The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/sys/thread.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * SYS/THREAD.H
    3  *
    4  *      Implements the architecture independant portion of the LWKT 
    5  *      subsystem.
    6  *
    7  * Types which must already be defined when this header is included by
    8  * userland:    struct md_thread
    9  */
   10 
   11 #ifndef _SYS_THREAD_H_
   12 #define _SYS_THREAD_H_
   13 
   14 #ifndef _SYS_STDINT_H_
   15 #include <sys/stdint.h>         /* __int types */
   16 #endif
   17 #ifndef _SYS_PARAM_H_
   18 #include <sys/param.h>          /* MAXCOMLEN */
   19 #endif
   20 #ifndef _SYS_QUEUE_H_
   21 #include <sys/queue.h>          /* TAILQ_* macros */
   22 #endif
   23 #ifndef _SYS_MSGPORT_H_
   24 #include <sys/msgport.h>        /* lwkt_port */
   25 #endif
   26 #ifndef _SYS_TIME_H_
   27 #include <sys/time.h>           /* struct timeval */
   28 #endif
   29 #ifndef _SYS_LOCK_H
   30 #include <sys/lock.h>
   31 #endif
   32 #ifndef _SYS_SPINLOCK_H_
   33 #include <sys/spinlock.h>
   34 #endif
   35 #ifndef _SYS_IOSCHED_H_
   36 #include <sys/iosched.h>
   37 #endif
   38 #include <machine/thread.h>
   39 
   40 struct globaldata;
   41 struct lwp;
   42 struct proc;
   43 struct thread;
   44 struct lwkt_queue;
   45 struct lwkt_token;
   46 struct lwkt_tokref;
   47 struct lwkt_ipiq;
   48 struct lwkt_cpu_msg;
   49 struct lwkt_cpu_port;
   50 struct lwkt_cpusync;
   51 union sysunion;
   52 
   53 typedef struct lwkt_queue       *lwkt_queue_t;
   54 typedef struct lwkt_token       *lwkt_token_t;
   55 typedef struct lwkt_tokref      *lwkt_tokref_t;
   56 typedef struct lwkt_cpu_msg     *lwkt_cpu_msg_t;
   57 typedef struct lwkt_cpu_port    *lwkt_cpu_port_t;
   58 typedef struct lwkt_ipiq        *lwkt_ipiq_t;
   59 typedef struct lwkt_cpusync     *lwkt_cpusync_t;
   60 typedef struct thread           *thread_t;
   61 
   62 typedef TAILQ_HEAD(lwkt_queue, thread) lwkt_queue;
   63 
   64 /*
   65  * Differentiation between kernel threads and user threads.  Userland
   66  * programs which want to access to kernel structures have to define
   67  * _KERNEL_STRUCTURES.  This is a kinda safety valve to prevent badly
   68  * written user programs from getting an LWKT thread that is neither the
   69  * kernel nor the user version.
   70  */
   71 #if defined(_KERNEL) || defined(_KERNEL_STRUCTURES)
   72 #ifndef _MACHINE_THREAD_H_
   73 #include <machine/thread.h>             /* md_thread */
   74 #endif
   75 #ifndef _MACHINE_FRAME_H_
   76 #include <machine/frame.h>
   77 #endif
   78 #else
   79 struct intrframe;
   80 #endif
   81 
   82 /*
   83  * Tokens are used to serialize access to information.  They are 'soft'
   84  * serialization entities that only stay in effect while a thread is
   85  * running.  If the thread blocks, other threads can run holding the same
   86  * token(s).  The tokens are reacquired when the original thread resumes.
   87  *
   88  * A thread can depend on its serialization remaining intact through a
   89  * preemption.  An interrupt which attempts to use the same token as the
   90  * thread being preempted will reschedule itself for non-preemptive
   91  * operation, so the new token code is capable of interlocking against
   92  * interrupts as well as other cpus.  This means that your token can only
   93  * be (temporarily) lost if you *explicitly* block.
   94  *
   95  * Tokens are managed through a helper reference structure, lwkt_tokref.  Each
   96  * thread has a stack of tokref's to keep track of acquired tokens.  Multiple
   97  * tokref's may reference the same token.
   98  *
   99  * Tokens can be held shared or exclusive.   An exclusive holder is able
  100  * to set the TOK_EXCLUSIVE bit in t_count as long as no bit in the count
  101  * mask is set.  If unable to accomplish this TOK_EXCLREQ can be set instead
  102  * which prevents any new shared acquisitions while the exclusive requestor
  103  * spins in the scheduler.  A shared holder can bump t_count by the increment
  104  * value as long as neither TOK_EXCLUSIVE or TOK_EXCLREQ is set, else spin
  105  * in the scheduler.
  106  *
  107  * Multiple exclusive tokens are handled by treating the additional tokens
  108  * as a special case of the shared token, incrementing the count value.  This
  109  * reduces the complexity of the token release code.
  110  */
  111 
  112 typedef struct lwkt_token {
  113     long                t_count;        /* Shared/exclreq/exclusive access */
  114     struct lwkt_tokref  *t_ref;         /* Exclusive ref */
  115     long                t_collisions;   /* Collision counter */
  116     const char          *t_desc;        /* Descriptive name */
  117 } lwkt_token;
  118 
  119 #define TOK_EXCLUSIVE   0x00000001      /* Exclusive lock held */
  120 #define TOK_EXCLREQ     0x00000002      /* Exclusive request pending */
  121 #define TOK_INCR        4               /* Shared count increment */
  122 #define TOK_COUNTMASK   (~(long)(TOK_EXCLUSIVE|TOK_EXCLREQ))
  123 
  124 /*
  125  * Static initialization for a lwkt_token.
  126  */
  127 #define LWKT_TOKEN_INITIALIZER(name)    \
  128 {                                       \
  129         .t_count = 0,                   \
  130         .t_ref = NULL,                  \
  131         .t_collisions = 0,              \
  132         .t_desc = #name                 \
  133 }
  134 
  135 /*
  136  * Assert that a particular token is held
  137  */
  138 #define LWKT_TOKEN_HELD_ANY(tok)        _lwkt_token_held_any(tok, curthread)
  139 #define LWKT_TOKEN_HELD_EXCL(tok)       _lwkt_token_held_excl(tok, curthread)
  140 
  141 #define ASSERT_LWKT_TOKEN_HELD(tok)             \
  142         KKASSERT(LWKT_TOKEN_HELD_ANY(tok))
  143 
  144 #define ASSERT_LWKT_TOKEN_HELD_EXCL(tok)        \
  145         KKASSERT(LWKT_TOKEN_HELD_EXCL(tok))
  146 
  147 #define ASSERT_NO_TOKENS_HELD(td)       \
  148         KKASSERT((td)->td_toks_stop == &td->td_toks_array[0])
  149 
  150 /*
  151  * Assert that a particular token is held and we are in a hard
  152  * code execution section (interrupt, ipi, or hard code section).
  153  * Hard code sections are not allowed to block or potentially block.
  154  * e.g. lwkt_gettoken() would only be ok if the token were already
  155  * held.
  156  */
  157 #define ASSERT_LWKT_TOKEN_HARD(tok)                                     \
  158         do {                                                            \
  159                 globaldata_t zgd __debugvar = mycpu;                    \
  160                 KKASSERT((tok)->t_ref &&                                \
  161                          (tok)->t_ref->tr_owner == zgd->gd_curthread && \
  162                          zgd->gd_intr_nesting_level > 0);               \
  163         } while(0)
  164 
  165 /*
  166  * Assert that a particular token is held and we are in a normal
  167  * critical section.  Critical sections will not be preempted but
  168  * can explicitly block (tsleep, lwkt_gettoken, etc).
  169  */
  170 #define ASSERT_LWKT_TOKEN_CRIT(tok)                                     \
  171         do {                                                            \
  172                 globaldata_t zgd __debugvar = mycpu;                    \
  173                 KKASSERT((tok)->t_ref &&                                \
  174                          (tok)->t_ref->tr_owner == zgd->gd_curthread && \
  175                          zgd->gd_curthread->td_critcount > 0);          \
  176         } while(0)
  177 
  178 struct lwkt_tokref {
  179     lwkt_token_t        tr_tok;         /* token in question */
  180     long                tr_count;       /* TOK_EXCLUSIVE|TOK_EXCLREQ or 0 */
  181     struct thread       *tr_owner;      /* me */
  182 };
  183 
  184 #define MAXCPUFIFO      32      /* power of 2 */
  185 #define MAXCPUFIFO_MASK (MAXCPUFIFO - 1)
  186 #define LWKT_MAXTOKENS  32      /* max tokens beneficially held by thread */
  187 
  188 /*
  189  * Always cast to ipifunc_t when registering an ipi.  The actual ipi function
  190  * is called with both the data and an interrupt frame, but the ipi function
  191  * that is registered might only declare a data argument.
  192  */
  193 typedef void (*ipifunc1_t)(void *arg);
  194 typedef void (*ipifunc2_t)(void *arg, int arg2);
  195 typedef void (*ipifunc3_t)(void *arg, int arg2, struct intrframe *frame);
  196 
  197 typedef struct lwkt_ipiq {
  198     int         ip_rindex;      /* only written by target cpu */
  199     int         ip_xindex;      /* written by target, indicates completion */
  200     int         ip_windex;      /* only written by source cpu */
  201     struct {
  202         ipifunc3_t      func;
  203         void            *arg1;
  204         int             arg2;
  205         char            filler[32 - sizeof(int) - sizeof(void *) * 2];
  206     } ip_info[MAXCPUFIFO];
  207 } lwkt_ipiq;
  208 
  209 /*
  210  * CPU Synchronization structure.  See lwkt_cpusync_start() and
  211  * lwkt_cpusync_finish() for more information.
  212  */
  213 typedef void (*cpusync_func_t)(void *arg);
  214 
  215 struct lwkt_cpusync {
  216     cpumask_t   cs_mask;                /* cpus running the sync */
  217     cpumask_t   cs_mack;                /* mask acknowledge */
  218     cpusync_func_t cs_func;             /* function to execute */
  219     void        *cs_data;               /* function data */
  220 };
  221 
  222 /*
  223  * The standard message and queue structure used for communications between
  224  * cpus.  Messages are typically queued via a machine-specific non-linked
  225  * FIFO matrix allowing any cpu to send a message to any other cpu without
  226  * blocking.
  227  */
  228 typedef struct lwkt_cpu_msg {
  229     void        (*cm_func)(lwkt_cpu_msg_t msg); /* primary dispatch function */
  230     int         cm_code;                /* request code if applicable */
  231     int         cm_cpu;                 /* reply to cpu */
  232     thread_t    cm_originator;          /* originating thread for wakeup */
  233 } lwkt_cpu_msg;
  234 
  235 /*
  236  * Thread structure.  Note that ownership of a thread structure is special
  237  * cased and there is no 'token'.  A thread is always owned by the cpu
  238  * represented by td_gd, any manipulation of the thread by some other cpu
  239  * must be done through cpu_*msg() functions.  e.g. you could request
  240  * ownership of a thread that way, or hand a thread off to another cpu.
  241  *
  242  * NOTE: td_ucred is synchronized from the p_ucred on user->kernel syscall,
  243  *       trap, and AST/signal transitions to provide a stable ucred for
  244  *       (primarily) system calls.  This field will be NULL for pure kernel
  245  *       threads.
  246  */
  247 struct md_intr_info;
  248 
  249 struct thread {
  250     TAILQ_ENTRY(thread) td_threadq;
  251     TAILQ_ENTRY(thread) td_allq;
  252     TAILQ_ENTRY(thread) td_sleepq;
  253     lwkt_port   td_msgport;     /* built-in message port for replies */
  254     struct lwp  *td_lwp;        /* (optional) associated lwp */
  255     struct proc *td_proc;       /* (optional) associated process */
  256     struct pcb  *td_pcb;        /* points to pcb and top of kstack */
  257     struct globaldata *td_gd;   /* associated with this cpu */
  258     const char  *td_wmesg;      /* string name for blockage */
  259     const volatile void *td_wchan;      /* waiting on channel */
  260     int         td_pri;         /* 0-31, 31=highest priority (note 1) */
  261     int         td_critcount;   /* critical section priority */
  262     u_int       td_flags;       /* TDF flags */
  263     int         td_wdomain;     /* domain for wchan address (typ 0) */
  264     void        (*td_preemptable)(struct thread *td, int critcount);
  265     void        (*td_release)(struct thread *td);
  266     char        *td_kstack;     /* kernel stack */
  267     int         td_kstack_size; /* size of kernel stack */
  268     char        *td_sp;         /* kernel stack pointer for LWKT restore */
  269     thread_t    (*td_switch)(struct thread *ntd);
  270     __uint64_t  td_uticks;      /* Statclock hits in user mode (uS) */
  271     __uint64_t  td_sticks;      /* Statclock hits in system mode (uS) */
  272     __uint64_t  td_iticks;      /* Statclock hits processing intr (uS) */
  273     int         td_locks;       /* lockmgr lock debugging */
  274     void        *td_dsched_priv1;       /* priv data for I/O schedulers */
  275     int         td_refs;        /* hold position in gd_tdallq / hold free */
  276     int         td_nest_count;  /* prevent splz nesting */
  277     int         td_contended;   /* token contention count */
  278     u_int       td_mpflags;     /* flags can be set by foreign cpus */
  279     int         td_cscount;     /* cpu synchronization master */
  280     int         td_wakefromcpu; /* who woke me up? */
  281     int         td_upri;        /* user priority (sub-priority under td_pri) */
  282     int         td_type;        /* thread type, TD_TYPE_ */
  283     int         td_unused02[1]; /* for future fields */
  284     int         td_unused03[4]; /* for future fields */
  285     struct iosched_data td_iosdata;     /* Dynamic I/O scheduling data */
  286     struct timeval td_start;    /* start time for a thread/process */
  287     char        td_comm[MAXCOMLEN+1]; /* typ 16+1 bytes */
  288     struct thread *td_preempted; /* we preempted this thread */
  289     struct ucred *td_ucred;             /* synchronized from p_ucred */
  290     void         *td_vmm;       /* vmm private data */
  291     lwkt_tokref_t td_toks_have;         /* tokens we own */
  292     lwkt_tokref_t td_toks_stop;         /* tokens we want */
  293     struct lwkt_tokref td_toks_array[LWKT_MAXTOKENS];
  294     int         td_fairq_load;          /* fairq */
  295     int         td_fairq_count;         /* fairq */
  296     struct globaldata *td_migrate_gd;   /* target gd for thread migration */
  297 #ifdef DEBUG_CRIT_SECTIONS
  298 #define CRIT_DEBUG_ARRAY_SIZE   32
  299 #define CRIT_DEBUG_ARRAY_MASK   (CRIT_DEBUG_ARRAY_SIZE - 1)
  300     const char  *td_crit_debug_array[CRIT_DEBUG_ARRAY_SIZE];
  301     int         td_crit_debug_index;
  302     int         td_in_crit_report;      
  303 #endif
  304     struct md_thread td_mach;
  305 #ifdef DEBUG_LOCKS
  306 #define SPINLOCK_DEBUG_ARRAY_SIZE       32
  307    int  td_spinlock_stack_id[SPINLOCK_DEBUG_ARRAY_SIZE];
  308    struct spinlock *td_spinlock_stack[SPINLOCK_DEBUG_ARRAY_SIZE];
  309    void         *td_spinlock_caller_pc[SPINLOCK_DEBUG_ARRAY_SIZE];
  310 
  311     /*
  312      * Track lockmgr locks held; lk->lk_filename:lk->lk_lineno is the holder
  313      */
  314 #define LOCKMGR_DEBUG_ARRAY_SIZE        8
  315     int         td_lockmgr_stack_id[LOCKMGR_DEBUG_ARRAY_SIZE];
  316     struct lock *td_lockmgr_stack[LOCKMGR_DEBUG_ARRAY_SIZE];
  317 #endif
  318 };
  319 
  320 #define td_toks_base            td_toks_array[0]
  321 #define td_toks_end             td_toks_array[LWKT_MAXTOKENS]
  322 
  323 #define TD_TOKS_HELD(td)        ((td)->td_toks_stop != &(td)->td_toks_base)
  324 #define TD_TOKS_NOT_HELD(td)    ((td)->td_toks_stop == &(td)->td_toks_base)
  325 
  326 /*
  327  * Thread flags.  Note that TDF_RUNNING is cleared on the old thread after
  328  * we switch to the new one, which is necessary because LWKTs don't need
  329  * to hold the BGL.  This flag is used by the exit code and the managed
  330  * thread migration code.  Note in addition that preemption will cause
  331  * TDF_RUNNING to be cleared temporarily, so any code checking TDF_RUNNING
  332  * must also check TDF_PREEMPT_LOCK.
  333  *
  334  * LWKT threads stay on their (per-cpu) run queue while running, not to
  335  * be confused with user processes which are removed from the user scheduling
  336  * run queue while actually running.
  337  *
  338  * td_threadq can represent the thread on one of three queues... the LWKT
  339  * run queue, a tsleep queue, or an lwkt blocking queue.  The LWKT subsystem
  340  * does not allow a thread to be scheduled if it already resides on some
  341  * queue.
  342  */
  343 #define TDF_RUNNING             0x00000001      /* thread still active */
  344 #define TDF_RUNQ                0x00000002      /* on an LWKT run queue */
  345 #define TDF_PREEMPT_LOCK        0x00000004      /* I have been preempted */
  346 #define TDF_PREEMPT_DONE        0x00000008      /* ac preemption complete */
  347 #define TDF_NOSTART             0x00000010      /* do not schedule on create */
  348 #define TDF_MIGRATING           0x00000020      /* thread is being migrated */
  349 #define TDF_SINTR               0x00000040      /* interruptability for 'ps' */
  350 #define TDF_TSLEEPQ             0x00000080      /* on a tsleep wait queue */
  351 
  352 #define TDF_SYSTHREAD           0x00000100      /* reserve memory may be used */
  353 #define TDF_ALLOCATED_THREAD    0x00000200      /* objcache allocated thread */
  354 #define TDF_ALLOCATED_STACK     0x00000400      /* objcache allocated stack */
  355 #define TDF_VERBOSE             0x00000800      /* verbose on exit */
  356 #define TDF_DEADLKTREAT         0x00001000      /* special lockmgr treatment */
  357 #define TDF_MARKER              0x00002000      /* tdallq list scan marker */
  358 #define TDF_TIMEOUT_RUNNING     0x00004000      /* tsleep timeout race */
  359 #define TDF_TIMEOUT             0x00008000      /* tsleep timeout */
  360 #define TDF_INTTHREAD           0x00010000      /* interrupt thread */
  361 #define TDF_TSLEEP_DESCHEDULED  0x00020000      /* tsleep core deschedule */
  362 #define TDF_BLOCKED             0x00040000      /* Thread is blocked */
  363 #define TDF_PANICWARN           0x00080000      /* panic warning in switch */
  364 #define TDF_BLOCKQ              0x00100000      /* on block queue */
  365 #define TDF_FORCE_SPINPORT      0x00200000
  366 #define TDF_EXITING             0x00400000      /* thread exiting */
  367 #define TDF_USINGFP             0x00800000      /* thread using fp coproc */
  368 #define TDF_KERNELFP            0x01000000      /* kernel using fp coproc */
  369 #define TDF_DELAYED_WAKEUP      0x02000000
  370 #define TDF_FIXEDCPU            0x04000000      /* running cpu is fixed */
  371 #define TDF_USERMODE            0x08000000      /* in or entering user mode */
  372 #define TDF_NOFAULT             0x10000000      /* force onfault on fault */
  373 
  374 #define TDF_MP_STOPREQ          0x00000001      /* suspend_kproc */
  375 #define TDF_MP_WAKEREQ          0x00000002      /* resume_kproc */
  376 #define TDF_MP_EXITWAIT         0x00000004      /* reaper, see lwp_wait() */
  377 #define TDF_MP_EXITSIG          0x00000008      /* reaper, see lwp_wait() */
  378 #define TDF_MP_BATCH_DEMARC     0x00000010      /* batch mode handling */
  379 #define TDF_MP_DIDYIELD         0x00000020      /* effects scheduling */
  380 
  381 #define TD_TYPE_GENERIC         0               /* generic thread */
  382 #define TD_TYPE_CRYPTO          1               /* crypto thread */
  383 #define TD_TYPE_NETISR          2               /* netisr thread */
  384 
  385 /*
  386  * Thread priorities.  Typically only one thread from any given
  387  * user process scheduling queue is on the LWKT run queue at a time.
  388  * Remember that there is one LWKT run queue per cpu.
  389  *
  390  * Critical sections are handled by bumping td_pri above TDPRI_MAX, which
  391  * causes interrupts to be masked as they occur.  When this occurs a
  392  * rollup flag will be set in mycpu->gd_reqflags.
  393  */
  394 #define TDPRI_IDLE_THREAD       0       /* the idle thread */
  395 #define TDPRI_IDLE_WORK         1       /* idle work (page zero, etc) */
  396 #define TDPRI_USER_SCHEDULER    2       /* user scheduler helper */
  397 #define TDPRI_USER_IDLE         4       /* user scheduler idle */
  398 #define TDPRI_USER_NORM         6       /* user scheduler normal */
  399 #define TDPRI_USER_REAL         8       /* user scheduler real time */
  400 #define TDPRI_KERN_LPSCHED      9       /* scheduler helper for userland sch */
  401 #define TDPRI_KERN_USER         10      /* kernel / block in syscall */
  402 #define TDPRI_KERN_DAEMON       12      /* kernel daemon (pageout, etc) */
  403 #define TDPRI_SOFT_NORM         14      /* kernel / normal */
  404 #define TDPRI_SOFT_TIMER        16      /* kernel / timer */
  405 #define TDPRI_EXITING           19      /* exiting thread */
  406 #define TDPRI_INT_SUPPORT       20      /* kernel / high priority support */
  407 #define TDPRI_INT_LOW           27      /* low priority interrupt */
  408 #define TDPRI_INT_MED           28      /* medium priority interrupt */
  409 #define TDPRI_INT_HIGH          29      /* high priority interrupt */
  410 #define TDPRI_MAX               31
  411 
  412 #define LWKT_THREAD_STACK       (UPAGES * PAGE_SIZE)
  413 
  414 #define IN_CRITICAL_SECT(td)    ((td)->td_critcount)
  415 
  416 #ifdef _KERNEL
  417 
  418 /*
  419  * Global tokens
  420  */
  421 extern struct lwkt_token mp_token;
  422 extern struct lwkt_token pmap_token;
  423 extern struct lwkt_token dev_token;
  424 extern struct lwkt_token vm_token;
  425 extern struct lwkt_token vmspace_token;
  426 extern struct lwkt_token kvm_token;
  427 extern struct lwkt_token sigio_token;
  428 extern struct lwkt_token tty_token;
  429 extern struct lwkt_token vnode_token;
  430 extern struct lwkt_token ifnet_token;
  431 
  432 /*
  433  * Procedures
  434  */
  435 extern void lwkt_init(void);
  436 extern struct thread *lwkt_alloc_thread(struct thread *, int, int, int);
  437 extern void lwkt_init_thread(struct thread *, void *, int, int,
  438                              struct globaldata *);
  439 extern void lwkt_set_interrupt_support_thread(void);
  440 extern void lwkt_set_comm(thread_t, const char *, ...) __printflike(2, 3);
  441 extern void lwkt_free_thread(struct thread *);
  442 extern void lwkt_gdinit(struct globaldata *);
  443 extern void lwkt_switch(void);
  444 extern void lwkt_switch_return(struct thread *);
  445 extern void lwkt_preempt(thread_t, int);
  446 extern void lwkt_schedule(thread_t);
  447 extern void lwkt_schedule_noresched(thread_t);
  448 extern void lwkt_schedule_self(thread_t);
  449 extern void lwkt_deschedule(thread_t);
  450 extern void lwkt_deschedule_self(thread_t);
  451 extern void lwkt_yield(void);
  452 extern void lwkt_yield_quick(void);
  453 extern void lwkt_user_yield(void);
  454 extern void lwkt_hold(thread_t);
  455 extern void lwkt_rele(thread_t);
  456 extern void lwkt_passive_release(thread_t);
  457 extern void lwkt_maybe_splz(thread_t);
  458 
  459 extern void lwkt_gettoken(lwkt_token_t);
  460 extern void lwkt_gettoken_shared(lwkt_token_t);
  461 extern void lwkt_gettoken_hard(lwkt_token_t);
  462 extern int  lwkt_trytoken(lwkt_token_t);
  463 extern void lwkt_reltoken(lwkt_token_t);
  464 extern void lwkt_reltoken_hard(lwkt_token_t);
  465 extern int  lwkt_cnttoken(lwkt_token_t, thread_t);
  466 extern int  lwkt_getalltokens(thread_t, int);
  467 extern void lwkt_relalltokens(thread_t);
  468 extern void lwkt_token_init(lwkt_token_t, const char *);
  469 extern void lwkt_token_uninit(lwkt_token_t);
  470 
  471 extern void lwkt_token_pool_init(void);
  472 extern lwkt_token_t lwkt_token_pool_lookup(void *);
  473 extern lwkt_token_t lwkt_getpooltoken(void *);
  474 extern void lwkt_relpooltoken(void *);
  475 
  476 extern void lwkt_token_swap(void);
  477 
  478 extern void lwkt_setpri(thread_t, int);
  479 extern void lwkt_setpri_initial(thread_t, int);
  480 extern void lwkt_setpri_self(int);
  481 extern void lwkt_schedulerclock(thread_t td);
  482 extern void lwkt_setcpu_self(struct globaldata *);
  483 extern void lwkt_migratecpu(int);
  484 
  485 extern void lwkt_giveaway(struct thread *);
  486 extern void lwkt_acquire(struct thread *);
  487 extern int  lwkt_send_ipiq3(struct globaldata *, ipifunc3_t, void *, int);
  488 extern int  lwkt_send_ipiq3_passive(struct globaldata *, ipifunc3_t,
  489                                     void *, int);
  490 extern int  lwkt_send_ipiq3_nowait(struct globaldata *, ipifunc3_t,
  491                                    void *, int);
  492 extern int  lwkt_send_ipiq3_bycpu(int, ipifunc3_t, void *, int);
  493 extern int  lwkt_send_ipiq3_mask(cpumask_t, ipifunc3_t, void *, int);
  494 extern void lwkt_wait_ipiq(struct globaldata *, int);
  495 extern int  lwkt_seq_ipiq(struct globaldata *);
  496 extern void lwkt_process_ipiq(void);
  497 extern void lwkt_process_ipiq_frame(struct intrframe *);
  498 extern void lwkt_smp_stopped(void);
  499 extern void lwkt_synchronize_ipiqs(const char *);
  500 
  501 /* lwkt_cpusync_init() - inline function in sys/thread2.h */
  502 extern void lwkt_cpusync_simple(cpumask_t, cpusync_func_t, void *);
  503 extern void lwkt_cpusync_interlock(lwkt_cpusync_t);
  504 extern void lwkt_cpusync_deinterlock(lwkt_cpusync_t);
  505 
  506 extern void crit_panic(void) __dead2;
  507 extern struct lwp *lwkt_preempted_proc(void);
  508 
  509 extern int  lwkt_create (void (*func)(void *), void *, struct thread **,
  510                 struct thread *, int, int,
  511                 const char *, ...) __printflike(7, 8);
  512 extern void lwkt_exit (void) __dead2;
  513 extern void lwkt_remove_tdallq (struct thread *);
  514 
  515 #endif
  516 
  517 #endif
  518 

Cache object: d00472478bc5533cd2f672f8d3a2d79c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.