The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/sparc64/sparc64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Jake Burkholder.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   35  *      from: FreeBSD: src/sys/i386/i386/machdep.c,v 1.477 2001/08/27
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD$");
   40 
   41 #include "opt_compat.h"
   42 #include "opt_ddb.h"
   43 #include "opt_kstack_pages.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/malloc.h>
   47 #include <sys/proc.h>
   48 #include <sys/systm.h>
   49 #include <sys/bio.h>
   50 #include <sys/buf.h>
   51 #include <sys/bus.h>
   52 #include <sys/cpu.h>
   53 #include <sys/cons.h>
   54 #include <sys/eventhandler.h>
   55 #include <sys/exec.h>
   56 #include <sys/imgact.h>
   57 #include <sys/interrupt.h>
   58 #include <sys/kdb.h>
   59 #include <sys/kernel.h>
   60 #include <sys/ktr.h>
   61 #include <sys/linker.h>
   62 #include <sys/lock.h>
   63 #include <sys/msgbuf.h>
   64 #include <sys/mutex.h>
   65 #include <sys/pcpu.h>
   66 #include <sys/ptrace.h>
   67 #include <sys/reboot.h>
   68 #include <sys/signalvar.h>
   69 #include <sys/smp.h>
   70 #include <sys/syscallsubr.h>
   71 #include <sys/sysent.h>
   72 #include <sys/sysproto.h>
   73 #include <sys/timetc.h>
   74 #include <sys/ucontext.h>
   75 
   76 #include <dev/ofw/openfirm.h>
   77 
   78 #include <vm/vm.h>
   79 #include <vm/vm_extern.h>
   80 #include <vm/vm_kern.h>
   81 #include <vm/vm_page.h>
   82 #include <vm/vm_map.h>
   83 #include <vm/vm_object.h>
   84 #include <vm/vm_pager.h>
   85 #include <vm/vm_param.h>
   86 
   87 #include <ddb/ddb.h>
   88 
   89 #include <machine/bus.h>
   90 #include <machine/cache.h>
   91 #include <machine/cmt.h>
   92 #include <machine/cpu.h>
   93 #include <machine/fireplane.h>
   94 #include <machine/fp.h>
   95 #include <machine/fsr.h>
   96 #include <machine/intr_machdep.h>
   97 #include <machine/jbus.h>
   98 #include <machine/md_var.h>
   99 #include <machine/metadata.h>
  100 #include <machine/ofw_machdep.h>
  101 #include <machine/ofw_mem.h>
  102 #include <machine/pcb.h>
  103 #include <machine/pmap.h>
  104 #include <machine/pstate.h>
  105 #include <machine/reg.h>
  106 #include <machine/sigframe.h>
  107 #include <machine/smp.h>
  108 #include <machine/tick.h>
  109 #include <machine/tlb.h>
  110 #include <machine/tstate.h>
  111 #include <machine/upa.h>
  112 #include <machine/ver.h>
  113 
  114 typedef int ofw_vec_t(void *);
  115 
  116 #ifdef DDB
  117 extern vm_offset_t ksym_start, ksym_end;
  118 #endif
  119 
  120 int dtlb_slots;
  121 int itlb_slots;
  122 struct tlb_entry *kernel_tlbs;
  123 int kernel_tlb_slots;
  124 
  125 int cold = 1;
  126 long Maxmem;
  127 long realmem;
  128 
  129 void *dpcpu0;
  130 char pcpu0[PCPU_PAGES * PAGE_SIZE];
  131 struct trapframe frame0;
  132 
  133 vm_offset_t kstack0;
  134 vm_paddr_t kstack0_phys;
  135 
  136 struct kva_md_info kmi;
  137 
  138 u_long ofw_vec;
  139 u_long ofw_tba;
  140 u_int tba_taken_over;
  141 
  142 char sparc64_model[32];
  143 
  144 static int cpu_use_vis = 1;
  145 
  146 cpu_block_copy_t *cpu_block_copy;
  147 cpu_block_zero_t *cpu_block_zero;
  148 
  149 static phandle_t find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl);
  150 void sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3,
  151     ofw_vec_t *vec);
  152 static void sparc64_shutdown_final(void *dummy, int howto);
  153 
  154 static void cpu_startup(void *arg);
  155 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  156 
  157 CTASSERT((1 << INT_SHIFT) == sizeof(int));
  158 CTASSERT((1 << PTR_SHIFT) == sizeof(char *));
  159 
  160 CTASSERT(sizeof(struct reg) == 256);
  161 CTASSERT(sizeof(struct fpreg) == 272);
  162 CTASSERT(sizeof(struct __mcontext) == 512);
  163 
  164 CTASSERT((sizeof(struct pcb) & (64 - 1)) == 0);
  165 CTASSERT((offsetof(struct pcb, pcb_kfp) & (64 - 1)) == 0);
  166 CTASSERT((offsetof(struct pcb, pcb_ufp) & (64 - 1)) == 0);
  167 CTASSERT(sizeof(struct pcb) <= ((KSTACK_PAGES * PAGE_SIZE) / 8));
  168 
  169 CTASSERT(sizeof(struct pcpu) <= ((PCPU_PAGES * PAGE_SIZE) / 2));
  170 
  171 static void
  172 cpu_startup(void *arg)
  173 {
  174         vm_paddr_t physsz;
  175         int i;
  176 
  177         physsz = 0;
  178         for (i = 0; i < sparc64_nmemreg; i++)
  179                 physsz += sparc64_memreg[i].mr_size;
  180         printf("real memory  = %lu (%lu MB)\n", physsz,
  181             physsz / (1024 * 1024));
  182         realmem = (long)physsz / PAGE_SIZE;
  183 
  184         vm_ksubmap_init(&kmi);
  185 
  186         bufinit();
  187         vm_pager_bufferinit();
  188 
  189         EVENTHANDLER_REGISTER(shutdown_final, sparc64_shutdown_final, NULL,
  190             SHUTDOWN_PRI_LAST);
  191 
  192         printf("avail memory = %lu (%lu MB)\n", cnt.v_free_count * PAGE_SIZE,
  193             cnt.v_free_count / ((1024 * 1024) / PAGE_SIZE));
  194 
  195         if (bootverbose)
  196                 printf("machine: %s\n", sparc64_model);
  197 
  198         cpu_identify(rdpr(ver), PCPU_GET(clock), curcpu);
  199 
  200         /*
  201          * Add BSP as an interrupt target.
  202          */
  203         intr_add_cpu(0);
  204 }
  205 
  206 void
  207 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
  208 {
  209         struct intr_request *ir;
  210         int i;
  211 
  212         pcpu->pc_irtail = &pcpu->pc_irhead;
  213         for (i = 0; i < IR_FREE; i++) {
  214                 ir = &pcpu->pc_irpool[i];
  215                 ir->ir_next = pcpu->pc_irfree;
  216                 pcpu->pc_irfree = ir;
  217         }
  218 }
  219 
  220 void
  221 spinlock_enter(void)
  222 {
  223         struct thread *td;
  224         register_t pil;
  225 
  226         td = curthread;
  227         if (td->td_md.md_spinlock_count == 0) {
  228                 pil = rdpr(pil);
  229                 wrpr(pil, 0, PIL_TICK);
  230                 td->td_md.md_spinlock_count = 1;
  231                 td->td_md.md_saved_pil = pil;
  232         } else
  233                 td->td_md.md_spinlock_count++;
  234         critical_enter();
  235 }
  236 
  237 void
  238 spinlock_exit(void)
  239 {
  240         struct thread *td;
  241         register_t pil;
  242 
  243         td = curthread;
  244         critical_exit();
  245         pil = td->td_md.md_saved_pil;
  246         td->td_md.md_spinlock_count--;
  247         if (td->td_md.md_spinlock_count == 0)
  248                 wrpr(pil, pil, 0);
  249 }
  250 
  251 static phandle_t
  252 find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl)
  253 {
  254         char type[sizeof("cpu")];
  255         phandle_t child;
  256         uint32_t cpuid;
  257 
  258         for (; node != 0; node = OF_peer(node)) {
  259                 child = OF_child(node);
  260                 if (child > 0) {
  261                         child = find_bsp(child, bspid, cpu_impl);
  262                         if (child > 0)
  263                                 return (child);
  264                 } else {
  265                         if (OF_getprop(node, "device_type", type,
  266                             sizeof(type)) <= 0)
  267                                 continue;
  268                         if (strcmp(type, "cpu") != 0)
  269                                 continue;
  270                         if (OF_getprop(node, cpu_cpuid_prop(cpu_impl), &cpuid,
  271                             sizeof(cpuid)) <= 0)
  272                                 continue;
  273                         if (cpuid == bspid)
  274                                 return (node);
  275                 }
  276         }
  277         return (0);
  278 }
  279 
  280 const char *
  281 cpu_cpuid_prop(u_int cpu_impl)
  282 {
  283 
  284         switch (cpu_impl) {
  285         case CPU_IMPL_SPARC64:
  286         case CPU_IMPL_SPARC64V:
  287         case CPU_IMPL_ULTRASPARCI:
  288         case CPU_IMPL_ULTRASPARCII:
  289         case CPU_IMPL_ULTRASPARCIIi:
  290         case CPU_IMPL_ULTRASPARCIIe:
  291                 return ("upa-portid");
  292         case CPU_IMPL_ULTRASPARCIII:
  293         case CPU_IMPL_ULTRASPARCIIIp:
  294         case CPU_IMPL_ULTRASPARCIIIi:
  295         case CPU_IMPL_ULTRASPARCIIIip:
  296                 return ("portid");
  297         case CPU_IMPL_ULTRASPARCIV:
  298         case CPU_IMPL_ULTRASPARCIVp:
  299                 return ("cpuid");
  300         default:
  301                 return ("");
  302         }
  303 }
  304 
  305 uint32_t
  306 cpu_get_mid(u_int cpu_impl)
  307 {
  308 
  309         switch (cpu_impl) {
  310         case CPU_IMPL_SPARC64:
  311         case CPU_IMPL_SPARC64V:
  312         case CPU_IMPL_ULTRASPARCI:
  313         case CPU_IMPL_ULTRASPARCII:
  314         case CPU_IMPL_ULTRASPARCIIi:
  315         case CPU_IMPL_ULTRASPARCIIe:
  316                 return (UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG)));
  317         case CPU_IMPL_ULTRASPARCIII:
  318         case CPU_IMPL_ULTRASPARCIIIp:
  319                 return (FIREPLANE_CR_GET_AID(ldxa(AA_FIREPLANE_CONFIG,
  320                     ASI_FIREPLANE_CONFIG_REG)));
  321         case CPU_IMPL_ULTRASPARCIIIi:
  322         case CPU_IMPL_ULTRASPARCIIIip:
  323                 return (JBUS_CR_GET_JID(ldxa(0, ASI_JBUS_CONFIG_REG)));
  324         case CPU_IMPL_ULTRASPARCIV:
  325         case CPU_IMPL_ULTRASPARCIVp:
  326                 return (INTR_ID_GET_ID(ldxa(AA_INTR_ID, ASI_INTR_ID)));
  327         default:
  328                 return (0);
  329         }
  330 }
  331 
  332 void
  333 sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3, ofw_vec_t *vec)
  334 {
  335         char *env;
  336         struct pcpu *pc;
  337         vm_offset_t end;
  338         vm_offset_t va;
  339         caddr_t kmdp;
  340         phandle_t root;
  341         u_int cpu_impl;
  342 
  343         end = 0;
  344         kmdp = NULL;
  345 
  346         /*
  347          * Find out what kind of CPU we have first, for anything that changes
  348          * behaviour.
  349          */
  350         cpu_impl = VER_IMPL(rdpr(ver));
  351 
  352         /*
  353          * Do CPU-specific initialization.
  354          */
  355         if (cpu_impl >= CPU_IMPL_ULTRASPARCIII)
  356                 cheetah_init(cpu_impl);
  357         else if (cpu_impl == CPU_IMPL_SPARC64V)
  358                 zeus_init(cpu_impl);
  359 
  360         /*
  361          * Clear (S)TICK timer (including NPT).
  362          */
  363         tick_clear(cpu_impl);
  364 
  365         /*
  366          * UltraSparc II[e,i] based systems come up with the tick interrupt
  367          * enabled and a handler that resets the tick counter, causing DELAY()
  368          * to not work properly when used early in boot.
  369          * UltraSPARC III based systems come up with the system tick interrupt
  370          * enabled, causing an interrupt storm on startup since they are not
  371          * handled.
  372          */
  373         tick_stop(cpu_impl);
  374 
  375         /*
  376          * Set up Open Firmware entry points.
  377          */
  378         ofw_tba = rdpr(tba);
  379         ofw_vec = (u_long)vec;
  380 
  381         /*
  382          * Parse metadata if present and fetch parameters.  Must be before the
  383          * console is inited so cninit() gets the right value of boothowto.
  384          */
  385         if (mdp != NULL) {
  386                 preload_metadata = mdp;
  387                 kmdp = preload_search_by_type("elf kernel");
  388                 if (kmdp != NULL) {
  389                         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
  390                         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
  391                         end = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
  392                         kernel_tlb_slots = MD_FETCH(kmdp, MODINFOMD_DTLB_SLOTS,
  393                             int);
  394                         kernel_tlbs = (void *)preload_search_info(kmdp,
  395                             MODINFO_METADATA | MODINFOMD_DTLB);
  396                 }
  397         }
  398 
  399         init_param1();
  400 
  401         /*
  402          * Initialize Open Firmware (needed for console).
  403          */
  404         OF_install(OFW_STD_DIRECT, 0);
  405         OF_init(ofw_entry);
  406 
  407         /*
  408          * Prime our per-CPU data page for use.  Note, we are using it for
  409          * our stack, so don't pass the real size (PAGE_SIZE) to pcpu_init
  410          * or it'll zero it out from under us.
  411          */
  412         pc = (struct pcpu *)(pcpu0 + (PCPU_PAGES * PAGE_SIZE)) - 1;
  413         pcpu_init(pc, 0, sizeof(struct pcpu));
  414         pc->pc_addr = (vm_offset_t)pcpu0;
  415         pc->pc_impl = cpu_impl;
  416         pc->pc_mid = cpu_get_mid(cpu_impl);
  417         pc->pc_tlb_ctx = TLB_CTX_USER_MIN;
  418         pc->pc_tlb_ctx_min = TLB_CTX_USER_MIN;
  419         pc->pc_tlb_ctx_max = TLB_CTX_USER_MAX;
  420 
  421         /*
  422          * Determine the OFW node and frequency of the BSP (and ensure the
  423          * BSP is in the device tree in the first place).
  424          */
  425         root = OF_peer(0);
  426         pc->pc_node = find_bsp(root, pc->pc_mid, cpu_impl);
  427         if (pc->pc_node == 0)
  428                 OF_panic("%s: cannot find boot CPU node", __func__);
  429         if (OF_getprop(pc->pc_node, "clock-frequency", &pc->pc_clock,
  430             sizeof(pc->pc_clock)) <= 0)
  431                 OF_panic("%s: cannot determine boot CPU clock", __func__);
  432 
  433         /*
  434          * Panic if there is no metadata.  Most likely the kernel was booted
  435          * directly, instead of through loader(8).
  436          */
  437         if (mdp == NULL || kmdp == NULL || end == 0 ||
  438             kernel_tlb_slots == 0 || kernel_tlbs == NULL)
  439                 OF_panic("%s: missing loader metadata.\nThis probably means "
  440                     "you are not using loader(8).", __func__);
  441 
  442         /*
  443          * Work around the broken loader behavior of not demapping no
  444          * longer used kernel TLB slots when unloading the kernel or
  445          * modules.
  446          */
  447         for (va = KERNBASE + (kernel_tlb_slots - 1) * PAGE_SIZE_4M;
  448             va >= roundup2(end, PAGE_SIZE_4M); va -= PAGE_SIZE_4M) {
  449                 if (bootverbose)
  450                         OF_printf("demapping unused kernel TLB slot "
  451                             "(va %#lx - %#lx)\n", va, va + PAGE_SIZE_4M - 1);
  452                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  453                     ASI_DMMU_DEMAP, 0);
  454                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  455                     ASI_IMMU_DEMAP, 0);
  456                 flush(KERNBASE);
  457                 kernel_tlb_slots--;
  458         }
  459 
  460         /*
  461          * Determine the TLB slot maxima, which are expected to be
  462          * equal across all CPUs.
  463          * NB: for cheetah-class CPUs, these properties only refer
  464          * to the t16s.
  465          */
  466         if (OF_getprop(pc->pc_node, "#dtlb-entries", &dtlb_slots,
  467             sizeof(dtlb_slots)) == -1)
  468                 OF_panic("%s: cannot determine number of dTLB slots",
  469                     __func__);
  470         if (OF_getprop(pc->pc_node, "#itlb-entries", &itlb_slots,
  471             sizeof(itlb_slots)) == -1)
  472                 OF_panic("%s: cannot determine number of iTLB slots",
  473                     __func__);
  474 
  475         /*
  476          * Initialize and enable the caches.  Note that this may include
  477          * applying workarounds.
  478          */
  479         cache_init(pc);
  480         cache_enable(cpu_impl);
  481         uma_set_align(pc->pc_cache.dc_linesize - 1);
  482 
  483         cpu_block_copy = bcopy;
  484         cpu_block_zero = bzero;
  485         getenv_int("machdep.use_vis", &cpu_use_vis);
  486         if (cpu_use_vis) {
  487                 switch (cpu_impl) {
  488                 case CPU_IMPL_SPARC64:
  489                 case CPU_IMPL_ULTRASPARCI:
  490                 case CPU_IMPL_ULTRASPARCII:
  491                 case CPU_IMPL_ULTRASPARCIIi:
  492                 case CPU_IMPL_ULTRASPARCIIe:
  493                 case CPU_IMPL_ULTRASPARCIII:    /* NB: we've disabled P$. */
  494                 case CPU_IMPL_ULTRASPARCIIIp:
  495                 case CPU_IMPL_ULTRASPARCIIIi:
  496                 case CPU_IMPL_ULTRASPARCIV:
  497                 case CPU_IMPL_ULTRASPARCIVp:
  498                 case CPU_IMPL_ULTRASPARCIIIip:
  499                         cpu_block_copy = spitfire_block_copy;
  500                         cpu_block_zero = spitfire_block_zero;
  501                         break;
  502                 case CPU_IMPL_SPARC64V:
  503                         cpu_block_copy = zeus_block_copy;
  504                         cpu_block_zero = zeus_block_zero;
  505                         break;
  506                 }
  507         }
  508 
  509 #ifdef SMP
  510         mp_init();
  511 #endif
  512 
  513         /*
  514          * Initialize virtual memory and calculate physmem.
  515          */
  516         pmap_bootstrap(cpu_impl);
  517 
  518         /*
  519          * Initialize tunables.
  520          */
  521         init_param2(physmem);
  522         env = getenv("kernelname");
  523         if (env != NULL) {
  524                 strlcpy(kernelname, env, sizeof(kernelname));
  525                 freeenv(env);
  526         }
  527 
  528         /*
  529          * Initialize the interrupt tables.
  530          */
  531         intr_init1();
  532 
  533         /*
  534          * Initialize proc0, set kstack0, frame0, curthread and curpcb.
  535          */
  536         proc_linkup0(&proc0, &thread0);
  537         proc0.p_md.md_sigtramp = NULL;
  538         proc0.p_md.md_utrap = NULL;
  539         thread0.td_kstack = kstack0;
  540         thread0.td_kstack_pages = KSTACK_PAGES;
  541         thread0.td_pcb = (struct pcb *)
  542             (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
  543         frame0.tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_PRIV;
  544         thread0.td_frame = &frame0;
  545         pc->pc_curthread = &thread0;
  546         pc->pc_curpcb = thread0.td_pcb;
  547 
  548         /*
  549          * Initialize global registers.
  550          */
  551         cpu_setregs(pc);
  552 
  553         /*
  554          * Take over the trap table via the PROM.  Using the PROM for this
  555          * is necessary in order to set obp-control-relinquished to true
  556          * within the PROM so obtaining /virtual-memory/translations doesn't
  557          * trigger a fatal reset error or worse things further down the road.
  558          * XXX it should be possible to use this solely instead of writing
  559          * %tba in cpu_setregs().  Doing so causes a hang however.
  560          *
  561          * NB: the low-level console drivers require a working DELAY() and
  562          * some compiler optimizations may cause the curthread accesses of
  563          * mutex(9) to be factored out even if the latter aren't actually
  564          * called.  Both of these require PCPU_REG to be set.  However, we
  565          * can't set PCPU_REG without also taking over the trap table or the
  566          * firmware will overwrite it.
  567          */
  568         sun4u_set_traptable(tl0_base);
  569 
  570         /*
  571          * Initialize the dynamic per-CPU area for the BSP and the message
  572          * buffer (after setting the trap table).
  573          */
  574         dpcpu_init(dpcpu0, 0);
  575         msgbufinit(msgbufp, msgbufsize);
  576 
  577         /*
  578          * Initialize mutexes.
  579          */
  580         mutex_init();
  581 
  582         /*
  583          * Initialize console now that we have a reasonable set of system
  584          * services.
  585          */
  586         cninit();
  587 
  588         /*
  589          * Finish the interrupt initialization now that mutexes work and
  590          * enable them.
  591          */
  592         intr_init2();
  593         wrpr(pil, 0, 0);
  594         wrpr(pstate, 0, PSTATE_KERNEL);
  595 
  596         OF_getprop(root, "name", sparc64_model, sizeof(sparc64_model) - 1);
  597 
  598         kdb_init();
  599 
  600 #ifdef KDB
  601         if (boothowto & RB_KDB)
  602                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
  603 #endif
  604 }
  605 
  606 void
  607 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  608 {
  609         struct trapframe *tf;
  610         struct sigframe *sfp;
  611         struct sigacts *psp;
  612         struct sigframe sf;
  613         struct thread *td;
  614         struct frame *fp;
  615         struct proc *p;
  616         u_long sp;
  617         int oonstack;
  618         int sig;
  619 
  620         oonstack = 0;
  621         td = curthread;
  622         p = td->td_proc;
  623         PROC_LOCK_ASSERT(p, MA_OWNED);
  624         sig = ksi->ksi_signo;
  625         psp = p->p_sigacts;
  626         mtx_assert(&psp->ps_mtx, MA_OWNED);
  627         tf = td->td_frame;
  628         sp = tf->tf_sp + SPOFF;
  629         oonstack = sigonstack(sp);
  630 
  631         CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
  632             catcher, sig);
  633 
  634         /* Make sure we have a signal trampoline to return to. */
  635         if (p->p_md.md_sigtramp == NULL) {
  636                 /*
  637                  * No signal trampoline... kill the process.
  638                  */
  639                 CTR0(KTR_SIG, "sendsig: no sigtramp");
  640                 printf("sendsig: %s is too old, rebuild it\n", p->p_comm);
  641                 sigexit(td, sig);
  642                 /* NOTREACHED */
  643         }
  644 
  645         /* Save user context. */
  646         bzero(&sf, sizeof(sf));
  647         get_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
  648         sf.sf_uc.uc_sigmask = *mask;
  649         sf.sf_uc.uc_stack = td->td_sigstk;
  650         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
  651             ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  652 
  653         /* Allocate and validate space for the signal handler context. */
  654         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  655             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  656                 sfp = (struct sigframe *)(td->td_sigstk.ss_sp +
  657                     td->td_sigstk.ss_size - sizeof(struct sigframe));
  658         } else
  659                 sfp = (struct sigframe *)sp - 1;
  660         mtx_unlock(&psp->ps_mtx);
  661         PROC_UNLOCK(p);
  662 
  663         fp = (struct frame *)sfp - 1;
  664 
  665         /* Translate the signal if appropriate. */
  666         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  667                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  668 
  669         /* Build the argument list for the signal handler. */
  670         tf->tf_out[0] = sig;
  671         tf->tf_out[2] = (register_t)&sfp->sf_uc;
  672         tf->tf_out[4] = (register_t)catcher;
  673         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  674                 /* Signal handler installed with SA_SIGINFO. */
  675                 tf->tf_out[1] = (register_t)&sfp->sf_si;
  676 
  677                 /* Fill in POSIX parts. */
  678                 sf.sf_si = ksi->ksi_info;
  679                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  680         } else {
  681                 /* Old FreeBSD-style arguments. */
  682                 tf->tf_out[1] = ksi->ksi_code;
  683                 tf->tf_out[3] = (register_t)ksi->ksi_addr;
  684         }
  685 
  686         /* Copy the sigframe out to the user's stack. */
  687         if (rwindow_save(td) != 0 || copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
  688             suword(&fp->fr_in[6], tf->tf_out[6]) != 0) {
  689                 /*
  690                  * Something is wrong with the stack pointer.
  691                  * ...Kill the process.
  692                  */
  693                 CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp);
  694                 PROC_LOCK(p);
  695                 sigexit(td, SIGILL);
  696                 /* NOTREACHED */
  697         }
  698 
  699         tf->tf_tpc = (u_long)p->p_md.md_sigtramp;
  700         tf->tf_tnpc = tf->tf_tpc + 4;
  701         tf->tf_sp = (u_long)fp - SPOFF;
  702 
  703         CTR3(KTR_SIG, "sendsig: return td=%p pc=%#lx sp=%#lx", td, tf->tf_tpc,
  704             tf->tf_sp);
  705 
  706         PROC_LOCK(p);
  707         mtx_lock(&psp->ps_mtx);
  708 }
  709 
  710 #ifndef _SYS_SYSPROTO_H_
  711 struct sigreturn_args {
  712         ucontext_t *ucp;
  713 };
  714 #endif
  715 
  716 /*
  717  * MPSAFE
  718  */
  719 int
  720 sys_sigreturn(struct thread *td, struct sigreturn_args *uap)
  721 {
  722         struct proc *p;
  723         mcontext_t *mc;
  724         ucontext_t uc;
  725         int error;
  726 
  727         p = td->td_proc;
  728         if (rwindow_save(td)) {
  729                 PROC_LOCK(p);
  730                 sigexit(td, SIGILL);
  731         }
  732 
  733         CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
  734         if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
  735                 CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
  736                 return (EFAULT);
  737         }
  738 
  739         mc = &uc.uc_mcontext;
  740         error = set_mcontext(td, mc);
  741         if (error != 0)
  742                 return (error);
  743 
  744         kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
  745 
  746         CTR4(KTR_SIG, "sigreturn: return td=%p pc=%#lx sp=%#lx tstate=%#lx",
  747             td, mc->_mc_tpc, mc->_mc_sp, mc->_mc_tstate);
  748         return (EJUSTRETURN);
  749 }
  750 
  751 /*
  752  * Construct a PCB from a trapframe. This is called from kdb_trap() where
  753  * we want to start a backtrace from the function that caused us to enter
  754  * the debugger. We have the context in the trapframe, but base the trace
  755  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
  756  * enough for a backtrace.
  757  */
  758 void
  759 makectx(struct trapframe *tf, struct pcb *pcb)
  760 {
  761 
  762         pcb->pcb_pc = tf->tf_tpc;
  763         pcb->pcb_sp = tf->tf_sp;
  764 }
  765 
  766 int
  767 get_mcontext(struct thread *td, mcontext_t *mc, int flags)
  768 {
  769         struct trapframe *tf;
  770         struct pcb *pcb;
  771 
  772         tf = td->td_frame;
  773         pcb = td->td_pcb;
  774         /*
  775          * Copy the registers which will be restored by tl0_ret() from the
  776          * trapframe.
  777          * Note that we skip %g7 which is used as the userland TLS register
  778          * and %wstate.
  779          */
  780         mc->_mc_flags = _MC_VERSION;
  781         mc->mc_global[1] = tf->tf_global[1];
  782         mc->mc_global[2] = tf->tf_global[2];
  783         mc->mc_global[3] = tf->tf_global[3];
  784         mc->mc_global[4] = tf->tf_global[4];
  785         mc->mc_global[5] = tf->tf_global[5];
  786         mc->mc_global[6] = tf->tf_global[6];
  787         if (flags & GET_MC_CLEAR_RET) {
  788                 mc->mc_out[0] = 0;
  789                 mc->mc_out[1] = 0;
  790         } else {
  791                 mc->mc_out[0] = tf->tf_out[0];
  792                 mc->mc_out[1] = tf->tf_out[1];
  793         }
  794         mc->mc_out[2] = tf->tf_out[2];
  795         mc->mc_out[3] = tf->tf_out[3];
  796         mc->mc_out[4] = tf->tf_out[4];
  797         mc->mc_out[5] = tf->tf_out[5];
  798         mc->mc_out[6] = tf->tf_out[6];
  799         mc->mc_out[7] = tf->tf_out[7];
  800         mc->_mc_fprs = tf->tf_fprs;
  801         mc->_mc_fsr = tf->tf_fsr;
  802         mc->_mc_gsr = tf->tf_gsr;
  803         mc->_mc_tnpc = tf->tf_tnpc;
  804         mc->_mc_tpc = tf->tf_tpc;
  805         mc->_mc_tstate = tf->tf_tstate;
  806         mc->_mc_y = tf->tf_y;
  807         critical_enter();
  808         if ((tf->tf_fprs & FPRS_FEF) != 0) {
  809                 savefpctx(pcb->pcb_ufp);
  810                 tf->tf_fprs &= ~FPRS_FEF;
  811                 pcb->pcb_flags |= PCB_FEF;
  812         }
  813         if ((pcb->pcb_flags & PCB_FEF) != 0) {
  814                 bcopy(pcb->pcb_ufp, mc->mc_fp, sizeof(mc->mc_fp));
  815                 mc->_mc_fprs |= FPRS_FEF;
  816         }
  817         critical_exit();
  818         return (0);
  819 }
  820 
  821 int
  822 set_mcontext(struct thread *td, const mcontext_t *mc)
  823 {
  824         struct trapframe *tf;
  825         struct pcb *pcb;
  826 
  827         if (!TSTATE_SECURE(mc->_mc_tstate) ||
  828             (mc->_mc_flags & ((1L << _MC_VERSION_BITS) - 1)) != _MC_VERSION)
  829                 return (EINVAL);
  830         tf = td->td_frame;
  831         pcb = td->td_pcb;
  832         /* Make sure the windows are spilled first. */
  833         flushw();
  834         /*
  835          * Copy the registers which will be restored by tl0_ret() to the
  836          * trapframe.
  837          * Note that we skip %g7 which is used as the userland TLS register
  838          * and %wstate.
  839          */
  840         tf->tf_global[1] = mc->mc_global[1];
  841         tf->tf_global[2] = mc->mc_global[2];
  842         tf->tf_global[3] = mc->mc_global[3];
  843         tf->tf_global[4] = mc->mc_global[4];
  844         tf->tf_global[5] = mc->mc_global[5];
  845         tf->tf_global[6] = mc->mc_global[6];
  846         tf->tf_out[0] = mc->mc_out[0];
  847         tf->tf_out[1] = mc->mc_out[1];
  848         tf->tf_out[2] = mc->mc_out[2];
  849         tf->tf_out[3] = mc->mc_out[3];
  850         tf->tf_out[4] = mc->mc_out[4];
  851         tf->tf_out[5] = mc->mc_out[5];
  852         tf->tf_out[6] = mc->mc_out[6];
  853         tf->tf_out[7] = mc->mc_out[7];
  854         tf->tf_fprs = mc->_mc_fprs;
  855         tf->tf_fsr = mc->_mc_fsr;
  856         tf->tf_gsr = mc->_mc_gsr;
  857         tf->tf_tnpc = mc->_mc_tnpc;
  858         tf->tf_tpc = mc->_mc_tpc;
  859         tf->tf_tstate = mc->_mc_tstate;
  860         tf->tf_y = mc->_mc_y;
  861         if ((mc->_mc_fprs & FPRS_FEF) != 0) {
  862                 tf->tf_fprs = 0;
  863                 bcopy(mc->mc_fp, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
  864                 pcb->pcb_flags |= PCB_FEF;
  865         }
  866         return (0);
  867 }
  868 
  869 /*
  870  * Exit the kernel and execute a firmware call that will not return, as
  871  * specified by the arguments.
  872  */
  873 void
  874 cpu_shutdown(void *args)
  875 {
  876 
  877 #ifdef SMP
  878         cpu_mp_shutdown();
  879 #endif
  880         ofw_exit(args);
  881 }
  882 
  883 /*
  884  * Flush the D-cache for non-DMA I/O so that the I-cache can
  885  * be made coherent later.
  886  */
  887 void
  888 cpu_flush_dcache(void *ptr, size_t len)
  889 {
  890 
  891         /* TBD */
  892 }
  893 
  894 /* Get current clock frequency for the given CPU ID. */
  895 int
  896 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  897 {
  898         struct pcpu *pc;
  899 
  900         pc = pcpu_find(cpu_id);
  901         if (pc == NULL || rate == NULL)
  902                 return (EINVAL);
  903         *rate = pc->pc_clock;
  904         return (0);
  905 }
  906 
  907 /*
  908  * Duplicate OF_exit() with a different firmware call function that restores
  909  * the trap table, otherwise a RED state exception is triggered in at least
  910  * some firmware versions.
  911  */
  912 void
  913 cpu_halt(void)
  914 {
  915         static struct {
  916                 cell_t name;
  917                 cell_t nargs;
  918                 cell_t nreturns;
  919         } args = {
  920                 (cell_t)"exit",
  921                 0,
  922                 0
  923         };
  924 
  925         cpu_shutdown(&args);
  926 }
  927 
  928 static void
  929 sparc64_shutdown_final(void *dummy, int howto)
  930 {
  931         static struct {
  932                 cell_t name;
  933                 cell_t nargs;
  934                 cell_t nreturns;
  935         } args = {
  936                 (cell_t)"SUNW,power-off",
  937                 0,
  938                 0
  939         };
  940 
  941         /* Turn the power off? */
  942         if ((howto & RB_POWEROFF) != 0)
  943                 cpu_shutdown(&args);
  944         /* In case of halt, return to the firmware. */
  945         if ((howto & RB_HALT) != 0)
  946                 cpu_halt();
  947 }
  948 
  949 void
  950 cpu_idle(int busy)
  951 {
  952 
  953         /* Insert code to halt (until next interrupt) for the idle loop. */
  954 }
  955 
  956 int
  957 cpu_idle_wakeup(int cpu)
  958 {
  959 
  960         return (1);
  961 }
  962 
  963 int
  964 ptrace_set_pc(struct thread *td, u_long addr)
  965 {
  966 
  967         td->td_frame->tf_tpc = addr;
  968         td->td_frame->tf_tnpc = addr + 4;
  969         return (0);
  970 }
  971 
  972 int
  973 ptrace_single_step(struct thread *td)
  974 {
  975 
  976         /* TODO; */
  977         return (0);
  978 }
  979 
  980 int
  981 ptrace_clear_single_step(struct thread *td)
  982 {
  983 
  984         /* TODO; */
  985         return (0);
  986 }
  987 
  988 void
  989 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
  990 {
  991         struct trapframe *tf;
  992         struct pcb *pcb;
  993         struct proc *p;
  994         u_long sp;
  995 
  996         /* XXX no cpu_exec */
  997         p = td->td_proc;
  998         p->p_md.md_sigtramp = NULL;
  999         if (p->p_md.md_utrap != NULL) {
 1000                 utrap_free(p->p_md.md_utrap);
 1001                 p->p_md.md_utrap = NULL;
 1002         }
 1003 
 1004         pcb = td->td_pcb;
 1005         tf = td->td_frame;
 1006         sp = rounddown(stack, 16);
 1007         bzero(pcb, sizeof(*pcb));
 1008         bzero(tf, sizeof(*tf));
 1009         tf->tf_out[0] = stack;
 1010         tf->tf_out[3] = p->p_sysent->sv_psstrings;
 1011         tf->tf_out[6] = sp - SPOFF - sizeof(struct frame);
 1012         tf->tf_tnpc = imgp->entry_addr + 4;
 1013         tf->tf_tpc = imgp->entry_addr;
 1014         /*
 1015          * While we could adhere to the memory model indicated in the ELF
 1016          * header, it turns out that just always using TSO performs best.
 1017          */
 1018         tf->tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_MM_TSO;
 1019 
 1020         td->td_retval[0] = tf->tf_out[0];
 1021         td->td_retval[1] = tf->tf_out[1];
 1022 }
 1023 
 1024 int
 1025 fill_regs(struct thread *td, struct reg *regs)
 1026 {
 1027 
 1028         bcopy(td->td_frame, regs, sizeof(*regs));
 1029         return (0);
 1030 }
 1031 
 1032 int
 1033 set_regs(struct thread *td, struct reg *regs)
 1034 {
 1035         struct trapframe *tf;
 1036 
 1037         if (!TSTATE_SECURE(regs->r_tstate))
 1038                 return (EINVAL);
 1039         tf = td->td_frame;
 1040         regs->r_wstate = tf->tf_wstate;
 1041         bcopy(regs, tf, sizeof(*regs));
 1042         return (0);
 1043 }
 1044 
 1045 int
 1046 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 1047 {
 1048 
 1049         return (ENOSYS);
 1050 }
 1051 
 1052 int
 1053 set_dbregs(struct thread *td, struct dbreg *dbregs)
 1054 {
 1055 
 1056         return (ENOSYS);
 1057 }
 1058 
 1059 int
 1060 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 1061 {
 1062         struct trapframe *tf;
 1063         struct pcb *pcb;
 1064 
 1065         pcb = td->td_pcb;
 1066         tf = td->td_frame;
 1067         bcopy(pcb->pcb_ufp, fpregs->fr_regs, sizeof(fpregs->fr_regs));
 1068         fpregs->fr_fsr = tf->tf_fsr;
 1069         fpregs->fr_gsr = tf->tf_gsr;
 1070         return (0);
 1071 }
 1072 
 1073 int
 1074 set_fpregs(struct thread *td, struct fpreg *fpregs)
 1075 {
 1076         struct trapframe *tf;
 1077         struct pcb *pcb;
 1078 
 1079         pcb = td->td_pcb;
 1080         tf = td->td_frame;
 1081         tf->tf_fprs &= ~FPRS_FEF;
 1082         bcopy(fpregs->fr_regs, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
 1083         tf->tf_fsr = fpregs->fr_fsr;
 1084         tf->tf_gsr = fpregs->fr_gsr;
 1085         return (0);
 1086 }
 1087 
 1088 struct md_utrap *
 1089 utrap_alloc(void)
 1090 {
 1091         struct md_utrap *ut;
 1092 
 1093         ut = malloc(sizeof(struct md_utrap), M_SUBPROC, M_WAITOK | M_ZERO);
 1094         ut->ut_refcnt = 1;
 1095         return (ut);
 1096 }
 1097 
 1098 void
 1099 utrap_free(struct md_utrap *ut)
 1100 {
 1101         int refcnt;
 1102 
 1103         if (ut == NULL)
 1104                 return;
 1105         mtx_pool_lock(mtxpool_sleep, ut);
 1106         ut->ut_refcnt--;
 1107         refcnt = ut->ut_refcnt;
 1108         mtx_pool_unlock(mtxpool_sleep, ut);
 1109         if (refcnt == 0)
 1110                 free(ut, M_SUBPROC);
 1111 }
 1112 
 1113 struct md_utrap *
 1114 utrap_hold(struct md_utrap *ut)
 1115 {
 1116 
 1117         if (ut == NULL)
 1118                 return (NULL);
 1119         mtx_pool_lock(mtxpool_sleep, ut);
 1120         ut->ut_refcnt++;
 1121         mtx_pool_unlock(mtxpool_sleep, ut);
 1122         return (ut);
 1123 }

Cache object: 35e89da1726f519db3963d01172cb18a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.