The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/sys/time.h

Version: -  FREEBSD  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-2  -  FREEBSD-11-1  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-4  -  FREEBSD-10-3  -  FREEBSD-10-2  -  FREEBSD-10-1  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-3  -  FREEBSD-9-2  -  FREEBSD-9-1  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-4  -  FREEBSD-8-3  -  FREEBSD-8-2  -  FREEBSD-8-1  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-4  -  FREEBSD-7-3  -  FREEBSD-7-2  -  FREEBSD-7-1  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-4  -  FREEBSD-6-3  -  FREEBSD-6-2  -  FREEBSD-6-1  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-5  -  FREEBSD-5-4  -  FREEBSD-5-3  -  FREEBSD-5-2  -  FREEBSD-5-1  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)time.h      8.5 (Berkeley) 5/4/95
   30  * $FreeBSD: stable/10/sys/sys/time.h 337036 2018-08-01 11:08:52Z hselasky $
   31  */
   32 
   33 #ifndef _SYS_TIME_H_
   34 #define _SYS_TIME_H_
   35 
   36 #include <sys/_timeval.h>
   37 #include <sys/types.h>
   38 #include <sys/timespec.h>
   39 
   40 struct timezone {
   41         int     tz_minuteswest; /* minutes west of Greenwich */
   42         int     tz_dsttime;     /* type of dst correction */
   43 };
   44 #define DST_NONE        0       /* not on dst */
   45 #define DST_USA         1       /* USA style dst */
   46 #define DST_AUST        2       /* Australian style dst */
   47 #define DST_WET         3       /* Western European dst */
   48 #define DST_MET         4       /* Middle European dst */
   49 #define DST_EET         5       /* Eastern European dst */
   50 #define DST_CAN         6       /* Canada */
   51 
   52 #if __BSD_VISIBLE
   53 struct bintime {
   54         time_t  sec;
   55         uint64_t frac;
   56 };
   57 
   58 static __inline void
   59 bintime_addx(struct bintime *_bt, uint64_t _x)
   60 {
   61         uint64_t _u;
   62 
   63         _u = _bt->frac;
   64         _bt->frac += _x;
   65         if (_u > _bt->frac)
   66                 _bt->sec++;
   67 }
   68 
   69 static __inline void
   70 bintime_add(struct bintime *_bt, const struct bintime *_bt2)
   71 {
   72         uint64_t _u;
   73 
   74         _u = _bt->frac;
   75         _bt->frac += _bt2->frac;
   76         if (_u > _bt->frac)
   77                 _bt->sec++;
   78         _bt->sec += _bt2->sec;
   79 }
   80 
   81 static __inline void
   82 bintime_sub(struct bintime *_bt, const struct bintime *_bt2)
   83 {
   84         uint64_t _u;
   85 
   86         _u = _bt->frac;
   87         _bt->frac -= _bt2->frac;
   88         if (_u < _bt->frac)
   89                 _bt->sec--;
   90         _bt->sec -= _bt2->sec;
   91 }
   92 
   93 static __inline void
   94 bintime_mul(struct bintime *_bt, u_int _x)
   95 {
   96         uint64_t _p1, _p2;
   97 
   98         _p1 = (_bt->frac & 0xffffffffull) * _x;
   99         _p2 = (_bt->frac >> 32) * _x + (_p1 >> 32);
  100         _bt->sec *= _x;
  101         _bt->sec += (_p2 >> 32);
  102         _bt->frac = (_p2 << 32) | (_p1 & 0xffffffffull);
  103 }
  104 
  105 static __inline void
  106 bintime_shift(struct bintime *_bt, int _exp)
  107 {
  108 
  109         if (_exp > 0) {
  110                 _bt->sec <<= _exp;
  111                 _bt->sec |= _bt->frac >> (64 - _exp);
  112                 _bt->frac <<= _exp;
  113         } else if (_exp < 0) {
  114                 _bt->frac >>= -_exp;
  115                 _bt->frac |= (uint64_t)_bt->sec << (64 + _exp);
  116                 _bt->sec >>= -_exp;
  117         }
  118 }
  119 
  120 #define bintime_clear(a)        ((a)->sec = (a)->frac = 0)
  121 #define bintime_isset(a)        ((a)->sec || (a)->frac)
  122 #define bintime_cmp(a, b, cmp)                                          \
  123         (((a)->sec == (b)->sec) ?                                       \
  124             ((a)->frac cmp (b)->frac) :                                 \
  125             ((a)->sec cmp (b)->sec))
  126 
  127 #define SBT_1S  ((sbintime_t)1 << 32)
  128 #define SBT_1M  (SBT_1S * 60)
  129 #define SBT_1MS (SBT_1S / 1000)
  130 #define SBT_1US (SBT_1S / 1000000)
  131 #define SBT_1NS (SBT_1S / 1000000000) /* beware rounding, see nstosbt() */
  132 #define SBT_MAX 0x7fffffffffffffffLL
  133 
  134 static __inline int
  135 sbintime_getsec(sbintime_t _sbt)
  136 {
  137 
  138         return (_sbt >> 32);
  139 }
  140 
  141 static __inline sbintime_t
  142 bttosbt(const struct bintime _bt)
  143 {
  144 
  145         return (((sbintime_t)_bt.sec << 32) + (_bt.frac >> 32));
  146 }
  147 
  148 static __inline struct bintime
  149 sbttobt(sbintime_t _sbt)
  150 {
  151         struct bintime _bt;
  152 
  153         _bt.sec = _sbt >> 32;
  154         _bt.frac = _sbt << 32;
  155         return (_bt);
  156 }
  157 
  158 /*
  159  * Decimal<->sbt conversions.  Multiplying or dividing by SBT_1NS results in
  160  * large roundoff errors which sbttons() and nstosbt() avoid.  Millisecond and
  161  * microsecond functions are also provided for completeness.
  162  */
  163 static __inline int64_t
  164 sbttons(sbintime_t _sbt)
  165 {
  166 
  167         return ((1000000000 * _sbt) >> 32);
  168 }
  169 
  170 static __inline sbintime_t
  171 nstosbt(int64_t _ns)
  172 {
  173 
  174         return ((_ns * (((uint64_t)1 << 63) / 500000000)) >> 32);
  175 }
  176 
  177 static __inline int64_t
  178 sbttous(sbintime_t _sbt)
  179 {
  180 
  181         return ((1000000 * _sbt) >> 32);
  182 }
  183 
  184 static __inline sbintime_t
  185 ustosbt(int64_t _us)
  186 {
  187 
  188         return ((_us * (((uint64_t)1 << 63) / 500000)) >> 32);
  189 }
  190 
  191 static __inline int64_t
  192 sbttoms(sbintime_t _sbt)
  193 {
  194 
  195         return ((1000 * _sbt) >> 32);
  196 }
  197 
  198 static __inline sbintime_t
  199 mstosbt(int64_t _ms)
  200 {
  201 
  202         return ((_ms * (((uint64_t)1 << 63) / 500)) >> 32);
  203 }
  204 
  205 /*-
  206  * Background information:
  207  *
  208  * When converting between timestamps on parallel timescales of differing
  209  * resolutions it is historical and scientific practice to round down rather
  210  * than doing 4/5 rounding.
  211  *
  212  *   The date changes at midnight, not at noon.
  213  *
  214  *   Even at 15:59:59.999999999 it's not four'o'clock.
  215  *
  216  *   time_second ticks after N.999999999 not after N.4999999999
  217  */
  218 
  219 static __inline void
  220 bintime2timespec(const struct bintime *_bt, struct timespec *_ts)
  221 {
  222 
  223         _ts->tv_sec = _bt->sec;
  224         _ts->tv_nsec = ((uint64_t)1000000000 *
  225             (uint32_t)(_bt->frac >> 32)) >> 32;
  226 }
  227 
  228 static __inline void
  229 timespec2bintime(const struct timespec *_ts, struct bintime *_bt)
  230 {
  231 
  232         _bt->sec = _ts->tv_sec;
  233         /* 18446744073 = int(2^64 / 1000000000) */
  234         _bt->frac = _ts->tv_nsec * (uint64_t)18446744073LL;
  235 }
  236 
  237 static __inline void
  238 bintime2timeval(const struct bintime *_bt, struct timeval *_tv)
  239 {
  240 
  241         _tv->tv_sec = _bt->sec;
  242         _tv->tv_usec = ((uint64_t)1000000 * (uint32_t)(_bt->frac >> 32)) >> 32;
  243 }
  244 
  245 static __inline void
  246 timeval2bintime(const struct timeval *_tv, struct bintime *_bt)
  247 {
  248 
  249         _bt->sec = _tv->tv_sec;
  250         /* 18446744073709 = int(2^64 / 1000000) */
  251         _bt->frac = _tv->tv_usec * (uint64_t)18446744073709LL;
  252 }
  253 
  254 static __inline struct timespec
  255 sbttots(sbintime_t _sbt)
  256 {
  257         struct timespec _ts;
  258 
  259         _ts.tv_sec = _sbt >> 32;
  260         _ts.tv_nsec = sbttons((uint32_t)_sbt);
  261         return (_ts);
  262 }
  263 
  264 static __inline sbintime_t
  265 tstosbt(struct timespec _ts)
  266 {
  267 
  268         return (((sbintime_t)_ts.tv_sec << 32) + nstosbt(_ts.tv_nsec));
  269 }
  270 
  271 static __inline struct timeval
  272 sbttotv(sbintime_t _sbt)
  273 {
  274         struct timeval _tv;
  275 
  276         _tv.tv_sec = _sbt >> 32;
  277         _tv.tv_usec = sbttous((uint32_t)_sbt);
  278         return (_tv);
  279 }
  280 
  281 static __inline sbintime_t
  282 tvtosbt(struct timeval _tv)
  283 {
  284 
  285         return (((sbintime_t)_tv.tv_sec << 32) + ustosbt(_tv.tv_usec));
  286 }
  287 #endif /* __BSD_VISIBLE */
  288 
  289 #ifdef _KERNEL
  290 
  291 /* Operations on timespecs */
  292 #define timespecclear(tvp)      ((tvp)->tv_sec = (tvp)->tv_nsec = 0)
  293 #define timespecisset(tvp)      ((tvp)->tv_sec || (tvp)->tv_nsec)
  294 #define timespeccmp(tvp, uvp, cmp)                                      \
  295         (((tvp)->tv_sec == (uvp)->tv_sec) ?                             \
  296             ((tvp)->tv_nsec cmp (uvp)->tv_nsec) :                       \
  297             ((tvp)->tv_sec cmp (uvp)->tv_sec))
  298 #define timespecadd(vvp, uvp)                                           \
  299         do {                                                            \
  300                 (vvp)->tv_sec += (uvp)->tv_sec;                         \
  301                 (vvp)->tv_nsec += (uvp)->tv_nsec;                       \
  302                 if ((vvp)->tv_nsec >= 1000000000) {                     \
  303                         (vvp)->tv_sec++;                                \
  304                         (vvp)->tv_nsec -= 1000000000;                   \
  305                 }                                                       \
  306         } while (0)
  307 #define timespecsub(vvp, uvp)                                           \
  308         do {                                                            \
  309                 (vvp)->tv_sec -= (uvp)->tv_sec;                         \
  310                 (vvp)->tv_nsec -= (uvp)->tv_nsec;                       \
  311                 if ((vvp)->tv_nsec < 0) {                               \
  312                         (vvp)->tv_sec--;                                \
  313                         (vvp)->tv_nsec += 1000000000;                   \
  314                 }                                                       \
  315         } while (0)
  316 
  317 /* Operations on timevals. */
  318 
  319 #define timevalclear(tvp)               ((tvp)->tv_sec = (tvp)->tv_usec = 0)
  320 #define timevalisset(tvp)               ((tvp)->tv_sec || (tvp)->tv_usec)
  321 #define timevalcmp(tvp, uvp, cmp)                                       \
  322         (((tvp)->tv_sec == (uvp)->tv_sec) ?                             \
  323             ((tvp)->tv_usec cmp (uvp)->tv_usec) :                       \
  324             ((tvp)->tv_sec cmp (uvp)->tv_sec))
  325 
  326 /* timevaladd and timevalsub are not inlined */
  327 
  328 #endif /* _KERNEL */
  329 
  330 #ifndef _KERNEL                 /* NetBSD/OpenBSD compatible interfaces */
  331 
  332 #define timerclear(tvp)         ((tvp)->tv_sec = (tvp)->tv_usec = 0)
  333 #define timerisset(tvp)         ((tvp)->tv_sec || (tvp)->tv_usec)
  334 #define timercmp(tvp, uvp, cmp)                                 \
  335         (((tvp)->tv_sec == (uvp)->tv_sec) ?                             \
  336             ((tvp)->tv_usec cmp (uvp)->tv_usec) :                       \
  337             ((tvp)->tv_sec cmp (uvp)->tv_sec))
  338 #define timeradd(tvp, uvp, vvp)                                         \
  339         do {                                                            \
  340                 (vvp)->tv_sec = (tvp)->tv_sec + (uvp)->tv_sec;          \
  341                 (vvp)->tv_usec = (tvp)->tv_usec + (uvp)->tv_usec;       \
  342                 if ((vvp)->tv_usec >= 1000000) {                        \
  343                         (vvp)->tv_sec++;                                \
  344                         (vvp)->tv_usec -= 1000000;                      \
  345                 }                                                       \
  346         } while (0)
  347 #define timersub(tvp, uvp, vvp)                                         \
  348         do {                                                            \
  349                 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;          \
  350                 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;       \
  351                 if ((vvp)->tv_usec < 0) {                               \
  352                         (vvp)->tv_sec--;                                \
  353                         (vvp)->tv_usec += 1000000;                      \
  354                 }                                                       \
  355         } while (0)
  356 #endif
  357 
  358 /*
  359  * Names of the interval timers, and structure
  360  * defining a timer setting.
  361  */
  362 #define ITIMER_REAL     0
  363 #define ITIMER_VIRTUAL  1
  364 #define ITIMER_PROF     2
  365 
  366 struct itimerval {
  367         struct  timeval it_interval;    /* timer interval */
  368         struct  timeval it_value;       /* current value */
  369 };
  370 
  371 /*
  372  * Getkerninfo clock information structure
  373  */
  374 struct clockinfo {
  375         int     hz;             /* clock frequency */
  376         int     tick;           /* micro-seconds per hz tick */
  377         int     spare;
  378         int     stathz;         /* statistics clock frequency */
  379         int     profhz;         /* profiling clock frequency */
  380 };
  381 
  382 /* These macros are also in time.h. */
  383 #ifndef CLOCK_REALTIME
  384 #define CLOCK_REALTIME  0
  385 #define CLOCK_VIRTUAL   1
  386 #define CLOCK_PROF      2
  387 #define CLOCK_MONOTONIC 4
  388 #define CLOCK_UPTIME    5               /* FreeBSD-specific. */
  389 #define CLOCK_UPTIME_PRECISE    7       /* FreeBSD-specific. */
  390 #define CLOCK_UPTIME_FAST       8       /* FreeBSD-specific. */
  391 #define CLOCK_REALTIME_PRECISE  9       /* FreeBSD-specific. */
  392 #define CLOCK_REALTIME_FAST     10      /* FreeBSD-specific. */
  393 #define CLOCK_MONOTONIC_PRECISE 11      /* FreeBSD-specific. */
  394 #define CLOCK_MONOTONIC_FAST    12      /* FreeBSD-specific. */
  395 #define CLOCK_SECOND    13              /* FreeBSD-specific. */
  396 #define CLOCK_THREAD_CPUTIME_ID 14
  397 #define CLOCK_PROCESS_CPUTIME_ID        15
  398 #endif
  399 
  400 #ifndef TIMER_ABSTIME
  401 #define TIMER_RELTIME   0x0     /* relative timer */
  402 #define TIMER_ABSTIME   0x1     /* absolute timer */
  403 #endif
  404 
  405 #if __BSD_VISIBLE
  406 #define CPUCLOCK_WHICH_PID      0
  407 #define CPUCLOCK_WHICH_TID      1
  408 #endif
  409 
  410 #ifdef _KERNEL
  411 
  412 /*
  413  * Kernel to clock driver interface.
  414  */
  415 void    inittodr(time_t base);
  416 void    resettodr(void);
  417 
  418 extern volatile time_t  time_second;
  419 extern volatile time_t  time_uptime;
  420 extern struct bintime boottimebin;
  421 extern struct timeval boottime;
  422 extern struct bintime tc_tick_bt;
  423 extern sbintime_t tc_tick_sbt;
  424 extern struct bintime tick_bt;
  425 extern sbintime_t tick_sbt;
  426 extern int tc_precexp;
  427 extern int tc_timepercentage;
  428 extern struct bintime bt_timethreshold;
  429 extern struct bintime bt_tickthreshold;
  430 extern sbintime_t sbt_timethreshold;
  431 extern sbintime_t sbt_tickthreshold;
  432 
  433 /*
  434  * Functions for looking at our clock: [get]{bin,nano,micro}[up]time()
  435  *
  436  * Functions without the "get" prefix returns the best timestamp
  437  * we can produce in the given format.
  438  *
  439  * "bin"   == struct bintime  == seconds + 64 bit fraction of seconds.
  440  * "nano"  == struct timespec == seconds + nanoseconds.
  441  * "micro" == struct timeval  == seconds + microseconds.
  442  *
  443  * Functions containing "up" returns time relative to boot and
  444  * should be used for calculating time intervals.
  445  *
  446  * Functions without "up" returns GMT time.
  447  *
  448  * Functions with the "get" prefix returns a less precise result
  449  * much faster than the functions without "get" prefix and should
  450  * be used where a precision of 1/hz seconds is acceptable or where
  451  * performance is priority. (NB: "precision", _not_ "resolution" !)
  452  */
  453 
  454 void    binuptime(struct bintime *bt);
  455 void    nanouptime(struct timespec *tsp);
  456 void    microuptime(struct timeval *tvp);
  457 
  458 static __inline sbintime_t
  459 sbinuptime(void)
  460 {
  461         struct bintime _bt;
  462 
  463         binuptime(&_bt);
  464         return (bttosbt(_bt));
  465 }
  466 
  467 void    bintime(struct bintime *bt);
  468 void    nanotime(struct timespec *tsp);
  469 void    microtime(struct timeval *tvp);
  470 
  471 void    getbinuptime(struct bintime *bt);
  472 void    getnanouptime(struct timespec *tsp);
  473 void    getmicrouptime(struct timeval *tvp);
  474 
  475 static __inline sbintime_t
  476 getsbinuptime(void)
  477 {
  478         struct bintime _bt;
  479 
  480         getbinuptime(&_bt);
  481         return (bttosbt(_bt));
  482 }
  483 
  484 void    getbintime(struct bintime *bt);
  485 void    getnanotime(struct timespec *tsp);
  486 void    getmicrotime(struct timeval *tvp);
  487 
  488 /* Other functions */
  489 int     itimerdecr(struct itimerval *itp, int usec);
  490 int     itimerfix(struct timeval *tv);
  491 int     ppsratecheck(struct timeval *, int *, int);
  492 int     ratecheck(struct timeval *, const struct timeval *);
  493 void    timevaladd(struct timeval *t1, const struct timeval *t2);
  494 void    timevalsub(struct timeval *t1, const struct timeval *t2);
  495 int     tvtohz(struct timeval *tv);
  496 
  497 #define TC_DEFAULTPERC          5
  498 
  499 #define BT2FREQ(bt)                                                     \
  500         (((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) /           \
  501             ((bt)->frac >> 1))
  502 
  503 #define SBT2FREQ(sbt)   ((SBT_1S + ((sbt) >> 1)) / (sbt))
  504 
  505 #define FREQ2BT(freq, bt)                                               \
  506 {                                                                       \
  507         (bt)->sec = 0;                                                  \
  508         (bt)->frac = ((uint64_t)0x8000000000000000  / (freq)) << 1;     \
  509 }
  510 
  511 #define TIMESEL(sbt, sbt2)                                              \
  512         (((sbt2) >= sbt_timethreshold) ?                                \
  513             ((*(sbt) = getsbinuptime()), 1) : ((*(sbt) = sbinuptime()), 0))
  514 
  515 #else /* !_KERNEL */
  516 #include <time.h>
  517 
  518 #include <sys/cdefs.h>
  519 #include <sys/select.h>
  520 
  521 __BEGIN_DECLS
  522 int     setitimer(int, const struct itimerval *, struct itimerval *);
  523 int     utimes(const char *, const struct timeval *);
  524 
  525 #if __BSD_VISIBLE
  526 int     adjtime(const struct timeval *, struct timeval *);
  527 int     clock_getcpuclockid2(id_t, int, clockid_t *);
  528 int     futimes(int, const struct timeval *);
  529 int     futimesat(int, const char *, const struct timeval [2]);
  530 int     lutimes(const char *, const struct timeval *);
  531 int     settimeofday(const struct timeval *, const struct timezone *);
  532 #endif
  533 
  534 #if __XSI_VISIBLE
  535 int     getitimer(int, struct itimerval *);
  536 int     gettimeofday(struct timeval *, struct timezone *);
  537 #endif
  538 
  539 __END_DECLS
  540 
  541 #endif /* !_KERNEL */
  542 
  543 #endif /* !_SYS_TIME_H_ */

Cache object: a50b5c5b3ce6359037ce5a0e5c0244e7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.