The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/sys/time.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)time.h      8.5 (Berkeley) 5/4/95
   32  * $FreeBSD$
   33  */
   34 
   35 #ifndef _SYS_TIME_H_
   36 #define _SYS_TIME_H_
   37 
   38 #include <sys/_timeval.h>
   39 #include <sys/types.h>
   40 #include <sys/timespec.h>
   41 
   42 struct timezone {
   43         int     tz_minuteswest; /* minutes west of Greenwich */
   44         int     tz_dsttime;     /* type of dst correction */
   45 };
   46 #define DST_NONE        0       /* not on dst */
   47 #define DST_USA         1       /* USA style dst */
   48 #define DST_AUST        2       /* Australian style dst */
   49 #define DST_WET         3       /* Western European dst */
   50 #define DST_MET         4       /* Middle European dst */
   51 #define DST_EET         5       /* Eastern European dst */
   52 #define DST_CAN         6       /* Canada */
   53 
   54 #if __BSD_VISIBLE
   55 struct bintime {
   56         time_t  sec;
   57         uint64_t frac;
   58 };
   59 
   60 static __inline void
   61 bintime_addx(struct bintime *_bt, uint64_t _x)
   62 {
   63         uint64_t _u;
   64 
   65         _u = _bt->frac;
   66         _bt->frac += _x;
   67         if (_u > _bt->frac)
   68                 _bt->sec++;
   69 }
   70 
   71 static __inline void
   72 bintime_add(struct bintime *_bt, const struct bintime *_bt2)
   73 {
   74         uint64_t _u;
   75 
   76         _u = _bt->frac;
   77         _bt->frac += _bt2->frac;
   78         if (_u > _bt->frac)
   79                 _bt->sec++;
   80         _bt->sec += _bt2->sec;
   81 }
   82 
   83 static __inline void
   84 bintime_sub(struct bintime *_bt, const struct bintime *_bt2)
   85 {
   86         uint64_t _u;
   87 
   88         _u = _bt->frac;
   89         _bt->frac -= _bt2->frac;
   90         if (_u < _bt->frac)
   91                 _bt->sec--;
   92         _bt->sec -= _bt2->sec;
   93 }
   94 
   95 static __inline void
   96 bintime_mul(struct bintime *_bt, u_int _x)
   97 {
   98         uint64_t _p1, _p2;
   99 
  100         _p1 = (_bt->frac & 0xffffffffull) * _x;
  101         _p2 = (_bt->frac >> 32) * _x + (_p1 >> 32);
  102         _bt->sec *= _x;
  103         _bt->sec += (_p2 >> 32);
  104         _bt->frac = (_p2 << 32) | (_p1 & 0xffffffffull);
  105 }
  106 
  107 static __inline void
  108 bintime_shift(struct bintime *_bt, int _exp)
  109 {
  110 
  111         if (_exp > 0) {
  112                 _bt->sec <<= _exp;
  113                 _bt->sec |= _bt->frac >> (64 - _exp);
  114                 _bt->frac <<= _exp;
  115         } else if (_exp < 0) {
  116                 _bt->frac >>= -_exp;
  117                 _bt->frac |= (uint64_t)_bt->sec << (64 + _exp);
  118                 _bt->sec >>= -_exp;
  119         }
  120 }
  121 
  122 #define bintime_clear(a)        ((a)->sec = (a)->frac = 0)
  123 #define bintime_isset(a)        ((a)->sec || (a)->frac)
  124 #define bintime_cmp(a, b, cmp)                                          \
  125         (((a)->sec == (b)->sec) ?                                       \
  126             ((a)->frac cmp (b)->frac) :                                 \
  127             ((a)->sec cmp (b)->sec))
  128 
  129 #define SBT_1S  ((sbintime_t)1 << 32)
  130 #define SBT_1M  (SBT_1S * 60)
  131 #define SBT_1MS (SBT_1S / 1000)
  132 #define SBT_1US (SBT_1S / 1000000)
  133 #define SBT_1NS (SBT_1S / 1000000000) /* beware rounding, see nstosbt() */
  134 #define SBT_MAX 0x7fffffffffffffffLL
  135 
  136 static __inline int
  137 sbintime_getsec(sbintime_t _sbt)
  138 {
  139 
  140         return (_sbt >> 32);
  141 }
  142 
  143 static __inline sbintime_t
  144 bttosbt(const struct bintime _bt)
  145 {
  146 
  147         return (((sbintime_t)_bt.sec << 32) + (_bt.frac >> 32));
  148 }
  149 
  150 static __inline struct bintime
  151 sbttobt(sbintime_t _sbt)
  152 {
  153         struct bintime _bt;
  154 
  155         _bt.sec = _sbt >> 32;
  156         _bt.frac = _sbt << 32;
  157         return (_bt);
  158 }
  159 
  160 /*
  161  * Decimal<->sbt conversions.  Multiplying or dividing by SBT_1NS results in
  162  * large roundoff errors which sbttons() and nstosbt() avoid.  Millisecond and
  163  * microsecond functions are also provided for completeness.
  164  *
  165  * These functions return the smallest sbt larger or equal to the
  166  * number of seconds requested so that sbttoX(Xtosbt(y)) == y.  Unlike
  167  * top of second computations below, which require that we tick at the
  168  * top of second, these need to be rounded up so we do whatever for at
  169  * least as long as requested.
  170  *
  171  * The naive computation we'd do is this
  172  *      ((unit * 2^64 / SIFACTOR) + 2^32-1) >> 32
  173  * However, that overflows. Instead, we compute
  174  *      ((unit * 2^63 / SIFACTOR) + 2^31-1) >> 32
  175  * and use pre-computed constants that are the ceil of the 2^63 / SIFACTOR
  176  * term to ensure we are using exactly the right constant. We use the lesser
  177  * evil of ull rather than a uint64_t cast to ensure we have well defined
  178  * right shift semantics. With these changes, we get all the ns, us and ms
  179  * conversions back and forth right.
  180  * Note: This file is used for both kernel and userland includes, so we can't
  181  * rely on KASSERT being defined, nor can we pollute the namespace by including
  182  * assert.h.
  183  */
  184 static __inline int64_t
  185 sbttons(sbintime_t _sbt)
  186 {
  187         uint64_t ns;
  188 
  189 #ifdef KASSERT
  190         KASSERT(_sbt >= 0, ("Negative values illegal for sbttons: %jx", _sbt));
  191 #endif
  192         ns = _sbt;
  193         if (ns >= SBT_1S)
  194                 ns = (ns >> 32) * 1000000000;
  195         else
  196                 ns = 0;
  197 
  198         return (ns + (1000000000 * (_sbt & 0xffffffffu) >> 32));
  199 }
  200 
  201 static __inline sbintime_t
  202 nstosbt(int64_t _ns)
  203 {
  204         sbintime_t sb = 0;
  205 
  206 #ifdef KASSERT
  207         KASSERT(_ns >= 0, ("Negative values illegal for nstosbt: %jd", _ns));
  208 #endif
  209         if (_ns >= 1000000000) {
  210                 sb = (_ns / 1000000000) * SBT_1S;
  211                 _ns = _ns % 1000000000;
  212         }
  213         /* 9223372037 = ceil(2^63 / 1000000000) */
  214         sb += ((_ns * 9223372037ull) + 0x7fffffff) >> 31;
  215         return (sb);
  216 }
  217 
  218 static __inline int64_t
  219 sbttous(sbintime_t _sbt)
  220 {
  221 
  222 #ifdef KASSERT
  223         KASSERT(_sbt >= 0, ("Negative values illegal for sbttous: %jx", _sbt));
  224 #endif
  225         return ((_sbt >> 32) * 1000000 +
  226                 (1000000 * (_sbt & 0xffffffffu) >> 32));
  227 }
  228 
  229 static __inline sbintime_t
  230 ustosbt(int64_t _us)
  231 {
  232         sbintime_t sb = 0;
  233 
  234 #ifdef KASSERT
  235         KASSERT(_us >= 0, ("Negative values illegal for ustosbt: %jd", _us));
  236 #endif
  237         if (_us >= 1000000) {
  238                 sb = (_us / 1000000) * SBT_1S;
  239                 _us = _us % 1000000;
  240         }
  241         /* 9223372036855 = ceil(2^63 / 1000000) */
  242         sb += ((_us * 9223372036855ull) + 0x7fffffff) >> 31;
  243         return (sb);
  244 }
  245 
  246 static __inline int64_t
  247 sbttoms(sbintime_t _sbt)
  248 {
  249 #ifdef KASSERT
  250         KASSERT(_sbt >= 0, ("Negative values illegal for sbttoms: %jx", _sbt));
  251 #endif
  252         return ((_sbt >> 32) * 1000 + (1000 * (_sbt & 0xffffffffu) >> 32));
  253 }
  254 
  255 static __inline sbintime_t
  256 mstosbt(int64_t _ms)
  257 {
  258         sbintime_t sb = 0;
  259 
  260 #ifdef KASSERT
  261         KASSERT(_ms >= 0, ("Negative values illegal for mstosbt: %jd", _ms));
  262 #endif
  263         if (_ms >= 1000) {
  264                 sb = (_ms / 1000) * SBT_1S;
  265                 _ms = _ms % 1000;
  266         }
  267         /* 9223372036854776 = ceil(2^63 / 1000) */
  268         sb += ((_ms * 9223372036854776ull) + 0x7fffffff) >> 31;
  269         return (sb);
  270 }
  271 
  272 /*-
  273  * Background information:
  274  *
  275  * When converting between timestamps on parallel timescales of differing
  276  * resolutions it is historical and scientific practice to round down rather
  277  * than doing 4/5 rounding.
  278  *
  279  *   The date changes at midnight, not at noon.
  280  *
  281  *   Even at 15:59:59.999999999 it's not four'o'clock.
  282  *
  283  *   time_second ticks after N.999999999 not after N.4999999999
  284  */
  285 
  286 static __inline void
  287 bintime2timespec(const struct bintime *_bt, struct timespec *_ts)
  288 {
  289 
  290         _ts->tv_sec = _bt->sec;
  291         _ts->tv_nsec = ((uint64_t)1000000000 *
  292             (uint32_t)(_bt->frac >> 32)) >> 32;
  293 }
  294 
  295 static __inline void
  296 timespec2bintime(const struct timespec *_ts, struct bintime *_bt)
  297 {
  298 
  299         _bt->sec = _ts->tv_sec;
  300         /* 18446744073 = int(2^64 / 1000000000) */
  301         _bt->frac = _ts->tv_nsec * (uint64_t)18446744073LL;
  302 }
  303 
  304 static __inline void
  305 bintime2timeval(const struct bintime *_bt, struct timeval *_tv)
  306 {
  307 
  308         _tv->tv_sec = _bt->sec;
  309         _tv->tv_usec = ((uint64_t)1000000 * (uint32_t)(_bt->frac >> 32)) >> 32;
  310 }
  311 
  312 static __inline void
  313 timeval2bintime(const struct timeval *_tv, struct bintime *_bt)
  314 {
  315 
  316         _bt->sec = _tv->tv_sec;
  317         /* 18446744073709 = int(2^64 / 1000000) */
  318         _bt->frac = _tv->tv_usec * (uint64_t)18446744073709LL;
  319 }
  320 
  321 static __inline struct timespec
  322 sbttots(sbintime_t _sbt)
  323 {
  324         struct timespec _ts;
  325 
  326         _ts.tv_sec = _sbt >> 32;
  327         _ts.tv_nsec = sbttons((uint32_t)_sbt);
  328         return (_ts);
  329 }
  330 
  331 static __inline sbintime_t
  332 tstosbt(struct timespec _ts)
  333 {
  334 
  335         return (((sbintime_t)_ts.tv_sec << 32) + nstosbt(_ts.tv_nsec));
  336 }
  337 
  338 static __inline struct timeval
  339 sbttotv(sbintime_t _sbt)
  340 {
  341         struct timeval _tv;
  342 
  343         _tv.tv_sec = _sbt >> 32;
  344         _tv.tv_usec = sbttous((uint32_t)_sbt);
  345         return (_tv);
  346 }
  347 
  348 static __inline sbintime_t
  349 tvtosbt(struct timeval _tv)
  350 {
  351 
  352         return (((sbintime_t)_tv.tv_sec << 32) + ustosbt(_tv.tv_usec));
  353 }
  354 #endif /* __BSD_VISIBLE */
  355 
  356 #ifdef _KERNEL
  357 /*
  358  * Simple macros to convert ticks to milliseconds
  359  * or microseconds and vice-versa. The answer
  360  * will always be at least 1. Note the return
  361  * value is a uint32_t however we step up the
  362  * operations to 64 bit to avoid any overflow/underflow
  363  * problems.
  364  */
  365 #define TICKS_2_MSEC(t) max(1, (uint32_t)(hz == 1000) ? \
  366           (t) : (((uint64_t)(t) * (uint64_t)1000)/(uint64_t)hz))
  367 #define TICKS_2_USEC(t) max(1, (uint32_t)(hz == 1000) ? \
  368           ((t) * 1000) : (((uint64_t)(t) * (uint64_t)1000000)/(uint64_t)hz))
  369 #define MSEC_2_TICKS(m) max(1, (uint32_t)((hz == 1000) ? \
  370           (m) : ((uint64_t)(m) * (uint64_t)hz)/(uint64_t)1000))
  371 #define USEC_2_TICKS(u) max(1, (uint32_t)((hz == 1000) ? \
  372          ((u) / 1000) : ((uint64_t)(u) * (uint64_t)hz)/(uint64_t)1000000))
  373 
  374 #endif
  375 /* Operations on timespecs */
  376 #define timespecclear(tvp)      ((tvp)->tv_sec = (tvp)->tv_nsec = 0)
  377 #define timespecisset(tvp)      ((tvp)->tv_sec || (tvp)->tv_nsec)
  378 #define timespeccmp(tvp, uvp, cmp)                                      \
  379         (((tvp)->tv_sec == (uvp)->tv_sec) ?                             \
  380             ((tvp)->tv_nsec cmp (uvp)->tv_nsec) :                       \
  381             ((tvp)->tv_sec cmp (uvp)->tv_sec))
  382 
  383 #define timespecadd(tsp, usp, vsp)                                      \
  384         do {                                                            \
  385                 (vsp)->tv_sec = (tsp)->tv_sec + (usp)->tv_sec;          \
  386                 (vsp)->tv_nsec = (tsp)->tv_nsec + (usp)->tv_nsec;       \
  387                 if ((vsp)->tv_nsec >= 1000000000L) {                    \
  388                         (vsp)->tv_sec++;                                \
  389                         (vsp)->tv_nsec -= 1000000000L;                  \
  390                 }                                                       \
  391         } while (0)
  392 #define timespecsub(tsp, usp, vsp)                                      \
  393         do {                                                            \
  394                 (vsp)->tv_sec = (tsp)->tv_sec - (usp)->tv_sec;          \
  395                 (vsp)->tv_nsec = (tsp)->tv_nsec - (usp)->tv_nsec;       \
  396                 if ((vsp)->tv_nsec < 0) {                               \
  397                         (vsp)->tv_sec--;                                \
  398                         (vsp)->tv_nsec += 1000000000L;                  \
  399                 }                                                       \
  400         } while (0)
  401 
  402 #ifdef _KERNEL
  403 
  404 /* Operations on timevals. */
  405 
  406 #define timevalclear(tvp)               ((tvp)->tv_sec = (tvp)->tv_usec = 0)
  407 #define timevalisset(tvp)               ((tvp)->tv_sec || (tvp)->tv_usec)
  408 #define timevalcmp(tvp, uvp, cmp)                                       \
  409         (((tvp)->tv_sec == (uvp)->tv_sec) ?                             \
  410             ((tvp)->tv_usec cmp (uvp)->tv_usec) :                       \
  411             ((tvp)->tv_sec cmp (uvp)->tv_sec))
  412 
  413 /* timevaladd and timevalsub are not inlined */
  414 
  415 #endif /* _KERNEL */
  416 
  417 #ifndef _KERNEL                 /* NetBSD/OpenBSD compatible interfaces */
  418 
  419 #define timerclear(tvp)         ((tvp)->tv_sec = (tvp)->tv_usec = 0)
  420 #define timerisset(tvp)         ((tvp)->tv_sec || (tvp)->tv_usec)
  421 #define timercmp(tvp, uvp, cmp)                                 \
  422         (((tvp)->tv_sec == (uvp)->tv_sec) ?                             \
  423             ((tvp)->tv_usec cmp (uvp)->tv_usec) :                       \
  424             ((tvp)->tv_sec cmp (uvp)->tv_sec))
  425 #define timeradd(tvp, uvp, vvp)                                         \
  426         do {                                                            \
  427                 (vvp)->tv_sec = (tvp)->tv_sec + (uvp)->tv_sec;          \
  428                 (vvp)->tv_usec = (tvp)->tv_usec + (uvp)->tv_usec;       \
  429                 if ((vvp)->tv_usec >= 1000000) {                        \
  430                         (vvp)->tv_sec++;                                \
  431                         (vvp)->tv_usec -= 1000000;                      \
  432                 }                                                       \
  433         } while (0)
  434 #define timersub(tvp, uvp, vvp)                                         \
  435         do {                                                            \
  436                 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;          \
  437                 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;       \
  438                 if ((vvp)->tv_usec < 0) {                               \
  439                         (vvp)->tv_sec--;                                \
  440                         (vvp)->tv_usec += 1000000;                      \
  441                 }                                                       \
  442         } while (0)
  443 #endif
  444 
  445 /*
  446  * Names of the interval timers, and structure
  447  * defining a timer setting.
  448  */
  449 #define ITIMER_REAL     0
  450 #define ITIMER_VIRTUAL  1
  451 #define ITIMER_PROF     2
  452 
  453 struct itimerval {
  454         struct  timeval it_interval;    /* timer interval */
  455         struct  timeval it_value;       /* current value */
  456 };
  457 
  458 /*
  459  * Getkerninfo clock information structure
  460  */
  461 struct clockinfo {
  462         int     hz;             /* clock frequency */
  463         int     tick;           /* micro-seconds per hz tick */
  464         int     spare;
  465         int     stathz;         /* statistics clock frequency */
  466         int     profhz;         /* profiling clock frequency */
  467 };
  468 
  469 /* These macros are also in time.h. */
  470 #ifndef CLOCK_REALTIME
  471 #define CLOCK_REALTIME  0
  472 #endif
  473 #ifndef CLOCK_VIRTUAL
  474 #define CLOCK_VIRTUAL   1
  475 #define CLOCK_PROF      2
  476 #endif
  477 #ifndef CLOCK_MONOTONIC
  478 #define CLOCK_MONOTONIC 4
  479 #define CLOCK_UPTIME    5               /* FreeBSD-specific. */
  480 #define CLOCK_UPTIME_PRECISE    7       /* FreeBSD-specific. */
  481 #define CLOCK_UPTIME_FAST       8       /* FreeBSD-specific. */
  482 #define CLOCK_REALTIME_PRECISE  9       /* FreeBSD-specific. */
  483 #define CLOCK_REALTIME_FAST     10      /* FreeBSD-specific. */
  484 #define CLOCK_MONOTONIC_PRECISE 11      /* FreeBSD-specific. */
  485 #define CLOCK_MONOTONIC_FAST    12      /* FreeBSD-specific. */
  486 #define CLOCK_SECOND    13              /* FreeBSD-specific. */
  487 #define CLOCK_THREAD_CPUTIME_ID 14
  488 #define CLOCK_PROCESS_CPUTIME_ID        15
  489 #endif
  490 
  491 #ifndef TIMER_ABSTIME
  492 #define TIMER_RELTIME   0x0     /* relative timer */
  493 #define TIMER_ABSTIME   0x1     /* absolute timer */
  494 #endif
  495 
  496 #if __BSD_VISIBLE
  497 #define CPUCLOCK_WHICH_PID      0
  498 #define CPUCLOCK_WHICH_TID      1
  499 #endif
  500 
  501 #ifdef _KERNEL
  502 
  503 /*
  504  * Kernel to clock driver interface.
  505  */
  506 void    inittodr(time_t base);
  507 void    resettodr(void);
  508 
  509 extern volatile time_t  time_second;
  510 extern volatile time_t  time_uptime;
  511 extern struct bintime tc_tick_bt;
  512 extern sbintime_t tc_tick_sbt;
  513 extern struct bintime tick_bt;
  514 extern sbintime_t tick_sbt;
  515 extern int tc_precexp;
  516 extern int tc_timepercentage;
  517 extern struct bintime bt_timethreshold;
  518 extern struct bintime bt_tickthreshold;
  519 extern sbintime_t sbt_timethreshold;
  520 extern sbintime_t sbt_tickthreshold;
  521 
  522 extern volatile int rtc_generation;
  523 
  524 /*
  525  * Functions for looking at our clock: [get]{bin,nano,micro}[up]time()
  526  *
  527  * Functions without the "get" prefix returns the best timestamp
  528  * we can produce in the given format.
  529  *
  530  * "bin"   == struct bintime  == seconds + 64 bit fraction of seconds.
  531  * "nano"  == struct timespec == seconds + nanoseconds.
  532  * "micro" == struct timeval  == seconds + microseconds.
  533  *
  534  * Functions containing "up" returns time relative to boot and
  535  * should be used for calculating time intervals.
  536  *
  537  * Functions without "up" returns UTC time.
  538  *
  539  * Functions with the "get" prefix returns a less precise result
  540  * much faster than the functions without "get" prefix and should
  541  * be used where a precision of 1/hz seconds is acceptable or where
  542  * performance is priority. (NB: "precision", _not_ "resolution" !)
  543  */
  544 
  545 void    binuptime(struct bintime *bt);
  546 void    nanouptime(struct timespec *tsp);
  547 void    microuptime(struct timeval *tvp);
  548 
  549 static __inline sbintime_t
  550 sbinuptime(void)
  551 {
  552         struct bintime _bt;
  553 
  554         binuptime(&_bt);
  555         return (bttosbt(_bt));
  556 }
  557 
  558 void    bintime(struct bintime *bt);
  559 void    nanotime(struct timespec *tsp);
  560 void    microtime(struct timeval *tvp);
  561 
  562 void    getbinuptime(struct bintime *bt);
  563 void    getnanouptime(struct timespec *tsp);
  564 void    getmicrouptime(struct timeval *tvp);
  565 
  566 static __inline sbintime_t
  567 getsbinuptime(void)
  568 {
  569         struct bintime _bt;
  570 
  571         getbinuptime(&_bt);
  572         return (bttosbt(_bt));
  573 }
  574 
  575 void    getbintime(struct bintime *bt);
  576 void    getnanotime(struct timespec *tsp);
  577 void    getmicrotime(struct timeval *tvp);
  578 
  579 void    getboottime(struct timeval *boottime);
  580 void    getboottimebin(struct bintime *boottimebin);
  581 
  582 /* Other functions */
  583 int     itimerdecr(struct itimerval *itp, int usec);
  584 int     itimerfix(struct timeval *tv);
  585 int     ppsratecheck(struct timeval *, int *, int);
  586 int     ratecheck(struct timeval *, const struct timeval *);
  587 void    timevaladd(struct timeval *t1, const struct timeval *t2);
  588 void    timevalsub(struct timeval *t1, const struct timeval *t2);
  589 int     tvtohz(struct timeval *tv);
  590 
  591 #define TC_DEFAULTPERC          5
  592 
  593 #define BT2FREQ(bt)                                                     \
  594         (((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) /           \
  595             ((bt)->frac >> 1))
  596 
  597 #define SBT2FREQ(sbt)   ((SBT_1S + ((sbt) >> 1)) / (sbt))
  598 
  599 #define FREQ2BT(freq, bt)                                               \
  600 {                                                                       \
  601         (bt)->sec = 0;                                                  \
  602         (bt)->frac = ((uint64_t)0x8000000000000000  / (freq)) << 1;     \
  603 }
  604 
  605 #define TIMESEL(sbt, sbt2)                                              \
  606         (((sbt2) >= sbt_timethreshold) ?                                \
  607             ((*(sbt) = getsbinuptime()), 1) : ((*(sbt) = sbinuptime()), 0))
  608 
  609 #else /* !_KERNEL */
  610 #include <time.h>
  611 
  612 #include <sys/cdefs.h>
  613 #include <sys/select.h>
  614 
  615 __BEGIN_DECLS
  616 int     setitimer(int, const struct itimerval *, struct itimerval *);
  617 int     utimes(const char *, const struct timeval *);
  618 
  619 #if __BSD_VISIBLE
  620 int     adjtime(const struct timeval *, struct timeval *);
  621 int     clock_getcpuclockid2(id_t, int, clockid_t *);
  622 int     futimes(int, const struct timeval *);
  623 int     futimesat(int, const char *, const struct timeval [2]);
  624 int     lutimes(const char *, const struct timeval *);
  625 int     settimeofday(const struct timeval *, const struct timezone *);
  626 #endif
  627 
  628 #if __XSI_VISIBLE
  629 int     getitimer(int, struct itimerval *);
  630 int     gettimeofday(struct timeval *, struct timezone *);
  631 #endif
  632 
  633 __END_DECLS
  634 
  635 #endif /* !_KERNEL */
  636 
  637 #endif /* !_SYS_TIME_H_ */

Cache object: fc8414b4c5c78464e8b6255c1a33b8bd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.