The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/sparc64/sparc64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Jake Burkholder.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   35  *      from: FreeBSD: src/sys/i386/i386/machdep.c,v 1.477 2001/08/27
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD$");
   40 
   41 #include "opt_compat.h"
   42 #include "opt_ddb.h"
   43 #include "opt_kstack_pages.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/malloc.h>
   47 #include <sys/proc.h>
   48 #include <sys/systm.h>
   49 #include <sys/bio.h>
   50 #include <sys/buf.h>
   51 #include <sys/bus.h>
   52 #include <sys/cpu.h>
   53 #include <sys/cons.h>
   54 #include <sys/eventhandler.h>
   55 #include <sys/exec.h>
   56 #include <sys/imgact.h>
   57 #include <sys/interrupt.h>
   58 #include <sys/kdb.h>
   59 #include <sys/kernel.h>
   60 #include <sys/ktr.h>
   61 #include <sys/linker.h>
   62 #include <sys/lock.h>
   63 #include <sys/msgbuf.h>
   64 #include <sys/mutex.h>
   65 #include <sys/pcpu.h>
   66 #include <sys/ptrace.h>
   67 #include <sys/reboot.h>
   68 #include <sys/signalvar.h>
   69 #include <sys/smp.h>
   70 #include <sys/syscallsubr.h>
   71 #include <sys/sysent.h>
   72 #include <sys/sysproto.h>
   73 #include <sys/timetc.h>
   74 #include <sys/ucontext.h>
   75 
   76 #include <dev/ofw/openfirm.h>
   77 
   78 #include <vm/vm.h>
   79 #include <vm/vm_extern.h>
   80 #include <vm/vm_kern.h>
   81 #include <vm/vm_page.h>
   82 #include <vm/vm_map.h>
   83 #include <vm/vm_object.h>
   84 #include <vm/vm_pager.h>
   85 #include <vm/vm_param.h>
   86 
   87 #include <ddb/ddb.h>
   88 
   89 #include <machine/bus.h>
   90 #include <machine/cache.h>
   91 #include <machine/cmt.h>
   92 #include <machine/cpu.h>
   93 #include <machine/fireplane.h>
   94 #include <machine/fp.h>
   95 #include <machine/fsr.h>
   96 #include <machine/intr_machdep.h>
   97 #include <machine/jbus.h>
   98 #include <machine/md_var.h>
   99 #include <machine/metadata.h>
  100 #include <machine/ofw_machdep.h>
  101 #include <machine/ofw_mem.h>
  102 #include <machine/pcb.h>
  103 #include <machine/pmap.h>
  104 #include <machine/pstate.h>
  105 #include <machine/reg.h>
  106 #include <machine/sigframe.h>
  107 #include <machine/smp.h>
  108 #include <machine/tick.h>
  109 #include <machine/tlb.h>
  110 #include <machine/tstate.h>
  111 #include <machine/upa.h>
  112 #include <machine/ver.h>
  113 
  114 typedef int ofw_vec_t(void *);
  115 
  116 #ifdef DDB
  117 extern vm_offset_t ksym_start, ksym_end;
  118 #endif
  119 
  120 int dtlb_slots;
  121 int itlb_slots;
  122 struct tlb_entry *kernel_tlbs;
  123 int kernel_tlb_slots;
  124 
  125 int cold = 1;
  126 long Maxmem;
  127 long realmem;
  128 
  129 void *dpcpu0;
  130 char pcpu0[PCPU_PAGES * PAGE_SIZE];
  131 struct trapframe frame0;
  132 
  133 vm_offset_t kstack0;
  134 vm_paddr_t kstack0_phys;
  135 
  136 struct kva_md_info kmi;
  137 
  138 u_long ofw_vec;
  139 u_long ofw_tba;
  140 u_int tba_taken_over;
  141 
  142 char sparc64_model[32];
  143 
  144 static int cpu_use_vis = 1;
  145 
  146 cpu_block_copy_t *cpu_block_copy;
  147 cpu_block_zero_t *cpu_block_zero;
  148 
  149 static phandle_t find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl);
  150 void sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3,
  151     ofw_vec_t *vec);
  152 static void sparc64_shutdown_final(void *dummy, int howto);
  153 
  154 static void cpu_startup(void *arg);
  155 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  156 
  157 CTASSERT((1 << INT_SHIFT) == sizeof(int));
  158 CTASSERT((1 << PTR_SHIFT) == sizeof(char *));
  159 
  160 CTASSERT(sizeof(struct reg) == 256);
  161 CTASSERT(sizeof(struct fpreg) == 272);
  162 CTASSERT(sizeof(struct __mcontext) == 512);
  163 
  164 CTASSERT((sizeof(struct pcb) & (64 - 1)) == 0);
  165 CTASSERT((offsetof(struct pcb, pcb_kfp) & (64 - 1)) == 0);
  166 CTASSERT((offsetof(struct pcb, pcb_ufp) & (64 - 1)) == 0);
  167 CTASSERT(sizeof(struct pcb) <= ((KSTACK_PAGES * PAGE_SIZE) / 8));
  168 
  169 CTASSERT(sizeof(struct pcpu) <= ((PCPU_PAGES * PAGE_SIZE) / 2));
  170 
  171 static void
  172 cpu_startup(void *arg)
  173 {
  174         vm_paddr_t physsz;
  175         int i;
  176 
  177         physsz = 0;
  178         for (i = 0; i < sparc64_nmemreg; i++)
  179                 physsz += sparc64_memreg[i].mr_size;
  180         printf("real memory  = %lu (%lu MB)\n", physsz,
  181             physsz / (1024 * 1024));
  182         realmem = (long)physsz / PAGE_SIZE;
  183 
  184         vm_ksubmap_init(&kmi);
  185 
  186         bufinit();
  187         vm_pager_bufferinit();
  188 
  189         EVENTHANDLER_REGISTER(shutdown_final, sparc64_shutdown_final, NULL,
  190             SHUTDOWN_PRI_LAST);
  191 
  192         printf("avail memory = %lu (%lu MB)\n", cnt.v_free_count * PAGE_SIZE,
  193             cnt.v_free_count / ((1024 * 1024) / PAGE_SIZE));
  194 
  195         if (bootverbose)
  196                 printf("machine: %s\n", sparc64_model);
  197 
  198         cpu_identify(rdpr(ver), PCPU_GET(clock), curcpu);
  199 }
  200 
  201 void
  202 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
  203 {
  204         struct intr_request *ir;
  205         int i;
  206 
  207         pcpu->pc_irtail = &pcpu->pc_irhead;
  208         for (i = 0; i < IR_FREE; i++) {
  209                 ir = &pcpu->pc_irpool[i];
  210                 ir->ir_next = pcpu->pc_irfree;
  211                 pcpu->pc_irfree = ir;
  212         }
  213 }
  214 
  215 void
  216 spinlock_enter(void)
  217 {
  218         struct thread *td;
  219         register_t pil;
  220 
  221         td = curthread;
  222         if (td->td_md.md_spinlock_count == 0) {
  223                 pil = rdpr(pil);
  224                 wrpr(pil, 0, PIL_TICK);
  225                 td->td_md.md_spinlock_count = 1;
  226                 td->td_md.md_saved_pil = pil;
  227         } else
  228                 td->td_md.md_spinlock_count++;
  229         critical_enter();
  230 }
  231 
  232 void
  233 spinlock_exit(void)
  234 {
  235         struct thread *td;
  236         register_t pil;
  237 
  238         td = curthread;
  239         critical_exit();
  240         pil = td->td_md.md_saved_pil;
  241         td->td_md.md_spinlock_count--;
  242         if (td->td_md.md_spinlock_count == 0)
  243                 wrpr(pil, pil, 0);
  244 }
  245 
  246 static phandle_t
  247 find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl)
  248 {
  249         char type[sizeof("cpu")];
  250         phandle_t child;
  251         uint32_t cpuid;
  252 
  253         for (; node != 0; node = OF_peer(node)) {
  254                 child = OF_child(node);
  255                 if (child > 0) {
  256                         child = find_bsp(child, bspid, cpu_impl);
  257                         if (child > 0)
  258                                 return (child);
  259                 } else {
  260                         if (OF_getprop(node, "device_type", type,
  261                             sizeof(type)) <= 0)
  262                                 continue;
  263                         if (strcmp(type, "cpu") != 0)
  264                                 continue;
  265                         if (OF_getprop(node, cpu_cpuid_prop(cpu_impl), &cpuid,
  266                             sizeof(cpuid)) <= 0)
  267                                 continue;
  268                         if (cpuid == bspid)
  269                                 return (node);
  270                 }
  271         }
  272         return (0);
  273 }
  274 
  275 const char *
  276 cpu_cpuid_prop(u_int cpu_impl)
  277 {
  278 
  279         switch (cpu_impl) {
  280         case CPU_IMPL_SPARC64:
  281         case CPU_IMPL_SPARC64V:
  282         case CPU_IMPL_ULTRASPARCI:
  283         case CPU_IMPL_ULTRASPARCII:
  284         case CPU_IMPL_ULTRASPARCIIi:
  285         case CPU_IMPL_ULTRASPARCIIe:
  286                 return ("upa-portid");
  287         case CPU_IMPL_ULTRASPARCIII:
  288         case CPU_IMPL_ULTRASPARCIIIp:
  289         case CPU_IMPL_ULTRASPARCIIIi:
  290         case CPU_IMPL_ULTRASPARCIIIip:
  291                 return ("portid");
  292         case CPU_IMPL_ULTRASPARCIV:
  293         case CPU_IMPL_ULTRASPARCIVp:
  294                 return ("cpuid");
  295         default:
  296                 return ("");
  297         }
  298 }
  299 
  300 uint32_t
  301 cpu_get_mid(u_int cpu_impl)
  302 {
  303 
  304         switch (cpu_impl) {
  305         case CPU_IMPL_SPARC64:
  306         case CPU_IMPL_SPARC64V:
  307         case CPU_IMPL_ULTRASPARCI:
  308         case CPU_IMPL_ULTRASPARCII:
  309         case CPU_IMPL_ULTRASPARCIIi:
  310         case CPU_IMPL_ULTRASPARCIIe:
  311                 return (UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG)));
  312         case CPU_IMPL_ULTRASPARCIII:
  313         case CPU_IMPL_ULTRASPARCIIIp:
  314                 return (FIREPLANE_CR_GET_AID(ldxa(AA_FIREPLANE_CONFIG,
  315                     ASI_FIREPLANE_CONFIG_REG)));
  316         case CPU_IMPL_ULTRASPARCIIIi:
  317         case CPU_IMPL_ULTRASPARCIIIip:
  318                 return (JBUS_CR_GET_JID(ldxa(0, ASI_JBUS_CONFIG_REG)));
  319         case CPU_IMPL_ULTRASPARCIV:
  320         case CPU_IMPL_ULTRASPARCIVp:
  321                 return (INTR_ID_GET_ID(ldxa(AA_INTR_ID, ASI_INTR_ID)));
  322         default:
  323                 return (0);
  324         }
  325 }
  326 
  327 void
  328 sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3, ofw_vec_t *vec)
  329 {
  330         char *env;
  331         struct pcpu *pc;
  332         vm_offset_t end;
  333         vm_offset_t va;
  334         caddr_t kmdp;
  335         phandle_t root;
  336         u_int cpu_impl;
  337 
  338         end = 0;
  339         kmdp = NULL;
  340 
  341         /*
  342          * Find out what kind of CPU we have first, for anything that changes
  343          * behaviour.
  344          */
  345         cpu_impl = VER_IMPL(rdpr(ver));
  346 
  347         /*
  348          * Do CPU-specific initialization.
  349          */
  350         if (cpu_impl >= CPU_IMPL_ULTRASPARCIII)
  351                 cheetah_init(cpu_impl);
  352         else if (cpu_impl == CPU_IMPL_SPARC64V)
  353                 zeus_init(cpu_impl);
  354 
  355         /*
  356          * Clear (S)TICK timer (including NPT).
  357          */
  358         tick_clear(cpu_impl);
  359 
  360         /*
  361          * UltraSparc II[e,i] based systems come up with the tick interrupt
  362          * enabled and a handler that resets the tick counter, causing DELAY()
  363          * to not work properly when used early in boot.
  364          * UltraSPARC III based systems come up with the system tick interrupt
  365          * enabled, causing an interrupt storm on startup since they are not
  366          * handled.
  367          */
  368         tick_stop(cpu_impl);
  369 
  370         /*
  371          * Set up Open Firmware entry points.
  372          */
  373         ofw_tba = rdpr(tba);
  374         ofw_vec = (u_long)vec;
  375 
  376         /*
  377          * Parse metadata if present and fetch parameters.  Must be before the
  378          * console is inited so cninit() gets the right value of boothowto.
  379          */
  380         if (mdp != NULL) {
  381                 preload_metadata = mdp;
  382                 kmdp = preload_search_by_type("elf kernel");
  383                 if (kmdp != NULL) {
  384                         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
  385                         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
  386                         end = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
  387                         kernel_tlb_slots = MD_FETCH(kmdp, MODINFOMD_DTLB_SLOTS,
  388                             int);
  389                         kernel_tlbs = (void *)preload_search_info(kmdp,
  390                             MODINFO_METADATA | MODINFOMD_DTLB);
  391                 }
  392         }
  393 
  394         init_param1();
  395 
  396         /*
  397          * Initialize Open Firmware (needed for console).
  398          */
  399         OF_install(OFW_STD_DIRECT, 0);
  400         OF_init(ofw_entry);
  401 
  402         /*
  403          * Prime our per-CPU data page for use.  Note, we are using it for
  404          * our stack, so don't pass the real size (PAGE_SIZE) to pcpu_init
  405          * or it'll zero it out from under us.
  406          */
  407         pc = (struct pcpu *)(pcpu0 + (PCPU_PAGES * PAGE_SIZE)) - 1;
  408         pcpu_init(pc, 0, sizeof(struct pcpu));
  409         pc->pc_addr = (vm_offset_t)pcpu0;
  410         pc->pc_impl = cpu_impl;
  411         pc->pc_mid = cpu_get_mid(cpu_impl);
  412         pc->pc_tlb_ctx = TLB_CTX_USER_MIN;
  413         pc->pc_tlb_ctx_min = TLB_CTX_USER_MIN;
  414         pc->pc_tlb_ctx_max = TLB_CTX_USER_MAX;
  415 
  416         /*
  417          * Determine the OFW node and frequency of the BSP (and ensure the
  418          * BSP is in the device tree in the first place).
  419          */
  420         root = OF_peer(0);
  421         pc->pc_node = find_bsp(root, pc->pc_mid, cpu_impl);
  422         if (pc->pc_node == 0)
  423                 OF_panic("%s: cannot find boot CPU node", __func__);
  424         if (OF_getprop(pc->pc_node, "clock-frequency", &pc->pc_clock,
  425             sizeof(pc->pc_clock)) <= 0)
  426                 OF_panic("%s: cannot determine boot CPU clock", __func__);
  427 
  428         /*
  429          * Panic if there is no metadata.  Most likely the kernel was booted
  430          * directly, instead of through loader(8).
  431          */
  432         if (mdp == NULL || kmdp == NULL || end == 0 ||
  433             kernel_tlb_slots == 0 || kernel_tlbs == NULL)
  434                 OF_panic("%s: missing loader metadata.\nThis probably means "
  435                     "you are not using loader(8).", __func__);
  436 
  437         /*
  438          * Work around the broken loader behavior of not demapping no
  439          * longer used kernel TLB slots when unloading the kernel or
  440          * modules.
  441          */
  442         for (va = KERNBASE + (kernel_tlb_slots - 1) * PAGE_SIZE_4M;
  443             va >= roundup2(end, PAGE_SIZE_4M); va -= PAGE_SIZE_4M) {
  444                 if (bootverbose)
  445                         OF_printf("demapping unused kernel TLB slot "
  446                             "(va %#lx - %#lx)\n", va, va + PAGE_SIZE_4M - 1);
  447                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  448                     ASI_DMMU_DEMAP, 0);
  449                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  450                     ASI_IMMU_DEMAP, 0);
  451                 flush(KERNBASE);
  452                 kernel_tlb_slots--;
  453         }
  454 
  455         /*
  456          * Determine the TLB slot maxima, which are expected to be
  457          * equal across all CPUs.
  458          * NB: for cheetah-class CPUs, these properties only refer
  459          * to the t16s.
  460          */
  461         if (OF_getprop(pc->pc_node, "#dtlb-entries", &dtlb_slots,
  462             sizeof(dtlb_slots)) == -1)
  463                 OF_panic("%s: cannot determine number of dTLB slots",
  464                     __func__);
  465         if (OF_getprop(pc->pc_node, "#itlb-entries", &itlb_slots,
  466             sizeof(itlb_slots)) == -1)
  467                 OF_panic("%s: cannot determine number of iTLB slots",
  468                     __func__);
  469 
  470         /*
  471          * Initialize and enable the caches.  Note that this may include
  472          * applying workarounds.
  473          */
  474         cache_init(pc);
  475         cache_enable(cpu_impl);
  476         uma_set_align(pc->pc_cache.dc_linesize - 1);
  477 
  478         cpu_block_copy = bcopy;
  479         cpu_block_zero = bzero;
  480         getenv_int("machdep.use_vis", &cpu_use_vis);
  481         if (cpu_use_vis) {
  482                 switch (cpu_impl) {
  483                 case CPU_IMPL_SPARC64:
  484                 case CPU_IMPL_ULTRASPARCI:
  485                 case CPU_IMPL_ULTRASPARCII:
  486                 case CPU_IMPL_ULTRASPARCIIi:
  487                 case CPU_IMPL_ULTRASPARCIIe:
  488                 case CPU_IMPL_ULTRASPARCIII:    /* NB: we've disabled P$. */
  489                 case CPU_IMPL_ULTRASPARCIIIp:
  490                 case CPU_IMPL_ULTRASPARCIIIi:
  491                 case CPU_IMPL_ULTRASPARCIV:
  492                 case CPU_IMPL_ULTRASPARCIVp:
  493                 case CPU_IMPL_ULTRASPARCIIIip:
  494                         cpu_block_copy = spitfire_block_copy;
  495                         cpu_block_zero = spitfire_block_zero;
  496                         break;
  497                 case CPU_IMPL_SPARC64V:
  498                         cpu_block_copy = zeus_block_copy;
  499                         cpu_block_zero = zeus_block_zero;
  500                         break;
  501                 }
  502         }
  503 
  504 #ifdef SMP
  505         mp_init(cpu_impl);
  506 #endif
  507 
  508         /*
  509          * Initialize virtual memory and calculate physmem.
  510          */
  511         pmap_bootstrap(cpu_impl);
  512 
  513         /*
  514          * Initialize tunables.
  515          */
  516         init_param2(physmem);
  517         env = getenv("kernelname");
  518         if (env != NULL) {
  519                 strlcpy(kernelname, env, sizeof(kernelname));
  520                 freeenv(env);
  521         }
  522 
  523         /*
  524          * Initialize the interrupt tables.
  525          */
  526         intr_init1();
  527 
  528         /*
  529          * Initialize proc0, set kstack0, frame0, curthread and curpcb.
  530          */
  531         proc_linkup0(&proc0, &thread0);
  532         proc0.p_md.md_sigtramp = NULL;
  533         proc0.p_md.md_utrap = NULL;
  534         thread0.td_kstack = kstack0;
  535         thread0.td_kstack_pages = KSTACK_PAGES;
  536         thread0.td_pcb = (struct pcb *)
  537             (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
  538         frame0.tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_PRIV;
  539         thread0.td_frame = &frame0;
  540         pc->pc_curthread = &thread0;
  541         pc->pc_curpcb = thread0.td_pcb;
  542 
  543         /*
  544          * Initialize global registers.
  545          */
  546         cpu_setregs(pc);
  547 
  548         /*
  549          * Take over the trap table via the PROM.  Using the PROM for this
  550          * is necessary in order to set obp-control-relinquished to true
  551          * within the PROM so obtaining /virtual-memory/translations doesn't
  552          * trigger a fatal reset error or worse things further down the road.
  553          * XXX it should be possible to use this solely instead of writing
  554          * %tba in cpu_setregs().  Doing so causes a hang however.
  555          */
  556         sun4u_set_traptable(tl0_base);
  557 
  558         /*
  559          * Initialize the console.
  560          * NB: the low-level console drivers require a working DELAY() and
  561          * some compiler optimizations may cause the curthread accesses of
  562          * mutex(9) to be factored out even if the latter aren't actually
  563          * called, both requiring PCPU_REG to be set.
  564          */
  565         cninit();
  566 
  567         /*
  568          * Initialize the dynamic per-CPU area for the BSP and the message
  569          * buffer (after setting the trap table).
  570          */
  571         dpcpu_init(dpcpu0, 0);
  572         msgbufinit(msgbufp, msgbufsize);
  573 
  574         /*
  575          * Initialize mutexes.
  576          */
  577         mutex_init();
  578 
  579         /*
  580          * Finish the interrupt initialization now that mutexes work and
  581          * enable them.
  582          */
  583         intr_init2();
  584         wrpr(pil, 0, 0);
  585         wrpr(pstate, 0, PSTATE_KERNEL);
  586 
  587         OF_getprop(root, "name", sparc64_model, sizeof(sparc64_model) - 1);
  588 
  589         kdb_init();
  590 
  591 #ifdef KDB
  592         if (boothowto & RB_KDB)
  593                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
  594 #endif
  595 }
  596 
  597 void
  598 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  599 {
  600         struct trapframe *tf;
  601         struct sigframe *sfp;
  602         struct sigacts *psp;
  603         struct sigframe sf;
  604         struct thread *td;
  605         struct frame *fp;
  606         struct proc *p;
  607         u_long sp;
  608         int oonstack;
  609         int sig;
  610 
  611         oonstack = 0;
  612         td = curthread;
  613         p = td->td_proc;
  614         PROC_LOCK_ASSERT(p, MA_OWNED);
  615         sig = ksi->ksi_signo;
  616         psp = p->p_sigacts;
  617         mtx_assert(&psp->ps_mtx, MA_OWNED);
  618         tf = td->td_frame;
  619         sp = tf->tf_sp + SPOFF;
  620         oonstack = sigonstack(sp);
  621 
  622         CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
  623             catcher, sig);
  624 
  625         /* Make sure we have a signal trampoline to return to. */
  626         if (p->p_md.md_sigtramp == NULL) {
  627                 /*
  628                  * No signal trampoline... kill the process.
  629                  */
  630                 CTR0(KTR_SIG, "sendsig: no sigtramp");
  631                 printf("sendsig: %s is too old, rebuild it\n", p->p_comm);
  632                 sigexit(td, sig);
  633                 /* NOTREACHED */
  634         }
  635 
  636         /* Save user context. */
  637         bzero(&sf, sizeof(sf));
  638         get_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
  639         sf.sf_uc.uc_sigmask = *mask;
  640         sf.sf_uc.uc_stack = td->td_sigstk;
  641         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
  642             ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  643 
  644         /* Allocate and validate space for the signal handler context. */
  645         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  646             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  647                 sfp = (struct sigframe *)(td->td_sigstk.ss_sp +
  648                     td->td_sigstk.ss_size - sizeof(struct sigframe));
  649         } else
  650                 sfp = (struct sigframe *)sp - 1;
  651         mtx_unlock(&psp->ps_mtx);
  652         PROC_UNLOCK(p);
  653 
  654         fp = (struct frame *)sfp - 1;
  655 
  656         /* Translate the signal if appropriate. */
  657         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  658                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  659 
  660         /* Build the argument list for the signal handler. */
  661         tf->tf_out[0] = sig;
  662         tf->tf_out[2] = (register_t)&sfp->sf_uc;
  663         tf->tf_out[4] = (register_t)catcher;
  664         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  665                 /* Signal handler installed with SA_SIGINFO. */
  666                 tf->tf_out[1] = (register_t)&sfp->sf_si;
  667 
  668                 /* Fill in POSIX parts. */
  669                 sf.sf_si = ksi->ksi_info;
  670                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  671         } else {
  672                 /* Old FreeBSD-style arguments. */
  673                 tf->tf_out[1] = ksi->ksi_code;
  674                 tf->tf_out[3] = (register_t)ksi->ksi_addr;
  675         }
  676 
  677         /* Copy the sigframe out to the user's stack. */
  678         if (rwindow_save(td) != 0 || copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
  679             suword(&fp->fr_in[6], tf->tf_out[6]) != 0) {
  680                 /*
  681                  * Something is wrong with the stack pointer.
  682                  * ...Kill the process.
  683                  */
  684                 CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp);
  685                 PROC_LOCK(p);
  686                 sigexit(td, SIGILL);
  687                 /* NOTREACHED */
  688         }
  689 
  690         tf->tf_tpc = (u_long)p->p_md.md_sigtramp;
  691         tf->tf_tnpc = tf->tf_tpc + 4;
  692         tf->tf_sp = (u_long)fp - SPOFF;
  693 
  694         CTR3(KTR_SIG, "sendsig: return td=%p pc=%#lx sp=%#lx", td, tf->tf_tpc,
  695             tf->tf_sp);
  696 
  697         PROC_LOCK(p);
  698         mtx_lock(&psp->ps_mtx);
  699 }
  700 
  701 #ifndef _SYS_SYSPROTO_H_
  702 struct sigreturn_args {
  703         ucontext_t *ucp;
  704 };
  705 #endif
  706 
  707 /*
  708  * MPSAFE
  709  */
  710 int
  711 sigreturn(struct thread *td, struct sigreturn_args *uap)
  712 {
  713         struct proc *p;
  714         mcontext_t *mc;
  715         ucontext_t uc;
  716         int error;
  717 
  718         p = td->td_proc;
  719         if (rwindow_save(td)) {
  720                 PROC_LOCK(p);
  721                 sigexit(td, SIGILL);
  722         }
  723 
  724         CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
  725         if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
  726                 CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
  727                 return (EFAULT);
  728         }
  729 
  730         mc = &uc.uc_mcontext;
  731         error = set_mcontext(td, mc);
  732         if (error != 0)
  733                 return (error);
  734 
  735         kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
  736 
  737         CTR4(KTR_SIG, "sigreturn: return td=%p pc=%#lx sp=%#lx tstate=%#lx",
  738             td, mc->mc_tpc, mc->mc_sp, mc->mc_tstate);
  739         return (EJUSTRETURN);
  740 }
  741 
  742 /*
  743  * Construct a PCB from a trapframe. This is called from kdb_trap() where
  744  * we want to start a backtrace from the function that caused us to enter
  745  * the debugger. We have the context in the trapframe, but base the trace
  746  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
  747  * enough for a backtrace.
  748  */
  749 void
  750 makectx(struct trapframe *tf, struct pcb *pcb)
  751 {
  752 
  753         pcb->pcb_pc = tf->tf_tpc;
  754         pcb->pcb_sp = tf->tf_sp;
  755 }
  756 
  757 int
  758 get_mcontext(struct thread *td, mcontext_t *mc, int flags)
  759 {
  760         struct trapframe *tf;
  761         struct pcb *pcb;
  762 
  763         tf = td->td_frame;
  764         pcb = td->td_pcb;
  765         /*
  766          * Copy the registers which will be restored by tl0_ret() from the
  767          * trapframe.
  768          * Note that we skip %g7 which is used as the userland TLS register
  769          * and %wstate.
  770          */
  771         mc->mc_flags = _MC_VERSION;
  772         mc->mc_global[1] = tf->tf_global[1];
  773         mc->mc_global[2] = tf->tf_global[2];
  774         mc->mc_global[3] = tf->tf_global[3];
  775         mc->mc_global[4] = tf->tf_global[4];
  776         mc->mc_global[5] = tf->tf_global[5];
  777         mc->mc_global[6] = tf->tf_global[6];
  778         if (flags & GET_MC_CLEAR_RET) {
  779                 mc->mc_out[0] = 0;
  780                 mc->mc_out[1] = 0;
  781         } else {
  782                 mc->mc_out[0] = tf->tf_out[0];
  783                 mc->mc_out[1] = tf->tf_out[1];
  784         }
  785         mc->mc_out[2] = tf->tf_out[2];
  786         mc->mc_out[3] = tf->tf_out[3];
  787         mc->mc_out[4] = tf->tf_out[4];
  788         mc->mc_out[5] = tf->tf_out[5];
  789         mc->mc_out[6] = tf->tf_out[6];
  790         mc->mc_out[7] = tf->tf_out[7];
  791         mc->mc_fprs = tf->tf_fprs;
  792         mc->mc_fsr = tf->tf_fsr;
  793         mc->mc_gsr = tf->tf_gsr;
  794         mc->mc_tnpc = tf->tf_tnpc;
  795         mc->mc_tpc = tf->tf_tpc;
  796         mc->mc_tstate = tf->tf_tstate;
  797         mc->mc_y = tf->tf_y;
  798         critical_enter();
  799         if ((tf->tf_fprs & FPRS_FEF) != 0) {
  800                 savefpctx(pcb->pcb_ufp);
  801                 tf->tf_fprs &= ~FPRS_FEF;
  802                 pcb->pcb_flags |= PCB_FEF;
  803         }
  804         if ((pcb->pcb_flags & PCB_FEF) != 0) {
  805                 bcopy(pcb->pcb_ufp, mc->mc_fp, sizeof(mc->mc_fp));
  806                 mc->mc_fprs |= FPRS_FEF;
  807         }
  808         critical_exit();
  809         return (0);
  810 }
  811 
  812 int
  813 set_mcontext(struct thread *td, const mcontext_t *mc)
  814 {
  815         struct trapframe *tf;
  816         struct pcb *pcb;
  817 
  818         if (!TSTATE_SECURE(mc->mc_tstate) ||
  819             (mc->mc_flags & ((1L << _MC_VERSION_BITS) - 1)) != _MC_VERSION)
  820                 return (EINVAL);
  821         tf = td->td_frame;
  822         pcb = td->td_pcb;
  823         /* Make sure the windows are spilled first. */
  824         flushw();
  825         /*
  826          * Copy the registers which will be restored by tl0_ret() to the
  827          * trapframe.
  828          * Note that we skip %g7 which is used as the userland TLS register
  829          * and %wstate.
  830          */
  831         tf->tf_global[1] = mc->mc_global[1];
  832         tf->tf_global[2] = mc->mc_global[2];
  833         tf->tf_global[3] = mc->mc_global[3];
  834         tf->tf_global[4] = mc->mc_global[4];
  835         tf->tf_global[5] = mc->mc_global[5];
  836         tf->tf_global[6] = mc->mc_global[6];
  837         tf->tf_out[0] = mc->mc_out[0];
  838         tf->tf_out[1] = mc->mc_out[1];
  839         tf->tf_out[2] = mc->mc_out[2];
  840         tf->tf_out[3] = mc->mc_out[3];
  841         tf->tf_out[4] = mc->mc_out[4];
  842         tf->tf_out[5] = mc->mc_out[5];
  843         tf->tf_out[6] = mc->mc_out[6];
  844         tf->tf_out[7] = mc->mc_out[7];
  845         tf->tf_fprs = mc->mc_fprs;
  846         tf->tf_fsr = mc->mc_fsr;
  847         tf->tf_gsr = mc->mc_gsr;
  848         tf->tf_tnpc = mc->mc_tnpc;
  849         tf->tf_tpc = mc->mc_tpc;
  850         tf->tf_tstate = mc->mc_tstate;
  851         tf->tf_y = mc->mc_y;
  852         if ((mc->mc_fprs & FPRS_FEF) != 0) {
  853                 tf->tf_fprs = 0;
  854                 bcopy(mc->mc_fp, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
  855                 pcb->pcb_flags |= PCB_FEF;
  856         }
  857         return (0);
  858 }
  859 
  860 /*
  861  * Exit the kernel and execute a firmware call that will not return, as
  862  * specified by the arguments.
  863  */
  864 void
  865 cpu_shutdown(void *args)
  866 {
  867 
  868 #ifdef SMP
  869         cpu_mp_shutdown();
  870 #endif
  871         ofw_exit(args);
  872 }
  873 
  874 /*
  875  * Flush the D-cache for non-DMA I/O so that the I-cache can
  876  * be made coherent later.
  877  */
  878 void
  879 cpu_flush_dcache(void *ptr, size_t len)
  880 {
  881 
  882         /* TBD */
  883 }
  884 
  885 /* Get current clock frequency for the given CPU ID. */
  886 int
  887 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  888 {
  889         struct pcpu *pc;
  890 
  891         pc = pcpu_find(cpu_id);
  892         if (pc == NULL || rate == NULL)
  893                 return (EINVAL);
  894         *rate = pc->pc_clock;
  895         return (0);
  896 }
  897 
  898 /*
  899  * Duplicate OF_exit() with a different firmware call function that restores
  900  * the trap table, otherwise a RED state exception is triggered in at least
  901  * some firmware versions.
  902  */
  903 void
  904 cpu_halt(void)
  905 {
  906         static struct {
  907                 cell_t name;
  908                 cell_t nargs;
  909                 cell_t nreturns;
  910         } args = {
  911                 (cell_t)"exit",
  912                 0,
  913                 0
  914         };
  915 
  916         cpu_shutdown(&args);
  917 }
  918 
  919 static void
  920 sparc64_shutdown_final(void *dummy, int howto)
  921 {
  922         static struct {
  923                 cell_t name;
  924                 cell_t nargs;
  925                 cell_t nreturns;
  926         } args = {
  927                 (cell_t)"SUNW,power-off",
  928                 0,
  929                 0
  930         };
  931 
  932         /* Turn the power off? */
  933         if ((howto & RB_POWEROFF) != 0)
  934                 cpu_shutdown(&args);
  935         /* In case of halt, return to the firmware. */
  936         if ((howto & RB_HALT) != 0)
  937                 cpu_halt();
  938 }
  939 
  940 void
  941 cpu_idle(int busy)
  942 {
  943 
  944         /* Insert code to halt (until next interrupt) for the idle loop. */
  945 }
  946 
  947 int
  948 cpu_idle_wakeup(int cpu)
  949 {
  950 
  951         return (1);
  952 }
  953 
  954 int
  955 ptrace_set_pc(struct thread *td, u_long addr)
  956 {
  957 
  958         td->td_frame->tf_tpc = addr;
  959         td->td_frame->tf_tnpc = addr + 4;
  960         return (0);
  961 }
  962 
  963 int
  964 ptrace_single_step(struct thread *td)
  965 {
  966 
  967         /* TODO; */
  968         return (0);
  969 }
  970 
  971 int
  972 ptrace_clear_single_step(struct thread *td)
  973 {
  974 
  975         /* TODO; */
  976         return (0);
  977 }
  978 
  979 void
  980 exec_setregs(struct thread *td, u_long entry, u_long stack, u_long ps_strings)
  981 {
  982         struct trapframe *tf;
  983         struct pcb *pcb;
  984         struct proc *p;
  985         u_long sp;
  986 
  987         /* XXX no cpu_exec */
  988         p = td->td_proc;
  989         p->p_md.md_sigtramp = NULL;
  990         if (p->p_md.md_utrap != NULL) {
  991                 utrap_free(p->p_md.md_utrap);
  992                 p->p_md.md_utrap = NULL;
  993         }
  994 
  995         pcb = td->td_pcb;
  996         tf = td->td_frame;
  997         sp = rounddown(stack, 16);
  998         bzero(pcb, sizeof(*pcb));
  999         bzero(tf, sizeof(*tf));
 1000         tf->tf_out[0] = stack;
 1001         tf->tf_out[3] = p->p_sysent->sv_psstrings;
 1002         tf->tf_out[6] = sp - SPOFF - sizeof(struct frame);
 1003         tf->tf_tnpc = entry + 4;
 1004         tf->tf_tpc = entry;
 1005         /*
 1006          * While we could adhere to the memory model indicated in the ELF
 1007          * header, it turns out that just always using TSO performs best.
 1008          */
 1009         tf->tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_MM_TSO;
 1010 
 1011         td->td_retval[0] = tf->tf_out[0];
 1012         td->td_retval[1] = tf->tf_out[1];
 1013 }
 1014 
 1015 int
 1016 fill_regs(struct thread *td, struct reg *regs)
 1017 {
 1018 
 1019         bcopy(td->td_frame, regs, sizeof(*regs));
 1020         return (0);
 1021 }
 1022 
 1023 int
 1024 set_regs(struct thread *td, struct reg *regs)
 1025 {
 1026         struct trapframe *tf;
 1027 
 1028         if (!TSTATE_SECURE(regs->r_tstate))
 1029                 return (EINVAL);
 1030         tf = td->td_frame;
 1031         regs->r_wstate = tf->tf_wstate;
 1032         bcopy(regs, tf, sizeof(*regs));
 1033         return (0);
 1034 }
 1035 
 1036 int
 1037 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 1038 {
 1039 
 1040         return (ENOSYS);
 1041 }
 1042 
 1043 int
 1044 set_dbregs(struct thread *td, struct dbreg *dbregs)
 1045 {
 1046 
 1047         return (ENOSYS);
 1048 }
 1049 
 1050 int
 1051 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 1052 {
 1053         struct trapframe *tf;
 1054         struct pcb *pcb;
 1055 
 1056         pcb = td->td_pcb;
 1057         tf = td->td_frame;
 1058         bcopy(pcb->pcb_ufp, fpregs->fr_regs, sizeof(fpregs->fr_regs));
 1059         fpregs->fr_fsr = tf->tf_fsr;
 1060         fpregs->fr_gsr = tf->tf_gsr;
 1061         return (0);
 1062 }
 1063 
 1064 int
 1065 set_fpregs(struct thread *td, struct fpreg *fpregs)
 1066 {
 1067         struct trapframe *tf;
 1068         struct pcb *pcb;
 1069 
 1070         pcb = td->td_pcb;
 1071         tf = td->td_frame;
 1072         tf->tf_fprs &= ~FPRS_FEF;
 1073         bcopy(fpregs->fr_regs, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
 1074         tf->tf_fsr = fpregs->fr_fsr;
 1075         tf->tf_gsr = fpregs->fr_gsr;
 1076         return (0);
 1077 }
 1078 
 1079 struct md_utrap *
 1080 utrap_alloc(void)
 1081 {
 1082         struct md_utrap *ut;
 1083 
 1084         ut = malloc(sizeof(struct md_utrap), M_SUBPROC, M_WAITOK | M_ZERO);
 1085         ut->ut_refcnt = 1;
 1086         return (ut);
 1087 }
 1088 
 1089 void
 1090 utrap_free(struct md_utrap *ut)
 1091 {
 1092         int refcnt;
 1093 
 1094         if (ut == NULL)
 1095                 return;
 1096         mtx_pool_lock(mtxpool_sleep, ut);
 1097         ut->ut_refcnt--;
 1098         refcnt = ut->ut_refcnt;
 1099         mtx_pool_unlock(mtxpool_sleep, ut);
 1100         if (refcnt == 0)
 1101                 free(ut, M_SUBPROC);
 1102 }
 1103 
 1104 struct md_utrap *
 1105 utrap_hold(struct md_utrap *ut)
 1106 {
 1107 
 1108         if (ut == NULL)
 1109                 return (NULL);
 1110         mtx_pool_lock(mtxpool_sleep, ut);
 1111         ut->ut_refcnt++;
 1112         mtx_pool_unlock(mtxpool_sleep, ut);
 1113         return (ut);
 1114 }

Cache object: a5e6ab97687c5ba13f964ccfb9beb5e5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.