The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/sys/queue.h

Version: -  FREEBSD  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-2  -  FREEBSD-11-1  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-4  -  FREEBSD-10-3  -  FREEBSD-10-2  -  FREEBSD-10-1  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-3  -  FREEBSD-9-2  -  FREEBSD-9-1  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-4  -  FREEBSD-8-3  -  FREEBSD-8-2  -  FREEBSD-8-1  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-4  -  FREEBSD-7-3  -  FREEBSD-7-2  -  FREEBSD-7-1  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-4  -  FREEBSD-6-3  -  FREEBSD-6-2  -  FREEBSD-6-1  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-5  -  FREEBSD-5-4  -  FREEBSD-5-3  -  FREEBSD-5-2  -  FREEBSD-5-1  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by the University of
   16  *      California, Berkeley and its contributors.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      @(#)queue.h     8.5 (Berkeley) 8/20/94
   34  * $FreeBSD: stable/3/sys/sys/queue.h 60011 2000-05-05 01:41:41Z archie $
   35  */
   36 
   37 #ifndef _SYS_QUEUE_H_
   38 #define _SYS_QUEUE_H_
   39 
   40 /*
   41  * This file defines five types of data structures: singly-linked lists,
   42  * singly-linked tail queues, lists, tail queues, and circular queues.
   43  *
   44  * A singly-linked list is headed by a single forward pointer. The elements
   45  * are singly linked for minimum space and pointer manipulation overhead at
   46  * the expense of O(n) removal for arbitrary elements. New elements can be
   47  * added to the list after an existing element or at the head of the list.
   48  * Elements being removed from the head of the list should use the explicit
   49  * macro for this purpose for optimum efficiency. A singly-linked list may
   50  * only be traversed in the forward direction.  Singly-linked lists are ideal
   51  * for applications with large datasets and few or no removals or for
   52  * implementing a LIFO queue.
   53  *
   54  * A singly-linked tail queue is headed by a pair of pointers, one to the
   55  * head of the list and the other to the tail of the list. The elements are
   56  * singly linked for minimum space and pointer manipulation overhead at the
   57  * expense of O(n) removal for arbitrary elements. New elements can be added
   58  * to the list after an existing element, at the head of the list, or at the
   59  * end of the list. Elements being removed from the head of the tail queue
   60  * should use the explicit macro for this purpose for optimum efficiency.
   61  * A singly-linked tail queue may only be traversed in the forward direction.
   62  * Singly-linked tail queues are ideal for applications with large datasets
   63  * and few or no removals or for implementing a FIFO queue.
   64  *
   65  * A list is headed by a single forward pointer (or an array of forward
   66  * pointers for a hash table header). The elements are doubly linked
   67  * so that an arbitrary element can be removed without a need to
   68  * traverse the list. New elements can be added to the list before
   69  * or after an existing element or at the head of the list. A list
   70  * may only be traversed in the forward direction.
   71  *
   72  * A tail queue is headed by a pair of pointers, one to the head of the
   73  * list and the other to the tail of the list. The elements are doubly
   74  * linked so that an arbitrary element can be removed without a need to
   75  * traverse the list. New elements can be added to the list before or
   76  * after an existing element, at the head of the list, or at the end of
   77  * the list. A tail queue may be traversed in either direction.
   78  *
   79  * A circle queue is headed by a pair of pointers, one to the head of the
   80  * list and the other to the tail of the list. The elements are doubly
   81  * linked so that an arbitrary element can be removed without a need to
   82  * traverse the list. New elements can be added to the list before or after
   83  * an existing element, at the head of the list, or at the end of the list.
   84  * A circle queue may be traversed in either direction, but has a more
   85  * complex end of list detection.
   86  *
   87  * For details on the use of these macros, see the queue(3) manual page.
   88  *
   89  *
   90  *                      SLIST   LIST    STAILQ  TAILQ   CIRCLEQ
   91  * _HEAD                +       +       +       +       +
   92  * _ENTRY               +       +       +       +       +
   93  * _INIT                +       +       +       +       +
   94  * _EMPTY               +       +       +       +       +
   95  * _FIRST               +       +       +       +       +
   96  * _NEXT                +       +       +       +       +
   97  * _PREV                -       -       -       +       +
   98  * _LAST                -       -       +       +       +
   99  * _FOREACH             +       +       +       +       +
  100  * _FOREACH_REVERSE     -       -       -       +       +
  101  * _INSERT_HEAD         +       +       +       +       +
  102  * _INSERT_BEFORE       -       +       -       +       +
  103  * _INSERT_AFTER        +       +       +       +       +
  104  * _INSERT_TAIL         -       -       +       +       +
  105  * _REMOVE_HEAD         +       -       +       -       -
  106  * _REMOVE              +       +       +       +       +
  107  *
  108  */
  109 
  110 /*
  111  * Singly-linked List definitions.
  112  */
  113 #define SLIST_HEAD(name, type)                                          \
  114 struct name {                                                           \
  115         struct type *slh_first; /* first element */                     \
  116 }
  117 
  118 #define SLIST_HEAD_INITIALIZER(head)                                    \
  119         { NULL }
  120  
  121 #define SLIST_ENTRY(type)                                               \
  122 struct {                                                                \
  123         struct type *sle_next;  /* next element */                      \
  124 }
  125  
  126 /*
  127  * Singly-linked List functions.
  128  */
  129 #define SLIST_EMPTY(head)       ((head)->slh_first == NULL)
  130 
  131 #define SLIST_FIRST(head)       ((head)->slh_first)
  132 
  133 #define SLIST_FOREACH(var, head, field)                                 \
  134         for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
  135 
  136 #define SLIST_INIT(head) {                                              \
  137         (head)->slh_first = NULL;                                       \
  138 }
  139 
  140 #define SLIST_INSERT_AFTER(slistelm, elm, field) do {                   \
  141         (elm)->field.sle_next = (slistelm)->field.sle_next;             \
  142         (slistelm)->field.sle_next = (elm);                             \
  143 } while (0)
  144 
  145 #define SLIST_INSERT_HEAD(head, elm, field) do {                        \
  146         (elm)->field.sle_next = (head)->slh_first;                      \
  147         (head)->slh_first = (elm);                                      \
  148 } while (0)
  149 
  150 #define SLIST_NEXT(elm, field)  ((elm)->field.sle_next)
  151 
  152 #define SLIST_REMOVE_HEAD(head, field) do {                             \
  153         (head)->slh_first = (head)->slh_first->field.sle_next;          \
  154 } while (0)
  155 
  156 #define SLIST_REMOVE(head, elm, type, field) do {                       \
  157         if ((head)->slh_first == (elm)) {                               \
  158                 SLIST_REMOVE_HEAD((head), field);                       \
  159         }                                                               \
  160         else {                                                          \
  161                 struct type *curelm = (head)->slh_first;                \
  162                 while( curelm->field.sle_next != (elm) )                \
  163                         curelm = curelm->field.sle_next;                \
  164                 curelm->field.sle_next =                                \
  165                     curelm->field.sle_next->field.sle_next;             \
  166         }                                                               \
  167 } while (0)
  168 
  169 /*
  170  * Singly-linked Tail queue definitions.
  171  */
  172 #define STAILQ_HEAD(name, type)                                         \
  173 struct name {                                                           \
  174         struct type *stqh_first;/* first element */                     \
  175         struct type **stqh_last;/* addr of last next element */         \
  176 }
  177 
  178 #define STAILQ_HEAD_INITIALIZER(head)                                   \
  179         { NULL, &(head).stqh_first }
  180 
  181 #define STAILQ_ENTRY(type)                                              \
  182 struct {                                                                \
  183         struct type *stqe_next; /* next element */                      \
  184 }
  185 
  186 /*
  187  * Singly-linked Tail queue functions.
  188  */
  189 #define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
  190 
  191 #define STAILQ_INIT(head) do {                                          \
  192         (head)->stqh_first = NULL;                                      \
  193         (head)->stqh_last = &(head)->stqh_first;                        \
  194 } while (0)
  195 
  196 #define STAILQ_FIRST(head)      ((head)->stqh_first)
  197 #define STAILQ_LAST(head)       (*(head)->stqh_last)
  198 
  199 #define STAILQ_FOREACH(var, head, field)                                \
  200         for((var) = (head)->stqh_first; (var); (var) = (var)->field.stqe_next)
  201 
  202 #define STAILQ_INSERT_HEAD(head, elm, field) do {                       \
  203         if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)      \
  204                 (head)->stqh_last = &(elm)->field.stqe_next;            \
  205         (head)->stqh_first = (elm);                                     \
  206 } while (0)
  207 
  208 #define STAILQ_INSERT_TAIL(head, elm, field) do {                       \
  209         (elm)->field.stqe_next = NULL;                                  \
  210         *(head)->stqh_last = (elm);                                     \
  211         (head)->stqh_last = &(elm)->field.stqe_next;                    \
  212 } while (0)
  213 
  214 #define STAILQ_INSERT_AFTER(head, tqelm, elm, field) do {               \
  215         if (((elm)->field.stqe_next = (tqelm)->field.stqe_next) == NULL)\
  216                 (head)->stqh_last = &(elm)->field.stqe_next;            \
  217         (tqelm)->field.stqe_next = (elm);                               \
  218 } while (0)
  219 
  220 #define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
  221 
  222 #define STAILQ_REMOVE_HEAD(head, field) do {                            \
  223         if (((head)->stqh_first =                                       \
  224              (head)->stqh_first->field.stqe_next) == NULL)              \
  225                 (head)->stqh_last = &(head)->stqh_first;                \
  226 } while (0)
  227 
  228 #define STAILQ_REMOVE_HEAD_UNTIL(head, elm, field) do {                 \
  229         if (((head)->stqh_first = (elm)->field.stqe_next) == NULL)      \
  230                 (head)->stqh_last = &(head)->stqh_first;                \
  231 } while (0)
  232 
  233 #define STAILQ_REMOVE(head, elm, type, field) do {                      \
  234         if ((head)->stqh_first == (elm)) {                              \
  235                 STAILQ_REMOVE_HEAD(head, field);                        \
  236         }                                                               \
  237         else {                                                          \
  238                 struct type *curelm = (head)->stqh_first;               \
  239                 while( curelm->field.stqe_next != (elm) )               \
  240                         curelm = curelm->field.stqe_next;               \
  241                 if((curelm->field.stqe_next =                           \
  242                     curelm->field.stqe_next->field.stqe_next) == NULL)  \
  243                         (head)->stqh_last = &(curelm)->field.stqe_next; \
  244         }                                                               \
  245 } while (0)
  246 
  247 /*
  248  * List definitions.
  249  */
  250 #define LIST_HEAD(name, type)                                           \
  251 struct name {                                                           \
  252         struct type *lh_first;  /* first element */                     \
  253 }
  254 
  255 #define LIST_HEAD_INITIALIZER(head)                                     \
  256         { NULL }
  257 
  258 #define LIST_ENTRY(type)                                                \
  259 struct {                                                                \
  260         struct type *le_next;   /* next element */                      \
  261         struct type **le_prev;  /* address of previous next element */  \
  262 }
  263 
  264 /*
  265  * List functions.
  266  */
  267 
  268 #define LIST_EMPTY(head) ((head)->lh_first == NULL)
  269 
  270 #define LIST_FIRST(head)        ((head)->lh_first)
  271 
  272 #define LIST_FOREACH(var, head, field)                                  \
  273         for((var) = (head)->lh_first; (var); (var) = (var)->field.le_next)
  274 
  275 #define LIST_INIT(head) do {                                            \
  276         (head)->lh_first = NULL;                                        \
  277 } while (0)
  278 
  279 #define LIST_INSERT_AFTER(listelm, elm, field) do {                     \
  280         if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)  \
  281                 (listelm)->field.le_next->field.le_prev =               \
  282                     &(elm)->field.le_next;                              \
  283         (listelm)->field.le_next = (elm);                               \
  284         (elm)->field.le_prev = &(listelm)->field.le_next;               \
  285 } while (0)
  286 
  287 #define LIST_INSERT_BEFORE(listelm, elm, field) do {                    \
  288         (elm)->field.le_prev = (listelm)->field.le_prev;                \
  289         (elm)->field.le_next = (listelm);                               \
  290         *(listelm)->field.le_prev = (elm);                              \
  291         (listelm)->field.le_prev = &(elm)->field.le_next;               \
  292 } while (0)
  293 
  294 #define LIST_INSERT_HEAD(head, elm, field) do {                         \
  295         if (((elm)->field.le_next = (head)->lh_first) != NULL)          \
  296                 (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
  297         (head)->lh_first = (elm);                                       \
  298         (elm)->field.le_prev = &(head)->lh_first;                       \
  299 } while (0)
  300 
  301 #define LIST_NEXT(elm, field)   ((elm)->field.le_next)
  302 
  303 #define LIST_REMOVE(elm, field) do {                                    \
  304         if ((elm)->field.le_next != NULL)                               \
  305                 (elm)->field.le_next->field.le_prev =                   \
  306                     (elm)->field.le_prev;                               \
  307         *(elm)->field.le_prev = (elm)->field.le_next;                   \
  308 } while (0)
  309 
  310 /*
  311  * Tail queue definitions.
  312  */
  313 #define TAILQ_HEAD(name, type)                                          \
  314 struct name {                                                           \
  315         struct type *tqh_first; /* first element */                     \
  316         struct type **tqh_last; /* addr of last next element */         \
  317 }
  318 
  319 #define TAILQ_HEAD_INITIALIZER(head)                                    \
  320         { NULL, &(head).tqh_first }
  321 
  322 #define TAILQ_ENTRY(type)                                               \
  323 struct {                                                                \
  324         struct type *tqe_next;  /* next element */                      \
  325         struct type **tqe_prev; /* address of previous next element */  \
  326 }
  327 
  328 /*
  329  * Tail queue functions.
  330  */
  331 #define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
  332 
  333 #define TAILQ_FOREACH(var, head, field)                                 \
  334         for (var = TAILQ_FIRST(head); var; var = TAILQ_NEXT(var, field))
  335 
  336 #define TAILQ_FOREACH_REVERSE(var, head, headname, field)               \
  337         for ((var) = TAILQ_LAST((head), headname);                      \
  338              (var);                                                     \
  339              (var) = TAILQ_PREV((var), headname, field))
  340 
  341 #define TAILQ_FIRST(head) ((head)->tqh_first)
  342 
  343 #define TAILQ_LAST(head, headname) \
  344         (*(((struct headname *)((head)->tqh_last))->tqh_last))
  345 
  346 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
  347 
  348 #define TAILQ_PREV(elm, headname, field) \
  349         (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
  350 
  351 #define TAILQ_INIT(head) do {                                           \
  352         (head)->tqh_first = NULL;                                       \
  353         (head)->tqh_last = &(head)->tqh_first;                          \
  354 } while (0)
  355 
  356 #define TAILQ_INSERT_HEAD(head, elm, field) do {                        \
  357         if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)        \
  358                 (head)->tqh_first->field.tqe_prev =                     \
  359                     &(elm)->field.tqe_next;                             \
  360         else                                                            \
  361                 (head)->tqh_last = &(elm)->field.tqe_next;              \
  362         (head)->tqh_first = (elm);                                      \
  363         (elm)->field.tqe_prev = &(head)->tqh_first;                     \
  364 } while (0)
  365 
  366 #define TAILQ_INSERT_TAIL(head, elm, field) do {                        \
  367         (elm)->field.tqe_next = NULL;                                   \
  368         (elm)->field.tqe_prev = (head)->tqh_last;                       \
  369         *(head)->tqh_last = (elm);                                      \
  370         (head)->tqh_last = &(elm)->field.tqe_next;                      \
  371 } while (0)
  372 
  373 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {              \
  374         if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
  375                 (elm)->field.tqe_next->field.tqe_prev =                 \
  376                     &(elm)->field.tqe_next;                             \
  377         else                                                            \
  378                 (head)->tqh_last = &(elm)->field.tqe_next;              \
  379         (listelm)->field.tqe_next = (elm);                              \
  380         (elm)->field.tqe_prev = &(listelm)->field.tqe_next;             \
  381 } while (0)
  382 
  383 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do {                   \
  384         (elm)->field.tqe_prev = (listelm)->field.tqe_prev;              \
  385         (elm)->field.tqe_next = (listelm);                              \
  386         *(listelm)->field.tqe_prev = (elm);                             \
  387         (listelm)->field.tqe_prev = &(elm)->field.tqe_next;             \
  388 } while (0)
  389 
  390 #define TAILQ_REMOVE(head, elm, field) do {                             \
  391         if (((elm)->field.tqe_next) != NULL)                            \
  392                 (elm)->field.tqe_next->field.tqe_prev =                 \
  393                     (elm)->field.tqe_prev;                              \
  394         else                                                            \
  395                 (head)->tqh_last = (elm)->field.tqe_prev;               \
  396         *(elm)->field.tqe_prev = (elm)->field.tqe_next;                 \
  397 } while (0)
  398 
  399 /*
  400  * Circular queue definitions.
  401  */
  402 #define CIRCLEQ_HEAD(name, type)                                        \
  403 struct name {                                                           \
  404         struct type *cqh_first;         /* first element */             \
  405         struct type *cqh_last;          /* last element */              \
  406 }
  407 
  408 #define CIRCLEQ_ENTRY(type)                                             \
  409 struct {                                                                \
  410         struct type *cqe_next;          /* next element */              \
  411         struct type *cqe_prev;          /* previous element */          \
  412 }
  413 
  414 /*
  415  * Circular queue functions.
  416  */
  417 #define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
  418 
  419 #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
  420 
  421 #define CIRCLEQ_FOREACH(var, head, field)                               \
  422         for((var) = (head)->cqh_first;                                  \
  423             (var) != (void *)(head);                                    \
  424             (var) = (var)->field.cqe_next)
  425 
  426 #define CIRCLEQ_FOREACH_REVERSE(var, head, field)                       \
  427         for((var) = (head)->cqh_last;                                   \
  428             (var) != (void *)(head);                                    \
  429             (var) = (var)->field.cqe_prev)
  430 
  431 #define CIRCLEQ_INIT(head) do {                                         \
  432         (head)->cqh_first = (void *)(head);                             \
  433         (head)->cqh_last = (void *)(head);                              \
  434 } while (0)
  435 
  436 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {            \
  437         (elm)->field.cqe_next = (listelm)->field.cqe_next;              \
  438         (elm)->field.cqe_prev = (listelm);                              \
  439         if ((listelm)->field.cqe_next == (void *)(head))                \
  440                 (head)->cqh_last = (elm);                               \
  441         else                                                            \
  442                 (listelm)->field.cqe_next->field.cqe_prev = (elm);      \
  443         (listelm)->field.cqe_next = (elm);                              \
  444 } while (0)
  445 
  446 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {           \
  447         (elm)->field.cqe_next = (listelm);                              \
  448         (elm)->field.cqe_prev = (listelm)->field.cqe_prev;              \
  449         if ((listelm)->field.cqe_prev == (void *)(head))                \
  450                 (head)->cqh_first = (elm);                              \
  451         else                                                            \
  452                 (listelm)->field.cqe_prev->field.cqe_next = (elm);      \
  453         (listelm)->field.cqe_prev = (elm);                              \
  454 } while (0)
  455 
  456 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do {                      \
  457         (elm)->field.cqe_next = (head)->cqh_first;                      \
  458         (elm)->field.cqe_prev = (void *)(head);                         \
  459         if ((head)->cqh_last == (void *)(head))                         \
  460                 (head)->cqh_last = (elm);                               \
  461         else                                                            \
  462                 (head)->cqh_first->field.cqe_prev = (elm);              \
  463         (head)->cqh_first = (elm);                                      \
  464 } while (0)
  465 
  466 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do {                      \
  467         (elm)->field.cqe_next = (void *)(head);                         \
  468         (elm)->field.cqe_prev = (head)->cqh_last;                       \
  469         if ((head)->cqh_first == (void *)(head))                        \
  470                 (head)->cqh_first = (elm);                              \
  471         else                                                            \
  472                 (head)->cqh_last->field.cqe_next = (elm);               \
  473         (head)->cqh_last = (elm);                                       \
  474 } while (0)
  475 
  476 #define CIRCLEQ_LAST(head) ((head)->cqh_last)
  477 
  478 #define CIRCLEQ_NEXT(elm,field) ((elm)->field.cqe_next)
  479 
  480 #define CIRCLEQ_PREV(elm,field) ((elm)->field.cqe_prev)
  481 
  482 #define CIRCLEQ_REMOVE(head, elm, field) do {                           \
  483         if ((elm)->field.cqe_next == (void *)(head))                    \
  484                 (head)->cqh_last = (elm)->field.cqe_prev;               \
  485         else                                                            \
  486                 (elm)->field.cqe_next->field.cqe_prev =                 \
  487                     (elm)->field.cqe_prev;                              \
  488         if ((elm)->field.cqe_prev == (void *)(head))                    \
  489                 (head)->cqh_first = (elm)->field.cqe_next;              \
  490         else                                                            \
  491                 (elm)->field.cqe_prev->field.cqe_next =                 \
  492                     (elm)->field.cqe_next;                              \
  493 } while (0)
  494 
  495 #ifdef KERNEL
  496 
  497 /*
  498  * XXX insque() and remque() are an old way of handling certain queues.
  499  * They bogusly assumes that all queue heads look alike.
  500  */
  501 
  502 struct quehead {
  503         struct quehead *qh_link;
  504         struct quehead *qh_rlink;
  505 };
  506 
  507 #ifdef  __GNUC__
  508 
  509 static __inline void
  510 insque(void *a, void *b)
  511 {
  512         struct quehead *element = a, *head = b;
  513 
  514         element->qh_link = head->qh_link;
  515         element->qh_rlink = head;
  516         head->qh_link = element;
  517         element->qh_link->qh_rlink = element;
  518 }
  519 
  520 static __inline void
  521 remque(void *a)
  522 {
  523         struct quehead *element = a;
  524 
  525         element->qh_link->qh_rlink = element->qh_rlink;
  526         element->qh_rlink->qh_link = element->qh_link;
  527         element->qh_rlink = 0;
  528 }
  529 
  530 #else /* !__GNUC__ */
  531 
  532 void    insque __P((void *a, void *b));
  533 void    remque __P((void *a));
  534 
  535 #endif /* __GNUC__ */
  536 
  537 #endif /* KERNEL */
  538 
  539 #endif /* !_SYS_QUEUE_H_ */

Cache object: 1949dc186ee05e0d862a3d55e53074f8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.