if (OF_getprop(pc->pc_node, "#dtlb-entries", &dtlb_slots,
  477             sizeof(dtlb_slots)) == -1)
  478                 panic("sparc64_init: cannot determine number of dTLB slots");
  479         if (OF_getprop(pc->pc_node, "#itlb-entries", &itlb_slots,
  480             sizeof(itlb_slots)) == -1)
  481                 panic("sparc64_init: cannot determine number of iTLB slots");
  482 
  483         /*
  484          * Initialize and enable the caches.  Note that his may include
  485          * applying workarounds.
  486          */
  487         cache_init(pc);
  488         cache_enable(cpu_impl);
  489         uma_set_align(pc->pc_cache.dc_linesize - 1);
  490 
  491         cpu_block_copy = bcopy;
  492         cpu_block_zero = bzero;
  493         getenv_int("machdep.use_vis", &cpu_use_vis);
  494         if (cpu_use_vis) {
  495                 switch (cpu_impl) {
  496                 case CPU_IMPL_SPARC64:
  497                 case CPU_IMPL_ULTRASPARCI:
  498                 case CPU_IMPL_ULTRASPARCII:
  499                 case CPU_IMPL_ULTRASPARCIIi:
  500                 case CPU_IMPL_ULTRASPARCIIe:
  501                 case CPU_IMPL_ULTRASPARCIII:    /* NB: we've disabled P$. */
  502                 case CPU_IMPL_ULTRASPARCIIIp:
  503                 case CPU_IMPL_ULTRASPARCIIIi:
  504                 case CPU_IMPL_ULTRASPARCIV:
  505                 case CPU_IMPL_ULTRASPARCIVp:
  506                 case CPU_IMPL_ULTRASPARCIIIip:
  507                         cpu_block_copy = spitfire_block_copy;
  508                         cpu_block_zero = spitfire_block_zero;
  509                         break;
  510                 case CPU_IMPL_SPARC64V:
  511                         cpu_block_copy = zeus_block_copy;
  512                         cpu_block_zero = zeus_block_zero;
  513                         break;
  514                 }
  515         }
  516 
  517 #ifdef SMP
  518         mp_init(cpu_impl);
  519 #endif
  520 
  521         /*
  522          * Initialize virtual memory and calculate physmem.
  523          */
  524         pmap_bootstrap(cpu_impl);
  525 
  526         /*
  527          * Initialize tunables.
  528          */
  529         init_param2(physmem);
  530         env = getenv("kernelname");
  531         if (env != NULL) {
  532                 strlcpy(kernelname, env, sizeof(kernelname));
  533                 freeenv(env);
  534         }
  535 
  536         /*
  537          * Initialize the interrupt tables.
  538          */
  539         intr_init1();
  540 
  541         /*
  542          * Initialize proc0, set kstack0, frame0, curthread and curpcb.
  543          */
  544         proc_linkup0(&proc0, &thread0);
  545         proc0.p_md.md_sigtramp = NULL;
  546         proc0.p_md.md_utrap = NULL;
  547         thread0.td_kstack = kstack0;
  548         thread0.td_pcb = (struct pcb *)
  549             (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
  550         frame0.tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_PRIV;
  551         thread0.td_frame = &frame0;
  552         pc->pc_curthread = &thread0;
  553         pc->pc_curpcb = thread0.td_pcb;
  554 
  555         /*
  556          * Initialize global registers.
  557          */
  558         cpu_setregs(pc);
  559 
  560         /*
  561          * Take over the trap table via the PROM.  Using the PROM for this
  562          * is necessary in order to set obp-control-relinquished to true
  563          * within the PROM so obtaining /virtual-memory/translations doesn't
  564          * trigger a fatal reset error or worse things further down the road.
  565          * XXX it should be possible to use this soley instead of writing
  566          * %tba in cpu_setregs().  Doing so causes a hang however.
  567          */
  568         sun4u_set_traptable(tl0_base);
  569 
  570         /*
  571          * It's now safe to use the real DELAY().
  572          */
  573         delay_func = delay_tick;
  574 
  575         /*
  576          * Initialize the dynamic per-CPU area for the BSP and the message
  577          * buffer (after setting the trap table).
  578          */
  579         dpcpu_init(dpcpu0, 0);
  580         msgbufinit(msgbufp, MSGBUF_SIZE);
  581 
  582         /*
  583          * Initialize mutexes.
  584          */
  585         mutex_init();
  586 
  587         /*
  588          * Finish the interrupt initialization now that mutexes work and
  589          * enable them.
  590          */
  591         intr_init2();
  592         wrpr(pil, 0, 0);
  593         wrpr(pstate, 0, PSTATE_KERNEL);
  594 
  595         /*
  596          * Finish pmap initialization now that we're ready for mutexes.
  597          */
  598         PMAP_LOCK_INIT(kernel_pmap);
  599 
  600         OF_getprop(root, "name", sparc64_model, sizeof(sparc64_model) - 1);
  601 
  602         kdb_init();
  603 
  604 #ifdef KDB
  605         if (boothowto & RB_KDB)
  606                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
  607 #endif
  608 }
  609 
  610 void
  611 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  612 {
  613         struct trapframe *tf;
  614         struct sigframe *sfp;
  615         struct sigacts *psp;
  616         struct sigframe sf;
  617         struct thread *td;
  618         struct frame *fp;
  619         struct proc *p;
  620         u_long sp;
  621         int oonstack;
  622         int sig;
  623 
  624         oonstack = 0;
  625         td = curthread;
  626         p = td->td_proc;
  627         PROC_LOCK_ASSERT(p, MA_OWNED);
  628         sig = ksi->ksi_signo;
  629         psp = p->p_sigacts;
  630         mtx_assert(&psp->ps_mtx, MA_OWNED);
  631         tf = td->td_frame;
  632         sp = tf->tf_sp + SPOFF;
  633         oonstack = sigonstack(sp);
  634 
  635         CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
  636             catcher, sig);
  637 
  638         /* Make sure we have a signal trampoline to return to. */
  639         if (p->p_md.md_sigtramp == NULL) {
  640                 /*
  641                  * No signal trampoline... kill the process.
  642                  */
  643                 CTR0(KTR_SIG, "sendsig: no sigtramp");
  644                 printf("sendsig: %s is too old, rebuild it\n", p->p_comm);
  645                 sigexit(td, sig);
  646                 /* NOTREACHED */
  647         }
  648 
  649         /* Save user context. */
  650         bzero(&sf, sizeof(sf));
  651         get_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
  652         sf.sf_uc.uc_sigmask = *mask;
  653         sf.sf_uc.uc_stack = td->td_sigstk;
  654         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
  655             ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  656 
  657         /* Allocate and validate space for the signal handler context. */
  658         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  659             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  660                 sfp = (struct sigframe *)(td->td_sigstk.ss_sp +
  661                     td->td_sigstk.ss_size - sizeof(struct sigframe));
  662         } else
  663                 sfp = (struct sigframe *)sp - 1;
  664         mtx_unlock(&psp->ps_mtx);
  665         PROC_UNLOCK(p);
  666 
  667         fp = (struct frame *)sfp - 1;
  668 
  669         /* Translate the signal if appropriate. */
  670         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  671                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  672 
  673         /* Build the argument list for the signal handler. */
  674         tf->tf_out[0] = sig;
  675         tf->tf_out[2] = (register_t)&sfp->sf_uc;
  676         tf->tf_out[4] = (register_t)catcher;
  677         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  678                 /* Signal handler installed with SA_SIGINFO. */
  679                 tf->tf_out[1] = (register_t)&sfp->sf_si;
  680 
  681                 /* Fill in POSIX parts. */
  682                 sf.sf_si = ksi->ksi_info;
  683                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  684         } else {
  685                 /* Old FreeBSD-style arguments. */
  686                 tf->tf_out[1] = ksi->ksi_code;
  687                 tf->tf_out[3] = (register_t)ksi->ksi_addr;
  688         }
  689 
  690         /* Copy the sigframe out to the user's stack. */
  691         if (rwindow_save(td) != 0 || copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
  692             suword(&fp->fr_in[6], tf->tf_out[6]) != 0) {
  693                 /*
  694                  * Something is wrong with the stack pointer.
  695                  * ...Kill the process.
  696                  */
  697                 CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp);
  698                 PROC_LOCK(p);
  699                 sigexit(td, SIGILL);
  700                 /* NOTREACHED */
  701         }
  702 
  703         tf->tf_tpc = (u_long)p->p_md.md_sigtramp;
  704         tf->tf_tnpc = tf->tf_tpc + 4;
  705         tf->tf_sp = (u_long)fp - SPOFF;
  706 
  707         CTR3(KTR_SIG, "sendsig: return td=%p pc=%#lx sp=%#lx", td, tf->tf_tpc,
  708             tf->tf_sp);
  709 
  710         PROC_LOCK(p);
  711         mtx_lock(&psp->ps_mtx);
  712 }
  713 
  714 #ifndef _SYS_SYSPROTO_H_
  715 struct sigreturn_args {
  716         ucontext_t *ucp;
  717 };
  718 #endif
  719 
  720 /*
  721  * MPSAFE
  722  */
  723 int
  724 sigreturn(struct thread *td, struct sigreturn_args *uap)
  725 {
  726         struct proc *p;
  727         mcontext_t *mc;
  728         ucontext_t uc;
  729         int error;
  730 
  731         p = td->td_proc;
  732         if (rwindow_save(td)) {
  733                 PROC_LOCK(p);
  734                 sigexit(td, SIGILL);
  735         }
  736 
  737         CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
  738         if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
  739                 CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
  740                 return (EFAULT);
  741         }
  742 
  743         mc = &uc.uc_mcontext;
  744         error = set_mcontext(td, mc);
  745         if (error != 0)
  746                 return (error);
  747 
  748         kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
  749 
  750         CTR4(KTR_SIG, "sigreturn: return td=%p pc=%#lx sp=%#lx tstate=%#lx",
  751             td, mc->mc_tpc, mc->mc_sp, mc->mc_tstate);
  752         return (EJUSTRETURN);
  753 }
  754 
  755 /*
  756  * Construct a PCB from a trapframe. This is called from kdb_trap() where
  757  * we want to start a backtrace from the function that caused us to enter
  758  * the debugger. We have the context in the trapframe, but base the trace
  759  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
  760  * enough for a backtrace.
  761  */
  762 void
  763 makectx(struct trapframe *tf, struct pcb *pcb)
  764 {
  765 
  766         pcb->pcb_pc = tf->tf_tpc;
  767         pcb->pcb_sp = tf->tf_sp;
  768 }
  769 
  770 int
  771 get_mcontext(struct thread *td, mcontext_t *mc, int flags)
  772 {
  773         struct trapframe *tf;
  774         struct pcb *pcb;
  775 
  776         tf = td->td_frame;
  777         pcb = td->td_pcb;
  778         /*
  779          * Copy the registers which will be restored by tl0_ret() from the
  780          * trapframe.
  781          * Note that we skip %g7 which is used as the userland TLS register
  782          * and %wstate.
  783          */
  784         mc->mc_flags = _MC_VERSION;
  785         mc->mc_global[1] = tf->tf_global[1];
  786         mc->mc_global[2] = tf->tf_global[2];
  787         mc->mc_global[3] = tf->tf_global[3];
  788         mc->mc_global[4] = tf->tf_global[4];
  789         mc->mc_global[5] = tf->tf_global[5];
  790         mc->mc_global[6] = tf->tf_global[6];
  791         if (flags & GET_MC_CLEAR_RET) {
  792                 mc->mc_out[0] = 0;
  793                 mc->mc_out[1] = 0;
  794         } else {
  795                 mc->mc_out[0] = tf->tf_out[0];
  796                 mc->mc_out[1] = tf->tf_out[1];
  797         }
  798         mc->mc_out[2] = tf->tf_out[2];
  799         mc->mc_out[3] = tf->tf_out[3];
  800         mc->mc_out[4] = tf->tf_out[4];
  801         mc->mc_out[5] = tf->tf_out[5];
  802         mc->mc_out[6] = tf->tf_out[6];
  803         mc->mc_out[7] = tf->tf_out[7];
  804         mc->mc_fprs = tf->tf_fprs;
  805         mc->mc_fsr = tf->tf_fsr;
  806         mc->mc_gsr = tf->tf_gsr;
  807         mc->mc_tnpc = tf->tf_tnpc;
  808         mc->mc_tpc = tf->tf_tpc;
  809         mc->mc_tstate = tf->tf_tstate;
  810         mc->mc_y = tf->tf_y;
  811         critical_enter();
  812         if ((tf->tf_fprs & FPRS_FEF) != 0) {
  813                 savefpctx(pcb->pcb_ufp);
  814                 tf->tf_fprs &= ~FPRS_FEF;
  815                 pcb->pcb_flags |= PCB_FEF;
  816         }
  817         if ((pcb->pcb_flags & PCB_FEF) != 0) {
  818                 bcopy(pcb->pcb_ufp, mc->mc_fp, sizeof(mc->mc_fp));
  819                 mc->mc_fprs |= FPRS_FEF;
  820         }
  821         critical_exit();
  822         return (0);
  823 }
  824 
  825 int
  826 set_mcontext(struct thread *td, const mcontext_t *mc)
  827 {
  828         struct trapframe *tf;
  829         struct pcb *pcb;
  830 
  831         if (!TSTATE_SECURE(mc->mc_tstate) ||
  832             (mc->mc_flags & ((1L << _MC_VERSION_BITS) - 1)) != _MC_VERSION)
  833                 return (EINVAL);
  834         tf = td->td_frame;
  835         pcb = td->td_pcb;
  836         /* Make sure the windows are spilled first. */
  837         flushw();
  838         /*
  839          * Copy the registers which will be restored by tl0_ret() to the
  840          * trapframe.
  841          * Note that we skip %g7 which is used as the userland TLS register
  842          * and %wstate.
  843          */
  844         tf->tf_global[1] = mc->mc_global[1];
  845         tf->tf_global[2] = mc->mc_global[2];
  846         tf->tf_global[3] = mc->mc_global[3];
  847         tf->tf_global[4] = mc->mc_global[4];
  848         tf->tf_global[5] = mc->mc_global[5];
  849         tf->tf_global[6] = mc->mc_global[6];
  850         tf->tf_out[0] = mc->mc_out[0];
  851         tf->tf_out[1] = mc->mc_out[1];
  852         tf->tf_out[2] = mc->mc_out[2];
  853         tf->tf_out[3] = mc->mc_out[3];
  854         tf->tf_out[4] = mc->mc_out[4];
  855         tf->tf_out[5] = mc->mc_out[5];
  856         tf->tf_out[6] = mc->mc_out[6];
  857         tf->tf_out[7] = mc->mc_out[7];
  858         tf->tf_fprs = mc->mc_fprs;
  859         tf->tf_fsr = mc->mc_fsr;
  860         tf->tf_gsr = mc->mc_gsr;
  861         tf->tf_tnpc = mc->mc_tnpc;
  862         tf->tf_tpc = mc->mc_tpc;
  863         tf->tf_tstate = mc->mc_tstate;
  864         tf->tf_y = mc->mc_y;
  865         if ((mc->mc_fprs & FPRS_FEF) != 0) {
  866                 tf->tf_fprs = 0;
  867                 bcopy(mc->mc_fp, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
  868                 pcb->pcb_flags |= PCB_FEF;
  869         }
  870         return (0);
  871 }
  872 
  873 /*
  874  * Exit the kernel and execute a firmware call that will not return, as
  875  * specified by the arguments.
  876  */
  877 void
  878 cpu_shutdown(void *args)
  879 {
  880 
  881 #ifdef SMP
  882         cpu_mp_shutdown();
  883 #endif
  884         ofw_exit(args);
  885 }
  886 
  887 /*
  888  * Flush the D-cache for non-DMA I/O so that the I-cache can
  889  * be made coherent later.
  890  */
  891 void
  892 cpu_flush_dcache(void *ptr, size_t len)
  893 {
  894 
  895         /* TBD */
  896 }
  897 
  898 /* Get current clock frequency for the given CPU ID. */
  899 int
  900 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  901 {
  902         struct pcpu *pc;
  903 
  904         pc = pcpu_find(cpu_id);
  905         if (pc == NULL || rate == NULL)
  906                 return (EINVAL);
  907         *rate = pc->pc_clock;
  908         return (0);
  909 }
  910 
  911 /*
  912  * Duplicate OF_exit() with a different firmware call function that restores
  913  * the trap table, otherwise a RED state exception is triggered in at least
  914  * some firmware versions.
  915  */
  916 void
  917 cpu_halt(void)
  918 {
  919         static struct {
  920                 cell_t name;
  921                 cell_t nargs;
  922                 cell_t nreturns;
  923         } args = {
  924                 (cell_t)"exit",
  925                 0,
  926                 0
  927         };
  928 
  929         cpu_shutdown(&args);
  930 }
  931 
  932 static void
  933 sparc64_shutdown_final(void *dummy, int howto)
  934 {
  935         static struct {
  936                 cell_t name;
  937                 cell_t nargs;
  938                 cell_t nreturns;
  939         } args = {
  940                 (cell_t)"SUNW,power-off",
  941                 0,
  942                 0
  943         };
  944 
  945         /* Turn the power off? */
  946         if ((howto & RB_POWEROFF) != 0)
  947                 cpu_shutdown(&args);
  948         /* In case of halt, return to the firmware. */
  949         if ((howto & RB_HALT) != 0)
  950                 cpu_halt();
  951 }
  952 
  953 void
  954 cpu_idle(int busy)
  955 {
  956 
  957         /* Insert code to halt (until next interrupt) for the idle loop. */
  958 }
  959 
  960 int
  961 cpu_idle_wakeup(int cpu)
  962 {
  963 
  964         return (1);
  965 }
  966 
  967 int
  968 ptrace_set_pc(struct thread *td, u_long addr)
  969 {
  970 
  971         td->td_frame->tf_tpc = addr;
  972         td->td_frame->tf_tnpc = addr + 4;
  973         return (0);
  974 }
  975 
  976 int
  977 ptrace_single_step(struct thread *td)
  978 {
  979 
  980         /* TODO; */
  981         return (0);
  982 }
  983 
  984 int
  985 ptrace_clear_single_step(struct thread *td)
  986 {
  987 
  988         /* TODO; */
  989         return (0);
  990 }
  991 
  992 void
  993 exec_setregs(struct thread *td, u_long entry, u_long stack, u_long ps_strings)
  994 {
  995         struct trapframe *tf;
  996         struct pcb *pcb;
  997         struct proc *p;
  998         u_long sp;
  999 
 1000         /* XXX no cpu_exec */
 1001         p = td->td_proc;
 1002         p->p_md.md_sigtramp = NULL;
 1003         if (p->p_md.md_utrap != NULL) {
 1004                 utrap_free(p->p_md.md_utrap);
 1005                 p->p_md.md_utrap = NULL;
 1006         }
 1007 
 1008         pcb = td->td_pcb;
 1009         tf = td->td_frame;
 1010         sp = rounddown(stack, 16);
 1011         bzero(pcb, sizeof(*pcb));
 1012         bzero(tf, sizeof(*tf));
 1013         tf->tf_out[0] = stack;
 1014         tf->tf_out[3] = p->p_sysent->sv_psstrings;
 1015         tf->tf_out[6] = sp - SPOFF - sizeof(struct frame);
 1016         tf->tf_tnpc = entry + 4;
 1017         tf->tf_tpc = entry;
 1018         tf->tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_MM_TSO;
 1019 
 1020         td->td_retval[0] = tf->tf_out[0];
 1021         td->td_retval[1] = tf->tf_out[1];
 1022 }
 1023 
 1024 int
 1025 fill_regs(struct thread *td, struct reg *regs)
 1026 {
 1027 
 1028         bcopy(td->td_frame, regs, sizeof(*regs));
 1029         return (0);
 1030 }
 1031 
 1032 int
 1033 set_regs(struct thread *td, struct reg *regs)
 1034 {
 1035         struct trapframe *tf;
 1036 
 1037         if (!TSTATE_SECURE(regs->r_tstate))
 1038                 return (EINVAL);
 1039         tf = td->td_frame;
 1040         regs->r_wstate = tf->tf_wstate;
 1041         bcopy(regs, tf, sizeof(*regs));
 1042         return (0);
 1043 }
 1044 
 1045 int
 1046 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 1047 {
 1048 
 1049         return (ENOSYS);
 1050 }
 1051 
 1052 int
 1053 set_dbregs(struct thread *td, struct dbreg *dbregs)
 1054 {
 1055 
 1056         return (ENOSYS);
 1057 }
 1058 
 1059 int
 1060 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 1061 {
 1062         struct trapframe *tf;
 1063         struct pcb *pcb;
 1064 
 1065         pcb = td->td_pcb;
 1066         tf = td->td_frame;
 1067         bcopy(pcb->pcb_ufp, fpregs->fr_regs, sizeof(fpregs->fr_regs));
 1068         fpregs->fr_fsr = tf->tf_fsr;
 1069         fpregs->fr_gsr = tf->tf_gsr;
 1070         return (0);
 1071 }
 1072 
 1073 int
 1074 set_fpregs(struct thread *td, struct fpreg *fpregs)
 1075 {
 1076         struct trapframe *tf;
 1077         struct pcb *pcb;
 1078 
 1079         pcb = td->td_pcb;
 1080         tf = td->td_frame;
 1081         tf->tf_fprs &= ~FPRS_FEF;
 1082         bcopy(fpregs->fr_regs, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
 1083         tf->tf_fsr = fpregs->fr_fsr;
 1084         tf->tf_gsr = fpregs->fr_gsr;
 1085         return (0);
 1086 }
 1087 
 1088 struct md_utrap *
 1089 utrap_alloc(void)
 1090 {
 1091         struct md_utrap *ut;
 1092 
 1093         ut = malloc(sizeof(struct md_utrap), M_SUBPROC, M_WAITOK | M_ZERO);
 1094         ut->ut_refcnt = 1;
 1095         return (ut);
 1096 }
 1097 
 1098 void
 1099 utrap_free(struct md_utrap *ut)
 1100 {
 1101         int refcnt;
 1102 
 1103         if (ut == NULL)
 1104                 return;
 1105         mtx_pool_lock(mtxpool_sleep, ut);
 1106         ut->ut_refcnt--;
 1107         refcnt = ut->ut_refcnt;
 1108         mtx_pool_unlock(mtxpool_sleep, ut);
 1109         if (refcnt == 0)
 1110                 free(ut, M_SUBPROC);
 1111 }
 1112 
 1113 struct md_utrap *
 1114 utrap_hold(struct md_utrap *ut)
 1115 {
 1116 
 1117         if (ut == NULL)
 1118                 return (NULL);
 1119         mtx_pool_lock(mtxpool_sleep, ut);
 1120         ut->ut_refcnt++;
 1121         mtx_pool_unlock(mtxpool_sleep, ut);
 1122         return (ut);
 1123 }

Cache object: d58a5c4440db3232a37e03830fd74bde


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.