The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/sparc64/sparc64/machdep.c

Version: -  FREEBSD  -  FREEBSD11  -  FREEBSD10  -  FREEBSD9  -  FREEBSD92  -  FREEBSD91  -  FREEBSD90  -  FREEBSD8  -  FREEBSD82  -  FREEBSD81  -  FREEBSD80  -  FREEBSD7  -  FREEBSD74  -  FREEBSD73  -  FREEBSD72  -  FREEBSD71  -  FREEBSD70  -  FREEBSD6  -  FREEBSD64  -  FREEBSD63  -  FREEBSD62  -  FREEBSD61  -  FREEBSD60  -  FREEBSD5  -  FREEBSD55  -  FREEBSD54  -  FREEBSD53  -  FREEBSD52  -  FREEBSD51  -  FREEBSD50  -  FREEBSD4  -  FREEBSD3  -  FREEBSD22  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Jake Burkholder.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   35  *      from: FreeBSD: src/sys/i386/i386/machdep.c,v 1.477 2001/08/27
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD: stable/10/sys/sparc64/sparc64/machdep.c 294683 2016-01-24 21:04:06Z ian $");
   40 
   41 #include "opt_compat.h"
   42 #include "opt_ddb.h"
   43 #include "opt_kstack_pages.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/malloc.h>
   47 #include <sys/proc.h>
   48 #include <sys/systm.h>
   49 #include <sys/bio.h>
   50 #include <sys/buf.h>
   51 #include <sys/bus.h>
   52 #include <sys/cpu.h>
   53 #include <sys/cons.h>
   54 #include <sys/eventhandler.h>
   55 #include <sys/exec.h>
   56 #include <sys/imgact.h>
   57 #include <sys/interrupt.h>
   58 #include <sys/kdb.h>
   59 #include <sys/kernel.h>
   60 #include <sys/ktr.h>
   61 #include <sys/linker.h>
   62 #include <sys/lock.h>
   63 #include <sys/msgbuf.h>
   64 #include <sys/mutex.h>
   65 #include <sys/pcpu.h>
   66 #include <sys/ptrace.h>
   67 #include <sys/reboot.h>
   68 #include <sys/rwlock.h>
   69 #include <sys/signalvar.h>
   70 #include <sys/smp.h>
   71 #include <sys/syscallsubr.h>
   72 #include <sys/sysent.h>
   73 #include <sys/sysproto.h>
   74 #include <sys/timetc.h>
   75 #include <sys/ucontext.h>
   76 
   77 #include <dev/ofw/openfirm.h>
   78 
   79 #include <vm/vm.h>
   80 #include <vm/vm_extern.h>
   81 #include <vm/vm_kern.h>
   82 #include <vm/vm_page.h>
   83 #include <vm/vm_map.h>
   84 #include <vm/vm_object.h>
   85 #include <vm/vm_pager.h>
   86 #include <vm/vm_param.h>
   87 
   88 #include <ddb/ddb.h>
   89 
   90 #include <machine/bus.h>
   91 #include <machine/cache.h>
   92 #include <machine/cmt.h>
   93 #include <machine/cpu.h>
   94 #include <machine/fireplane.h>
   95 #include <machine/fp.h>
   96 #include <machine/fsr.h>
   97 #include <machine/intr_machdep.h>
   98 #include <machine/jbus.h>
   99 #include <machine/md_var.h>
  100 #include <machine/metadata.h>
  101 #include <machine/ofw_machdep.h>
  102 #include <machine/ofw_mem.h>
  103 #include <machine/pcb.h>
  104 #include <machine/pmap.h>
  105 #include <machine/pstate.h>
  106 #include <machine/reg.h>
  107 #include <machine/sigframe.h>
  108 #include <machine/smp.h>
  109 #include <machine/tick.h>
  110 #include <machine/tlb.h>
  111 #include <machine/tstate.h>
  112 #include <machine/upa.h>
  113 #include <machine/ver.h>
  114 
  115 typedef int ofw_vec_t(void *);
  116 
  117 #ifdef DDB
  118 extern vm_offset_t ksym_start, ksym_end;
  119 #endif
  120 
  121 int dtlb_slots;
  122 int itlb_slots;
  123 struct tlb_entry *kernel_tlbs;
  124 int kernel_tlb_slots;
  125 
  126 int cold = 1;
  127 long Maxmem;
  128 long realmem;
  129 
  130 void *dpcpu0;
  131 char pcpu0[PCPU_PAGES * PAGE_SIZE];
  132 struct trapframe frame0;
  133 
  134 vm_offset_t kstack0;
  135 vm_paddr_t kstack0_phys;
  136 
  137 struct kva_md_info kmi;
  138 
  139 u_long ofw_vec;
  140 u_long ofw_tba;
  141 u_int tba_taken_over;
  142 
  143 char sparc64_model[32];
  144 
  145 static int cpu_use_vis = 1;
  146 
  147 cpu_block_copy_t *cpu_block_copy;
  148 cpu_block_zero_t *cpu_block_zero;
  149 
  150 static phandle_t find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl);
  151 void sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3,
  152     ofw_vec_t *vec);
  153 static void sparc64_shutdown_final(void *dummy, int howto);
  154 
  155 static void cpu_startup(void *arg);
  156 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  157 
  158 CTASSERT((1 << INT_SHIFT) == sizeof(int));
  159 CTASSERT((1 << PTR_SHIFT) == sizeof(char *));
  160 
  161 CTASSERT(sizeof(struct reg) == 256);
  162 CTASSERT(sizeof(struct fpreg) == 272);
  163 CTASSERT(sizeof(struct __mcontext) == 512);
  164 
  165 CTASSERT((sizeof(struct pcb) & (64 - 1)) == 0);
  166 CTASSERT((offsetof(struct pcb, pcb_kfp) & (64 - 1)) == 0);
  167 CTASSERT((offsetof(struct pcb, pcb_ufp) & (64 - 1)) == 0);
  168 CTASSERT(sizeof(struct pcb) <= ((KSTACK_PAGES * PAGE_SIZE) / 8));
  169 
  170 CTASSERT(sizeof(struct pcpu) <= ((PCPU_PAGES * PAGE_SIZE) / 2));
  171 
  172 static void
  173 cpu_startup(void *arg)
  174 {
  175         vm_paddr_t physsz;
  176         int i;
  177 
  178         physsz = 0;
  179         for (i = 0; i < sparc64_nmemreg; i++)
  180                 physsz += sparc64_memreg[i].mr_size;
  181         printf("real memory  = %lu (%lu MB)\n", physsz,
  182             physsz / (1024 * 1024));
  183         realmem = (long)physsz / PAGE_SIZE;
  184 
  185         vm_ksubmap_init(&kmi);
  186 
  187         bufinit();
  188         vm_pager_bufferinit();
  189 
  190         EVENTHANDLER_REGISTER(shutdown_final, sparc64_shutdown_final, NULL,
  191             SHUTDOWN_PRI_LAST);
  192 
  193         printf("avail memory = %lu (%lu MB)\n", cnt.v_free_count * PAGE_SIZE,
  194             cnt.v_free_count / ((1024 * 1024) / PAGE_SIZE));
  195 
  196         if (bootverbose)
  197                 printf("machine: %s\n", sparc64_model);
  198 
  199         cpu_identify(rdpr(ver), PCPU_GET(clock), curcpu);
  200 }
  201 
  202 void
  203 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
  204 {
  205         struct intr_request *ir;
  206         int i;
  207 
  208         pcpu->pc_irtail = &pcpu->pc_irhead;
  209         for (i = 0; i < IR_FREE; i++) {
  210                 ir = &pcpu->pc_irpool[i];
  211                 ir->ir_next = pcpu->pc_irfree;
  212                 pcpu->pc_irfree = ir;
  213         }
  214 }
  215 
  216 void
  217 spinlock_enter(void)
  218 {
  219         struct thread *td;
  220         register_t pil;
  221 
  222         td = curthread;
  223         if (td->td_md.md_spinlock_count == 0) {
  224                 pil = rdpr(pil);
  225                 wrpr(pil, 0, PIL_TICK);
  226                 td->td_md.md_spinlock_count = 1;
  227                 td->td_md.md_saved_pil = pil;
  228         } else
  229                 td->td_md.md_spinlock_count++;
  230         critical_enter();
  231 }
  232 
  233 void
  234 spinlock_exit(void)
  235 {
  236         struct thread *td;
  237         register_t pil;
  238 
  239         td = curthread;
  240         critical_exit();
  241         pil = td->td_md.md_saved_pil;
  242         td->td_md.md_spinlock_count--;
  243         if (td->td_md.md_spinlock_count == 0)
  244                 wrpr(pil, pil, 0);
  245 }
  246 
  247 static phandle_t
  248 find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl)
  249 {
  250         char type[sizeof("cpu")];
  251         phandle_t child;
  252         uint32_t portid;
  253 
  254         for (; node != 0; node = OF_peer(node)) {
  255                 child = OF_child(node);
  256                 if (child > 0) {
  257                         child = find_bsp(child, bspid, cpu_impl);
  258                         if (child > 0)
  259                                 return (child);
  260                 } else {
  261                         if (OF_getprop(node, "device_type", type,
  262                             sizeof(type)) <= 0)
  263                                 continue;
  264                         if (strcmp(type, "cpu") != 0)
  265                                 continue;
  266                         if (OF_getprop(node, cpu_portid_prop(cpu_impl),
  267                             &portid, sizeof(portid)) <= 0)
  268                                 continue;
  269                         if (portid == bspid)
  270                                 return (node);
  271                 }
  272         }
  273         return (0);
  274 }
  275 
  276 const char *
  277 cpu_portid_prop(u_int cpu_impl)
  278 {
  279 
  280         switch (cpu_impl) {
  281         case CPU_IMPL_SPARC64:
  282         case CPU_IMPL_SPARC64V:
  283         case CPU_IMPL_ULTRASPARCI:
  284         case CPU_IMPL_ULTRASPARCII:
  285         case CPU_IMPL_ULTRASPARCIIi:
  286         case CPU_IMPL_ULTRASPARCIIe:
  287                 return ("upa-portid");
  288         case CPU_IMPL_ULTRASPARCIII:
  289         case CPU_IMPL_ULTRASPARCIIIp:
  290         case CPU_IMPL_ULTRASPARCIIIi:
  291         case CPU_IMPL_ULTRASPARCIIIip:
  292                 return ("portid");
  293         case CPU_IMPL_ULTRASPARCIV:
  294         case CPU_IMPL_ULTRASPARCIVp:
  295                 return ("cpuid");
  296         default:
  297                 return ("");
  298         }
  299 }
  300 
  301 uint32_t
  302 cpu_get_mid(u_int cpu_impl)
  303 {
  304 
  305         switch (cpu_impl) {
  306         case CPU_IMPL_SPARC64:
  307         case CPU_IMPL_SPARC64V:
  308         case CPU_IMPL_ULTRASPARCI:
  309         case CPU_IMPL_ULTRASPARCII:
  310         case CPU_IMPL_ULTRASPARCIIi:
  311         case CPU_IMPL_ULTRASPARCIIe:
  312                 return (UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG)));
  313         case CPU_IMPL_ULTRASPARCIII:
  314         case CPU_IMPL_ULTRASPARCIIIp:
  315                 return (FIREPLANE_CR_GET_AID(ldxa(AA_FIREPLANE_CONFIG,
  316                     ASI_FIREPLANE_CONFIG_REG)));
  317         case CPU_IMPL_ULTRASPARCIIIi:
  318         case CPU_IMPL_ULTRASPARCIIIip:
  319                 return (JBUS_CR_GET_JID(ldxa(0, ASI_JBUS_CONFIG_REG)));
  320         case CPU_IMPL_ULTRASPARCIV:
  321         case CPU_IMPL_ULTRASPARCIVp:
  322                 return (INTR_ID_GET_ID(ldxa(AA_INTR_ID, ASI_INTR_ID)));
  323         default:
  324                 return (0);
  325         }
  326 }
  327 
  328 void
  329 sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3, ofw_vec_t *vec)
  330 {
  331         char *env;
  332         struct pcpu *pc;
  333         vm_offset_t end;
  334         vm_offset_t va;
  335         caddr_t kmdp;
  336         phandle_t root;
  337         u_int cpu_impl;
  338 
  339         end = 0;
  340         kmdp = NULL;
  341 
  342         /*
  343          * Find out what kind of CPU we have first, for anything that changes
  344          * behaviour.
  345          */
  346         cpu_impl = VER_IMPL(rdpr(ver));
  347 
  348         /*
  349          * Do CPU-specific initialization.
  350          */
  351         if (cpu_impl >= CPU_IMPL_ULTRASPARCIII)
  352                 cheetah_init(cpu_impl);
  353         else if (cpu_impl == CPU_IMPL_SPARC64V)
  354                 zeus_init(cpu_impl);
  355 
  356         /*
  357          * Clear (S)TICK timer (including NPT).
  358          */
  359         tick_clear(cpu_impl);
  360 
  361         /*
  362          * UltraSparc II[e,i] based systems come up with the tick interrupt
  363          * enabled and a handler that resets the tick counter, causing DELAY()
  364          * to not work properly when used early in boot.
  365          * UltraSPARC III based systems come up with the system tick interrupt
  366          * enabled, causing an interrupt storm on startup since they are not
  367          * handled.
  368          */
  369         tick_stop(cpu_impl);
  370 
  371         /*
  372          * Set up Open Firmware entry points.
  373          */
  374         ofw_tba = rdpr(tba);
  375         ofw_vec = (u_long)vec;
  376 
  377         /*
  378          * Parse metadata if present and fetch parameters.  Must be before the
  379          * console is inited so cninit() gets the right value of boothowto.
  380          */
  381         if (mdp != NULL) {
  382                 preload_metadata = mdp;
  383                 kmdp = preload_search_by_type("elf kernel");
  384                 if (kmdp != NULL) {
  385                         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
  386                         init_static_kenv(MD_FETCH(kmdp, MODINFOMD_ENVP, char *),
  387                             0);
  388                         end = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
  389                         kernel_tlb_slots = MD_FETCH(kmdp, MODINFOMD_DTLB_SLOTS,
  390                             int);
  391                         kernel_tlbs = (void *)preload_search_info(kmdp,
  392                             MODINFO_METADATA | MODINFOMD_DTLB);
  393                 }
  394         }
  395 
  396         init_param1();
  397 
  398         /*
  399          * Initialize Open Firmware (needed for console).
  400          */
  401         OF_install(OFW_STD_DIRECT, 0);
  402         OF_init(ofw_entry);
  403 
  404         /*
  405          * Prime our per-CPU data page for use.  Note, we are using it for
  406          * our stack, so don't pass the real size (PAGE_SIZE) to pcpu_init
  407          * or it'll zero it out from under us.
  408          */
  409         pc = (struct pcpu *)(pcpu0 + (PCPU_PAGES * PAGE_SIZE)) - 1;
  410         pcpu_init(pc, 0, sizeof(struct pcpu));
  411         pc->pc_addr = (vm_offset_t)pcpu0;
  412         pc->pc_impl = cpu_impl;
  413         pc->pc_mid = cpu_get_mid(cpu_impl);
  414         pc->pc_tlb_ctx = TLB_CTX_USER_MIN;
  415         pc->pc_tlb_ctx_min = TLB_CTX_USER_MIN;
  416         pc->pc_tlb_ctx_max = TLB_CTX_USER_MAX;
  417 
  418         /*
  419          * Determine the OFW node and frequency of the BSP (and ensure the
  420          * BSP is in the device tree in the first place).
  421          */
  422         root = OF_peer(0);
  423         pc->pc_node = find_bsp(root, pc->pc_mid, cpu_impl);
  424         if (pc->pc_node == 0)
  425                 OF_panic("%s: cannot find boot CPU node", __func__);
  426         if (OF_getprop(pc->pc_node, "clock-frequency", &pc->pc_clock,
  427             sizeof(pc->pc_clock)) <= 0)
  428                 OF_panic("%s: cannot determine boot CPU clock", __func__);
  429 
  430         /*
  431          * Panic if there is no metadata.  Most likely the kernel was booted
  432          * directly, instead of through loader(8).
  433          */
  434         if (mdp == NULL || kmdp == NULL || end == 0 ||
  435             kernel_tlb_slots == 0 || kernel_tlbs == NULL)
  436                 OF_panic("%s: missing loader metadata.\nThis probably means "
  437                     "you are not using loader(8).", __func__);
  438 
  439         /*
  440          * Work around the broken loader behavior of not demapping no
  441          * longer used kernel TLB slots when unloading the kernel or
  442          * modules.
  443          */
  444         for (va = KERNBASE + (kernel_tlb_slots - 1) * PAGE_SIZE_4M;
  445             va >= roundup2(end, PAGE_SIZE_4M); va -= PAGE_SIZE_4M) {
  446                 if (bootverbose)
  447                         OF_printf("demapping unused kernel TLB slot "
  448                             "(va %#lx - %#lx)\n", va, va + PAGE_SIZE_4M - 1);
  449                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  450                     ASI_DMMU_DEMAP, 0);
  451                 stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
  452                     ASI_IMMU_DEMAP, 0);
  453                 flush(KERNBASE);
  454                 kernel_tlb_slots--;
  455         }
  456 
  457         /*
  458          * Determine the TLB slot maxima, which are expected to be
  459          * equal across all CPUs.
  460          * NB: for cheetah-class CPUs, these properties only refer
  461          * to the t16s.
  462          */
  463         if (OF_getprop(pc->pc_node, "#dtlb-entries", &dtlb_slots,
  464             sizeof(dtlb_slots)) == -1)
  465                 OF_panic("%s: cannot determine number of dTLB slots",
  466                     __func__);
  467         if (OF_getprop(pc->pc_node, "#itlb-entries", &itlb_slots,
  468             sizeof(itlb_slots)) == -1)
  469                 OF_panic("%s: cannot determine number of iTLB slots",
  470                     __func__);
  471 
  472         /*
  473          * Initialize and enable the caches.  Note that this may include
  474          * applying workarounds.
  475          */
  476         cache_init(pc);
  477         cache_enable(cpu_impl);
  478         uma_set_align(pc->pc_cache.dc_linesize - 1);
  479 
  480         cpu_block_copy = bcopy;
  481         cpu_block_zero = bzero;
  482         getenv_int("machdep.use_vis", &cpu_use_vis);
  483         if (cpu_use_vis) {
  484                 switch (cpu_impl) {
  485                 case CPU_IMPL_SPARC64:
  486                 case CPU_IMPL_ULTRASPARCI:
  487                 case CPU_IMPL_ULTRASPARCII:
  488                 case CPU_IMPL_ULTRASPARCIIi:
  489                 case CPU_IMPL_ULTRASPARCIIe:
  490                 case CPU_IMPL_ULTRASPARCIII:    /* NB: we've disabled P$. */
  491                 case CPU_IMPL_ULTRASPARCIIIp:
  492                 case CPU_IMPL_ULTRASPARCIIIi:
  493                 case CPU_IMPL_ULTRASPARCIV:
  494                 case CPU_IMPL_ULTRASPARCIVp:
  495                 case CPU_IMPL_ULTRASPARCIIIip:
  496                         cpu_block_copy = spitfire_block_copy;
  497                         cpu_block_zero = spitfire_block_zero;
  498                         break;
  499                 case CPU_IMPL_SPARC64V:
  500                         cpu_block_copy = zeus_block_copy;
  501                         cpu_block_zero = zeus_block_zero;
  502                         break;
  503                 }
  504         }
  505 
  506 #ifdef SMP
  507         mp_init();
  508 #endif
  509 
  510         /*
  511          * Initialize virtual memory and calculate physmem.
  512          */
  513         pmap_bootstrap(cpu_impl);
  514 
  515         /*
  516          * Initialize tunables.
  517          */
  518         init_param2(physmem);
  519         env = getenv("kernelname");
  520         if (env != NULL) {
  521                 strlcpy(kernelname, env, sizeof(kernelname));
  522                 freeenv(env);
  523         }
  524 
  525         /*
  526          * Initialize the interrupt tables.
  527          */
  528         intr_init1();
  529 
  530         /*
  531          * Initialize proc0, set kstack0, frame0, curthread and curpcb.
  532          */
  533         proc_linkup0(&proc0, &thread0);
  534         proc0.p_md.md_sigtramp = NULL;
  535         proc0.p_md.md_utrap = NULL;
  536         thread0.td_kstack = kstack0;
  537         thread0.td_kstack_pages = KSTACK_PAGES;
  538         thread0.td_pcb = (struct pcb *)
  539             (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
  540         frame0.tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_PRIV;
  541         thread0.td_frame = &frame0;
  542         pc->pc_curthread = &thread0;
  543         pc->pc_curpcb = thread0.td_pcb;
  544 
  545         /*
  546          * Initialize global registers.
  547          */
  548         cpu_setregs(pc);
  549 
  550         /*
  551          * Take over the trap table via the PROM.  Using the PROM for this
  552          * is necessary in order to set obp-control-relinquished to true
  553          * within the PROM so obtaining /virtual-memory/translations doesn't
  554          * trigger a fatal reset error or worse things further down the road.
  555          * XXX it should be possible to use this solely instead of writing
  556          * %tba in cpu_setregs().  Doing so causes a hang however.
  557          *
  558          * NB: the low-level console drivers require a working DELAY() and
  559          * some compiler optimizations may cause the curthread accesses of
  560          * mutex(9) to be factored out even if the latter aren't actually
  561          * called.  Both of these require PCPU_REG to be set.  However, we
  562          * can't set PCPU_REG without also taking over the trap table or the
  563          * firmware will overwrite it.
  564          */
  565         sun4u_set_traptable(tl0_base);
  566 
  567         /*
  568          * Initialize the dynamic per-CPU area for the BSP and the message
  569          * buffer (after setting the trap table).
  570          */
  571         dpcpu_init(dpcpu0, 0);
  572         msgbufinit(msgbufp, msgbufsize);
  573 
  574         /*
  575          * Initialize mutexes.
  576          */
  577         mutex_init();
  578 
  579         /*
  580          * Initialize console now that we have a reasonable set of system
  581          * services.
  582          */
  583         cninit();
  584 
  585         /*
  586          * Finish the interrupt initialization now that mutexes work and
  587          * enable them.
  588          */
  589         intr_init2();
  590         wrpr(pil, 0, 0);
  591         wrpr(pstate, 0, PSTATE_KERNEL);
  592 
  593         OF_getprop(root, "name", sparc64_model, sizeof(sparc64_model) - 1);
  594 
  595         kdb_init();
  596 
  597 #ifdef KDB
  598         if (boothowto & RB_KDB)
  599                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
  600 #endif
  601 }
  602 
  603 void
  604 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  605 {
  606         struct trapframe *tf;
  607         struct sigframe *sfp;
  608         struct sigacts *psp;
  609         struct sigframe sf;
  610         struct thread *td;
  611         struct frame *fp;
  612         struct proc *p;
  613         u_long sp;
  614         int oonstack;
  615         int sig;
  616 
  617         oonstack = 0;
  618         td = curthread;
  619         p = td->td_proc;
  620         PROC_LOCK_ASSERT(p, MA_OWNED);
  621         sig = ksi->ksi_signo;
  622         psp = p->p_sigacts;
  623         mtx_assert(&psp->ps_mtx, MA_OWNED);
  624         tf = td->td_frame;
  625         sp = tf->tf_sp + SPOFF;
  626         oonstack = sigonstack(sp);
  627 
  628         CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
  629             catcher, sig);
  630 
  631         /* Make sure we have a signal trampoline to return to. */
  632         if (p->p_md.md_sigtramp == NULL) {
  633                 /*
  634                  * No signal trampoline... kill the process.
  635                  */
  636                 CTR0(KTR_SIG, "sendsig: no sigtramp");
  637                 printf("sendsig: %s is too old, rebuild it\n", p->p_comm);
  638                 sigexit(td, sig);
  639                 /* NOTREACHED */
  640         }
  641 
  642         /* Save user context. */
  643         bzero(&sf, sizeof(sf));
  644         get_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
  645         sf.sf_uc.uc_sigmask = *mask;
  646         sf.sf_uc.uc_stack = td->td_sigstk;
  647         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
  648             ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  649 
  650         /* Allocate and validate space for the signal handler context. */
  651         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  652             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  653                 sfp = (struct sigframe *)(td->td_sigstk.ss_sp +
  654                     td->td_sigstk.ss_size - sizeof(struct sigframe));
  655         } else
  656                 sfp = (struct sigframe *)sp - 1;
  657         mtx_unlock(&psp->ps_mtx);
  658         PROC_UNLOCK(p);
  659 
  660         fp = (struct frame *)sfp - 1;
  661 
  662         /* Build the argument list for the signal handler. */
  663         tf->tf_out[0] = sig;
  664         tf->tf_out[2] = (register_t)&sfp->sf_uc;
  665         tf->tf_out[4] = (register_t)catcher;
  666         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  667                 /* Signal handler installed with SA_SIGINFO. */
  668                 tf->tf_out[1] = (register_t)&sfp->sf_si;
  669 
  670                 /* Fill in POSIX parts. */
  671                 sf.sf_si = ksi->ksi_info;
  672                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  673         } else {
  674                 /* Old FreeBSD-style arguments. */
  675                 tf->tf_out[1] = ksi->ksi_code;
  676                 tf->tf_out[3] = (register_t)ksi->ksi_addr;
  677         }
  678 
  679         /* Copy the sigframe out to the user's stack. */
  680         if (rwindow_save(td) != 0 || copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
  681             suword(&fp->fr_in[6], tf->tf_out[6]) != 0) {
  682                 /*
  683                  * Something is wrong with the stack pointer.
  684                  * ...Kill the process.
  685                  */
  686                 CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp);
  687                 PROC_LOCK(p);
  688                 sigexit(td, SIGILL);
  689                 /* NOTREACHED */
  690         }
  691 
  692         tf->tf_tpc = (u_long)p->p_md.md_sigtramp;
  693         tf->tf_tnpc = tf->tf_tpc + 4;
  694         tf->tf_sp = (u_long)fp - SPOFF;
  695 
  696         CTR3(KTR_SIG, "sendsig: return td=%p pc=%#lx sp=%#lx", td, tf->tf_tpc,
  697             tf->tf_sp);
  698 
  699         PROC_LOCK(p);
  700         mtx_lock(&psp->ps_mtx);
  701 }
  702 
  703 #ifndef _SYS_SYSPROTO_H_
  704 struct sigreturn_args {
  705         ucontext_t *ucp;
  706 };
  707 #endif
  708 
  709 /*
  710  * MPSAFE
  711  */
  712 int
  713 sys_sigreturn(struct thread *td, struct sigreturn_args *uap)
  714 {
  715         struct proc *p;
  716         mcontext_t *mc;
  717         ucontext_t uc;
  718         int error;
  719 
  720         p = td->td_proc;
  721         if (rwindow_save(td)) {
  722                 PROC_LOCK(p);
  723                 sigexit(td, SIGILL);
  724         }
  725 
  726         CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
  727         if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
  728                 CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
  729                 return (EFAULT);
  730         }
  731 
  732         mc = &uc.uc_mcontext;
  733         error = set_mcontext(td, mc);
  734         if (error != 0)
  735                 return (error);
  736 
  737         kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
  738 
  739         CTR4(KTR_SIG, "sigreturn: return td=%p pc=%#lx sp=%#lx tstate=%#lx",
  740             td, mc->_mc_tpc, mc->_mc_sp, mc->_mc_tstate);
  741         return (EJUSTRETURN);
  742 }
  743 
  744 /*
  745  * Construct a PCB from a trapframe. This is called from kdb_trap() where
  746  * we want to start a backtrace from the function that caused us to enter
  747  * the debugger. We have the context in the trapframe, but base the trace
  748  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
  749  * enough for a backtrace.
  750  */
  751 void
  752 makectx(struct trapframe *tf, struct pcb *pcb)
  753 {
  754 
  755         pcb->pcb_pc = tf->tf_tpc;
  756         pcb->pcb_sp = tf->tf_sp;
  757 }
  758 
  759 int
  760 get_mcontext(struct thread *td, mcontext_t *mc, int flags)
  761 {
  762         struct trapframe *tf;
  763         struct pcb *pcb;
  764 
  765         tf = td->td_frame;
  766         pcb = td->td_pcb;
  767         /*
  768          * Copy the registers which will be restored by tl0_ret() from the
  769          * trapframe.
  770          * Note that we skip %g7 which is used as the userland TLS register
  771          * and %wstate.
  772          */
  773         mc->_mc_flags = _MC_VERSION;
  774         mc->mc_global[1] = tf->tf_global[1];
  775         mc->mc_global[2] = tf->tf_global[2];
  776         mc->mc_global[3] = tf->tf_global[3];
  777         mc->mc_global[4] = tf->tf_global[4];
  778         mc->mc_global[5] = tf->tf_global[5];
  779         mc->mc_global[6] = tf->tf_global[6];
  780         if (flags & GET_MC_CLEAR_RET) {
  781                 mc->mc_out[0] = 0;
  782                 mc->mc_out[1] = 0;
  783         } else {
  784                 mc->mc_out[0] = tf->tf_out[0];
  785                 mc->mc_out[1] = tf->tf_out[1];
  786         }
  787         mc->mc_out[2] = tf->tf_out[2];
  788         mc->mc_out[3] = tf->tf_out[3];
  789         mc->mc_out[4] = tf->tf_out[4];
  790         mc->mc_out[5] = tf->tf_out[5];
  791         mc->mc_out[6] = tf->tf_out[6];
  792         mc->mc_out[7] = tf->tf_out[7];
  793         mc->_mc_fprs = tf->tf_fprs;
  794         mc->_mc_fsr = tf->tf_fsr;
  795         mc->_mc_gsr = tf->tf_gsr;
  796         mc->_mc_tnpc = tf->tf_tnpc;
  797         mc->_mc_tpc = tf->tf_tpc;
  798         mc->_mc_tstate = tf->tf_tstate;
  799         mc->_mc_y = tf->tf_y;
  800         critical_enter();
  801         if ((tf->tf_fprs & FPRS_FEF) != 0) {
  802                 savefpctx(pcb->pcb_ufp);
  803                 tf->tf_fprs &= ~FPRS_FEF;
  804                 pcb->pcb_flags |= PCB_FEF;
  805         }
  806         if ((pcb->pcb_flags & PCB_FEF) != 0) {
  807                 bcopy(pcb->pcb_ufp, mc->mc_fp, sizeof(mc->mc_fp));
  808                 mc->_mc_fprs |= FPRS_FEF;
  809         }
  810         critical_exit();
  811         return (0);
  812 }
  813 
  814 int
  815 set_mcontext(struct thread *td, mcontext_t *mc)
  816 {
  817         struct trapframe *tf;
  818         struct pcb *pcb;
  819 
  820         if (!TSTATE_SECURE(mc->_mc_tstate) ||
  821             (mc->_mc_flags & ((1L << _MC_VERSION_BITS) - 1)) != _MC_VERSION)
  822                 return (EINVAL);
  823         tf = td->td_frame;
  824         pcb = td->td_pcb;
  825         /* Make sure the windows are spilled first. */
  826         flushw();
  827         /*
  828          * Copy the registers which will be restored by tl0_ret() to the
  829          * trapframe.
  830          * Note that we skip %g7 which is used as the userland TLS register
  831          * and %wstate.
  832          */
  833         tf->tf_global[1] = mc->mc_global[1];
  834         tf->tf_global[2] = mc->mc_global[2];
  835         tf->tf_global[3] = mc->mc_global[3];
  836         tf->tf_global[4] = mc->mc_global[4];
  837         tf->tf_global[5] = mc->mc_global[5];
  838         tf->tf_global[6] = mc->mc_global[6];
  839         tf->tf_out[0] = mc->mc_out[0];
  840         tf->tf_out[1] = mc->mc_out[1];
  841         tf->tf_out[2] = mc->mc_out[2];
  842         tf->tf_out[3] = mc->mc_out[3];
  843         tf->tf_out[4] = mc->mc_out[4];
  844         tf->tf_out[5] = mc->mc_out[5];
  845         tf->tf_out[6] = mc->mc_out[6];
  846         tf->tf_out[7] = mc->mc_out[7];
  847         tf->tf_fprs = mc->_mc_fprs;
  848         tf->tf_fsr = mc->_mc_fsr;
  849         tf->tf_gsr = mc->_mc_gsr;
  850         tf->tf_tnpc = mc->_mc_tnpc;
  851         tf->tf_tpc = mc->_mc_tpc;
  852         tf->tf_tstate = mc->_mc_tstate;
  853         tf->tf_y = mc->_mc_y;
  854         if ((mc->_mc_fprs & FPRS_FEF) != 0) {
  855                 tf->tf_fprs = 0;
  856                 bcopy(mc->mc_fp, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
  857                 pcb->pcb_flags |= PCB_FEF;
  858         }
  859         return (0);
  860 }
  861 
  862 /*
  863  * Exit the kernel and execute a firmware call that will not return, as
  864  * specified by the arguments.
  865  */
  866 void
  867 cpu_shutdown(void *args)
  868 {
  869 
  870 #ifdef SMP
  871         cpu_mp_shutdown();
  872 #endif
  873         ofw_exit(args);
  874 }
  875 
  876 /*
  877  * Flush the D-cache for non-DMA I/O so that the I-cache can
  878  * be made coherent later.
  879  */
  880 void
  881 cpu_flush_dcache(void *ptr, size_t len)
  882 {
  883 
  884         /* TBD */
  885 }
  886 
  887 /* Get current clock frequency for the given CPU ID. */
  888 int
  889 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  890 {
  891         struct pcpu *pc;
  892 
  893         pc = pcpu_find(cpu_id);
  894         if (pc == NULL || rate == NULL)
  895                 return (EINVAL);
  896         *rate = pc->pc_clock;
  897         return (0);
  898 }
  899 
  900 /*
  901  * Duplicate OF_exit() with a different firmware call function that restores
  902  * the trap table, otherwise a RED state exception is triggered in at least
  903  * some firmware versions.
  904  */
  905 void
  906 cpu_halt(void)
  907 {
  908         static struct {
  909                 cell_t name;
  910                 cell_t nargs;
  911                 cell_t nreturns;
  912         } args = {
  913                 (cell_t)"exit",
  914                 0,
  915                 0
  916         };
  917 
  918         cpu_shutdown(&args);
  919 }
  920 
  921 static void
  922 sparc64_shutdown_final(void *dummy, int howto)
  923 {
  924         static struct {
  925                 cell_t name;
  926                 cell_t nargs;
  927                 cell_t nreturns;
  928         } args = {
  929                 (cell_t)"SUNW,power-off",
  930                 0,
  931                 0
  932         };
  933 
  934         /* Turn the power off? */
  935         if ((howto & RB_POWEROFF) != 0)
  936                 cpu_shutdown(&args);
  937         /* In case of halt, return to the firmware. */
  938         if ((howto & RB_HALT) != 0)
  939                 cpu_halt();
  940 }
  941 
  942 void
  943 cpu_idle(int busy)
  944 {
  945 
  946         /* Insert code to halt (until next interrupt) for the idle loop. */
  947 }
  948 
  949 int
  950 cpu_idle_wakeup(int cpu)
  951 {
  952 
  953         return (1);
  954 }
  955 
  956 int
  957 ptrace_set_pc(struct thread *td, u_long addr)
  958 {
  959 
  960         td->td_frame->tf_tpc = addr;
  961         td->td_frame->tf_tnpc = addr + 4;
  962         return (0);
  963 }
  964 
  965 int
  966 ptrace_single_step(struct thread *td)
  967 {
  968 
  969         /* TODO; */
  970         return (0);
  971 }
  972 
  973 int
  974 ptrace_clear_single_step(struct thread *td)
  975 {
  976 
  977         /* TODO; */
  978         return (0);
  979 }
  980 
  981 void
  982 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
  983 {
  984         struct trapframe *tf;
  985         struct pcb *pcb;
  986         struct proc *p;
  987         u_long sp;
  988 
  989         /* XXX no cpu_exec */
  990         p = td->td_proc;
  991         p->p_md.md_sigtramp = NULL;
  992         if (p->p_md.md_utrap != NULL) {
  993                 utrap_free(p->p_md.md_utrap);
  994                 p->p_md.md_utrap = NULL;
  995         }
  996 
  997         pcb = td->td_pcb;
  998         tf = td->td_frame;
  999         sp = rounddown(stack, 16);
 1000         bzero(pcb, sizeof(*pcb));
 1001         bzero(tf, sizeof(*tf));
 1002         tf->tf_out[0] = stack;
 1003         tf->tf_out[3] = p->p_sysent->sv_psstrings;
 1004         tf->tf_out[6] = sp - SPOFF - sizeof(struct frame);
 1005         tf->tf_tnpc = imgp->entry_addr + 4;
 1006         tf->tf_tpc = imgp->entry_addr;
 1007         /*
 1008          * While we could adhere to the memory model indicated in the ELF
 1009          * header, it turns out that just always using TSO performs best.
 1010          */
 1011         tf->tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_MM_TSO;
 1012 
 1013         td->td_retval[0] = tf->tf_out[0];
 1014         td->td_retval[1] = tf->tf_out[1];
 1015 }
 1016 
 1017 int
 1018 fill_regs(struct thread *td, struct reg *regs)
 1019 {
 1020 
 1021         bcopy(td->td_frame, regs, sizeof(*regs));
 1022         return (0);
 1023 }
 1024 
 1025 int
 1026 set_regs(struct thread *td, struct reg *regs)
 1027 {
 1028         struct trapframe *tf;
 1029 
 1030         if (!TSTATE_SECURE(regs->r_tstate))
 1031                 return (EINVAL);
 1032         tf = td->td_frame;
 1033         regs->r_wstate = tf->tf_wstate;
 1034         bcopy(regs, tf, sizeof(*regs));
 1035         return (0);
 1036 }
 1037 
 1038 int
 1039 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 1040 {
 1041 
 1042         return (ENOSYS);
 1043 }
 1044 
 1045 int
 1046 set_dbregs(struct thread *td, struct dbreg *dbregs)
 1047 {
 1048 
 1049         return (ENOSYS);
 1050 }
 1051 
 1052 int
 1053 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 1054 {
 1055         struct trapframe *tf;
 1056         struct pcb *pcb;
 1057 
 1058         pcb = td->td_pcb;
 1059         tf = td->td_frame;
 1060         bcopy(pcb->pcb_ufp, fpregs->fr_regs, sizeof(fpregs->fr_regs));
 1061         fpregs->fr_fsr = tf->tf_fsr;
 1062         fpregs->fr_gsr = tf->tf_gsr;
 1063         return (0);
 1064 }
 1065 
 1066 int
 1067 set_fpregs(struct thread *td, struct fpreg *fpregs)
 1068 {
 1069         struct trapframe *tf;
 1070         struct pcb *pcb;
 1071 
 1072         pcb = td->td_pcb;
 1073         tf = td->td_frame;
 1074         tf->tf_fprs &= ~FPRS_FEF;
 1075         bcopy(fpregs->fr_regs, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
 1076         tf->tf_fsr = fpregs->fr_fsr;
 1077         tf->tf_gsr = fpregs->fr_gsr;
 1078         return (0);
 1079 }
 1080 
 1081 struct md_utrap *
 1082 utrap_alloc(void)
 1083 {
 1084         struct md_utrap *ut;
 1085 
 1086         ut = malloc(sizeof(struct md_utrap), M_SUBPROC, M_WAITOK | M_ZERO);
 1087         ut->ut_refcnt = 1;
 1088         return (ut);
 1089 }
 1090 
 1091 void
 1092 utrap_free(struct md_utrap *ut)
 1093 {
 1094         int refcnt;
 1095 
 1096         if (ut == NULL)
 1097                 return;
 1098         mtx_pool_lock(mtxpool_sleep, ut);
 1099         ut->ut_refcnt--;
 1100         refcnt = ut->ut_refcnt;
 1101         mtx_pool_unlock(mtxpool_sleep, ut);
 1102         if (refcnt == 0)
 1103                 free(ut, M_SUBPROC);
 1104 }
 1105 
 1106 struct md_utrap *
 1107 utrap_hold(struct md_utrap *ut)
 1108 {
 1109 
 1110         if (ut == NULL)
 1111                 return (NULL);
 1112         mtx_pool_lock(mtxpool_sleep, ut);
 1113         ut->ut_refcnt++;
 1114         mtx_pool_unlock(mtxpool_sleep, ut);
 1115         return (ut);
 1116 }

Cache object: 90210f4012f89211c60631fc1c22fe2f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.