The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/sparc64/sparc64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Jake Burkholder.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   35  *      from: FreeBSD: src/sys/i386/i386/machdep.c,v 1.477 2001/08/27
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD: releng/8.3/sys/sparc64/sparc64/machdep.c 230891 2012-02-01 21:19:54Z marius $");
   40 
   41 #include "opt_compat.h"
   42 #include "opt_ddb.h"
   43 #include "opt_kstack_pages.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/malloc.h>
   47 #include <sys/proc.h>
   48 #include <sys/systm.h>
   49 #include <sys/bio.h>
   50 #include <sys/buf.h>
   51 #include <sys/bus.h>
   52 #include <sys/cpu.h>
   53 #include <sys/cons.h>
   54 #include <sys/eventhandler.h>
   55 #include <sys/exec.h>
   56 #include <sys/imgact.h>
   57 #include <sys/interrupt.h>
   58 #include <sys/kdb.h>
   59 #include <sys/kernel.h>
   60 #include <sys/ktr.h>
   61 #include <sys/linker.h>
   62 #include <sys/lock.h>
   63 #include <sys/msgbuf.h>
   64 #include <sys/mutex.h>
   65 #include <sys/pcpu.h>
   66 #include <sys/ptrace.h>
   67 #include <sys/reboot.h>
   68 #include <sys/signalvar.h>
   69 #include <sys/smp.h>
   70 #include <sys/sysent.h>
   71 #include <sys/sysproto.h>
   72 #include <sys/timetc.h>
   73 #include <sys/ucontext.h>
   74 
   75 #include <dev/ofw/openfirm.h>
   76 
   77 #include <vm/vm.h>
   78 #include <vm/vm_extern.h>
   79 #include <vm/vm_kern.h>
   80 #include <vm/vm_page.h>
   81 #include <vm/vm_map.h>
   82 #include <vm/vm_object.h>
   83 #include <vm/vm_pager.h>
   84 #include <vm/vm_param.h>
   85 
   86 #include <ddb/ddb.h>
   87 
   88 #include <machine/bus.h>
   89 #include <machine/cache.h>
   90 #include <machine/cmt.h>
   91 #include <machine/cpu.h>
   92 #include <machine/fireplane.h>
   93 #include <machine/fp.h>
   94 #include <machine/fsr.h>
   95 #include <machine/intr_machdep.h>
   96 #include <machine/jbus.h>
   97 #include <machine/md_var.h>
   98 #include <machine/metadata.h>
   99 #include <machine/ofw_machdep.h>
  100 #include <machine/ofw_mem.h>
  101 #include <machine/pcb.h>
  102 #include <machine/pmap.h>
  103 #include <machine/pstate.h>
  104 #include <machine/reg.h>
  105 #include <machine/sigframe.h>
  106 #include <machine/smp.h>
  107 #include <machine/tick.h>
  108 #include <machine/tlb.h>
  109 #include <machine/tstate.h>
  110 #include <machine/upa.h>
  111 #include <machine/ver.h>
  112 
  113 typedef int ofw_vec_t(void *);
  114 
  115 #ifdef DDB
  116 extern vm_offset_t ksym_start, ksym_end;
  117 #endif
  118 
  119 int dtlb_slots;
  120 int itlb_slots;
  121 struct tlb_entry *kernel_tlbs;
  122 int kernel_tlb_slots;
  123 
  124 int cold = 1;
  125 long Maxmem;
  126 long realmem;
  127 
  128 void *dpcpu0;
  129 char pcpu0[PCPU_PAGES * PAGE_SIZE];
  130 struct trapframe frame0;
  131 
  132 vm_offset_t kstack0;
  133 vm_paddr_t kstack0_phys;
  134 
  135 struct kva_md_info kmi;
  136 
  137 u_long ofw_vec;
  138 u_long ofw_tba;
  139 u_int tba_taken_over;
  140 
  141 char sparc64_model[32];
  142 
  143 static int cpu_use_vis = 1;
  144 
  145 cpu_block_copy_t *cpu_block_copy;
  146 cpu_block_zero_t *cpu_block_zero;
  147 
  148 static phandle_t find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl);
  149 void sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3,
  150     ofw_vec_t *vec);
  151 static void sparc64_shutdown_final(void *dummy, int howto);
  152 
  153 static void cpu_startup(void *arg);
  154 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  155 
  156 CTASSERT((1 << INT_SHIFT) == sizeof(int));
  157 CTASSERT((1 << PTR_SHIFT) == sizeof(char *));
  158 
  159 CTASSERT(sizeof(struct reg) == 256);
  160 CTASSERT(sizeof(struct fpreg) == 272);
  161 CTASSERT(sizeof(struct __mcontext) == 512);
  162 
  163 CTASSERT((sizeof(struct pcb) & (64 - 1)) == 0);
  164 CTASSERT((offsetof(struct pcb, pcb_kfp) & (64 - 1)) == 0);
  165 CTASSERT((offsetof(struct pcb, pcb_ufp) & (64 - 1)) == 0);
  166 CTASSERT(sizeof(struct pcb) <= ((KSTACK_PAGES * PAGE_SIZE) / 8));
  167 
  168 CTASSERT(sizeof(struct pcpu) <= ((PCPU_PAGES * PAGE_SIZE) / 2));
  169 
  170 static void
  171 cpu_startup(void *arg)
  172 {
  173         vm_paddr_t physsz;
  174         int i;
  175 
  176         physsz = 0;
  177         for (i = 0; i < sparc64_nmemreg; i++)
  178                 physsz += sparc64_memreg[i].mr_size;
  179         printf("real memory  = %lu (%lu MB)\n", physsz,
  180             physsz / (1024 * 1024));
  181         realmem = (long)physsz / PAGE_SIZE;
  182 
  183         vm_ksubmap_init(&kmi);
  184 
  185         bufinit();
  186         vm_pager_bufferinit();
  187 
  188         EVENTHANDLER_REGISTER(shutdown_final, sparc64_shutdown_final, NULL,
  189             SHUTDOWN_PRI_LAST);
  190 
  191         printf("avail memory = %lu (%lu MB)\n", cnt.v_free_count * PAGE_SIZE,
  192             cnt.v_free_count / ((1024 * 1024) / PAGE_SIZE));
  193 
  194         if (bootverbose)
  195                 printf("machine: %s\n", sparc64_model);
  196 
  197         cpu_identify(rdpr(ver), PCPU_GET(clock), curcpu);
  198 }
  199 
  200 void
  201 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
  202 {
  203         struct intr_request *ir;
  204         int i;
  205 
  206         pcpu->pc_irtail = &pcpu->pc_irhead;
  207         for (i = 0; i < IR_FREE; i++) {
  208                 ir = &pcpu->pc_irpool[i];
  209                 ir->ir_next = pcpu->pc_irfree;
  210                 pcpu->pc_irfree = ir;
  211         }
  212 }
  213 
  214 void
  215 spinlock_enter(void)
  216 {
  217         struct thread *td;
  218         register_t pil;
  219 
  220         td = curthread;
  221         if (td->td_md.md_spinlock_count == 0) {
  222                 pil = rdpr(pil);
  223                 wrpr(pil, 0, PIL_TICK);
  224                 td->td_md.md_spinlock_count = 1;
  225                 td->td_md.md_saved_pil = pil;
  226         } else
  227                 td->td_md.md_spinlock_count++;
  228         critical_enter();
  229 }
  230 
  231 void
  232 spinlock_exit(void)
  233 {
  234         struct thread *td;
  235         register_t pil;
  236 
  237         td = curthread;
  238         critical_exit();
  239         pil = td->td_md.md_saved_pil;
  240         td->td_md.md_spinlock_count--;
  241         if (td->td_md.md_spinlock_count == 0)
  242                 wrpr(pil, pil, 0);
  243 }
  244 
  245 static phandle_t
  246 find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl)
  247 {
  248         char type[sizeof("cpu")];
  249         phandle_t child;
  250         uint32_t cpuid;
  251 
  252         for (; node != 0; node = OF_peer(node)) {
  253                 child = OF_child(node);
  254                 if (child > 0) {
  255                         child = find_bsp(child, bspid, cpu_impl);
  256                         if (child > 0)
  257                                 return (child);
  258                 } else {
  259                         if (OF_getprop(node, "device_type", type,
  260                             sizeof(type)) <= 0)
  261                                 continue;
  262                         if (strcmp(type, "cpu") != 0)
  263                                 continue;
  264                         if (OF_getprop(node, cpu_cpuid_prop(cpu_impl), &cpuid,
  265                             sizeof(cpuid)) <= 0)
  266                                 continue;
  267                         if (cpuid == bspid)
  268                                 return (node);
  269                 }
  270         }
  271         return (0);
  272 }
  273 
  274 const char *
  275 cpu_cpuid_prop(u_int cpu_impl)
  276 {
  277 
  278         switch (cpu_impl) {
  279         case CPU_IMPL_SPARC64:
  280         case CPU_IMPL_SPARC64V:
  281         case CPU_IMPL_ULTRASPARCI:
  282         case CPU_IMPL_ULTRASPARCII:
  283         case CPU_IMPL_ULTRASPARCIIi:
  284         case CPU_IMPL_ULTRASPARCIIe:
  285                 return ("upa-portid");
  286         case CPU_IMPL_ULTRASPARCIII:
  287         case CPU_IMPL_ULTRASPARCIIIp:
  288         case CPU_IMPL_ULTRASPARCIIIi:
  289         case CPU_IMPL_ULTRASPARCIIIip:
  290                 return ("portid");
  291         case CPU_IMPL_ULTRASPARCIV:
  292         case CPU_IMPL_ULTRASPARCIVp:
  293                 return ("cpuid");
  294         default:
  295                 return ("");
  296         }
  297 }
  298 
  299 uint32_t
  300 cpu_get_mid(u_int cpu_impl)
  301 {
  302 
  303         switch (cpu_impl) {
  304         case CPU_IMPL_SPARC64:
  305         case CPU_IMPL_SPARC64V:
  306         case CPU_IMPL_ULTRASPARCI:
  307         case CPU_IMPL_ULTRASPARCII:
  308         case CPU_IMPL_ULTRASPARCIIi:
  309         case CPU_IMPL_ULTRASPARCIIe:
  310                 return (UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG)));
  311         case CPU_IMPL_ULTRASPARCIII:
  312         case CPU_IMPL_ULTRASPARCIIIp:
  313                 return (FIREPLANE_CR_GET_AID(ldxa(AA_FIREPLANE_CONFIG,
  314                     ASI_FIREPLANE_CONFIG_REG)));
  315         case CPU_IMPL_ULTRASPARCIIIi:
  316         case CPU_IMPL_ULTRASPARCIIIip:
  317                 return (JBUS_CR_GET_JID(ldxa(0, ASI_JBUS_CONFIG_REG)));
  318         case CPU_IMPL_ULTRASPARCIV:
  319         case CPU_IMPL_ULTRASPARCIVp:
  320                 return (INTR_ID_GET_ID(ldxa(AA_INTR_ID, ASI_INTR_ID)));
  321         default:
  322                 return (0);
  323         }
  324 }
  325 
  326 void
  327 sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3, ofw_vec_t *vec)
  328 {
  329         char *env;
  330         struct pcpu *pc;
  331         vm_offset_t end;
  332         vm_offset_t va;
  333         caddr_t kmdp;
  334         phandle_t root;
  335         u_int cpu_impl;
  336 
  337         end = 0;
  338         kmdp = NULL;
  339 
  340         /*
  341          * Find out what kind of CPU we have first, for anything that changes
  342          * behaviour.
  343          */
  344         cpu_impl = VER_IMPL(rdpr(ver));
  345 
  346         /*
  347          * Do CPU-specific initialization.
  348          */
  349         if (cpu_impl >= CPU_IMPL_ULTRASPARCIII)
  350                 cheetah_init(cpu_impl);
  351         else if (cpu_impl == CPU_IMPL_SPARC64V)
  352                 zeus_init(cpu_impl);
  353 
  354         /*
  355          * Clear (S)TICK timer (including NPT).
  356          */
  357         tick_clear(cpu_impl);
  358 
  359         /*
  360          * UltraSparc II[e,i] based systems come up with the tick interrupt
  361          * enabled and a handler that resets the tick counter, causing DELAY()
  362          * to not work properly when used early in boot.
  363          * UltraSPARC III based systems come up with the system tick interrupt
  364          * enabled, causing an interrupt storm on startup since they are not
  365          * handled.
  366          */
  367         tick_stop(cpu_impl);
  368 
  369         /*
  370          * Set up Open Firmware entry points.
  371          */
  372         ofw_tba = rdpr(tba);
  373         ofw_vec = (u_long)vec;
  374 
  375         /*
  376          * Parse metadata if present and fetch parameters.  Must be before the
  377          * console is inited so cninit() gets the right value of boothowto.
  378          */
  379         if (mdp != NULL) {
  380                 preload_metadata = mdp;
  381                 kmdp = preload_search_by_type("elf kernel");
  382                 if (kmdp != NULL) {
  383                         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
  384                         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
  385                         end = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
  386                         kernel_tlb_slots = MD_FETCH(kmdp, MODINFOMD_DTLB_SLOTS,
  387                             int);
  388                         kernel_tlbs = (void *)preload_search_info(kmdp,
  389                             MODINFO_METADATA | MODINFOMD_DTLB);
  390                 }
  391         }
  392 
  393         init_param1();
  394 
  395         /*
  396          * Initialize Open Firmware (needed for console).
  397          */
  398         OF_install(OFW_STD_DIRECT, 0);
  399         OF_init(ofw_entry);
  400 
  401         /*
  402          * Prime our per-CPU data page for use.  Note, we are using it for
  403          * our stack, so don't pass the real size (PAGE_SIZE) to pcpu_init
  404          * or it'll zero it out from under us.
  405          */
  406         pc = (struct pcpu *)(pcpu0 + (PCPU_PAGES * PAGE_SIZE)) - 1;
  407         pcpu_init(pc, 0, sizeof(struct pcpu));
  408         pc->pc_addr = (vm_offset_t)pcpu0;
  409         pc->pc_impl = cpu_impl;
  410         pc->pc_mid = cpu_get_mid(cpu_impl);
  411         pc->pc_tlb_ctx = TLB_CTX_USER_MIN;
  412         pc->pc_tlb_ctx_min = TLB_CTX_USER_MIN;
  413         pc->pc_tlb_ctx_max = TLB_CTX_USER_MAX;
  414 
  415         /*
  416          * Determine the OFW node and frequency of the BSP (and ensure the
  417          * BSP is in the device tree in the first place).
  418          */
  419         root = OF_peer(0);
  420         pc->pc_node = find_bsp(root, pc->pc_mid, cpu_impl);
  421         if (pc->pc_node == 0)
  422                 OF_panic("%s: cannot find boot CPU node", __func__);
  423         if (OF_getprop(pc->pc_node, "clock-frequency", &pc->pc_clock,
  424             sizeof(pc->pc_clock)) <= 0)
  425                 OF_panic("%s: cannot determine boot CPU clock", __func__);
  426 
  427         /*
  428          * Panic if there is no metadata.  Most likely the kernel was booted
  429          * directly, instead of through loader(8).
  430          */
  431         if (mdp == NULL || kmdp == NULL || end == 0 ||
  432             kernel_tlb_slots == 0 || kernel_tlbs == NULL)
  433                 OF_panic("%s: missing loader metadata.\nThis probably means "
  434                     "you are not using loader(8).", __func__);
  435 
  436         /*
  437          * Work around the broken loader behavior of not demapping no
  438          * longer used kernel TLB slots when unloading the kernel or
  439          * modules.
  440          */
  441         for (va = KERNBASE + (kernel_tlb_slots - 1) * PAGE_SIZE_4M;
  442             va >= roundup2(end, PAGE_SIZE_4M); va -= PAGE_SIZE_4M) {
  443                 if (bootverbose)
  444                         OF_printf("demapping unused kernel TLB slot "
  445                             "(va %#lx - %#lx)\n", va, va + PAGE_SIZE_4M - 1);
  446                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  447                     ASI_DMMU_DEMAP, 0);
  448                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  449                     ASI_IMMU_DEMAP, 0);
  450                 flush(KERNBASE);
  451                 kernel_tlb_slots--;
  452         }
  453 
  454         /*
  455          * Determine the TLB slot maxima, which are expected to be
  456          * equal across all CPUs.
  457          * NB: for cheetah-class CPUs, these properties only refer
  458          * to the t16s.
  459          */
  460         if (OF_getprop(pc->pc_node, "#dtlb-entries", &dtlb_slots,
  461             sizeof(dtlb_slots)) == -1)
  462                 OF_panic("%s: cannot determine number of dTLB slots",
  463                     __func__);
  464         if (OF_getprop(pc->pc_node, "#itlb-entries", &itlb_slots,
  465             sizeof(itlb_slots)) == -1)
  466                 OF_panic("%s: cannot determine number of iTLB slots",
  467                     __func__);
  468 
  469         /*
  470          * Initialize and enable the caches.  Note that this may include
  471          * applying workarounds.
  472          */
  473         cache_init(pc);
  474         cache_enable(cpu_impl);
  475         uma_set_align(pc->pc_cache.dc_linesize - 1);
  476 
  477         cpu_block_copy = bcopy;
  478         cpu_block_zero = bzero;
  479         getenv_int("machdep.use_vis", &cpu_use_vis);
  480         if (cpu_use_vis) {
  481                 switch (cpu_impl) {
  482                 case CPU_IMPL_SPARC64:
  483                 case CPU_IMPL_ULTRASPARCI:
  484                 case CPU_IMPL_ULTRASPARCII:
  485                 case CPU_IMPL_ULTRASPARCIIi:
  486                 case CPU_IMPL_ULTRASPARCIIe:
  487                 case CPU_IMPL_ULTRASPARCIII:    /* NB: we've disabled P$. */
  488                 case CPU_IMPL_ULTRASPARCIIIp:
  489                 case CPU_IMPL_ULTRASPARCIIIi:
  490                 case CPU_IMPL_ULTRASPARCIV:
  491                 case CPU_IMPL_ULTRASPARCIVp:
  492                 case CPU_IMPL_ULTRASPARCIIIip:
  493                         cpu_block_copy = spitfire_block_copy;
  494                         cpu_block_zero = spitfire_block_zero;
  495                         break;
  496                 case CPU_IMPL_SPARC64V:
  497                         cpu_block_copy = zeus_block_copy;
  498                         cpu_block_zero = zeus_block_zero;
  499                         break;
  500                 }
  501         }
  502 
  503 #ifdef SMP
  504         mp_init(cpu_impl);
  505 #endif
  506 
  507         /*
  508          * Initialize virtual memory and calculate physmem.
  509          */
  510         pmap_bootstrap(cpu_impl);
  511 
  512         /*
  513          * Initialize tunables.
  514          */
  515         init_param2(physmem);
  516         env = getenv("kernelname");
  517         if (env != NULL) {
  518                 strlcpy(kernelname, env, sizeof(kernelname));
  519                 freeenv(env);
  520         }
  521 
  522         /*
  523          * Initialize the interrupt tables.
  524          */
  525         intr_init1();
  526 
  527         /*
  528          * Initialize proc0, set kstack0, frame0, curthread and curpcb.
  529          */
  530         proc_linkup0(&proc0, &thread0);
  531         proc0.p_md.md_sigtramp = NULL;
  532         proc0.p_md.md_utrap = NULL;
  533         thread0.td_kstack = kstack0;
  534         thread0.td_kstack_pages = KSTACK_PAGES;
  535         thread0.td_pcb = (struct pcb *)
  536             (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
  537         frame0.tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_PRIV;
  538         thread0.td_frame = &frame0;
  539         pc->pc_curthread = &thread0;
  540         pc->pc_curpcb = thread0.td_pcb;
  541 
  542         /*
  543          * Initialize global registers.
  544          */
  545         cpu_setregs(pc);
  546 
  547         /*
  548          * Take over the trap table via the PROM.  Using the PROM for this
  549          * is necessary in order to set obp-control-relinquished to true
  550          * within the PROM so obtaining /virtual-memory/translations doesn't
  551          * trigger a fatal reset error or worse things further down the road.
  552          * XXX it should be possible to use this solely instead of writing
  553          * %tba in cpu_setregs().  Doing so causes a hang however.
  554          */
  555         sun4u_set_traptable(tl0_base);
  556 
  557         /*
  558          * Initialize the console.
  559          * NB: the low-level console drivers require a working DELAY() and
  560          * some compiler optimizations may cause the curthread accesses of
  561          * mutex(9) to be factored out even if the latter aren't actually
  562          * called, both requiring PCPU_REG to be set.
  563          */
  564         cninit();
  565 
  566         /*
  567          * Initialize the dynamic per-CPU area for the BSP and the message
  568          * buffer (after setting the trap table).
  569          */
  570         dpcpu_init(dpcpu0, 0);
  571         msgbufinit(msgbufp, msgbufsize);
  572 
  573         /*
  574          * Initialize mutexes.
  575          */
  576         mutex_init();
  577 
  578         /*
  579          * Finish the interrupt initialization now that mutexes work and
  580          * enable them.
  581          */
  582         intr_init2();
  583         wrpr(pil, 0, 0);
  584         wrpr(pstate, 0, PSTATE_KERNEL);
  585 
  586         OF_getprop(root, "name", sparc64_model, sizeof(sparc64_model) - 1);
  587 
  588         kdb_init();
  589 
  590 #ifdef KDB
  591         if (boothowto & RB_KDB)
  592                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
  593 #endif
  594 }
  595 
  596 void
  597 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  598 {
  599         struct trapframe *tf;
  600         struct sigframe *sfp;
  601         struct sigacts *psp;
  602         struct sigframe sf;
  603         struct thread *td;
  604         struct frame *fp;
  605         struct proc *p;
  606         u_long sp;
  607         int oonstack;
  608         int sig;
  609 
  610         oonstack = 0;
  611         td = curthread;
  612         p = td->td_proc;
  613         PROC_LOCK_ASSERT(p, MA_OWNED);
  614         sig = ksi->ksi_signo;
  615         psp = p->p_sigacts;
  616         mtx_assert(&psp->ps_mtx, MA_OWNED);
  617         tf = td->td_frame;
  618         sp = tf->tf_sp + SPOFF;
  619         oonstack = sigonstack(sp);
  620 
  621         CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
  622             catcher, sig);
  623 
  624         /* Make sure we have a signal trampoline to return to. */
  625         if (p->p_md.md_sigtramp == NULL) {
  626                 /*
  627                  * No signal trampoline... kill the process.
  628                  */
  629                 CTR0(KTR_SIG, "sendsig: no sigtramp");
  630                 printf("sendsig: %s is too old, rebuild it\n", p->p_comm);
  631                 sigexit(td, sig);
  632                 /* NOTREACHED */
  633         }
  634 
  635         /* Save user context. */
  636         bzero(&sf, sizeof(sf));
  637         get_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
  638         sf.sf_uc.uc_sigmask = *mask;
  639         sf.sf_uc.uc_stack = td->td_sigstk;
  640         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
  641             ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  642 
  643         /* Allocate and validate space for the signal handler context. */
  644         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  645             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  646                 sfp = (struct sigframe *)(td->td_sigstk.ss_sp +
  647                     td->td_sigstk.ss_size - sizeof(struct sigframe));
  648         } else
  649                 sfp = (struct sigframe *)sp - 1;
  650         mtx_unlock(&psp->ps_mtx);
  651         PROC_UNLOCK(p);
  652 
  653         fp = (struct frame *)sfp - 1;
  654 
  655         /* Translate the signal if appropriate. */
  656         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  657                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  658 
  659         /* Build the argument list for the signal handler. */
  660         tf->tf_out[0] = sig;
  661         tf->tf_out[2] = (register_t)&sfp->sf_uc;
  662         tf->tf_out[4] = (register_t)catcher;
  663         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  664                 /* Signal handler installed with SA_SIGINFO. */
  665                 tf->tf_out[1] = (register_t)&sfp->sf_si;
  666 
  667                 /* Fill in POSIX parts. */
  668                 sf.sf_si = ksi->ksi_info;
  669                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  670         } else {
  671                 /* Old FreeBSD-style arguments. */
  672                 tf->tf_out[1] = ksi->ksi_code;
  673                 tf->tf_out[3] = (register_t)ksi->ksi_addr;
  674         }
  675 
  676         /* Copy the sigframe out to the user's stack. */
  677         if (rwindow_save(td) != 0 || copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
  678             suword(&fp->fr_in[6], tf->tf_out[6]) != 0) {
  679                 /*
  680                  * Something is wrong with the stack pointer.
  681                  * ...Kill the process.
  682                  */
  683                 CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp);
  684                 PROC_LOCK(p);
  685                 sigexit(td, SIGILL);
  686                 /* NOTREACHED */
  687         }
  688 
  689         tf->tf_tpc = (u_long)p->p_md.md_sigtramp;
  690         tf->tf_tnpc = tf->tf_tpc + 4;
  691         tf->tf_sp = (u_long)fp - SPOFF;
  692 
  693         CTR3(KTR_SIG, "sendsig: return td=%p pc=%#lx sp=%#lx", td, tf->tf_tpc,
  694             tf->tf_sp);
  695 
  696         PROC_LOCK(p);
  697         mtx_lock(&psp->ps_mtx);
  698 }
  699 
  700 #ifndef _SYS_SYSPROTO_H_
  701 struct sigreturn_args {
  702         ucontext_t *ucp;
  703 };
  704 #endif
  705 
  706 /*
  707  * MPSAFE
  708  */
  709 int
  710 sigreturn(struct thread *td, struct sigreturn_args *uap)
  711 {
  712         struct proc *p;
  713         mcontext_t *mc;
  714         ucontext_t uc;
  715         int error;
  716 
  717         p = td->td_proc;
  718         if (rwindow_save(td)) {
  719                 PROC_LOCK(p);
  720                 sigexit(td, SIGILL);
  721         }
  722 
  723         CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
  724         if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
  725                 CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
  726                 return (EFAULT);
  727         }
  728 
  729         mc = &uc.uc_mcontext;
  730         error = set_mcontext(td, mc);
  731         if (error != 0)
  732                 return (error);
  733 
  734         kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
  735 
  736         CTR4(KTR_SIG, "sigreturn: return td=%p pc=%#lx sp=%#lx tstate=%#lx",
  737             td, mc->mc_tpc, mc->mc_sp, mc->mc_tstate);
  738         return (EJUSTRETURN);
  739 }
  740 
  741 /*
  742  * Construct a PCB from a trapframe. This is called from kdb_trap() where
  743  * we want to start a backtrace from the function that caused us to enter
  744  * the debugger. We have the context in the trapframe, but base the trace
  745  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
  746  * enough for a backtrace.
  747  */
  748 void
  749 makectx(struct trapframe *tf, struct pcb *pcb)
  750 {
  751 
  752         pcb->pcb_pc = tf->tf_tpc;
  753         pcb->pcb_sp = tf->tf_sp;
  754 }
  755 
  756 int
  757 get_mcontext(struct thread *td, mcontext_t *mc, int flags)
  758 {
  759         struct trapframe *tf;
  760         struct pcb *pcb;
  761 
  762         tf = td->td_frame;
  763         pcb = td->td_pcb;
  764         /*
  765          * Copy the registers which will be restored by tl0_ret() from the
  766          * trapframe.
  767          * Note that we skip %g7 which is used as the userland TLS register
  768          * and %wstate.
  769          */
  770         mc->mc_flags = _MC_VERSION;
  771         mc->mc_global[1] = tf->tf_global[1];
  772         mc->mc_global[2] = tf->tf_global[2];
  773         mc->mc_global[3] = tf->tf_global[3];
  774         mc->mc_global[4] = tf->tf_global[4];
  775         mc->mc_global[5] = tf->tf_global[5];
  776         mc->mc_global[6] = tf->tf_global[6];
  777         if (flags & GET_MC_CLEAR_RET) {
  778                 mc->mc_out[0] = 0;
  779                 mc->mc_out[1] = 0;
  780         } else {
  781                 mc->mc_out[0] = tf->tf_out[0];
  782                 mc->mc_out[1] = tf->tf_out[1];
  783         }
  784         mc->mc_out[2] = tf->tf_out[2];
  785         mc->mc_out[3] = tf->tf_out[3];
  786         mc->mc_out[4] = tf->tf_out[4];
  787         mc->mc_out[5] = tf->tf_out[5];
  788         mc->mc_out[6] = tf->tf_out[6];
  789         mc->mc_out[7] = tf->tf_out[7];
  790         mc->mc_fprs = tf->tf_fprs;
  791         mc->mc_fsr = tf->tf_fsr;
  792         mc->mc_gsr = tf->tf_gsr;
  793         mc->mc_tnpc = tf->tf_tnpc;
  794         mc->mc_tpc = tf->tf_tpc;
  795         mc->mc_tstate = tf->tf_tstate;
  796         mc->mc_y = tf->tf_y;
  797         critical_enter();
  798         if ((tf->tf_fprs & FPRS_FEF) != 0) {
  799                 savefpctx(pcb->pcb_ufp);
  800                 tf->tf_fprs &= ~FPRS_FEF;
  801                 pcb->pcb_flags |= PCB_FEF;
  802         }
  803         if ((pcb->pcb_flags & PCB_FEF) != 0) {
  804                 bcopy(pcb->pcb_ufp, mc->mc_fp, sizeof(mc->mc_fp));
  805                 mc->mc_fprs |= FPRS_FEF;
  806         }
  807         critical_exit();
  808         return (0);
  809 }
  810 
  811 int
  812 set_mcontext(struct thread *td, const mcontext_t *mc)
  813 {
  814         struct trapframe *tf;
  815         struct pcb *pcb;
  816 
  817         if (!TSTATE_SECURE(mc->mc_tstate) ||
  818             (mc->mc_flags & ((1L << _MC_VERSION_BITS) - 1)) != _MC_VERSION)
  819                 return (EINVAL);
  820         tf = td->td_frame;
  821         pcb = td->td_pcb;
  822         /* Make sure the windows are spilled first. */
  823         flushw();
  824         /*
  825          * Copy the registers which will be restored by tl0_ret() to the
  826          * trapframe.
  827          * Note that we skip %g7 which is used as the userland TLS register
  828          * and %wstate.
  829          */
  830         tf->tf_global[1] = mc->mc_global[1];
  831         tf->tf_global[2] = mc->mc_global[2];
  832         tf->tf_global[3] = mc->mc_global[3];
  833         tf->tf_global[4] = mc->mc_global[4];
  834         tf->tf_global[5] = mc->mc_global[5];
  835         tf->tf_global[6] = mc->mc_global[6];
  836         tf->tf_out[0] = mc->mc_out[0];
  837         tf->tf_out[1] = mc->mc_out[1];
  838         tf->tf_out[2] = mc->mc_out[2];
  839         tf->tf_out[3] = mc->mc_out[3];
  840         tf->tf_out[4] = mc->mc_out[4];
  841         tf->tf_out[5] = mc->mc_out[5];
  842         tf->tf_out[6] = mc->mc_out[6];
  843         tf->tf_out[7] = mc->mc_out[7];
  844         tf->tf_fprs = mc->mc_fprs;
  845         tf->tf_fsr = mc->mc_fsr;
  846         tf->tf_gsr = mc->mc_gsr;
  847         tf->tf_tnpc = mc->mc_tnpc;
  848         tf->tf_tpc = mc->mc_tpc;
  849         tf->tf_tstate = mc->mc_tstate;
  850         tf->tf_y = mc->mc_y;
  851         if ((mc->mc_fprs & FPRS_FEF) != 0) {
  852                 tf->tf_fprs = 0;
  853                 bcopy(mc->mc_fp, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
  854                 pcb->pcb_flags |= PCB_FEF;
  855         }
  856         return (0);
  857 }
  858 
  859 /*
  860  * Exit the kernel and execute a firmware call that will not return, as
  861  * specified by the arguments.
  862  */
  863 void
  864 cpu_shutdown(void *args)
  865 {
  866 
  867 #ifdef SMP
  868         cpu_mp_shutdown();
  869 #endif
  870         ofw_exit(args);
  871 }
  872 
  873 /*
  874  * Flush the D-cache for non-DMA I/O so that the I-cache can
  875  * be made coherent later.
  876  */
  877 void
  878 cpu_flush_dcache(void *ptr, size_t len)
  879 {
  880 
  881         /* TBD */
  882 }
  883 
  884 /* Get current clock frequency for the given CPU ID. */
  885 int
  886 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  887 {
  888         struct pcpu *pc;
  889 
  890         pc = pcpu_find(cpu_id);
  891         if (pc == NULL || rate == NULL)
  892                 return (EINVAL);
  893         *rate = pc->pc_clock;
  894         return (0);
  895 }
  896 
  897 /*
  898  * Duplicate OF_exit() with a different firmware call function that restores
  899  * the trap table, otherwise a RED state exception is triggered in at least
  900  * some firmware versions.
  901  */
  902 void
  903 cpu_halt(void)
  904 {
  905         static struct {
  906                 cell_t name;
  907                 cell_t nargs;
  908                 cell_t nreturns;
  909         } args = {
  910                 (cell_t)"exit",
  911                 0,
  912                 0
  913         };
  914 
  915         cpu_shutdown(&args);
  916 }
  917 
  918 static void
  919 sparc64_shutdown_final(void *dummy, int howto)
  920 {
  921         static struct {
  922                 cell_t name;
  923                 cell_t nargs;
  924                 cell_t nreturns;
  925         } args = {
  926                 (cell_t)"SUNW,power-off",
  927                 0,
  928                 0
  929         };
  930 
  931         /* Turn the power off? */
  932         if ((howto & RB_POWEROFF) != 0)
  933                 cpu_shutdown(&args);
  934         /* In case of halt, return to the firmware. */
  935         if ((howto & RB_HALT) != 0)
  936                 cpu_halt();
  937 }
  938 
  939 void
  940 cpu_idle(int busy)
  941 {
  942 
  943         /* Insert code to halt (until next interrupt) for the idle loop. */
  944 }
  945 
  946 int
  947 cpu_idle_wakeup(int cpu)
  948 {
  949 
  950         return (1);
  951 }
  952 
  953 int
  954 ptrace_set_pc(struct thread *td, u_long addr)
  955 {
  956 
  957         td->td_frame->tf_tpc = addr;
  958         td->td_frame->tf_tnpc = addr + 4;
  959         return (0);
  960 }
  961 
  962 int
  963 ptrace_single_step(struct thread *td)
  964 {
  965 
  966         /* TODO; */
  967         return (0);
  968 }
  969 
  970 int
  971 ptrace_clear_single_step(struct thread *td)
  972 {
  973 
  974         /* TODO; */
  975         return (0);
  976 }
  977 
  978 void
  979 exec_setregs(struct thread *td, u_long entry, u_long stack, u_long ps_strings)
  980 {
  981         struct trapframe *tf;
  982         struct pcb *pcb;
  983         struct proc *p;
  984         u_long sp;
  985 
  986         /* XXX no cpu_exec */
  987         p = td->td_proc;
  988         p->p_md.md_sigtramp = NULL;
  989         if (p->p_md.md_utrap != NULL) {
  990                 utrap_free(p->p_md.md_utrap);
  991                 p->p_md.md_utrap = NULL;
  992         }
  993 
  994         pcb = td->td_pcb;
  995         tf = td->td_frame;
  996         sp = rounddown(stack, 16);
  997         bzero(pcb, sizeof(*pcb));
  998         bzero(tf, sizeof(*tf));
  999         tf->tf_out[0] = stack;
 1000         tf->tf_out[3] = p->p_sysent->sv_psstrings;
 1001         tf->tf_out[6] = sp - SPOFF - sizeof(struct frame);
 1002         tf->tf_tnpc = entry + 4;
 1003         tf->tf_tpc = entry;
 1004         /*
 1005          * While we could adhere to the memory model indicated in the ELF
 1006          * header, it turns out that just always using TSO performs best.
 1007          */
 1008         tf->tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_MM_TSO;
 1009 
 1010         td->td_retval[0] = tf->tf_out[0];
 1011         td->td_retval[1] = tf->tf_out[1];
 1012 }
 1013 
 1014 int
 1015 fill_regs(struct thread *td, struct reg *regs)
 1016 {
 1017 
 1018         bcopy(td->td_frame, regs, sizeof(*regs));
 1019         return (0);
 1020 }
 1021 
 1022 int
 1023 set_regs(struct thread *td, struct reg *regs)
 1024 {
 1025         struct trapframe *tf;
 1026 
 1027         if (!TSTATE_SECURE(regs->r_tstate))
 1028                 return (EINVAL);
 1029         tf = td->td_frame;
 1030         regs->r_wstate = tf->tf_wstate;
 1031         bcopy(regs, tf, sizeof(*regs));
 1032         return (0);
 1033 }
 1034 
 1035 int
 1036 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 1037 {
 1038 
 1039         return (ENOSYS);
 1040 }
 1041 
 1042 int
 1043 set_dbregs(struct thread *td, struct dbreg *dbregs)
 1044 {
 1045 
 1046         return (ENOSYS);
 1047 }
 1048 
 1049 int
 1050 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 1051 {
 1052         struct trapframe *tf;
 1053         struct pcb *pcb;
 1054 
 1055         pcb = td->td_pcb;
 1056         tf = td->td_frame;
 1057         bcopy(pcb->pcb_ufp, fpregs->fr_regs, sizeof(fpregs->fr_regs));
 1058         fpregs->fr_fsr = tf->tf_fsr;
 1059         fpregs->fr_gsr = tf->tf_gsr;
 1060         return (0);
 1061 }
 1062 
 1063 int
 1064 set_fpregs(struct thread *td, struct fpreg *fpregs)
 1065 {
 1066         struct trapframe *tf;
 1067         struct pcb *pcb;
 1068 
 1069         pcb = td->td_pcb;
 1070         tf = td->td_frame;
 1071         tf->tf_fprs &= ~FPRS_FEF;
 1072         bcopy(fpregs->fr_regs, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
 1073         tf->tf_fsr = fpregs->fr_fsr;
 1074         tf->tf_gsr = fpregs->fr_gsr;
 1075         return (0);
 1076 }
 1077 
 1078 struct md_utrap *
 1079 utrap_alloc(void)
 1080 {
 1081         struct md_utrap *ut;
 1082 
 1083         ut = malloc(sizeof(struct md_utrap), M_SUBPROC, M_WAITOK | M_ZERO);
 1084         ut->ut_refcnt = 1;
 1085         return (ut);
 1086 }
 1087 
 1088 void
 1089 utrap_free(struct md_utrap *ut)
 1090 {
 1091         int refcnt;
 1092 
 1093         if (ut == NULL)
 1094                 return;
 1095         mtx_pool_lock(mtxpool_sleep, ut);
 1096         ut->ut_refcnt--;
 1097         refcnt = ut->ut_refcnt;
 1098         mtx_pool_unlock(mtxpool_sleep, ut);
 1099         if (refcnt == 0)
 1100                 free(ut, M_SUBPROC);
 1101 }
 1102 
 1103 struct md_utrap *
 1104 utrap_hold(struct md_utrap *ut)
 1105 {
 1106 
 1107         if (ut == NULL)
 1108                 return (NULL);
 1109         mtx_pool_lock(mtxpool_sleep, ut);
 1110         ut->ut_refcnt++;
 1111         mtx_pool_unlock(mtxpool_sleep, ut);
 1112         return (ut);
 1113 }

Cache object: c2123e80ef3a44358fc25ebccfc1bb26


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.