The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/sparc64/sparc64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Jake Burkholder.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   35  *      from: FreeBSD: src/sys/i386/i386/machdep.c,v 1.477 2001/08/27
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD: releng/9.1/sys/sparc64/sparc64/machdep.c 235260 2012-05-11 04:10:23Z attilio $");
   40 
   41 #include "opt_compat.h"
   42 #include "opt_ddb.h"
   43 #include "opt_kstack_pages.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/malloc.h>
   47 #include <sys/proc.h>
   48 #include <sys/systm.h>
   49 #include <sys/bio.h>
   50 #include <sys/buf.h>
   51 #include <sys/bus.h>
   52 #include <sys/cpu.h>
   53 #include <sys/cons.h>
   54 #include <sys/eventhandler.h>
   55 #include <sys/exec.h>
   56 #include <sys/imgact.h>
   57 #include <sys/interrupt.h>
   58 #include <sys/kdb.h>
   59 #include <sys/kernel.h>
   60 #include <sys/ktr.h>
   61 #include <sys/linker.h>
   62 #include <sys/lock.h>
   63 #include <sys/msgbuf.h>
   64 #include <sys/mutex.h>
   65 #include <sys/pcpu.h>
   66 #include <sys/ptrace.h>
   67 #include <sys/reboot.h>
   68 #include <sys/signalvar.h>
   69 #include <sys/smp.h>
   70 #include <sys/syscallsubr.h>
   71 #include <sys/sysent.h>
   72 #include <sys/sysproto.h>
   73 #include <sys/timetc.h>
   74 #include <sys/ucontext.h>
   75 
   76 #include <dev/ofw/openfirm.h>
   77 
   78 #include <vm/vm.h>
   79 #include <vm/vm_extern.h>
   80 #include <vm/vm_kern.h>
   81 #include <vm/vm_page.h>
   82 #include <vm/vm_map.h>
   83 #include <vm/vm_object.h>
   84 #include <vm/vm_pager.h>
   85 #include <vm/vm_param.h>
   86 
   87 #include <ddb/ddb.h>
   88 
   89 #include <machine/bus.h>
   90 #include <machine/cache.h>
   91 #include <machine/cmt.h>
   92 #include <machine/cpu.h>
   93 #include <machine/fireplane.h>
   94 #include <machine/fp.h>
   95 #include <machine/fsr.h>
   96 #include <machine/intr_machdep.h>
   97 #include <machine/jbus.h>
   98 #include <machine/md_var.h>
   99 #include <machine/metadata.h>
  100 #include <machine/ofw_machdep.h>
  101 #include <machine/ofw_mem.h>
  102 #include <machine/pcb.h>
  103 #include <machine/pmap.h>
  104 #include <machine/pstate.h>
  105 #include <machine/reg.h>
  106 #include <machine/sigframe.h>
  107 #include <machine/smp.h>
  108 #include <machine/tick.h>
  109 #include <machine/tlb.h>
  110 #include <machine/tstate.h>
  111 #include <machine/upa.h>
  112 #include <machine/ver.h>
  113 
  114 typedef int ofw_vec_t(void *);
  115 
  116 #ifdef DDB
  117 extern vm_offset_t ksym_start, ksym_end;
  118 #endif
  119 
  120 int dtlb_slots;
  121 int itlb_slots;
  122 struct tlb_entry *kernel_tlbs;
  123 int kernel_tlb_slots;
  124 
  125 int cold = 1;
  126 long Maxmem;
  127 long realmem;
  128 
  129 void *dpcpu0;
  130 char pcpu0[PCPU_PAGES * PAGE_SIZE];
  131 struct trapframe frame0;
  132 
  133 vm_offset_t kstack0;
  134 vm_paddr_t kstack0_phys;
  135 
  136 struct kva_md_info kmi;
  137 
  138 u_long ofw_vec;
  139 u_long ofw_tba;
  140 u_int tba_taken_over;
  141 
  142 char sparc64_model[32];
  143 
  144 static int cpu_use_vis = 1;
  145 
  146 cpu_block_copy_t *cpu_block_copy;
  147 cpu_block_zero_t *cpu_block_zero;
  148 
  149 static phandle_t find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl);
  150 void sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3,
  151     ofw_vec_t *vec);
  152 static void sparc64_shutdown_final(void *dummy, int howto);
  153 
  154 static void cpu_startup(void *arg);
  155 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  156 
  157 CTASSERT((1 << INT_SHIFT) == sizeof(int));
  158 CTASSERT((1 << PTR_SHIFT) == sizeof(char *));
  159 
  160 CTASSERT(sizeof(struct reg) == 256);
  161 CTASSERT(sizeof(struct fpreg) == 272);
  162 CTASSERT(sizeof(struct __mcontext) == 512);
  163 
  164 CTASSERT((sizeof(struct pcb) & (64 - 1)) == 0);
  165 CTASSERT((offsetof(struct pcb, pcb_kfp) & (64 - 1)) == 0);
  166 CTASSERT((offsetof(struct pcb, pcb_ufp) & (64 - 1)) == 0);
  167 CTASSERT(sizeof(struct pcb) <= ((KSTACK_PAGES * PAGE_SIZE) / 8));
  168 
  169 CTASSERT(sizeof(struct pcpu) <= ((PCPU_PAGES * PAGE_SIZE) / 2));
  170 
  171 static void
  172 cpu_startup(void *arg)
  173 {
  174         vm_paddr_t physsz;
  175         int i;
  176 
  177         physsz = 0;
  178         for (i = 0; i < sparc64_nmemreg; i++)
  179                 physsz += sparc64_memreg[i].mr_size;
  180         printf("real memory  = %lu (%lu MB)\n", physsz,
  181             physsz / (1024 * 1024));
  182         realmem = (long)physsz / PAGE_SIZE;
  183 
  184         vm_ksubmap_init(&kmi);
  185 
  186         bufinit();
  187         vm_pager_bufferinit();
  188 
  189         EVENTHANDLER_REGISTER(shutdown_final, sparc64_shutdown_final, NULL,
  190             SHUTDOWN_PRI_LAST);
  191 
  192         printf("avail memory = %lu (%lu MB)\n", cnt.v_free_count * PAGE_SIZE,
  193             cnt.v_free_count / ((1024 * 1024) / PAGE_SIZE));
  194 
  195         if (bootverbose)
  196                 printf("machine: %s\n", sparc64_model);
  197 
  198         cpu_identify(rdpr(ver), PCPU_GET(clock), curcpu);
  199 
  200         /*
  201          * Add BSP as an interrupt target.
  202          */
  203         intr_add_cpu(0);
  204 }
  205 
  206 void
  207 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
  208 {
  209         struct intr_request *ir;
  210         int i;
  211 
  212         pcpu->pc_irtail = &pcpu->pc_irhead;
  213         for (i = 0; i < IR_FREE; i++) {
  214                 ir = &pcpu->pc_irpool[i];
  215                 ir->ir_next = pcpu->pc_irfree;
  216                 pcpu->pc_irfree = ir;
  217         }
  218 }
  219 
  220 void
  221 spinlock_enter(void)
  222 {
  223         struct thread *td;
  224         register_t pil;
  225 
  226         td = curthread;
  227         if (td->td_md.md_spinlock_count == 0) {
  228                 pil = rdpr(pil);
  229                 wrpr(pil, 0, PIL_TICK);
  230                 td->td_md.md_spinlock_count = 1;
  231                 td->td_md.md_saved_pil = pil;
  232         } else
  233                 td->td_md.md_spinlock_count++;
  234         critical_enter();
  235 }
  236 
  237 void
  238 spinlock_exit(void)
  239 {
  240         struct thread *td;
  241         register_t pil;
  242 
  243         td = curthread;
  244         critical_exit();
  245         pil = td->td_md.md_saved_pil;
  246         td->td_md.md_spinlock_count--;
  247         if (td->td_md.md_spinlock_count == 0)
  248                 wrpr(pil, pil, 0);
  249 }
  250 
  251 static phandle_t
  252 find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl)
  253 {
  254         char type[sizeof("cpu")];
  255         phandle_t child;
  256         uint32_t cpuid;
  257 
  258         for (; node != 0; node = OF_peer(node)) {
  259                 child = OF_child(node);
  260                 if (child > 0) {
  261                         child = find_bsp(child, bspid, cpu_impl);
  262                         if (child > 0)
  263                                 return (child);
  264                 } else {
  265                         if (OF_getprop(node, "device_type", type,
  266                             sizeof(type)) <= 0)
  267                                 continue;
  268                         if (strcmp(type, "cpu") != 0)
  269                                 continue;
  270                         if (OF_getprop(node, cpu_cpuid_prop(cpu_impl), &cpuid,
  271                             sizeof(cpuid)) <= 0)
  272                                 continue;
  273                         if (cpuid == bspid)
  274                                 return (node);
  275                 }
  276         }
  277         return (0);
  278 }
  279 
  280 const char *
  281 cpu_cpuid_prop(u_int cpu_impl)
  282 {
  283 
  284         switch (cpu_impl) {
  285         case CPU_IMPL_SPARC64:
  286         case CPU_IMPL_SPARC64V:
  287         case CPU_IMPL_ULTRASPARCI:
  288         case CPU_IMPL_ULTRASPARCII:
  289         case CPU_IMPL_ULTRASPARCIIi:
  290         case CPU_IMPL_ULTRASPARCIIe:
  291                 return ("upa-portid");
  292         case CPU_IMPL_ULTRASPARCIII:
  293         case CPU_IMPL_ULTRASPARCIIIp:
  294         case CPU_IMPL_ULTRASPARCIIIi:
  295         case CPU_IMPL_ULTRASPARCIIIip:
  296                 return ("portid");
  297         case CPU_IMPL_ULTRASPARCIV:
  298         case CPU_IMPL_ULTRASPARCIVp:
  299                 return ("cpuid");
  300         default:
  301                 return ("");
  302         }
  303 }
  304 
  305 uint32_t
  306 cpu_get_mid(u_int cpu_impl)
  307 {
  308 
  309         switch (cpu_impl) {
  310         case CPU_IMPL_SPARC64:
  311         case CPU_IMPL_SPARC64V:
  312         case CPU_IMPL_ULTRASPARCI:
  313         case CPU_IMPL_ULTRASPARCII:
  314         case CPU_IMPL_ULTRASPARCIIi:
  315         case CPU_IMPL_ULTRASPARCIIe:
  316                 return (UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG)));
  317         case CPU_IMPL_ULTRASPARCIII:
  318         case CPU_IMPL_ULTRASPARCIIIp:
  319                 return (FIREPLANE_CR_GET_AID(ldxa(AA_FIREPLANE_CONFIG,
  320                     ASI_FIREPLANE_CONFIG_REG)));
  321         case CPU_IMPL_ULTRASPARCIIIi:
  322         case CPU_IMPL_ULTRASPARCIIIip:
  323                 return (JBUS_CR_GET_JID(ldxa(0, ASI_JBUS_CONFIG_REG)));
  324         case CPU_IMPL_ULTRASPARCIV:
  325         case CPU_IMPL_ULTRASPARCIVp:
  326                 return (INTR_ID_GET_ID(ldxa(AA_INTR_ID, ASI_INTR_ID)));
  327         default:
  328                 return (0);
  329         }
  330 }
  331 
  332 void
  333 sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3, ofw_vec_t *vec)
  334 {
  335         char *env;
  336         struct pcpu *pc;
  337         vm_offset_t end;
  338         vm_offset_t va;
  339         caddr_t kmdp;
  340         phandle_t root;
  341         u_int cpu_impl;
  342 
  343         end = 0;
  344         kmdp = NULL;
  345 
  346         /*
  347          * Find out what kind of CPU we have first, for anything that changes
  348          * behaviour.
  349          */
  350         cpu_impl = VER_IMPL(rdpr(ver));
  351 
  352         /*
  353          * Do CPU-specific initialization.
  354          */
  355         if (cpu_impl >= CPU_IMPL_ULTRASPARCIII)
  356                 cheetah_init(cpu_impl);
  357         else if (cpu_impl == CPU_IMPL_SPARC64V)
  358                 zeus_init(cpu_impl);
  359 
  360         /*
  361          * Clear (S)TICK timer (including NPT).
  362          */
  363         tick_clear(cpu_impl);
  364 
  365         /*
  366          * UltraSparc II[e,i] based systems come up with the tick interrupt
  367          * enabled and a handler that resets the tick counter, causing DELAY()
  368          * to not work properly when used early in boot.
  369          * UltraSPARC III based systems come up with the system tick interrupt
  370          * enabled, causing an interrupt storm on startup since they are not
  371          * handled.
  372          */
  373         tick_stop(cpu_impl);
  374 
  375         /*
  376          * Set up Open Firmware entry points.
  377          */
  378         ofw_tba = rdpr(tba);
  379         ofw_vec = (u_long)vec;
  380 
  381         /*
  382          * Parse metadata if present and fetch parameters.  Must be before the
  383          * console is inited so cninit() gets the right value of boothowto.
  384          */
  385         if (mdp != NULL) {
  386                 preload_metadata = mdp;
  387                 kmdp = preload_search_by_type("elf kernel");
  388                 if (kmdp != NULL) {
  389                         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
  390                         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
  391                         end = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
  392                         kernel_tlb_slots = MD_FETCH(kmdp, MODINFOMD_DTLB_SLOTS,
  393                             int);
  394                         kernel_tlbs = (void *)preload_search_info(kmdp,
  395                             MODINFO_METADATA | MODINFOMD_DTLB);
  396                 }
  397         }
  398 
  399         init_param1();
  400 
  401         /*
  402          * Initialize Open Firmware (needed for console).
  403          */
  404         OF_install(OFW_STD_DIRECT, 0);
  405         OF_init(ofw_entry);
  406 
  407         /*
  408          * Prime our per-CPU data page for use.  Note, we are using it for
  409          * our stack, so don't pass the real size (PAGE_SIZE) to pcpu_init
  410          * or it'll zero it out from under us.
  411          */
  412         pc = (struct pcpu *)(pcpu0 + (PCPU_PAGES * PAGE_SIZE)) - 1;
  413         pcpu_init(pc, 0, sizeof(struct pcpu));
  414         pc->pc_addr = (vm_offset_t)pcpu0;
  415         pc->pc_impl = cpu_impl;
  416         pc->pc_mid = cpu_get_mid(cpu_impl);
  417         pc->pc_tlb_ctx = TLB_CTX_USER_MIN;
  418         pc->pc_tlb_ctx_min = TLB_CTX_USER_MIN;
  419         pc->pc_tlb_ctx_max = TLB_CTX_USER_MAX;
  420 
  421         /*
  422          * Determine the OFW node and frequency of the BSP (and ensure the
  423          * BSP is in the device tree in the first place).
  424          */
  425         root = OF_peer(0);
  426         pc->pc_node = find_bsp(root, pc->pc_mid, cpu_impl);
  427         if (pc->pc_node == 0)
  428                 OF_panic("%s: cannot find boot CPU node", __func__);
  429         if (OF_getprop(pc->pc_node, "clock-frequency", &pc->pc_clock,
  430             sizeof(pc->pc_clock)) <= 0)
  431                 OF_panic("%s: cannot determine boot CPU clock", __func__);
  432 
  433         /*
  434          * Panic if there is no metadata.  Most likely the kernel was booted
  435          * directly, instead of through loader(8).
  436          */
  437         if (mdp == NULL || kmdp == NULL || end == 0 ||
  438             kernel_tlb_slots == 0 || kernel_tlbs == NULL)
  439                 OF_panic("%s: missing loader metadata.\nThis probably means "
  440                     "you are not using loader(8).", __func__);
  441 
  442         /*
  443          * Work around the broken loader behavior of not demapping no
  444          * longer used kernel TLB slots when unloading the kernel or
  445          * modules.
  446          */
  447         for (va = KERNBASE + (kernel_tlb_slots - 1) * PAGE_SIZE_4M;
  448             va >= roundup2(end, PAGE_SIZE_4M); va -= PAGE_SIZE_4M) {
  449                 if (bootverbose)
  450                         OF_printf("demapping unused kernel TLB slot "
  451                             "(va %#lx - %#lx)\n", va, va + PAGE_SIZE_4M - 1);
  452                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  453                     ASI_DMMU_DEMAP, 0);
  454                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  455                     ASI_IMMU_DEMAP, 0);
  456                 flush(KERNBASE);
  457                 kernel_tlb_slots--;
  458         }
  459 
  460         /*
  461          * Determine the TLB slot maxima, which are expected to be
  462          * equal across all CPUs.
  463          * NB: for cheetah-class CPUs, these properties only refer
  464          * to the t16s.
  465          */
  466         if (OF_getprop(pc->pc_node, "#dtlb-entries", &dtlb_slots,
  467             sizeof(dtlb_slots)) == -1)
  468                 OF_panic("%s: cannot determine number of dTLB slots",
  469                     __func__);
  470         if (OF_getprop(pc->pc_node, "#itlb-entries", &itlb_slots,
  471             sizeof(itlb_slots)) == -1)
  472                 OF_panic("%s: cannot determine number of iTLB slots",
  473                     __func__);
  474 
  475         /*
  476          * Initialize and enable the caches.  Note that this may include
  477          * applying workarounds.
  478          */
  479         cache_init(pc);
  480         cache_enable(cpu_impl);
  481         uma_set_align(pc->pc_cache.dc_linesize - 1);
  482 
  483         cpu_block_copy = bcopy;
  484         cpu_block_zero = bzero;
  485         getenv_int("machdep.use_vis", &cpu_use_vis);
  486         if (cpu_use_vis) {
  487                 switch (cpu_impl) {
  488                 case CPU_IMPL_SPARC64:
  489                 case CPU_IMPL_ULTRASPARCI:
  490                 case CPU_IMPL_ULTRASPARCII:
  491                 case CPU_IMPL_ULTRASPARCIIi:
  492                 case CPU_IMPL_ULTRASPARCIIe:
  493                 case CPU_IMPL_ULTRASPARCIII:    /* NB: we've disabled P$. */
  494                 case CPU_IMPL_ULTRASPARCIIIp:
  495                 case CPU_IMPL_ULTRASPARCIIIi:
  496                 case CPU_IMPL_ULTRASPARCIV:
  497                 case CPU_IMPL_ULTRASPARCIVp:
  498                 case CPU_IMPL_ULTRASPARCIIIip:
  499                         cpu_block_copy = spitfire_block_copy;
  500                         cpu_block_zero = spitfire_block_zero;
  501                         break;
  502                 case CPU_IMPL_SPARC64V:
  503                         cpu_block_copy = zeus_block_copy;
  504                         cpu_block_zero = zeus_block_zero;
  505                         break;
  506                 }
  507         }
  508 
  509 #ifdef SMP
  510         mp_init(cpu_impl);
  511 #endif
  512 
  513         /*
  514          * Initialize virtual memory and calculate physmem.
  515          */
  516         pmap_bootstrap(cpu_impl);
  517 
  518         /*
  519          * Initialize tunables.
  520          */
  521         init_param2(physmem);
  522         env = getenv("kernelname");
  523         if (env != NULL) {
  524                 strlcpy(kernelname, env, sizeof(kernelname));
  525                 freeenv(env);
  526         }
  527 
  528         /*
  529          * Initialize the interrupt tables.
  530          */
  531         intr_init1();
  532 
  533         /*
  534          * Initialize proc0, set kstack0, frame0, curthread and curpcb.
  535          */
  536         proc_linkup0(&proc0, &thread0);
  537         proc0.p_md.md_sigtramp = NULL;
  538         proc0.p_md.md_utrap = NULL;
  539         thread0.td_kstack = kstack0;
  540         thread0.td_kstack_pages = KSTACK_PAGES;
  541         thread0.td_pcb = (struct pcb *)
  542             (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
  543         frame0.tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_PRIV;
  544         thread0.td_frame = &frame0;
  545         pc->pc_curthread = &thread0;
  546         pc->pc_curpcb = thread0.td_pcb;
  547 
  548         /*
  549          * Initialize global registers.
  550          */
  551         cpu_setregs(pc);
  552 
  553         /*
  554          * Take over the trap table via the PROM.  Using the PROM for this
  555          * is necessary in order to set obp-control-relinquished to true
  556          * within the PROM so obtaining /virtual-memory/translations doesn't
  557          * trigger a fatal reset error or worse things further down the road.
  558          * XXX it should be possible to use this solely instead of writing
  559          * %tba in cpu_setregs().  Doing so causes a hang however.
  560          */
  561         sun4u_set_traptable(tl0_base);
  562 
  563         /*
  564          * Initialize the console.
  565          * NB: the low-level console drivers require a working DELAY() and
  566          * some compiler optimizations may cause the curthread accesses of
  567          * mutex(9) to be factored out even if the latter aren't actually
  568          * called, both requiring PCPU_REG to be set.
  569          */
  570         cninit();
  571 
  572         /*
  573          * Initialize the dynamic per-CPU area for the BSP and the message
  574          * buffer (after setting the trap table).
  575          */
  576         dpcpu_init(dpcpu0, 0);
  577         msgbufinit(msgbufp, msgbufsize);
  578 
  579         /*
  580          * Initialize mutexes.
  581          */
  582         mutex_init();
  583 
  584         /*
  585          * Finish the interrupt initialization now that mutexes work and
  586          * enable them.
  587          */
  588         intr_init2();
  589         wrpr(pil, 0, 0);
  590         wrpr(pstate, 0, PSTATE_KERNEL);
  591 
  592         OF_getprop(root, "name", sparc64_model, sizeof(sparc64_model) - 1);
  593 
  594         kdb_init();
  595 
  596 #ifdef KDB
  597         if (boothowto & RB_KDB)
  598                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
  599 #endif
  600 }
  601 
  602 void
  603 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  604 {
  605         struct trapframe *tf;
  606         struct sigframe *sfp;
  607         struct sigacts *psp;
  608         struct sigframe sf;
  609         struct thread *td;
  610         struct frame *fp;
  611         struct proc *p;
  612         u_long sp;
  613         int oonstack;
  614         int sig;
  615 
  616         oonstack = 0;
  617         td = curthread;
  618         p = td->td_proc;
  619         PROC_LOCK_ASSERT(p, MA_OWNED);
  620         sig = ksi->ksi_signo;
  621         psp = p->p_sigacts;
  622         mtx_assert(&psp->ps_mtx, MA_OWNED);
  623         tf = td->td_frame;
  624         sp = tf->tf_sp + SPOFF;
  625         oonstack = sigonstack(sp);
  626 
  627         CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
  628             catcher, sig);
  629 
  630         /* Make sure we have a signal trampoline to return to. */
  631         if (p->p_md.md_sigtramp == NULL) {
  632                 /*
  633                  * No signal trampoline... kill the process.
  634                  */
  635                 CTR0(KTR_SIG, "sendsig: no sigtramp");
  636                 printf("sendsig: %s is too old, rebuild it\n", p->p_comm);
  637                 sigexit(td, sig);
  638                 /* NOTREACHED */
  639         }
  640 
  641         /* Save user context. */
  642         bzero(&sf, sizeof(sf));
  643         get_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
  644         sf.sf_uc.uc_sigmask = *mask;
  645         sf.sf_uc.uc_stack = td->td_sigstk;
  646         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
  647             ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  648 
  649         /* Allocate and validate space for the signal handler context. */
  650         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  651             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  652                 sfp = (struct sigframe *)(td->td_sigstk.ss_sp +
  653                     td->td_sigstk.ss_size - sizeof(struct sigframe));
  654         } else
  655                 sfp = (struct sigframe *)sp - 1;
  656         mtx_unlock(&psp->ps_mtx);
  657         PROC_UNLOCK(p);
  658 
  659         fp = (struct frame *)sfp - 1;
  660 
  661         /* Translate the signal if appropriate. */
  662         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  663                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  664 
  665         /* Build the argument list for the signal handler. */
  666         tf->tf_out[0] = sig;
  667         tf->tf_out[2] = (register_t)&sfp->sf_uc;
  668         tf->tf_out[4] = (register_t)catcher;
  669         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  670                 /* Signal handler installed with SA_SIGINFO. */
  671                 tf->tf_out[1] = (register_t)&sfp->sf_si;
  672 
  673                 /* Fill in POSIX parts. */
  674                 sf.sf_si = ksi->ksi_info;
  675                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  676         } else {
  677                 /* Old FreeBSD-style arguments. */
  678                 tf->tf_out[1] = ksi->ksi_code;
  679                 tf->tf_out[3] = (register_t)ksi->ksi_addr;
  680         }
  681 
  682         /* Copy the sigframe out to the user's stack. */
  683         if (rwindow_save(td) != 0 || copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
  684             suword(&fp->fr_in[6], tf->tf_out[6]) != 0) {
  685                 /*
  686                  * Something is wrong with the stack pointer.
  687                  * ...Kill the process.
  688                  */
  689                 CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp);
  690                 PROC_LOCK(p);
  691                 sigexit(td, SIGILL);
  692                 /* NOTREACHED */
  693         }
  694 
  695         tf->tf_tpc = (u_long)p->p_md.md_sigtramp;
  696         tf->tf_tnpc = tf->tf_tpc + 4;
  697         tf->tf_sp = (u_long)fp - SPOFF;
  698 
  699         CTR3(KTR_SIG, "sendsig: return td=%p pc=%#lx sp=%#lx", td, tf->tf_tpc,
  700             tf->tf_sp);
  701 
  702         PROC_LOCK(p);
  703         mtx_lock(&psp->ps_mtx);
  704 }
  705 
  706 #ifndef _SYS_SYSPROTO_H_
  707 struct sigreturn_args {
  708         ucontext_t *ucp;
  709 };
  710 #endif
  711 
  712 /*
  713  * MPSAFE
  714  */
  715 int
  716 sys_sigreturn(struct thread *td, struct sigreturn_args *uap)
  717 {
  718         struct proc *p;
  719         mcontext_t *mc;
  720         ucontext_t uc;
  721         int error;
  722 
  723         p = td->td_proc;
  724         if (rwindow_save(td)) {
  725                 PROC_LOCK(p);
  726                 sigexit(td, SIGILL);
  727         }
  728 
  729         CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
  730         if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
  731                 CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
  732                 return (EFAULT);
  733         }
  734 
  735         mc = &uc.uc_mcontext;
  736         error = set_mcontext(td, mc);
  737         if (error != 0)
  738                 return (error);
  739 
  740         kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
  741 
  742         CTR4(KTR_SIG, "sigreturn: return td=%p pc=%#lx sp=%#lx tstate=%#lx",
  743             td, mc->mc_tpc, mc->mc_sp, mc->mc_tstate);
  744         return (EJUSTRETURN);
  745 }
  746 
  747 /*
  748  * Construct a PCB from a trapframe. This is called from kdb_trap() where
  749  * we want to start a backtrace from the function that caused us to enter
  750  * the debugger. We have the context in the trapframe, but base the trace
  751  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
  752  * enough for a backtrace.
  753  */
  754 void
  755 makectx(struct trapframe *tf, struct pcb *pcb)
  756 {
  757 
  758         pcb->pcb_pc = tf->tf_tpc;
  759         pcb->pcb_sp = tf->tf_sp;
  760 }
  761 
  762 int
  763 get_mcontext(struct thread *td, mcontext_t *mc, int flags)
  764 {
  765         struct trapframe *tf;
  766         struct pcb *pcb;
  767 
  768         tf = td->td_frame;
  769         pcb = td->td_pcb;
  770         /*
  771          * Copy the registers which will be restored by tl0_ret() from the
  772          * trapframe.
  773          * Note that we skip %g7 which is used as the userland TLS register
  774          * and %wstate.
  775          */
  776         mc->mc_flags = _MC_VERSION;
  777         mc->mc_global[1] = tf->tf_global[1];
  778         mc->mc_global[2] = tf->tf_global[2];
  779         mc->mc_global[3] = tf->tf_global[3];
  780         mc->mc_global[4] = tf->tf_global[4];
  781         mc->mc_global[5] = tf->tf_global[5];
  782         mc->mc_global[6] = tf->tf_global[6];
  783         if (flags & GET_MC_CLEAR_RET) {
  784                 mc->mc_out[0] = 0;
  785                 mc->mc_out[1] = 0;
  786         } else {
  787                 mc->mc_out[0] = tf->tf_out[0];
  788                 mc->mc_out[1] = tf->tf_out[1];
  789         }
  790         mc->mc_out[2] = tf->tf_out[2];
  791         mc->mc_out[3] = tf->tf_out[3];
  792         mc->mc_out[4] = tf->tf_out[4];
  793         mc->mc_out[5] = tf->tf_out[5];
  794         mc->mc_out[6] = tf->tf_out[6];
  795         mc->mc_out[7] = tf->tf_out[7];
  796         mc->mc_fprs = tf->tf_fprs;
  797         mc->mc_fsr = tf->tf_fsr;
  798         mc->mc_gsr = tf->tf_gsr;
  799         mc->mc_tnpc = tf->tf_tnpc;
  800         mc->mc_tpc = tf->tf_tpc;
  801         mc->mc_tstate = tf->tf_tstate;
  802         mc->mc_y = tf->tf_y;
  803         critical_enter();
  804         if ((tf->tf_fprs & FPRS_FEF) != 0) {
  805                 savefpctx(pcb->pcb_ufp);
  806                 tf->tf_fprs &= ~FPRS_FEF;
  807                 pcb->pcb_flags |= PCB_FEF;
  808         }
  809         if ((pcb->pcb_flags & PCB_FEF) != 0) {
  810                 bcopy(pcb->pcb_ufp, mc->mc_fp, sizeof(mc->mc_fp));
  811                 mc->mc_fprs |= FPRS_FEF;
  812         }
  813         critical_exit();
  814         return (0);
  815 }
  816 
  817 int
  818 set_mcontext(struct thread *td, const mcontext_t *mc)
  819 {
  820         struct trapframe *tf;
  821         struct pcb *pcb;
  822 
  823         if (!TSTATE_SECURE(mc->mc_tstate) ||
  824             (mc->mc_flags & ((1L << _MC_VERSION_BITS) - 1)) != _MC_VERSION)
  825                 return (EINVAL);
  826         tf = td->td_frame;
  827         pcb = td->td_pcb;
  828         /* Make sure the windows are spilled first. */
  829         flushw();
  830         /*
  831          * Copy the registers which will be restored by tl0_ret() to the
  832          * trapframe.
  833          * Note that we skip %g7 which is used as the userland TLS register
  834          * and %wstate.
  835          */
  836         tf->tf_global[1] = mc->mc_global[1];
  837         tf->tf_global[2] = mc->mc_global[2];
  838         tf->tf_global[3] = mc->mc_global[3];
  839         tf->tf_global[4] = mc->mc_global[4];
  840         tf->tf_global[5] = mc->mc_global[5];
  841         tf->tf_global[6] = mc->mc_global[6];
  842         tf->tf_out[0] = mc->mc_out[0];
  843         tf->tf_out[1] = mc->mc_out[1];
  844         tf->tf_out[2] = mc->mc_out[2];
  845         tf->tf_out[3] = mc->mc_out[3];
  846         tf->tf_out[4] = mc->mc_out[4];
  847         tf->tf_out[5] = mc->mc_out[5];
  848         tf->tf_out[6] = mc->mc_out[6];
  849         tf->tf_out[7] = mc->mc_out[7];
  850         tf->tf_fprs = mc->mc_fprs;
  851         tf->tf_fsr = mc->mc_fsr;
  852         tf->tf_gsr = mc->mc_gsr;
  853         tf->tf_tnpc = mc->mc_tnpc;
  854         tf->tf_tpc = mc->mc_tpc;
  855         tf->tf_tstate = mc->mc_tstate;
  856         tf->tf_y = mc->mc_y;
  857         if ((mc->mc_fprs & FPRS_FEF) != 0) {
  858                 tf->tf_fprs = 0;
  859                 bcopy(mc->mc_fp, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
  860                 pcb->pcb_flags |= PCB_FEF;
  861         }
  862         return (0);
  863 }
  864 
  865 /*
  866  * Exit the kernel and execute a firmware call that will not return, as
  867  * specified by the arguments.
  868  */
  869 void
  870 cpu_shutdown(void *args)
  871 {
  872 
  873 #ifdef SMP
  874         cpu_mp_shutdown();
  875 #endif
  876         ofw_exit(args);
  877 }
  878 
  879 /*
  880  * Flush the D-cache for non-DMA I/O so that the I-cache can
  881  * be made coherent later.
  882  */
  883 void
  884 cpu_flush_dcache(void *ptr, size_t len)
  885 {
  886 
  887         /* TBD */
  888 }
  889 
  890 /* Get current clock frequency for the given CPU ID. */
  891 int
  892 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  893 {
  894         struct pcpu *pc;
  895 
  896         pc = pcpu_find(cpu_id);
  897         if (pc == NULL || rate == NULL)
  898                 return (EINVAL);
  899         *rate = pc->pc_clock;
  900         return (0);
  901 }
  902 
  903 /*
  904  * Duplicate OF_exit() with a different firmware call function that restores
  905  * the trap table, otherwise a RED state exception is triggered in at least
  906  * some firmware versions.
  907  */
  908 void
  909 cpu_halt(void)
  910 {
  911         static struct {
  912                 cell_t name;
  913                 cell_t nargs;
  914                 cell_t nreturns;
  915         } args = {
  916                 (cell_t)"exit",
  917                 0,
  918                 0
  919         };
  920 
  921         cpu_shutdown(&args);
  922 }
  923 
  924 static void
  925 sparc64_shutdown_final(void *dummy, int howto)
  926 {
  927         static struct {
  928                 cell_t name;
  929                 cell_t nargs;
  930                 cell_t nreturns;
  931         } args = {
  932                 (cell_t)"SUNW,power-off",
  933                 0,
  934                 0
  935         };
  936 
  937         /* Turn the power off? */
  938         if ((howto & RB_POWEROFF) != 0)
  939                 cpu_shutdown(&args);
  940         /* In case of halt, return to the firmware. */
  941         if ((howto & RB_HALT) != 0)
  942                 cpu_halt();
  943 }
  944 
  945 void
  946 cpu_idle(int busy)
  947 {
  948 
  949         /* Insert code to halt (until next interrupt) for the idle loop. */
  950 }
  951 
  952 int
  953 cpu_idle_wakeup(int cpu)
  954 {
  955 
  956         return (1);
  957 }
  958 
  959 int
  960 ptrace_set_pc(struct thread *td, u_long addr)
  961 {
  962 
  963         td->td_frame->tf_tpc = addr;
  964         td->td_frame->tf_tnpc = addr + 4;
  965         return (0);
  966 }
  967 
  968 int
  969 ptrace_single_step(struct thread *td)
  970 {
  971 
  972         /* TODO; */
  973         return (0);
  974 }
  975 
  976 int
  977 ptrace_clear_single_step(struct thread *td)
  978 {
  979 
  980         /* TODO; */
  981         return (0);
  982 }
  983 
  984 void
  985 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
  986 {
  987         struct trapframe *tf;
  988         struct pcb *pcb;
  989         struct proc *p;
  990         u_long sp;
  991 
  992         /* XXX no cpu_exec */
  993         p = td->td_proc;
  994         p->p_md.md_sigtramp = NULL;
  995         if (p->p_md.md_utrap != NULL) {
  996                 utrap_free(p->p_md.md_utrap);
  997                 p->p_md.md_utrap = NULL;
  998         }
  999 
 1000         pcb = td->td_pcb;
 1001         tf = td->td_frame;
 1002         sp = rounddown(stack, 16);
 1003         bzero(pcb, sizeof(*pcb));
 1004         bzero(tf, sizeof(*tf));
 1005         tf->tf_out[0] = stack;
 1006         tf->tf_out[3] = p->p_sysent->sv_psstrings;
 1007         tf->tf_out[6] = sp - SPOFF - sizeof(struct frame);
 1008         tf->tf_tnpc = imgp->entry_addr + 4;
 1009         tf->tf_tpc = imgp->entry_addr;
 1010         /*
 1011          * While we could adhere to the memory model indicated in the ELF
 1012          * header, it turns out that just always using TSO performs best.
 1013          */
 1014         tf->tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_MM_TSO;
 1015 
 1016         td->td_retval[0] = tf->tf_out[0];
 1017         td->td_retval[1] = tf->tf_out[1];
 1018 }
 1019 
 1020 int
 1021 fill_regs(struct thread *td, struct reg *regs)
 1022 {
 1023 
 1024         bcopy(td->td_frame, regs, sizeof(*regs));
 1025         return (0);
 1026 }
 1027 
 1028 int
 1029 set_regs(struct thread *td, struct reg *regs)
 1030 {
 1031         struct trapframe *tf;
 1032 
 1033         if (!TSTATE_SECURE(regs->r_tstate))
 1034                 return (EINVAL);
 1035         tf = td->td_frame;
 1036         regs->r_wstate = tf->tf_wstate;
 1037         bcopy(regs, tf, sizeof(*regs));
 1038         return (0);
 1039 }
 1040 
 1041 int
 1042 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 1043 {
 1044 
 1045         return (ENOSYS);
 1046 }
 1047 
 1048 int
 1049 set_dbregs(struct thread *td, struct dbreg *dbregs)
 1050 {
 1051 
 1052         return (ENOSYS);
 1053 }
 1054 
 1055 int
 1056 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 1057 {
 1058         struct trapframe *tf;
 1059         struct pcb *pcb;
 1060 
 1061         pcb = td->td_pcb;
 1062         tf = td->td_frame;
 1063         bcopy(pcb->pcb_ufp, fpregs->fr_regs, sizeof(fpregs->fr_regs));
 1064         fpregs->fr_fsr = tf->tf_fsr;
 1065         fpregs->fr_gsr = tf->tf_gsr;
 1066         return (0);
 1067 }
 1068 
 1069 int
 1070 set_fpregs(struct thread *td, struct fpreg *fpregs)
 1071 {
 1072         struct trapframe *tf;
 1073         struct pcb *pcb;
 1074 
 1075         pcb = td->td_pcb;
 1076         tf = td->td_frame;
 1077         tf->tf_fprs &= ~FPRS_FEF;
 1078         bcopy(fpregs->fr_regs, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
 1079         tf->tf_fsr = fpregs->fr_fsr;
 1080         tf->tf_gsr = fpregs->fr_gsr;
 1081         return (0);
 1082 }
 1083 
 1084 struct md_utrap *
 1085 utrap_alloc(void)
 1086 {
 1087         struct md_utrap *ut;
 1088 
 1089         ut = malloc(sizeof(struct md_utrap), M_SUBPROC, M_WAITOK | M_ZERO);
 1090         ut->ut_refcnt = 1;
 1091         return (ut);
 1092 }
 1093 
 1094 void
 1095 utrap_free(struct md_utrap *ut)
 1096 {
 1097         int refcnt;
 1098 
 1099         if (ut == NULL)
 1100                 return;
 1101         mtx_pool_lock(mtxpool_sleep, ut);
 1102         ut->ut_refcnt--;
 1103         refcnt = ut->ut_refcnt;
 1104         mtx_pool_unlock(mtxpool_sleep, ut);
 1105         if (refcnt == 0)
 1106                 free(ut, M_SUBPROC);
 1107 }
 1108 
 1109 struct md_utrap *
 1110 utrap_hold(struct md_utrap *ut)
 1111 {
 1112 
 1113         if (ut == NULL)
 1114                 return (NULL);
 1115         mtx_pool_lock(mtxpool_sleep, ut);
 1116         ut->ut_refcnt++;
 1117         mtx_pool_unlock(mtxpool_sleep, ut);
 1118         return (ut);
 1119 }

Cache object: 0ff8121a66bea7fd268cf960a1e0cc92


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.