1 /*-
2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause)
3 *
4 * Copyright (c) 2002 Networks Associates Technology, Inc.
5 * All rights reserved.
6 *
7 * This software was developed for the FreeBSD Project by Marshall
8 * Kirk McKusick and Network Associates Laboratories, the Security
9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 * research program
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * Copyright (c) 1982, 1986, 1989, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95
62 */
63
64 #include <sys/cdefs.h>
65 __FBSDID("$FreeBSD$");
66
67 #include "opt_quota.h"
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/bio.h>
72 #include <sys/buf.h>
73 #include <sys/capsicum.h>
74 #include <sys/conf.h>
75 #include <sys/fcntl.h>
76 #include <sys/file.h>
77 #include <sys/filedesc.h>
78 #include <sys/gsb_crc32.h>
79 #include <sys/kernel.h>
80 #include <sys/mount.h>
81 #include <sys/priv.h>
82 #include <sys/proc.h>
83 #include <sys/stat.h>
84 #include <sys/syscallsubr.h>
85 #include <sys/sysctl.h>
86 #include <sys/syslog.h>
87 #include <sys/taskqueue.h>
88 #include <sys/vnode.h>
89
90 #include <security/audit/audit.h>
91
92 #include <geom/geom.h>
93 #include <geom/geom_vfs.h>
94
95 #include <ufs/ufs/dir.h>
96 #include <ufs/ufs/extattr.h>
97 #include <ufs/ufs/quota.h>
98 #include <ufs/ufs/inode.h>
99 #include <ufs/ufs/ufs_extern.h>
100 #include <ufs/ufs/ufsmount.h>
101
102 #include <ufs/ffs/fs.h>
103 #include <ufs/ffs/ffs_extern.h>
104 #include <ufs/ffs/softdep.h>
105
106 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref,
107 int size, int rsize);
108
109 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int);
110 static ufs2_daddr_t
111 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int);
112 static void ffs_blkfree_cg(struct ufsmount *, struct fs *,
113 struct vnode *, ufs2_daddr_t, long, ino_t,
114 struct workhead *);
115 #ifdef INVARIANTS
116 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long);
117 #endif
118 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int);
119 static ino_t ffs_dirpref(struct inode *);
120 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t,
121 int, int);
122 static ufs2_daddr_t ffs_hashalloc
123 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *);
124 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int,
125 int);
126 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
127 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
128 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
129 static void ffs_ckhash_cg(struct buf *);
130
131 /*
132 * Allocate a block in the filesystem.
133 *
134 * The size of the requested block is given, which must be some
135 * multiple of fs_fsize and <= fs_bsize.
136 * A preference may be optionally specified. If a preference is given
137 * the following hierarchy is used to allocate a block:
138 * 1) allocate the requested block.
139 * 2) allocate a rotationally optimal block in the same cylinder.
140 * 3) allocate a block in the same cylinder group.
141 * 4) quadratically rehash into other cylinder groups, until an
142 * available block is located.
143 * If no block preference is given the following hierarchy is used
144 * to allocate a block:
145 * 1) allocate a block in the cylinder group that contains the
146 * inode for the file.
147 * 2) quadratically rehash into other cylinder groups, until an
148 * available block is located.
149 */
150 int
151 ffs_alloc(struct inode *ip,
152 ufs2_daddr_t lbn,
153 ufs2_daddr_t bpref,
154 int size,
155 int flags,
156 struct ucred *cred,
157 ufs2_daddr_t *bnp)
158 {
159 struct fs *fs;
160 struct ufsmount *ump;
161 ufs2_daddr_t bno;
162 u_int cg, reclaimed;
163 int64_t delta;
164 #ifdef QUOTA
165 int error;
166 #endif
167
168 *bnp = 0;
169 ump = ITOUMP(ip);
170 fs = ump->um_fs;
171 mtx_assert(UFS_MTX(ump), MA_OWNED);
172 #ifdef INVARIANTS
173 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
174 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
175 devtoname(ump->um_dev), (long)fs->fs_bsize, size,
176 fs->fs_fsmnt);
177 panic("ffs_alloc: bad size");
178 }
179 if (cred == NOCRED)
180 panic("ffs_alloc: missing credential");
181 #endif /* INVARIANTS */
182 reclaimed = 0;
183 retry:
184 #ifdef QUOTA
185 UFS_UNLOCK(ump);
186 error = chkdq(ip, btodb(size), cred, 0);
187 if (error)
188 return (error);
189 UFS_LOCK(ump);
190 #endif
191 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
192 goto nospace;
193 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) &&
194 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
195 goto nospace;
196 if (bpref >= fs->fs_size)
197 bpref = 0;
198 if (bpref == 0)
199 cg = ino_to_cg(fs, ip->i_number);
200 else
201 cg = dtog(fs, bpref);
202 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg);
203 if (bno > 0) {
204 delta = btodb(size);
205 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
206 if (flags & IO_EXT)
207 UFS_INODE_SET_FLAG(ip, IN_CHANGE);
208 else
209 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
210 *bnp = bno;
211 return (0);
212 }
213 nospace:
214 #ifdef QUOTA
215 UFS_UNLOCK(ump);
216 /*
217 * Restore user's disk quota because allocation failed.
218 */
219 (void) chkdq(ip, -btodb(size), cred, FORCE);
220 UFS_LOCK(ump);
221 #endif
222 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
223 reclaimed = 1;
224 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT);
225 goto retry;
226 }
227 if (ffs_fsfail_cleanup_locked(ump, 0)) {
228 UFS_UNLOCK(ump);
229 return (ENXIO);
230 }
231 if (reclaimed > 0 &&
232 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
233 UFS_UNLOCK(ump);
234 ffs_fserr(fs, ip->i_number, "filesystem full");
235 uprintf("\n%s: write failed, filesystem is full\n",
236 fs->fs_fsmnt);
237 } else {
238 UFS_UNLOCK(ump);
239 }
240 return (ENOSPC);
241 }
242
243 /*
244 * Reallocate a fragment to a bigger size
245 *
246 * The number and size of the old block is given, and a preference
247 * and new size is also specified. The allocator attempts to extend
248 * the original block. Failing that, the regular block allocator is
249 * invoked to get an appropriate block.
250 */
251 int
252 ffs_realloccg(struct inode *ip,
253 ufs2_daddr_t lbprev,
254 ufs2_daddr_t bprev,
255 ufs2_daddr_t bpref,
256 int osize,
257 int nsize,
258 int flags,
259 struct ucred *cred,
260 struct buf **bpp)
261 {
262 struct vnode *vp;
263 struct fs *fs;
264 struct buf *bp;
265 struct ufsmount *ump;
266 u_int cg, request, reclaimed;
267 int error, gbflags;
268 ufs2_daddr_t bno;
269 int64_t delta;
270
271 vp = ITOV(ip);
272 ump = ITOUMP(ip);
273 fs = ump->um_fs;
274 bp = NULL;
275 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
276 #ifdef WITNESS
277 gbflags |= IS_SNAPSHOT(ip) ? GB_NOWITNESS : 0;
278 #endif
279
280 mtx_assert(UFS_MTX(ump), MA_OWNED);
281 #ifdef INVARIANTS
282 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
283 panic("ffs_realloccg: allocation on suspended filesystem");
284 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
285 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
286 printf(
287 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
288 devtoname(ump->um_dev), (long)fs->fs_bsize, osize,
289 nsize, fs->fs_fsmnt);
290 panic("ffs_realloccg: bad size");
291 }
292 if (cred == NOCRED)
293 panic("ffs_realloccg: missing credential");
294 #endif /* INVARIANTS */
295 reclaimed = 0;
296 retry:
297 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) &&
298 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) {
299 goto nospace;
300 }
301 if (bprev == 0) {
302 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
303 devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev,
304 fs->fs_fsmnt);
305 panic("ffs_realloccg: bad bprev");
306 }
307 UFS_UNLOCK(ump);
308 /*
309 * Allocate the extra space in the buffer.
310 */
311 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp);
312 if (error) {
313 return (error);
314 }
315
316 if (bp->b_blkno == bp->b_lblkno) {
317 if (lbprev >= UFS_NDADDR)
318 panic("ffs_realloccg: lbprev out of range");
319 bp->b_blkno = fsbtodb(fs, bprev);
320 }
321
322 #ifdef QUOTA
323 error = chkdq(ip, btodb(nsize - osize), cred, 0);
324 if (error) {
325 brelse(bp);
326 return (error);
327 }
328 #endif
329 /*
330 * Check for extension in the existing location.
331 */
332 *bpp = NULL;
333 cg = dtog(fs, bprev);
334 UFS_LOCK(ump);
335 bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
336 if (bno) {
337 if (bp->b_blkno != fsbtodb(fs, bno))
338 panic("ffs_realloccg: bad blockno");
339 delta = btodb(nsize - osize);
340 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
341 if (flags & IO_EXT)
342 UFS_INODE_SET_FLAG(ip, IN_CHANGE);
343 else
344 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
345 allocbuf(bp, nsize);
346 bp->b_flags |= B_DONE;
347 vfs_bio_bzero_buf(bp, osize, nsize - osize);
348 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
349 vfs_bio_set_valid(bp, osize, nsize - osize);
350 *bpp = bp;
351 return (0);
352 }
353 /*
354 * Allocate a new disk location.
355 */
356 if (bpref >= fs->fs_size)
357 bpref = 0;
358 switch ((int)fs->fs_optim) {
359 case FS_OPTSPACE:
360 /*
361 * Allocate an exact sized fragment. Although this makes
362 * best use of space, we will waste time relocating it if
363 * the file continues to grow. If the fragmentation is
364 * less than half of the minimum free reserve, we choose
365 * to begin optimizing for time.
366 */
367 request = nsize;
368 if (fs->fs_minfree <= 5 ||
369 fs->fs_cstotal.cs_nffree >
370 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
371 break;
372 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
373 fs->fs_fsmnt);
374 fs->fs_optim = FS_OPTTIME;
375 break;
376 case FS_OPTTIME:
377 /*
378 * At this point we have discovered a file that is trying to
379 * grow a small fragment to a larger fragment. To save time,
380 * we allocate a full sized block, then free the unused portion.
381 * If the file continues to grow, the `ffs_fragextend' call
382 * above will be able to grow it in place without further
383 * copying. If aberrant programs cause disk fragmentation to
384 * grow within 2% of the free reserve, we choose to begin
385 * optimizing for space.
386 */
387 request = fs->fs_bsize;
388 if (fs->fs_cstotal.cs_nffree <
389 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
390 break;
391 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
392 fs->fs_fsmnt);
393 fs->fs_optim = FS_OPTSPACE;
394 break;
395 default:
396 printf("dev = %s, optim = %ld, fs = %s\n",
397 devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt);
398 panic("ffs_realloccg: bad optim");
399 /* NOTREACHED */
400 }
401 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg);
402 if (bno > 0) {
403 bp->b_blkno = fsbtodb(fs, bno);
404 if (!DOINGSOFTDEP(vp))
405 /*
406 * The usual case is that a smaller fragment that
407 * was just allocated has been replaced with a bigger
408 * fragment or a full-size block. If it is marked as
409 * B_DELWRI, the current contents have not been written
410 * to disk. It is possible that the block was written
411 * earlier, but very uncommon. If the block has never
412 * been written, there is no need to send a BIO_DELETE
413 * for it when it is freed. The gain from avoiding the
414 * TRIMs for the common case of unwritten blocks far
415 * exceeds the cost of the write amplification for the
416 * uncommon case of failing to send a TRIM for a block
417 * that had been written.
418 */
419 ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize,
420 ip->i_number, vp->v_type, NULL,
421 (bp->b_flags & B_DELWRI) != 0 ?
422 NOTRIM_KEY : SINGLETON_KEY);
423 delta = btodb(nsize - osize);
424 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
425 if (flags & IO_EXT)
426 UFS_INODE_SET_FLAG(ip, IN_CHANGE);
427 else
428 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
429 allocbuf(bp, nsize);
430 bp->b_flags |= B_DONE;
431 vfs_bio_bzero_buf(bp, osize, nsize - osize);
432 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
433 vfs_bio_set_valid(bp, osize, nsize - osize);
434 *bpp = bp;
435 return (0);
436 }
437 #ifdef QUOTA
438 UFS_UNLOCK(ump);
439 /*
440 * Restore user's disk quota because allocation failed.
441 */
442 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
443 UFS_LOCK(ump);
444 #endif
445 nospace:
446 /*
447 * no space available
448 */
449 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
450 reclaimed = 1;
451 UFS_UNLOCK(ump);
452 if (bp) {
453 brelse(bp);
454 bp = NULL;
455 }
456 UFS_LOCK(ump);
457 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT);
458 goto retry;
459 }
460 if (bp)
461 brelse(bp);
462 if (ffs_fsfail_cleanup_locked(ump, 0)) {
463 UFS_UNLOCK(ump);
464 return (ENXIO);
465 }
466 if (reclaimed > 0 &&
467 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
468 UFS_UNLOCK(ump);
469 ffs_fserr(fs, ip->i_number, "filesystem full");
470 uprintf("\n%s: write failed, filesystem is full\n",
471 fs->fs_fsmnt);
472 } else {
473 UFS_UNLOCK(ump);
474 }
475 return (ENOSPC);
476 }
477
478 /*
479 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
480 *
481 * The vnode and an array of buffer pointers for a range of sequential
482 * logical blocks to be made contiguous is given. The allocator attempts
483 * to find a range of sequential blocks starting as close as possible
484 * from the end of the allocation for the logical block immediately
485 * preceding the current range. If successful, the physical block numbers
486 * in the buffer pointers and in the inode are changed to reflect the new
487 * allocation. If unsuccessful, the allocation is left unchanged. The
488 * success in doing the reallocation is returned. Note that the error
489 * return is not reflected back to the user. Rather the previous block
490 * allocation will be used.
491 */
492
493 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
494 "FFS filesystem");
495
496 static int doasyncfree = 1;
497 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
498 "do not force synchronous writes when blocks are reallocated");
499
500 static int doreallocblks = 1;
501 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0,
502 "enable block reallocation");
503
504 static int dotrimcons = 1;
505 SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0,
506 "enable BIO_DELETE / TRIM consolidation");
507
508 static int maxclustersearch = 10;
509 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch,
510 0, "max number of cylinder group to search for contigous blocks");
511
512 #ifdef DIAGNOSTIC
513 static int prtrealloc = 0;
514 SYSCTL_INT(_debug, OID_AUTO, ffs_prtrealloc, CTLFLAG_RW, &prtrealloc, 0,
515 "print out FFS filesystem block reallocation operations");
516 #endif
517
518 int
519 ffs_reallocblks(
520 struct vop_reallocblks_args /* {
521 struct vnode *a_vp;
522 struct cluster_save *a_buflist;
523 } */ *ap)
524 {
525 struct ufsmount *ump;
526 int error;
527
528 /*
529 * We used to skip reallocating the blocks of a file into a
530 * contiguous sequence if the underlying flash device requested
531 * BIO_DELETE notifications, because devices that benefit from
532 * BIO_DELETE also benefit from not moving the data. However,
533 * the destination for the data is usually moved before the data
534 * is written to the initially allocated location, so we rarely
535 * suffer the penalty of extra writes. With the addition of the
536 * consolidation of contiguous blocks into single BIO_DELETE
537 * operations, having fewer but larger contiguous blocks reduces
538 * the number of (slow and expensive) BIO_DELETE operations. So
539 * when doing BIO_DELETE consolidation, we do block reallocation.
540 *
541 * Skip if reallocblks has been disabled globally.
542 */
543 ump = ap->a_vp->v_mount->mnt_data;
544 if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) ||
545 doreallocblks == 0)
546 return (ENOSPC);
547
548 /*
549 * We can't wait in softdep prealloc as it may fsync and recurse
550 * here. Instead we simply fail to reallocate blocks if this
551 * rare condition arises.
552 */
553 if (DOINGSUJ(ap->a_vp))
554 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0)
555 return (ENOSPC);
556 vn_seqc_write_begin(ap->a_vp);
557 error = ump->um_fstype == UFS1 ? ffs_reallocblks_ufs1(ap) :
558 ffs_reallocblks_ufs2(ap);
559 vn_seqc_write_end(ap->a_vp);
560 return (error);
561 }
562
563 static int
564 ffs_reallocblks_ufs1(
565 struct vop_reallocblks_args /* {
566 struct vnode *a_vp;
567 struct cluster_save *a_buflist;
568 } */ *ap)
569 {
570 struct fs *fs;
571 struct inode *ip;
572 struct vnode *vp;
573 struct buf *sbp, *ebp, *bp;
574 ufs1_daddr_t *bap, *sbap, *ebap;
575 struct cluster_save *buflist;
576 struct ufsmount *ump;
577 ufs_lbn_t start_lbn, end_lbn;
578 ufs1_daddr_t soff, newblk, blkno;
579 ufs2_daddr_t pref;
580 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
581 int i, cg, len, start_lvl, end_lvl, ssize;
582
583 vp = ap->a_vp;
584 ip = VTOI(vp);
585 ump = ITOUMP(ip);
586 fs = ump->um_fs;
587 /*
588 * If we are not tracking block clusters or if we have less than 4%
589 * free blocks left, then do not attempt to cluster. Running with
590 * less than 5% free block reserve is not recommended and those that
591 * choose to do so do not expect to have good file layout.
592 */
593 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
594 return (ENOSPC);
595 buflist = ap->a_buflist;
596 len = buflist->bs_nchildren;
597 start_lbn = buflist->bs_children[0]->b_lblkno;
598 end_lbn = start_lbn + len - 1;
599 #ifdef INVARIANTS
600 for (i = 0; i < len; i++)
601 if (!ffs_checkblk(ip,
602 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
603 panic("ffs_reallocblks: unallocated block 1");
604 for (i = 1; i < len; i++)
605 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
606 panic("ffs_reallocblks: non-logical cluster");
607 blkno = buflist->bs_children[0]->b_blkno;
608 ssize = fsbtodb(fs, fs->fs_frag);
609 for (i = 1; i < len - 1; i++)
610 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
611 panic("ffs_reallocblks: non-physical cluster %d", i);
612 #endif
613 /*
614 * If the cluster crosses the boundary for the first indirect
615 * block, leave space for the indirect block. Indirect blocks
616 * are initially laid out in a position after the last direct
617 * block. Block reallocation would usually destroy locality by
618 * moving the indirect block out of the way to make room for
619 * data blocks if we didn't compensate here. We should also do
620 * this for other indirect block boundaries, but it is only
621 * important for the first one.
622 */
623 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
624 return (ENOSPC);
625 /*
626 * If the latest allocation is in a new cylinder group, assume that
627 * the filesystem has decided to move and do not force it back to
628 * the previous cylinder group.
629 */
630 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
631 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
632 return (ENOSPC);
633 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
634 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
635 return (ENOSPC);
636 /*
637 * Get the starting offset and block map for the first block.
638 */
639 if (start_lvl == 0) {
640 sbap = &ip->i_din1->di_db[0];
641 soff = start_lbn;
642 } else {
643 idp = &start_ap[start_lvl - 1];
644 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
645 brelse(sbp);
646 return (ENOSPC);
647 }
648 sbap = (ufs1_daddr_t *)sbp->b_data;
649 soff = idp->in_off;
650 }
651 /*
652 * If the block range spans two block maps, get the second map.
653 */
654 ebap = NULL;
655 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
656 ssize = len;
657 } else {
658 #ifdef INVARIANTS
659 if (start_lvl > 0 &&
660 start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
661 panic("ffs_reallocblk: start == end");
662 #endif
663 ssize = len - (idp->in_off + 1);
664 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
665 goto fail;
666 ebap = (ufs1_daddr_t *)ebp->b_data;
667 }
668 /*
669 * Find the preferred location for the cluster. If we have not
670 * previously failed at this endeavor, then follow our standard
671 * preference calculation. If we have failed at it, then pick up
672 * where we last ended our search.
673 */
674 UFS_LOCK(ump);
675 if (ip->i_nextclustercg == -1)
676 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
677 else
678 pref = cgdata(fs, ip->i_nextclustercg);
679 /*
680 * Search the block map looking for an allocation of the desired size.
681 * To avoid wasting too much time, we limit the number of cylinder
682 * groups that we will search.
683 */
684 cg = dtog(fs, pref);
685 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
686 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
687 break;
688 cg += 1;
689 if (cg >= fs->fs_ncg)
690 cg = 0;
691 }
692 /*
693 * If we have failed in our search, record where we gave up for
694 * next time. Otherwise, fall back to our usual search citerion.
695 */
696 if (newblk == 0) {
697 ip->i_nextclustercg = cg;
698 UFS_UNLOCK(ump);
699 goto fail;
700 }
701 ip->i_nextclustercg = -1;
702 /*
703 * We have found a new contiguous block.
704 *
705 * First we have to replace the old block pointers with the new
706 * block pointers in the inode and indirect blocks associated
707 * with the file.
708 */
709 #ifdef DIAGNOSTIC
710 if (prtrealloc)
711 printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
712 (uintmax_t)ip->i_number,
713 (intmax_t)start_lbn, (intmax_t)end_lbn);
714 #endif
715 blkno = newblk;
716 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
717 if (i == ssize) {
718 bap = ebap;
719 soff = -i;
720 }
721 #ifdef INVARIANTS
722 if (!ffs_checkblk(ip,
723 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
724 panic("ffs_reallocblks: unallocated block 2");
725 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
726 panic("ffs_reallocblks: alloc mismatch");
727 #endif
728 #ifdef DIAGNOSTIC
729 if (prtrealloc)
730 printf(" %d,", *bap);
731 #endif
732 if (DOINGSOFTDEP(vp)) {
733 if (sbap == &ip->i_din1->di_db[0] && i < ssize)
734 softdep_setup_allocdirect(ip, start_lbn + i,
735 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
736 buflist->bs_children[i]);
737 else
738 softdep_setup_allocindir_page(ip, start_lbn + i,
739 i < ssize ? sbp : ebp, soff + i, blkno,
740 *bap, buflist->bs_children[i]);
741 }
742 *bap++ = blkno;
743 }
744 /*
745 * Next we must write out the modified inode and indirect blocks.
746 * For strict correctness, the writes should be synchronous since
747 * the old block values may have been written to disk. In practise
748 * they are almost never written, but if we are concerned about
749 * strict correctness, the `doasyncfree' flag should be set to zero.
750 *
751 * The test on `doasyncfree' should be changed to test a flag
752 * that shows whether the associated buffers and inodes have
753 * been written. The flag should be set when the cluster is
754 * started and cleared whenever the buffer or inode is flushed.
755 * We can then check below to see if it is set, and do the
756 * synchronous write only when it has been cleared.
757 */
758 if (sbap != &ip->i_din1->di_db[0]) {
759 if (doasyncfree)
760 bdwrite(sbp);
761 else
762 bwrite(sbp);
763 } else {
764 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
765 if (!doasyncfree)
766 ffs_update(vp, 1);
767 }
768 if (ssize < len) {
769 if (doasyncfree)
770 bdwrite(ebp);
771 else
772 bwrite(ebp);
773 }
774 /*
775 * Last, free the old blocks and assign the new blocks to the buffers.
776 */
777 #ifdef DIAGNOSTIC
778 if (prtrealloc)
779 printf("\n\tnew:");
780 #endif
781 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
782 bp = buflist->bs_children[i];
783 if (!DOINGSOFTDEP(vp))
784 /*
785 * The usual case is that a set of N-contiguous blocks
786 * that was just allocated has been replaced with a
787 * set of N+1-contiguous blocks. If they are marked as
788 * B_DELWRI, the current contents have not been written
789 * to disk. It is possible that the blocks were written
790 * earlier, but very uncommon. If the blocks have never
791 * been written, there is no need to send a BIO_DELETE
792 * for them when they are freed. The gain from avoiding
793 * the TRIMs for the common case of unwritten blocks
794 * far exceeds the cost of the write amplification for
795 * the uncommon case of failing to send a TRIM for the
796 * blocks that had been written.
797 */
798 ffs_blkfree(ump, fs, ump->um_devvp,
799 dbtofsb(fs, bp->b_blkno),
800 fs->fs_bsize, ip->i_number, vp->v_type, NULL,
801 (bp->b_flags & B_DELWRI) != 0 ?
802 NOTRIM_KEY : SINGLETON_KEY);
803 bp->b_blkno = fsbtodb(fs, blkno);
804 #ifdef INVARIANTS
805 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize))
806 panic("ffs_reallocblks: unallocated block 3");
807 #endif
808 #ifdef DIAGNOSTIC
809 if (prtrealloc)
810 printf(" %d,", blkno);
811 #endif
812 }
813 #ifdef DIAGNOSTIC
814 if (prtrealloc) {
815 prtrealloc--;
816 printf("\n");
817 }
818 #endif
819 return (0);
820
821 fail:
822 if (ssize < len)
823 brelse(ebp);
824 if (sbap != &ip->i_din1->di_db[0])
825 brelse(sbp);
826 return (ENOSPC);
827 }
828
829 static int
830 ffs_reallocblks_ufs2(
831 struct vop_reallocblks_args /* {
832 struct vnode *a_vp;
833 struct cluster_save *a_buflist;
834 } */ *ap)
835 {
836 struct fs *fs;
837 struct inode *ip;
838 struct vnode *vp;
839 struct buf *sbp, *ebp, *bp;
840 ufs2_daddr_t *bap, *sbap, *ebap;
841 struct cluster_save *buflist;
842 struct ufsmount *ump;
843 ufs_lbn_t start_lbn, end_lbn;
844 ufs2_daddr_t soff, newblk, blkno, pref;
845 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
846 int i, cg, len, start_lvl, end_lvl, ssize;
847
848 vp = ap->a_vp;
849 ip = VTOI(vp);
850 ump = ITOUMP(ip);
851 fs = ump->um_fs;
852 /*
853 * If we are not tracking block clusters or if we have less than 4%
854 * free blocks left, then do not attempt to cluster. Running with
855 * less than 5% free block reserve is not recommended and those that
856 * choose to do so do not expect to have good file layout.
857 */
858 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
859 return (ENOSPC);
860 buflist = ap->a_buflist;
861 len = buflist->bs_nchildren;
862 start_lbn = buflist->bs_children[0]->b_lblkno;
863 end_lbn = start_lbn + len - 1;
864 #ifdef INVARIANTS
865 for (i = 0; i < len; i++)
866 if (!ffs_checkblk(ip,
867 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
868 panic("ffs_reallocblks: unallocated block 1");
869 for (i = 1; i < len; i++)
870 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
871 panic("ffs_reallocblks: non-logical cluster");
872 blkno = buflist->bs_children[0]->b_blkno;
873 ssize = fsbtodb(fs, fs->fs_frag);
874 for (i = 1; i < len - 1; i++)
875 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
876 panic("ffs_reallocblks: non-physical cluster %d", i);
877 #endif
878 /*
879 * If the cluster crosses the boundary for the first indirect
880 * block, do not move anything in it. Indirect blocks are
881 * usually initially laid out in a position between the data
882 * blocks. Block reallocation would usually destroy locality by
883 * moving the indirect block out of the way to make room for
884 * data blocks if we didn't compensate here. We should also do
885 * this for other indirect block boundaries, but it is only
886 * important for the first one.
887 */
888 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
889 return (ENOSPC);
890 /*
891 * If the latest allocation is in a new cylinder group, assume that
892 * the filesystem has decided to move and do not force it back to
893 * the previous cylinder group.
894 */
895 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
896 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
897 return (ENOSPC);
898 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
899 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
900 return (ENOSPC);
901 /*
902 * Get the starting offset and block map for the first block.
903 */
904 if (start_lvl == 0) {
905 sbap = &ip->i_din2->di_db[0];
906 soff = start_lbn;
907 } else {
908 idp = &start_ap[start_lvl - 1];
909 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
910 brelse(sbp);
911 return (ENOSPC);
912 }
913 sbap = (ufs2_daddr_t *)sbp->b_data;
914 soff = idp->in_off;
915 }
916 /*
917 * If the block range spans two block maps, get the second map.
918 */
919 ebap = NULL;
920 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
921 ssize = len;
922 } else {
923 #ifdef INVARIANTS
924 if (start_lvl > 0 &&
925 start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
926 panic("ffs_reallocblk: start == end");
927 #endif
928 ssize = len - (idp->in_off + 1);
929 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
930 goto fail;
931 ebap = (ufs2_daddr_t *)ebp->b_data;
932 }
933 /*
934 * Find the preferred location for the cluster. If we have not
935 * previously failed at this endeavor, then follow our standard
936 * preference calculation. If we have failed at it, then pick up
937 * where we last ended our search.
938 */
939 UFS_LOCK(ump);
940 if (ip->i_nextclustercg == -1)
941 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
942 else
943 pref = cgdata(fs, ip->i_nextclustercg);
944 /*
945 * Search the block map looking for an allocation of the desired size.
946 * To avoid wasting too much time, we limit the number of cylinder
947 * groups that we will search.
948 */
949 cg = dtog(fs, pref);
950 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
951 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
952 break;
953 cg += 1;
954 if (cg >= fs->fs_ncg)
955 cg = 0;
956 }
957 /*
958 * If we have failed in our search, record where we gave up for
959 * next time. Otherwise, fall back to our usual search citerion.
960 */
961 if (newblk == 0) {
962 ip->i_nextclustercg = cg;
963 UFS_UNLOCK(ump);
964 goto fail;
965 }
966 ip->i_nextclustercg = -1;
967 /*
968 * We have found a new contiguous block.
969 *
970 * First we have to replace the old block pointers with the new
971 * block pointers in the inode and indirect blocks associated
972 * with the file.
973 */
974 #ifdef DIAGNOSTIC
975 if (prtrealloc)
976 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number,
977 (intmax_t)start_lbn, (intmax_t)end_lbn);
978 #endif
979 blkno = newblk;
980 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
981 if (i == ssize) {
982 bap = ebap;
983 soff = -i;
984 }
985 #ifdef INVARIANTS
986 if (!ffs_checkblk(ip,
987 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
988 panic("ffs_reallocblks: unallocated block 2");
989 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
990 panic("ffs_reallocblks: alloc mismatch");
991 #endif
992 #ifdef DIAGNOSTIC
993 if (prtrealloc)
994 printf(" %jd,", (intmax_t)*bap);
995 #endif
996 if (DOINGSOFTDEP(vp)) {
997 if (sbap == &ip->i_din2->di_db[0] && i < ssize)
998 softdep_setup_allocdirect(ip, start_lbn + i,
999 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
1000 buflist->bs_children[i]);
1001 else
1002 softdep_setup_allocindir_page(ip, start_lbn + i,
1003 i < ssize ? sbp : ebp, soff + i, blkno,
1004 *bap, buflist->bs_children[i]);
1005 }
1006 *bap++ = blkno;
1007 }
1008 /*
1009 * Next we must write out the modified inode and indirect blocks.
1010 * For strict correctness, the writes should be synchronous since
1011 * the old block values may have been written to disk. In practise
1012 * they are almost never written, but if we are concerned about
1013 * strict correctness, the `doasyncfree' flag should be set to zero.
1014 *
1015 * The test on `doasyncfree' should be changed to test a flag
1016 * that shows whether the associated buffers and inodes have
1017 * been written. The flag should be set when the cluster is
1018 * started and cleared whenever the buffer or inode is flushed.
1019 * We can then check below to see if it is set, and do the
1020 * synchronous write only when it has been cleared.
1021 */
1022 if (sbap != &ip->i_din2->di_db[0]) {
1023 if (doasyncfree)
1024 bdwrite(sbp);
1025 else
1026 bwrite(sbp);
1027 } else {
1028 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
1029 if (!doasyncfree)
1030 ffs_update(vp, 1);
1031 }
1032 if (ssize < len) {
1033 if (doasyncfree)
1034 bdwrite(ebp);
1035 else
1036 bwrite(ebp);
1037 }
1038 /*
1039 * Last, free the old blocks and assign the new blocks to the buffers.
1040 */
1041 #ifdef DIAGNOSTIC
1042 if (prtrealloc)
1043 printf("\n\tnew:");
1044 #endif
1045 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
1046 bp = buflist->bs_children[i];
1047 if (!DOINGSOFTDEP(vp))
1048 /*
1049 * The usual case is that a set of N-contiguous blocks
1050 * that was just allocated has been replaced with a
1051 * set of N+1-contiguous blocks. If they are marked as
1052 * B_DELWRI, the current contents have not been written
1053 * to disk. It is possible that the blocks were written
1054 * earlier, but very uncommon. If the blocks have never
1055 * been written, there is no need to send a BIO_DELETE
1056 * for them when they are freed. The gain from avoiding
1057 * the TRIMs for the common case of unwritten blocks
1058 * far exceeds the cost of the write amplification for
1059 * the uncommon case of failing to send a TRIM for the
1060 * blocks that had been written.
1061 */
1062 ffs_blkfree(ump, fs, ump->um_devvp,
1063 dbtofsb(fs, bp->b_blkno),
1064 fs->fs_bsize, ip->i_number, vp->v_type, NULL,
1065 (bp->b_flags & B_DELWRI) != 0 ?
1066 NOTRIM_KEY : SINGLETON_KEY);
1067 bp->b_blkno = fsbtodb(fs, blkno);
1068 #ifdef INVARIANTS
1069 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize))
1070 panic("ffs_reallocblks: unallocated block 3");
1071 #endif
1072 #ifdef DIAGNOSTIC
1073 if (prtrealloc)
1074 printf(" %jd,", (intmax_t)blkno);
1075 #endif
1076 }
1077 #ifdef DIAGNOSTIC
1078 if (prtrealloc) {
1079 prtrealloc--;
1080 printf("\n");
1081 }
1082 #endif
1083 return (0);
1084
1085 fail:
1086 if (ssize < len)
1087 brelse(ebp);
1088 if (sbap != &ip->i_din2->di_db[0])
1089 brelse(sbp);
1090 return (ENOSPC);
1091 }
1092
1093 /*
1094 * Allocate an inode in the filesystem.
1095 *
1096 * If allocating a directory, use ffs_dirpref to select the inode.
1097 * If allocating in a directory, the following hierarchy is followed:
1098 * 1) allocate the preferred inode.
1099 * 2) allocate an inode in the same cylinder group.
1100 * 3) quadratically rehash into other cylinder groups, until an
1101 * available inode is located.
1102 * If no inode preference is given the following hierarchy is used
1103 * to allocate an inode:
1104 * 1) allocate an inode in cylinder group 0.
1105 * 2) quadratically rehash into other cylinder groups, until an
1106 * available inode is located.
1107 */
1108 int
1109 ffs_valloc(struct vnode *pvp,
1110 int mode,
1111 struct ucred *cred,
1112 struct vnode **vpp)
1113 {
1114 struct inode *pip;
1115 struct fs *fs;
1116 struct inode *ip;
1117 struct timespec ts;
1118 struct ufsmount *ump;
1119 ino_t ino, ipref;
1120 u_int cg;
1121 int error, reclaimed;
1122
1123 *vpp = NULL;
1124 pip = VTOI(pvp);
1125 ump = ITOUMP(pip);
1126 fs = ump->um_fs;
1127
1128 UFS_LOCK(ump);
1129 reclaimed = 0;
1130 retry:
1131 if (fs->fs_cstotal.cs_nifree == 0)
1132 goto noinodes;
1133
1134 if ((mode & IFMT) == IFDIR)
1135 ipref = ffs_dirpref(pip);
1136 else
1137 ipref = pip->i_number;
1138 if (ipref >= fs->fs_ncg * fs->fs_ipg)
1139 ipref = 0;
1140 cg = ino_to_cg(fs, ipref);
1141 /*
1142 * Track number of dirs created one after another
1143 * in a same cg without intervening by files.
1144 */
1145 if ((mode & IFMT) == IFDIR) {
1146 if (fs->fs_contigdirs[cg] < 255)
1147 fs->fs_contigdirs[cg]++;
1148 } else {
1149 if (fs->fs_contigdirs[cg] > 0)
1150 fs->fs_contigdirs[cg]--;
1151 }
1152 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0,
1153 (allocfcn_t *)ffs_nodealloccg);
1154 if (ino == 0)
1155 goto noinodes;
1156 /*
1157 * Get rid of the cached old vnode, force allocation of a new vnode
1158 * for this inode. If this fails, release the allocated ino and
1159 * return the error.
1160 */
1161 if ((error = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp,
1162 FFSV_FORCEINSMQ | FFSV_REPLACE | FFSV_NEWINODE)) != 0) {
1163 ffs_vfree(pvp, ino, mode);
1164 return (error);
1165 }
1166 /*
1167 * We got an inode, so check mode and panic if it is already allocated.
1168 */
1169 ip = VTOI(*vpp);
1170 if (ip->i_mode) {
1171 printf("mode = 0%o, inum = %ju, fs = %s\n",
1172 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt);
1173 panic("ffs_valloc: dup alloc");
1174 }
1175 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */
1176 printf("free inode %s/%lu had %ld blocks\n",
1177 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
1178 DIP_SET(ip, i_blocks, 0);
1179 }
1180 ip->i_flags = 0;
1181 DIP_SET(ip, i_flags, 0);
1182 /*
1183 * Set up a new generation number for this inode.
1184 */
1185 while (ip->i_gen == 0 || ++ip->i_gen == 0)
1186 ip->i_gen = arc4random();
1187 DIP_SET(ip, i_gen, ip->i_gen);
1188 if (fs->fs_magic == FS_UFS2_MAGIC) {
1189 vfs_timestamp(&ts);
1190 ip->i_din2->di_birthtime = ts.tv_sec;
1191 ip->i_din2->di_birthnsec = ts.tv_nsec;
1192 }
1193 ip->i_flag = 0;
1194 (*vpp)->v_vflag = 0;
1195 (*vpp)->v_type = VNON;
1196 if (fs->fs_magic == FS_UFS2_MAGIC) {
1197 (*vpp)->v_op = &ffs_vnodeops2;
1198 UFS_INODE_SET_FLAG(ip, IN_UFS2);
1199 } else {
1200 (*vpp)->v_op = &ffs_vnodeops1;
1201 }
1202 return (0);
1203 noinodes:
1204 if (reclaimed == 0) {
1205 reclaimed = 1;
1206 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT);
1207 goto retry;
1208 }
1209 if (ffs_fsfail_cleanup_locked(ump, 0)) {
1210 UFS_UNLOCK(ump);
1211 return (ENXIO);
1212 }
1213 if (ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
1214 UFS_UNLOCK(ump);
1215 ffs_fserr(fs, pip->i_number, "out of inodes");
1216 uprintf("\n%s: create/symlink failed, no inodes free\n",
1217 fs->fs_fsmnt);
1218 } else {
1219 UFS_UNLOCK(ump);
1220 }
1221 return (ENOSPC);
1222 }
1223
1224 /*
1225 * Find a cylinder group to place a directory.
1226 *
1227 * The policy implemented by this algorithm is to allocate a
1228 * directory inode in the same cylinder group as its parent
1229 * directory, but also to reserve space for its files inodes
1230 * and data. Restrict the number of directories which may be
1231 * allocated one after another in the same cylinder group
1232 * without intervening allocation of files.
1233 *
1234 * If we allocate a first level directory then force allocation
1235 * in another cylinder group.
1236 */
1237 static ino_t
1238 ffs_dirpref(struct inode *pip)
1239 {
1240 struct fs *fs;
1241 int cg, prefcg, dirsize, cgsize;
1242 u_int avgifree, avgbfree, avgndir, curdirsize;
1243 u_int minifree, minbfree, maxndir;
1244 u_int mincg, minndir;
1245 u_int maxcontigdirs;
1246
1247 mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED);
1248 fs = ITOFS(pip);
1249
1250 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
1251 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1252 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
1253
1254 /*
1255 * Force allocation in another cg if creating a first level dir.
1256 */
1257 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
1258 if (ITOV(pip)->v_vflag & VV_ROOT) {
1259 prefcg = arc4random() % fs->fs_ncg;
1260 mincg = prefcg;
1261 minndir = fs->fs_ipg;
1262 for (cg = prefcg; cg < fs->fs_ncg; cg++)
1263 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1264 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1265 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1266 mincg = cg;
1267 minndir = fs->fs_cs(fs, cg).cs_ndir;
1268 }
1269 for (cg = 0; cg < prefcg; cg++)
1270 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1271 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1272 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1273 mincg = cg;
1274 minndir = fs->fs_cs(fs, cg).cs_ndir;
1275 }
1276 return ((ino_t)(fs->fs_ipg * mincg));
1277 }
1278
1279 /*
1280 * Count various limits which used for
1281 * optimal allocation of a directory inode.
1282 */
1283 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
1284 minifree = avgifree - avgifree / 4;
1285 if (minifree < 1)
1286 minifree = 1;
1287 minbfree = avgbfree - avgbfree / 4;
1288 if (minbfree < 1)
1289 minbfree = 1;
1290 cgsize = fs->fs_fsize * fs->fs_fpg;
1291 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
1292 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
1293 if (dirsize < curdirsize)
1294 dirsize = curdirsize;
1295 if (dirsize <= 0)
1296 maxcontigdirs = 0; /* dirsize overflowed */
1297 else
1298 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
1299 if (fs->fs_avgfpdir > 0)
1300 maxcontigdirs = min(maxcontigdirs,
1301 fs->fs_ipg / fs->fs_avgfpdir);
1302 if (maxcontigdirs == 0)
1303 maxcontigdirs = 1;
1304
1305 /*
1306 * Limit number of dirs in one cg and reserve space for
1307 * regular files, but only if we have no deficit in
1308 * inodes or space.
1309 *
1310 * We are trying to find a suitable cylinder group nearby
1311 * our preferred cylinder group to place a new directory.
1312 * We scan from our preferred cylinder group forward looking
1313 * for a cylinder group that meets our criterion. If we get
1314 * to the final cylinder group and do not find anything,
1315 * we start scanning forwards from the beginning of the
1316 * filesystem. While it might seem sensible to start scanning
1317 * backwards or even to alternate looking forward and backward,
1318 * this approach fails badly when the filesystem is nearly full.
1319 * Specifically, we first search all the areas that have no space
1320 * and finally try the one preceding that. We repeat this on
1321 * every request and in the case of the final block end up
1322 * searching the entire filesystem. By jumping to the front
1323 * of the filesystem, our future forward searches always look
1324 * in new cylinder groups so finds every possible block after
1325 * one pass over the filesystem.
1326 */
1327 prefcg = ino_to_cg(fs, pip->i_number);
1328 for (cg = prefcg; cg < fs->fs_ncg; cg++)
1329 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1330 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1331 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1332 if (fs->fs_contigdirs[cg] < maxcontigdirs)
1333 return ((ino_t)(fs->fs_ipg * cg));
1334 }
1335 for (cg = 0; cg < prefcg; cg++)
1336 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1337 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1338 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1339 if (fs->fs_contigdirs[cg] < maxcontigdirs)
1340 return ((ino_t)(fs->fs_ipg * cg));
1341 }
1342 /*
1343 * This is a backstop when we have deficit in space.
1344 */
1345 for (cg = prefcg; cg < fs->fs_ncg; cg++)
1346 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1347 return ((ino_t)(fs->fs_ipg * cg));
1348 for (cg = 0; cg < prefcg; cg++)
1349 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1350 break;
1351 return ((ino_t)(fs->fs_ipg * cg));
1352 }
1353
1354 /*
1355 * Select the desired position for the next block in a file. The file is
1356 * logically divided into sections. The first section is composed of the
1357 * direct blocks and the next fs_maxbpg blocks. Each additional section
1358 * contains fs_maxbpg blocks.
1359 *
1360 * If no blocks have been allocated in the first section, the policy is to
1361 * request a block in the same cylinder group as the inode that describes
1362 * the file. The first indirect is allocated immediately following the last
1363 * direct block and the data blocks for the first indirect immediately
1364 * follow it.
1365 *
1366 * If no blocks have been allocated in any other section, the indirect
1367 * block(s) are allocated in the same cylinder group as its inode in an
1368 * area reserved immediately following the inode blocks. The policy for
1369 * the data blocks is to place them in a cylinder group with a greater than
1370 * average number of free blocks. An appropriate cylinder group is found
1371 * by using a rotor that sweeps the cylinder groups. When a new group of
1372 * blocks is needed, the sweep begins in the cylinder group following the
1373 * cylinder group from which the previous allocation was made. The sweep
1374 * continues until a cylinder group with greater than the average number
1375 * of free blocks is found. If the allocation is for the first block in an
1376 * indirect block or the previous block is a hole, then the information on
1377 * the previous allocation is unavailable; here a best guess is made based
1378 * on the logical block number being allocated.
1379 *
1380 * If a section is already partially allocated, the policy is to
1381 * allocate blocks contiguously within the section if possible.
1382 */
1383 ufs2_daddr_t
1384 ffs_blkpref_ufs1(struct inode *ip,
1385 ufs_lbn_t lbn,
1386 int indx,
1387 ufs1_daddr_t *bap)
1388 {
1389 struct fs *fs;
1390 u_int cg, inocg;
1391 u_int avgbfree, startcg;
1392 ufs2_daddr_t pref, prevbn;
1393
1394 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1395 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1396 fs = ITOFS(ip);
1397 /*
1398 * Allocation of indirect blocks is indicated by passing negative
1399 * values in indx: -1 for single indirect, -2 for double indirect,
1400 * -3 for triple indirect. As noted below, we attempt to allocate
1401 * the first indirect inline with the file data. For all later
1402 * indirect blocks, the data is often allocated in other cylinder
1403 * groups. However to speed random file access and to speed up
1404 * fsck, the filesystem reserves the first fs_metaspace blocks
1405 * (typically half of fs_minfree) of the data area of each cylinder
1406 * group to hold these later indirect blocks.
1407 */
1408 inocg = ino_to_cg(fs, ip->i_number);
1409 if (indx < 0) {
1410 /*
1411 * Our preference for indirect blocks is the zone at the
1412 * beginning of the inode's cylinder group data area that
1413 * we try to reserve for indirect blocks.
1414 */
1415 pref = cgmeta(fs, inocg);
1416 /*
1417 * If we are allocating the first indirect block, try to
1418 * place it immediately following the last direct block.
1419 */
1420 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
1421 ip->i_din1->di_db[UFS_NDADDR - 1] != 0)
1422 pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag;
1423 return (pref);
1424 }
1425 /*
1426 * If we are allocating the first data block in the first indirect
1427 * block and the indirect has been allocated in the data block area,
1428 * try to place it immediately following the indirect block.
1429 */
1430 if (lbn == UFS_NDADDR) {
1431 pref = ip->i_din1->di_ib[0];
1432 if (pref != 0 && pref >= cgdata(fs, inocg) &&
1433 pref < cgbase(fs, inocg + 1))
1434 return (pref + fs->fs_frag);
1435 }
1436 /*
1437 * If we are at the beginning of a file, or we have already allocated
1438 * the maximum number of blocks per cylinder group, or we do not
1439 * have a block allocated immediately preceding us, then we need
1440 * to decide where to start allocating new blocks.
1441 */
1442 if (indx == 0) {
1443 prevbn = 0;
1444 } else {
1445 prevbn = bap[indx - 1];
1446 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
1447 fs->fs_bsize) != 0)
1448 prevbn = 0;
1449 }
1450 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
1451 /*
1452 * If we are allocating a directory data block, we want
1453 * to place it in the metadata area.
1454 */
1455 if ((ip->i_mode & IFMT) == IFDIR)
1456 return (cgmeta(fs, inocg));
1457 /*
1458 * Until we fill all the direct and all the first indirect's
1459 * blocks, we try to allocate in the data area of the inode's
1460 * cylinder group.
1461 */
1462 if (lbn < UFS_NDADDR + NINDIR(fs))
1463 return (cgdata(fs, inocg));
1464 /*
1465 * Find a cylinder with greater than average number of
1466 * unused data blocks.
1467 */
1468 if (indx == 0 || prevbn == 0)
1469 startcg = inocg + lbn / fs->fs_maxbpg;
1470 else
1471 startcg = dtog(fs, prevbn) + 1;
1472 startcg %= fs->fs_ncg;
1473 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1474 for (cg = startcg; cg < fs->fs_ncg; cg++)
1475 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1476 fs->fs_cgrotor = cg;
1477 return (cgdata(fs, cg));
1478 }
1479 for (cg = 0; cg <= startcg; cg++)
1480 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1481 fs->fs_cgrotor = cg;
1482 return (cgdata(fs, cg));
1483 }
1484 return (0);
1485 }
1486 /*
1487 * Otherwise, we just always try to lay things out contiguously.
1488 */
1489 return (prevbn + fs->fs_frag);
1490 }
1491
1492 /*
1493 * Same as above, but for UFS2
1494 */
1495 ufs2_daddr_t
1496 ffs_blkpref_ufs2(struct inode *ip,
1497 ufs_lbn_t lbn,
1498 int indx,
1499 ufs2_daddr_t *bap)
1500 {
1501 struct fs *fs;
1502 u_int cg, inocg;
1503 u_int avgbfree, startcg;
1504 ufs2_daddr_t pref, prevbn;
1505
1506 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1507 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1508 fs = ITOFS(ip);
1509 /*
1510 * Allocation of indirect blocks is indicated by passing negative
1511 * values in indx: -1 for single indirect, -2 for double indirect,
1512 * -3 for triple indirect. As noted below, we attempt to allocate
1513 * the first indirect inline with the file data. For all later
1514 * indirect blocks, the data is often allocated in other cylinder
1515 * groups. However to speed random file access and to speed up
1516 * fsck, the filesystem reserves the first fs_metaspace blocks
1517 * (typically half of fs_minfree) of the data area of each cylinder
1518 * group to hold these later indirect blocks.
1519 */
1520 inocg = ino_to_cg(fs, ip->i_number);
1521 if (indx < 0) {
1522 /*
1523 * Our preference for indirect blocks is the zone at the
1524 * beginning of the inode's cylinder group data area that
1525 * we try to reserve for indirect blocks.
1526 */
1527 pref = cgmeta(fs, inocg);
1528 /*
1529 * If we are allocating the first indirect block, try to
1530 * place it immediately following the last direct block.
1531 */
1532 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
1533 ip->i_din2->di_db[UFS_NDADDR - 1] != 0)
1534 pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag;
1535 return (pref);
1536 }
1537 /*
1538 * If we are allocating the first data block in the first indirect
1539 * block and the indirect has been allocated in the data block area,
1540 * try to place it immediately following the indirect block.
1541 */
1542 if (lbn == UFS_NDADDR) {
1543 pref = ip->i_din2->di_ib[0];
1544 if (pref != 0 && pref >= cgdata(fs, inocg) &&
1545 pref < cgbase(fs, inocg + 1))
1546 return (pref + fs->fs_frag);
1547 }
1548 /*
1549 * If we are at the beginning of a file, or we have already allocated
1550 * the maximum number of blocks per cylinder group, or we do not
1551 * have a block allocated immediately preceding us, then we need
1552 * to decide where to start allocating new blocks.
1553 */
1554 if (indx == 0) {
1555 prevbn = 0;
1556 } else {
1557 prevbn = bap[indx - 1];
1558 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
1559 fs->fs_bsize) != 0)
1560 prevbn = 0;
1561 }
1562 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
1563 /*
1564 * If we are allocating a directory data block, we want
1565 * to place it in the metadata area.
1566 */
1567 if ((ip->i_mode & IFMT) == IFDIR)
1568 return (cgmeta(fs, inocg));
1569 /*
1570 * Until we fill all the direct and all the first indirect's
1571 * blocks, we try to allocate in the data area of the inode's
1572 * cylinder group.
1573 */
1574 if (lbn < UFS_NDADDR + NINDIR(fs))
1575 return (cgdata(fs, inocg));
1576 /*
1577 * Find a cylinder with greater than average number of
1578 * unused data blocks.
1579 */
1580 if (indx == 0 || prevbn == 0)
1581 startcg = inocg + lbn / fs->fs_maxbpg;
1582 else
1583 startcg = dtog(fs, prevbn) + 1;
1584 startcg %= fs->fs_ncg;
1585 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1586 for (cg = startcg; cg < fs->fs_ncg; cg++)
1587 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1588 fs->fs_cgrotor = cg;
1589 return (cgdata(fs, cg));
1590 }
1591 for (cg = 0; cg <= startcg; cg++)
1592 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1593 fs->fs_cgrotor = cg;
1594 return (cgdata(fs, cg));
1595 }
1596 return (0);
1597 }
1598 /*
1599 * Otherwise, we just always try to lay things out contiguously.
1600 */
1601 return (prevbn + fs->fs_frag);
1602 }
1603
1604 /*
1605 * Implement the cylinder overflow algorithm.
1606 *
1607 * The policy implemented by this algorithm is:
1608 * 1) allocate the block in its requested cylinder group.
1609 * 2) quadratically rehash on the cylinder group number.
1610 * 3) brute force search for a free block.
1611 *
1612 * Must be called with the UFS lock held. Will release the lock on success
1613 * and return with it held on failure.
1614 */
1615 /*VARARGS5*/
1616 static ufs2_daddr_t
1617 ffs_hashalloc(struct inode *ip,
1618 u_int cg,
1619 ufs2_daddr_t pref,
1620 int size, /* Search size for data blocks, mode for inodes */
1621 int rsize, /* Real allocated size. */
1622 allocfcn_t *allocator)
1623 {
1624 struct fs *fs;
1625 ufs2_daddr_t result;
1626 u_int i, icg = cg;
1627
1628 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1629 #ifdef INVARIANTS
1630 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1631 panic("ffs_hashalloc: allocation on suspended filesystem");
1632 #endif
1633 fs = ITOFS(ip);
1634 /*
1635 * 1: preferred cylinder group
1636 */
1637 result = (*allocator)(ip, cg, pref, size, rsize);
1638 if (result)
1639 return (result);
1640 /*
1641 * 2: quadratic rehash
1642 */
1643 for (i = 1; i < fs->fs_ncg; i *= 2) {
1644 cg += i;
1645 if (cg >= fs->fs_ncg)
1646 cg -= fs->fs_ncg;
1647 result = (*allocator)(ip, cg, 0, size, rsize);
1648 if (result)
1649 return (result);
1650 }
1651 /*
1652 * 3: brute force search
1653 * Note that we start at i == 2, since 0 was checked initially,
1654 * and 1 is always checked in the quadratic rehash.
1655 */
1656 cg = (icg + 2) % fs->fs_ncg;
1657 for (i = 2; i < fs->fs_ncg; i++) {
1658 result = (*allocator)(ip, cg, 0, size, rsize);
1659 if (result)
1660 return (result);
1661 cg++;
1662 if (cg == fs->fs_ncg)
1663 cg = 0;
1664 }
1665 return (0);
1666 }
1667
1668 /*
1669 * Determine whether a fragment can be extended.
1670 *
1671 * Check to see if the necessary fragments are available, and
1672 * if they are, allocate them.
1673 */
1674 static ufs2_daddr_t
1675 ffs_fragextend(struct inode *ip,
1676 u_int cg,
1677 ufs2_daddr_t bprev,
1678 int osize,
1679 int nsize)
1680 {
1681 struct fs *fs;
1682 struct cg *cgp;
1683 struct buf *bp;
1684 struct ufsmount *ump;
1685 int nffree;
1686 long bno;
1687 int frags, bbase;
1688 int i, error;
1689 u_int8_t *blksfree;
1690
1691 ump = ITOUMP(ip);
1692 fs = ump->um_fs;
1693 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1694 return (0);
1695 frags = numfrags(fs, nsize);
1696 bbase = fragnum(fs, bprev);
1697 if (bbase > fragnum(fs, (bprev + frags - 1))) {
1698 /* cannot extend across a block boundary */
1699 return (0);
1700 }
1701 UFS_UNLOCK(ump);
1702 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0)
1703 goto fail;
1704 bno = dtogd(fs, bprev);
1705 blksfree = cg_blksfree(cgp);
1706 for (i = numfrags(fs, osize); i < frags; i++)
1707 if (isclr(blksfree, bno + i))
1708 goto fail;
1709 /*
1710 * the current fragment can be extended
1711 * deduct the count on fragment being extended into
1712 * increase the count on the remaining fragment (if any)
1713 * allocate the extended piece
1714 */
1715 for (i = frags; i < fs->fs_frag - bbase; i++)
1716 if (isclr(blksfree, bno + i))
1717 break;
1718 cgp->cg_frsum[i - numfrags(fs, osize)]--;
1719 if (i != frags)
1720 cgp->cg_frsum[i - frags]++;
1721 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
1722 clrbit(blksfree, bno + i);
1723 cgp->cg_cs.cs_nffree--;
1724 nffree++;
1725 }
1726 UFS_LOCK(ump);
1727 fs->fs_cstotal.cs_nffree -= nffree;
1728 fs->fs_cs(fs, cg).cs_nffree -= nffree;
1729 fs->fs_fmod = 1;
1730 ACTIVECLEAR(fs, cg);
1731 UFS_UNLOCK(ump);
1732 if (DOINGSOFTDEP(ITOV(ip)))
1733 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev,
1734 frags, numfrags(fs, osize));
1735 bdwrite(bp);
1736 return (bprev);
1737
1738 fail:
1739 brelse(bp);
1740 UFS_LOCK(ump);
1741 return (0);
1742
1743 }
1744
1745 /*
1746 * Determine whether a block can be allocated.
1747 *
1748 * Check to see if a block of the appropriate size is available,
1749 * and if it is, allocate it.
1750 */
1751 static ufs2_daddr_t
1752 ffs_alloccg(struct inode *ip,
1753 u_int cg,
1754 ufs2_daddr_t bpref,
1755 int size,
1756 int rsize)
1757 {
1758 struct fs *fs;
1759 struct cg *cgp;
1760 struct buf *bp;
1761 struct ufsmount *ump;
1762 ufs1_daddr_t bno;
1763 ufs2_daddr_t blkno;
1764 int i, allocsiz, error, frags;
1765 u_int8_t *blksfree;
1766
1767 ump = ITOUMP(ip);
1768 fs = ump->um_fs;
1769 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1770 return (0);
1771 UFS_UNLOCK(ump);
1772 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0 ||
1773 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1774 goto fail;
1775 if (size == fs->fs_bsize) {
1776 UFS_LOCK(ump);
1777 blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1778 ACTIVECLEAR(fs, cg);
1779 UFS_UNLOCK(ump);
1780 bdwrite(bp);
1781 return (blkno);
1782 }
1783 /*
1784 * check to see if any fragments are already available
1785 * allocsiz is the size which will be allocated, hacking
1786 * it down to a smaller size if necessary
1787 */
1788 blksfree = cg_blksfree(cgp);
1789 frags = numfrags(fs, size);
1790 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1791 if (cgp->cg_frsum[allocsiz] != 0)
1792 break;
1793 if (allocsiz == fs->fs_frag) {
1794 /*
1795 * no fragments were available, so a block will be
1796 * allocated, and hacked up
1797 */
1798 if (cgp->cg_cs.cs_nbfree == 0)
1799 goto fail;
1800 UFS_LOCK(ump);
1801 blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1802 ACTIVECLEAR(fs, cg);
1803 UFS_UNLOCK(ump);
1804 bdwrite(bp);
1805 return (blkno);
1806 }
1807 KASSERT(size == rsize,
1808 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize));
1809 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1810 if (bno < 0)
1811 goto fail;
1812 for (i = 0; i < frags; i++)
1813 clrbit(blksfree, bno + i);
1814 cgp->cg_cs.cs_nffree -= frags;
1815 cgp->cg_frsum[allocsiz]--;
1816 if (frags != allocsiz)
1817 cgp->cg_frsum[allocsiz - frags]++;
1818 UFS_LOCK(ump);
1819 fs->fs_cstotal.cs_nffree -= frags;
1820 fs->fs_cs(fs, cg).cs_nffree -= frags;
1821 fs->fs_fmod = 1;
1822 blkno = cgbase(fs, cg) + bno;
1823 ACTIVECLEAR(fs, cg);
1824 UFS_UNLOCK(ump);
1825 if (DOINGSOFTDEP(ITOV(ip)))
1826 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0);
1827 bdwrite(bp);
1828 return (blkno);
1829
1830 fail:
1831 brelse(bp);
1832 UFS_LOCK(ump);
1833 return (0);
1834 }
1835
1836 /*
1837 * Allocate a block in a cylinder group.
1838 *
1839 * This algorithm implements the following policy:
1840 * 1) allocate the requested block.
1841 * 2) allocate a rotationally optimal block in the same cylinder.
1842 * 3) allocate the next available block on the block rotor for the
1843 * specified cylinder group.
1844 * Note that this routine only allocates fs_bsize blocks; these
1845 * blocks may be fragmented by the routine that allocates them.
1846 */
1847 static ufs2_daddr_t
1848 ffs_alloccgblk(struct inode *ip,
1849 struct buf *bp,
1850 ufs2_daddr_t bpref,
1851 int size)
1852 {
1853 struct fs *fs;
1854 struct cg *cgp;
1855 struct ufsmount *ump;
1856 ufs1_daddr_t bno;
1857 ufs2_daddr_t blkno;
1858 u_int8_t *blksfree;
1859 int i, cgbpref;
1860
1861 ump = ITOUMP(ip);
1862 fs = ump->um_fs;
1863 mtx_assert(UFS_MTX(ump), MA_OWNED);
1864 cgp = (struct cg *)bp->b_data;
1865 blksfree = cg_blksfree(cgp);
1866 if (bpref == 0) {
1867 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag;
1868 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
1869 /* map bpref to correct zone in this cg */
1870 if (bpref < cgdata(fs, cgbpref))
1871 bpref = cgmeta(fs, cgp->cg_cgx);
1872 else
1873 bpref = cgdata(fs, cgp->cg_cgx);
1874 }
1875 /*
1876 * if the requested block is available, use it
1877 */
1878 bno = dtogd(fs, blknum(fs, bpref));
1879 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1880 goto gotit;
1881 /*
1882 * Take the next available block in this cylinder group.
1883 */
1884 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1885 if (bno < 0)
1886 return (0);
1887 /* Update cg_rotor only if allocated from the data zone */
1888 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
1889 cgp->cg_rotor = bno;
1890 gotit:
1891 blkno = fragstoblks(fs, bno);
1892 ffs_clrblock(fs, blksfree, (long)blkno);
1893 ffs_clusteracct(fs, cgp, blkno, -1);
1894 cgp->cg_cs.cs_nbfree--;
1895 fs->fs_cstotal.cs_nbfree--;
1896 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1897 fs->fs_fmod = 1;
1898 blkno = cgbase(fs, cgp->cg_cgx) + bno;
1899 /*
1900 * If the caller didn't want the whole block free the frags here.
1901 */
1902 size = numfrags(fs, size);
1903 if (size != fs->fs_frag) {
1904 bno = dtogd(fs, blkno);
1905 for (i = size; i < fs->fs_frag; i++)
1906 setbit(blksfree, bno + i);
1907 i = fs->fs_frag - size;
1908 cgp->cg_cs.cs_nffree += i;
1909 fs->fs_cstotal.cs_nffree += i;
1910 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i;
1911 fs->fs_fmod = 1;
1912 cgp->cg_frsum[i]++;
1913 }
1914 /* XXX Fixme. */
1915 UFS_UNLOCK(ump);
1916 if (DOINGSOFTDEP(ITOV(ip)))
1917 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0);
1918 UFS_LOCK(ump);
1919 return (blkno);
1920 }
1921
1922 /*
1923 * Determine whether a cluster can be allocated.
1924 *
1925 * We do not currently check for optimal rotational layout if there
1926 * are multiple choices in the same cylinder group. Instead we just
1927 * take the first one that we find following bpref.
1928 */
1929 static ufs2_daddr_t
1930 ffs_clusteralloc(struct inode *ip,
1931 u_int cg,
1932 ufs2_daddr_t bpref,
1933 int len)
1934 {
1935 struct fs *fs;
1936 struct cg *cgp;
1937 struct buf *bp;
1938 struct ufsmount *ump;
1939 int i, run, bit, map, got, error;
1940 ufs2_daddr_t bno;
1941 u_char *mapp;
1942 int32_t *lp;
1943 u_int8_t *blksfree;
1944
1945 ump = ITOUMP(ip);
1946 fs = ump->um_fs;
1947 if (fs->fs_maxcluster[cg] < len)
1948 return (0);
1949 UFS_UNLOCK(ump);
1950 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
1951 UFS_LOCK(ump);
1952 return (0);
1953 }
1954 /*
1955 * Check to see if a cluster of the needed size (or bigger) is
1956 * available in this cylinder group.
1957 */
1958 lp = &cg_clustersum(cgp)[len];
1959 for (i = len; i <= fs->fs_contigsumsize; i++)
1960 if (*lp++ > 0)
1961 break;
1962 if (i > fs->fs_contigsumsize) {
1963 /*
1964 * This is the first time looking for a cluster in this
1965 * cylinder group. Update the cluster summary information
1966 * to reflect the true maximum sized cluster so that
1967 * future cluster allocation requests can avoid reading
1968 * the cylinder group map only to find no clusters.
1969 */
1970 lp = &cg_clustersum(cgp)[len - 1];
1971 for (i = len - 1; i > 0; i--)
1972 if (*lp-- > 0)
1973 break;
1974 UFS_LOCK(ump);
1975 fs->fs_maxcluster[cg] = i;
1976 brelse(bp);
1977 return (0);
1978 }
1979 /*
1980 * Search the cluster map to find a big enough cluster.
1981 * We take the first one that we find, even if it is larger
1982 * than we need as we prefer to get one close to the previous
1983 * block allocation. We do not search before the current
1984 * preference point as we do not want to allocate a block
1985 * that is allocated before the previous one (as we will
1986 * then have to wait for another pass of the elevator
1987 * algorithm before it will be read). We prefer to fail and
1988 * be recalled to try an allocation in the next cylinder group.
1989 */
1990 if (dtog(fs, bpref) != cg)
1991 bpref = cgdata(fs, cg);
1992 else
1993 bpref = blknum(fs, bpref);
1994 bpref = fragstoblks(fs, dtogd(fs, bpref));
1995 mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1996 map = *mapp++;
1997 bit = 1 << (bpref % NBBY);
1998 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1999 if ((map & bit) == 0) {
2000 run = 0;
2001 } else {
2002 run++;
2003 if (run == len)
2004 break;
2005 }
2006 if ((got & (NBBY - 1)) != (NBBY - 1)) {
2007 bit <<= 1;
2008 } else {
2009 map = *mapp++;
2010 bit = 1;
2011 }
2012 }
2013 if (got >= cgp->cg_nclusterblks) {
2014 UFS_LOCK(ump);
2015 brelse(bp);
2016 return (0);
2017 }
2018 /*
2019 * Allocate the cluster that we have found.
2020 */
2021 blksfree = cg_blksfree(cgp);
2022 for (i = 1; i <= len; i++)
2023 if (!ffs_isblock(fs, blksfree, got - run + i))
2024 panic("ffs_clusteralloc: map mismatch");
2025 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
2026 if (dtog(fs, bno) != cg)
2027 panic("ffs_clusteralloc: allocated out of group");
2028 len = blkstofrags(fs, len);
2029 UFS_LOCK(ump);
2030 for (i = 0; i < len; i += fs->fs_frag)
2031 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i)
2032 panic("ffs_clusteralloc: lost block");
2033 ACTIVECLEAR(fs, cg);
2034 UFS_UNLOCK(ump);
2035 bdwrite(bp);
2036 return (bno);
2037 }
2038
2039 static inline struct buf *
2040 getinobuf(struct inode *ip,
2041 u_int cg,
2042 u_int32_t cginoblk,
2043 int gbflags)
2044 {
2045 struct fs *fs;
2046
2047 fs = ITOFS(ip);
2048 return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs,
2049 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0,
2050 gbflags));
2051 }
2052
2053 /*
2054 * Synchronous inode initialization is needed only when barrier writes do not
2055 * work as advertised, and will impose a heavy cost on file creation in a newly
2056 * created filesystem.
2057 */
2058 static int doasyncinodeinit = 1;
2059 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN,
2060 &doasyncinodeinit, 0,
2061 "Perform inode block initialization using asynchronous writes");
2062
2063 /*
2064 * Determine whether an inode can be allocated.
2065 *
2066 * Check to see if an inode is available, and if it is,
2067 * allocate it using the following policy:
2068 * 1) allocate the requested inode.
2069 * 2) allocate the next available inode after the requested
2070 * inode in the specified cylinder group.
2071 */
2072 static ufs2_daddr_t
2073 ffs_nodealloccg(struct inode *ip,
2074 u_int cg,
2075 ufs2_daddr_t ipref,
2076 int mode,
2077 int unused)
2078 {
2079 struct fs *fs;
2080 struct cg *cgp;
2081 struct buf *bp, *ibp;
2082 struct ufsmount *ump;
2083 u_int8_t *inosused, *loc;
2084 struct ufs2_dinode *dp2;
2085 int error, start, len, i;
2086 u_int32_t old_initediblk;
2087
2088 ump = ITOUMP(ip);
2089 fs = ump->um_fs;
2090 check_nifree:
2091 if (fs->fs_cs(fs, cg).cs_nifree == 0)
2092 return (0);
2093 UFS_UNLOCK(ump);
2094 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
2095 UFS_LOCK(ump);
2096 return (0);
2097 }
2098 restart:
2099 if (cgp->cg_cs.cs_nifree == 0) {
2100 brelse(bp);
2101 UFS_LOCK(ump);
2102 return (0);
2103 }
2104 inosused = cg_inosused(cgp);
2105 if (ipref) {
2106 ipref %= fs->fs_ipg;
2107 if (isclr(inosused, ipref))
2108 goto gotit;
2109 }
2110 start = cgp->cg_irotor / NBBY;
2111 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
2112 loc = memcchr(&inosused[start], 0xff, len);
2113 if (loc == NULL) {
2114 len = start + 1;
2115 start = 0;
2116 loc = memcchr(&inosused[start], 0xff, len);
2117 if (loc == NULL) {
2118 printf("cg = %d, irotor = %ld, fs = %s\n",
2119 cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
2120 panic("ffs_nodealloccg: map corrupted");
2121 /* NOTREACHED */
2122 }
2123 }
2124 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1;
2125 gotit:
2126 /*
2127 * Check to see if we need to initialize more inodes.
2128 */
2129 if (fs->fs_magic == FS_UFS2_MAGIC &&
2130 ipref + INOPB(fs) > cgp->cg_initediblk &&
2131 cgp->cg_initediblk < cgp->cg_niblk) {
2132 old_initediblk = cgp->cg_initediblk;
2133
2134 /*
2135 * Free the cylinder group lock before writing the
2136 * initialized inode block. Entering the
2137 * babarrierwrite() with the cylinder group lock
2138 * causes lock order violation between the lock and
2139 * snaplk.
2140 *
2141 * Another thread can decide to initialize the same
2142 * inode block, but whichever thread first gets the
2143 * cylinder group lock after writing the newly
2144 * allocated inode block will update it and the other
2145 * will realize that it has lost and leave the
2146 * cylinder group unchanged.
2147 */
2148 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT);
2149 brelse(bp);
2150 if (ibp == NULL) {
2151 /*
2152 * The inode block buffer is already owned by
2153 * another thread, which must initialize it.
2154 * Wait on the buffer to allow another thread
2155 * to finish the updates, with dropped cg
2156 * buffer lock, then retry.
2157 */
2158 ibp = getinobuf(ip, cg, old_initediblk, 0);
2159 brelse(ibp);
2160 UFS_LOCK(ump);
2161 goto check_nifree;
2162 }
2163 bzero(ibp->b_data, (int)fs->fs_bsize);
2164 dp2 = (struct ufs2_dinode *)(ibp->b_data);
2165 for (i = 0; i < INOPB(fs); i++) {
2166 while (dp2->di_gen == 0)
2167 dp2->di_gen = arc4random();
2168 dp2++;
2169 }
2170
2171 /*
2172 * Rather than adding a soft updates dependency to ensure
2173 * that the new inode block is written before it is claimed
2174 * by the cylinder group map, we just do a barrier write
2175 * here. The barrier write will ensure that the inode block
2176 * gets written before the updated cylinder group map can be
2177 * written. The barrier write should only slow down bulk
2178 * loading of newly created filesystems.
2179 */
2180 if (doasyncinodeinit)
2181 babarrierwrite(ibp);
2182 else
2183 bwrite(ibp);
2184
2185 /*
2186 * After the inode block is written, try to update the
2187 * cg initediblk pointer. If another thread beat us
2188 * to it, then leave it unchanged as the other thread
2189 * has already set it correctly.
2190 */
2191 error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp);
2192 UFS_LOCK(ump);
2193 ACTIVECLEAR(fs, cg);
2194 UFS_UNLOCK(ump);
2195 if (error != 0)
2196 return (error);
2197 if (cgp->cg_initediblk == old_initediblk)
2198 cgp->cg_initediblk += INOPB(fs);
2199 goto restart;
2200 }
2201 cgp->cg_irotor = ipref;
2202 UFS_LOCK(ump);
2203 ACTIVECLEAR(fs, cg);
2204 setbit(inosused, ipref);
2205 cgp->cg_cs.cs_nifree--;
2206 fs->fs_cstotal.cs_nifree--;
2207 fs->fs_cs(fs, cg).cs_nifree--;
2208 fs->fs_fmod = 1;
2209 if ((mode & IFMT) == IFDIR) {
2210 cgp->cg_cs.cs_ndir++;
2211 fs->fs_cstotal.cs_ndir++;
2212 fs->fs_cs(fs, cg).cs_ndir++;
2213 }
2214 UFS_UNLOCK(ump);
2215 if (DOINGSOFTDEP(ITOV(ip)))
2216 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode);
2217 bdwrite(bp);
2218 return ((ino_t)(cg * fs->fs_ipg + ipref));
2219 }
2220
2221 /*
2222 * Free a block or fragment.
2223 *
2224 * The specified block or fragment is placed back in the
2225 * free map. If a fragment is deallocated, a possible
2226 * block reassembly is checked.
2227 */
2228 static void
2229 ffs_blkfree_cg(struct ufsmount *ump,
2230 struct fs *fs,
2231 struct vnode *devvp,
2232 ufs2_daddr_t bno,
2233 long size,
2234 ino_t inum,
2235 struct workhead *dephd)
2236 {
2237 struct mount *mp;
2238 struct cg *cgp;
2239 struct buf *bp;
2240 daddr_t dbn;
2241 ufs1_daddr_t fragno, cgbno;
2242 int i, blk, frags, bbase, error;
2243 u_int cg;
2244 u_int8_t *blksfree;
2245 struct cdev *dev;
2246
2247 cg = dtog(fs, bno);
2248 if (devvp->v_type == VREG) {
2249 /* devvp is a snapshot */
2250 MPASS(devvp->v_mount->mnt_data == ump);
2251 dev = ump->um_devvp->v_rdev;
2252 } else if (devvp->v_type == VCHR) {
2253 /*
2254 * devvp is a normal disk device
2255 * XXXKIB: devvp is not locked there, v_rdev access depends on
2256 * busy mount, which prevents mntfs devvp from reclamation.
2257 */
2258 dev = devvp->v_rdev;
2259 } else
2260 return;
2261 #ifdef INVARIANTS
2262 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
2263 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
2264 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
2265 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
2266 size, fs->fs_fsmnt);
2267 panic("ffs_blkfree_cg: bad size");
2268 }
2269 #endif
2270 if ((u_int)bno >= fs->fs_size) {
2271 printf("bad block %jd, ino %lu\n", (intmax_t)bno,
2272 (u_long)inum);
2273 ffs_fserr(fs, inum, "bad block");
2274 return;
2275 }
2276 if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) {
2277 if (!ffs_fsfail_cleanup(ump, error) ||
2278 !MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR)
2279 return;
2280 if (devvp->v_type == VREG)
2281 dbn = fragstoblks(fs, cgtod(fs, cg));
2282 else
2283 dbn = fsbtodb(fs, cgtod(fs, cg));
2284 error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp);
2285 KASSERT(error == 0, ("getblkx failed"));
2286 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2287 numfrags(fs, size), dephd);
2288 bp->b_flags |= B_RELBUF | B_NOCACHE;
2289 bp->b_flags &= ~B_CACHE;
2290 bawrite(bp);
2291 return;
2292 }
2293 cgbno = dtogd(fs, bno);
2294 blksfree = cg_blksfree(cgp);
2295 UFS_LOCK(ump);
2296 if (size == fs->fs_bsize) {
2297 fragno = fragstoblks(fs, cgbno);
2298 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
2299 if (devvp->v_type == VREG) {
2300 UFS_UNLOCK(ump);
2301 /* devvp is a snapshot */
2302 brelse(bp);
2303 return;
2304 }
2305 printf("dev = %s, block = %jd, fs = %s\n",
2306 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
2307 panic("ffs_blkfree_cg: freeing free block");
2308 }
2309 ffs_setblock(fs, blksfree, fragno);
2310 ffs_clusteracct(fs, cgp, fragno, 1);
2311 cgp->cg_cs.cs_nbfree++;
2312 fs->fs_cstotal.cs_nbfree++;
2313 fs->fs_cs(fs, cg).cs_nbfree++;
2314 } else {
2315 bbase = cgbno - fragnum(fs, cgbno);
2316 /*
2317 * decrement the counts associated with the old frags
2318 */
2319 blk = blkmap(fs, blksfree, bbase);
2320 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
2321 /*
2322 * deallocate the fragment
2323 */
2324 frags = numfrags(fs, size);
2325 for (i = 0; i < frags; i++) {
2326 if (isset(blksfree, cgbno + i)) {
2327 printf("dev = %s, block = %jd, fs = %s\n",
2328 devtoname(dev), (intmax_t)(bno + i),
2329 fs->fs_fsmnt);
2330 panic("ffs_blkfree_cg: freeing free frag");
2331 }
2332 setbit(blksfree, cgbno + i);
2333 }
2334 cgp->cg_cs.cs_nffree += i;
2335 fs->fs_cstotal.cs_nffree += i;
2336 fs->fs_cs(fs, cg).cs_nffree += i;
2337 /*
2338 * add back in counts associated with the new frags
2339 */
2340 blk = blkmap(fs, blksfree, bbase);
2341 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
2342 /*
2343 * if a complete block has been reassembled, account for it
2344 */
2345 fragno = fragstoblks(fs, bbase);
2346 if (ffs_isblock(fs, blksfree, fragno)) {
2347 cgp->cg_cs.cs_nffree -= fs->fs_frag;
2348 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
2349 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
2350 ffs_clusteracct(fs, cgp, fragno, 1);
2351 cgp->cg_cs.cs_nbfree++;
2352 fs->fs_cstotal.cs_nbfree++;
2353 fs->fs_cs(fs, cg).cs_nbfree++;
2354 }
2355 }
2356 fs->fs_fmod = 1;
2357 ACTIVECLEAR(fs, cg);
2358 UFS_UNLOCK(ump);
2359 mp = UFSTOVFS(ump);
2360 if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR)
2361 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2362 numfrags(fs, size), dephd);
2363 bdwrite(bp);
2364 }
2365
2366 /*
2367 * Structures and routines associated with trim management.
2368 *
2369 * The following requests are passed to trim_lookup to indicate
2370 * the actions that should be taken.
2371 */
2372 #define NEW 1 /* if found, error else allocate and hash it */
2373 #define OLD 2 /* if not found, error, else return it */
2374 #define REPLACE 3 /* if not found, error else unhash and reallocate it */
2375 #define DONE 4 /* if not found, error else unhash and return it */
2376 #define SINGLE 5 /* don't look up, just allocate it and don't hash it */
2377
2378 MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures");
2379
2380 #define TRIMLIST_HASH(ump, key) \
2381 (&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize])
2382
2383 /*
2384 * These structures describe each of the block free requests aggregated
2385 * together to make up a trim request.
2386 */
2387 struct trim_blkreq {
2388 TAILQ_ENTRY(trim_blkreq) blkreqlist;
2389 ufs2_daddr_t bno;
2390 long size;
2391 struct workhead *pdephd;
2392 struct workhead dephd;
2393 };
2394
2395 /*
2396 * Description of a trim request.
2397 */
2398 struct ffs_blkfree_trim_params {
2399 TAILQ_HEAD(, trim_blkreq) blklist;
2400 LIST_ENTRY(ffs_blkfree_trim_params) hashlist;
2401 struct task task;
2402 struct ufsmount *ump;
2403 struct vnode *devvp;
2404 ino_t inum;
2405 ufs2_daddr_t bno;
2406 long size;
2407 long key;
2408 };
2409
2410 static void ffs_blkfree_trim_completed(struct buf *);
2411 static void ffs_blkfree_trim_task(void *ctx, int pending __unused);
2412 static struct ffs_blkfree_trim_params *trim_lookup(struct ufsmount *,
2413 struct vnode *, ufs2_daddr_t, long, ino_t, u_long, int);
2414 static void ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *);
2415
2416 /*
2417 * Called on trim completion to start a task to free the associated block(s).
2418 */
2419 static void
2420 ffs_blkfree_trim_completed(struct buf *bp)
2421 {
2422 struct ffs_blkfree_trim_params *tp;
2423
2424 tp = bp->b_fsprivate1;
2425 free(bp, M_TRIM);
2426 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
2427 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task);
2428 }
2429
2430 /*
2431 * Trim completion task that free associated block(s).
2432 */
2433 static void
2434 ffs_blkfree_trim_task(void *ctx, int pending)
2435 {
2436 struct ffs_blkfree_trim_params *tp;
2437 struct trim_blkreq *blkelm;
2438 struct ufsmount *ump;
2439
2440 tp = ctx;
2441 ump = tp->ump;
2442 while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) {
2443 ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno,
2444 blkelm->size, tp->inum, blkelm->pdephd);
2445 TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist);
2446 free(blkelm, M_TRIM);
2447 }
2448 vn_finished_secondary_write(UFSTOVFS(ump));
2449 UFS_LOCK(ump);
2450 ump->um_trim_inflight -= 1;
2451 ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size);
2452 UFS_UNLOCK(ump);
2453 free(tp, M_TRIM);
2454 }
2455
2456 /*
2457 * Lookup a trim request by inode number.
2458 * Allocate if requested (NEW, REPLACE, SINGLE).
2459 */
2460 static struct ffs_blkfree_trim_params *
2461 trim_lookup(struct ufsmount *ump,
2462 struct vnode *devvp,
2463 ufs2_daddr_t bno,
2464 long size,
2465 ino_t inum,
2466 u_long key,
2467 int alloctype)
2468 {
2469 struct trimlist_hashhead *tphashhead;
2470 struct ffs_blkfree_trim_params *tp, *ntp;
2471
2472 ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK);
2473 if (alloctype != SINGLE) {
2474 KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key"));
2475 UFS_LOCK(ump);
2476 tphashhead = TRIMLIST_HASH(ump, key);
2477 LIST_FOREACH(tp, tphashhead, hashlist)
2478 if (key == tp->key)
2479 break;
2480 }
2481 switch (alloctype) {
2482 case NEW:
2483 KASSERT(tp == NULL, ("trim_lookup: found trim"));
2484 break;
2485 case OLD:
2486 KASSERT(tp != NULL,
2487 ("trim_lookup: missing call to ffs_blkrelease_start()"));
2488 UFS_UNLOCK(ump);
2489 free(ntp, M_TRIM);
2490 return (tp);
2491 case REPLACE:
2492 KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim"));
2493 LIST_REMOVE(tp, hashlist);
2494 /* tp will be freed by caller */
2495 break;
2496 case DONE:
2497 KASSERT(tp != NULL, ("trim_lookup: missing DONE trim"));
2498 LIST_REMOVE(tp, hashlist);
2499 UFS_UNLOCK(ump);
2500 free(ntp, M_TRIM);
2501 return (tp);
2502 }
2503 TAILQ_INIT(&ntp->blklist);
2504 ntp->ump = ump;
2505 ntp->devvp = devvp;
2506 ntp->bno = bno;
2507 ntp->size = size;
2508 ntp->inum = inum;
2509 ntp->key = key;
2510 if (alloctype != SINGLE) {
2511 LIST_INSERT_HEAD(tphashhead, ntp, hashlist);
2512 UFS_UNLOCK(ump);
2513 }
2514 return (ntp);
2515 }
2516
2517 /*
2518 * Dispatch a trim request.
2519 */
2520 static void
2521 ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *tp)
2522 {
2523 struct ufsmount *ump;
2524 struct mount *mp;
2525 struct buf *bp;
2526
2527 /*
2528 * Postpone the set of the free bit in the cg bitmap until the
2529 * BIO_DELETE is completed. Otherwise, due to disk queue
2530 * reordering, TRIM might be issued after we reuse the block
2531 * and write some new data into it.
2532 */
2533 ump = tp->ump;
2534 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
2535 bp->b_iocmd = BIO_DELETE;
2536 bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno));
2537 bp->b_iodone = ffs_blkfree_trim_completed;
2538 bp->b_bcount = tp->size;
2539 bp->b_fsprivate1 = tp;
2540 UFS_LOCK(ump);
2541 ump->um_trim_total += 1;
2542 ump->um_trim_inflight += 1;
2543 ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size);
2544 ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size);
2545 UFS_UNLOCK(ump);
2546
2547 mp = UFSTOVFS(ump);
2548 vn_start_secondary_write(NULL, &mp, 0);
2549 g_vfs_strategy(ump->um_bo, bp);
2550 }
2551
2552 /*
2553 * Allocate a new key to use to identify a range of blocks.
2554 */
2555 u_long
2556 ffs_blkrelease_start(struct ufsmount *ump,
2557 struct vnode *devvp,
2558 ino_t inum)
2559 {
2560 static u_long masterkey;
2561 u_long key;
2562
2563 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
2564 return (SINGLETON_KEY);
2565 do {
2566 key = atomic_fetchadd_long(&masterkey, 1);
2567 } while (key < FIRST_VALID_KEY);
2568 (void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW);
2569 return (key);
2570 }
2571
2572 /*
2573 * Deallocate a key that has been used to identify a range of blocks.
2574 */
2575 void
2576 ffs_blkrelease_finish(struct ufsmount *ump, u_long key)
2577 {
2578 struct ffs_blkfree_trim_params *tp;
2579
2580 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
2581 return;
2582 /*
2583 * If the vfs.ffs.dotrimcons sysctl option is enabled while
2584 * a file deletion is active, specifically after a call
2585 * to ffs_blkrelease_start() but before the call to
2586 * ffs_blkrelease_finish(), ffs_blkrelease_start() will
2587 * have handed out SINGLETON_KEY rather than starting a
2588 * collection sequence. Thus if we get a SINGLETON_KEY
2589 * passed to ffs_blkrelease_finish(), we just return rather
2590 * than trying to finish the nonexistent sequence.
2591 */
2592 if (key == SINGLETON_KEY) {
2593 #ifdef INVARIANTS
2594 printf("%s: vfs.ffs.dotrimcons enabled on active filesystem\n",
2595 ump->um_mountp->mnt_stat.f_mntonname);
2596 #endif
2597 return;
2598 }
2599 /*
2600 * We are done with sending blocks using this key. Look up the key
2601 * using the DONE alloctype (in tp) to request that it be unhashed
2602 * as we will not be adding to it. If the key has never been used,
2603 * tp->size will be zero, so we can just free tp. Otherwise the call
2604 * to ffs_blkfree_sendtrim(tp) causes the block range described by
2605 * tp to be issued (and then tp to be freed).
2606 */
2607 tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE);
2608 if (tp->size == 0)
2609 free(tp, M_TRIM);
2610 else
2611 ffs_blkfree_sendtrim(tp);
2612 }
2613
2614 /*
2615 * Setup to free a block or fragment.
2616 *
2617 * Check for snapshots that might want to claim the block.
2618 * If trims are requested, prepare a trim request. Attempt to
2619 * aggregate consecutive blocks into a single trim request.
2620 */
2621 void
2622 ffs_blkfree(struct ufsmount *ump,
2623 struct fs *fs,
2624 struct vnode *devvp,
2625 ufs2_daddr_t bno,
2626 long size,
2627 ino_t inum,
2628 enum vtype vtype,
2629 struct workhead *dephd,
2630 u_long key)
2631 {
2632 struct ffs_blkfree_trim_params *tp, *ntp;
2633 struct trim_blkreq *blkelm;
2634
2635 /*
2636 * Check to see if a snapshot wants to claim the block.
2637 * Check that devvp is a normal disk device, not a snapshot,
2638 * it has a snapshot(s) associated with it, and one of the
2639 * snapshots wants to claim the block.
2640 */
2641 if (devvp->v_type == VCHR &&
2642 (devvp->v_vflag & VV_COPYONWRITE) &&
2643 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) {
2644 return;
2645 }
2646 /*
2647 * Nothing to delay if TRIM is not required for this block or TRIM
2648 * is disabled or the operation is performed on a snapshot.
2649 */
2650 if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) ||
2651 devvp->v_type == VREG) {
2652 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd);
2653 return;
2654 }
2655 blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK);
2656 blkelm->bno = bno;
2657 blkelm->size = size;
2658 if (dephd == NULL) {
2659 blkelm->pdephd = NULL;
2660 } else {
2661 LIST_INIT(&blkelm->dephd);
2662 LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list);
2663 blkelm->pdephd = &blkelm->dephd;
2664 }
2665 if (key == SINGLETON_KEY) {
2666 /*
2667 * Just a single non-contiguous piece. Use the SINGLE
2668 * alloctype to return a trim request that will not be
2669 * hashed for future lookup.
2670 */
2671 tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE);
2672 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2673 ffs_blkfree_sendtrim(tp);
2674 return;
2675 }
2676 /*
2677 * The callers of this function are not tracking whether or not
2678 * the blocks are contiguous. They are just saying that they
2679 * are freeing a set of blocks. It is this code that determines
2680 * the pieces of that range that are actually contiguous.
2681 *
2682 * Calling ffs_blkrelease_start() will have created an entry
2683 * that we will use.
2684 */
2685 tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD);
2686 if (tp->size == 0) {
2687 /*
2688 * First block of a potential range, set block and size
2689 * for the trim block.
2690 */
2691 tp->bno = bno;
2692 tp->size = size;
2693 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2694 return;
2695 }
2696 /*
2697 * If this block is a continuation of the range (either
2698 * follows at the end or preceeds in the front) then we
2699 * add it to the front or back of the list and return.
2700 *
2701 * If it is not a continuation of the trim that we were
2702 * building, using the REPLACE alloctype, we request that
2703 * the old trim request (still in tp) be unhashed and a
2704 * new range started (in ntp). The ffs_blkfree_sendtrim(tp)
2705 * call causes the block range described by tp to be issued
2706 * (and then tp to be freed).
2707 */
2708 if (bno + numfrags(fs, size) == tp->bno) {
2709 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2710 tp->bno = bno;
2711 tp->size += size;
2712 return;
2713 } else if (bno == tp->bno + numfrags(fs, tp->size)) {
2714 TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist);
2715 tp->size += size;
2716 return;
2717 }
2718 ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE);
2719 TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist);
2720 ffs_blkfree_sendtrim(tp);
2721 }
2722
2723 #ifdef INVARIANTS
2724 /*
2725 * Verify allocation of a block or fragment. Returns true if block or
2726 * fragment is allocated, false if it is free.
2727 */
2728 static int
2729 ffs_checkblk(struct inode *ip,
2730 ufs2_daddr_t bno,
2731 long size)
2732 {
2733 struct fs *fs;
2734 struct cg *cgp;
2735 struct buf *bp;
2736 ufs1_daddr_t cgbno;
2737 int i, error, frags, free;
2738 u_int8_t *blksfree;
2739
2740 fs = ITOFS(ip);
2741 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
2742 printf("bsize = %ld, size = %ld, fs = %s\n",
2743 (long)fs->fs_bsize, size, fs->fs_fsmnt);
2744 panic("ffs_checkblk: bad size");
2745 }
2746 if ((u_int)bno >= fs->fs_size)
2747 panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
2748 error = ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), 0, &bp, &cgp);
2749 if (error)
2750 panic("ffs_checkblk: cylinder group read failed");
2751 blksfree = cg_blksfree(cgp);
2752 cgbno = dtogd(fs, bno);
2753 if (size == fs->fs_bsize) {
2754 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
2755 } else {
2756 frags = numfrags(fs, size);
2757 for (free = 0, i = 0; i < frags; i++)
2758 if (isset(blksfree, cgbno + i))
2759 free++;
2760 if (free != 0 && free != frags)
2761 panic("ffs_checkblk: partially free fragment");
2762 }
2763 brelse(bp);
2764 return (!free);
2765 }
2766 #endif /* INVARIANTS */
2767
2768 /*
2769 * Free an inode.
2770 */
2771 int
2772 ffs_vfree(struct vnode *pvp,
2773 ino_t ino,
2774 int mode)
2775 {
2776 struct ufsmount *ump;
2777
2778 if (DOINGSOFTDEP(pvp)) {
2779 softdep_freefile(pvp, ino, mode);
2780 return (0);
2781 }
2782 ump = VFSTOUFS(pvp->v_mount);
2783 return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL));
2784 }
2785
2786 /*
2787 * Do the actual free operation.
2788 * The specified inode is placed back in the free map.
2789 */
2790 int
2791 ffs_freefile(struct ufsmount *ump,
2792 struct fs *fs,
2793 struct vnode *devvp,
2794 ino_t ino,
2795 int mode,
2796 struct workhead *wkhd)
2797 {
2798 struct cg *cgp;
2799 struct buf *bp;
2800 daddr_t dbn;
2801 int error;
2802 u_int cg;
2803 u_int8_t *inosused;
2804 struct cdev *dev;
2805 ino_t cgino;
2806
2807 cg = ino_to_cg(fs, ino);
2808 if (devvp->v_type == VREG) {
2809 /* devvp is a snapshot */
2810 MPASS(devvp->v_mount->mnt_data == ump);
2811 dev = ump->um_devvp->v_rdev;
2812 } else if (devvp->v_type == VCHR) {
2813 /* devvp is a normal disk device */
2814 dev = devvp->v_rdev;
2815 } else {
2816 bp = NULL;
2817 return (0);
2818 }
2819 if (ino >= fs->fs_ipg * fs->fs_ncg)
2820 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s",
2821 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt);
2822 if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) {
2823 if (!ffs_fsfail_cleanup(ump, error) ||
2824 !MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR)
2825 return (error);
2826 if (devvp->v_type == VREG)
2827 dbn = fragstoblks(fs, cgtod(fs, cg));
2828 else
2829 dbn = fsbtodb(fs, cgtod(fs, cg));
2830 error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp);
2831 KASSERT(error == 0, ("getblkx failed"));
2832 softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd);
2833 bp->b_flags |= B_RELBUF | B_NOCACHE;
2834 bp->b_flags &= ~B_CACHE;
2835 bawrite(bp);
2836 return (error);
2837 }
2838 inosused = cg_inosused(cgp);
2839 cgino = ino % fs->fs_ipg;
2840 if (isclr(inosused, cgino)) {
2841 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev),
2842 (uintmax_t)ino, fs->fs_fsmnt);
2843 if (fs->fs_ronly == 0)
2844 panic("ffs_freefile: freeing free inode");
2845 }
2846 clrbit(inosused, cgino);
2847 if (cgino < cgp->cg_irotor)
2848 cgp->cg_irotor = cgino;
2849 cgp->cg_cs.cs_nifree++;
2850 UFS_LOCK(ump);
2851 fs->fs_cstotal.cs_nifree++;
2852 fs->fs_cs(fs, cg).cs_nifree++;
2853 if ((mode & IFMT) == IFDIR) {
2854 cgp->cg_cs.cs_ndir--;
2855 fs->fs_cstotal.cs_ndir--;
2856 fs->fs_cs(fs, cg).cs_ndir--;
2857 }
2858 fs->fs_fmod = 1;
2859 ACTIVECLEAR(fs, cg);
2860 UFS_UNLOCK(ump);
2861 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR)
2862 softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd);
2863 bdwrite(bp);
2864 return (0);
2865 }
2866
2867 /*
2868 * Check to see if a file is free.
2869 * Used to check for allocated files in snapshots.
2870 */
2871 int
2872 ffs_checkfreefile(struct fs *fs,
2873 struct vnode *devvp,
2874 ino_t ino)
2875 {
2876 struct cg *cgp;
2877 struct buf *bp;
2878 int ret, error;
2879 u_int cg;
2880 u_int8_t *inosused;
2881
2882 cg = ino_to_cg(fs, ino);
2883 if ((devvp->v_type != VREG) && (devvp->v_type != VCHR))
2884 return (1);
2885 if (ino >= fs->fs_ipg * fs->fs_ncg)
2886 return (1);
2887 if ((error = ffs_getcg(fs, devvp, cg, 0, &bp, &cgp)) != 0)
2888 return (1);
2889 inosused = cg_inosused(cgp);
2890 ino %= fs->fs_ipg;
2891 ret = isclr(inosused, ino);
2892 brelse(bp);
2893 return (ret);
2894 }
2895
2896 /*
2897 * Find a block of the specified size in the specified cylinder group.
2898 *
2899 * It is a panic if a request is made to find a block if none are
2900 * available.
2901 */
2902 static ufs1_daddr_t
2903 ffs_mapsearch(struct fs *fs,
2904 struct cg *cgp,
2905 ufs2_daddr_t bpref,
2906 int allocsiz)
2907 {
2908 ufs1_daddr_t bno;
2909 int start, len, loc, i;
2910 int blk, field, subfield, pos;
2911 u_int8_t *blksfree;
2912
2913 /*
2914 * find the fragment by searching through the free block
2915 * map for an appropriate bit pattern
2916 */
2917 if (bpref)
2918 start = dtogd(fs, bpref) / NBBY;
2919 else
2920 start = cgp->cg_frotor / NBBY;
2921 blksfree = cg_blksfree(cgp);
2922 len = howmany(fs->fs_fpg, NBBY) - start;
2923 loc = scanc((u_int)len, (u_char *)&blksfree[start],
2924 fragtbl[fs->fs_frag],
2925 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2926 if (loc == 0) {
2927 len = start + 1;
2928 start = 0;
2929 loc = scanc((u_int)len, (u_char *)&blksfree[0],
2930 fragtbl[fs->fs_frag],
2931 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2932 if (loc == 0) {
2933 printf("start = %d, len = %d, fs = %s\n",
2934 start, len, fs->fs_fsmnt);
2935 panic("ffs_alloccg: map corrupted");
2936 /* NOTREACHED */
2937 }
2938 }
2939 bno = (start + len - loc) * NBBY;
2940 cgp->cg_frotor = bno;
2941 /*
2942 * found the byte in the map
2943 * sift through the bits to find the selected frag
2944 */
2945 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2946 blk = blkmap(fs, blksfree, bno);
2947 blk <<= 1;
2948 field = around[allocsiz];
2949 subfield = inside[allocsiz];
2950 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2951 if ((blk & field) == subfield)
2952 return (bno + pos);
2953 field <<= 1;
2954 subfield <<= 1;
2955 }
2956 }
2957 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
2958 panic("ffs_alloccg: block not in map");
2959 return (-1);
2960 }
2961
2962 static const struct statfs *
2963 ffs_getmntstat(struct vnode *devvp)
2964 {
2965
2966 if (devvp->v_type == VCHR)
2967 return (&devvp->v_rdev->si_mountpt->mnt_stat);
2968 return (ffs_getmntstat(VFSTOUFS(devvp->v_mount)->um_devvp));
2969 }
2970
2971 /*
2972 * Fetch and verify a cylinder group.
2973 */
2974 int
2975 ffs_getcg(struct fs *fs,
2976 struct vnode *devvp,
2977 u_int cg,
2978 int flags,
2979 struct buf **bpp,
2980 struct cg **cgpp)
2981 {
2982 struct buf *bp;
2983 struct cg *cgp;
2984 const struct statfs *sfs;
2985 daddr_t blkno;
2986 int error;
2987
2988 *bpp = NULL;
2989 *cgpp = NULL;
2990 if ((fs->fs_metackhash & CK_CYLGRP) != 0)
2991 flags |= GB_CKHASH;
2992 if (devvp->v_type == VREG)
2993 blkno = fragstoblks(fs, cgtod(fs, cg));
2994 else
2995 blkno = fsbtodb(fs, cgtod(fs, cg));
2996 error = breadn_flags(devvp, blkno, blkno, (int)fs->fs_cgsize, NULL,
2997 NULL, 0, NOCRED, flags, ffs_ckhash_cg, &bp);
2998 if (error != 0)
2999 return (error);
3000 cgp = (struct cg *)bp->b_data;
3001 if ((fs->fs_metackhash & CK_CYLGRP) != 0 &&
3002 (bp->b_flags & B_CKHASH) != 0 &&
3003 cgp->cg_ckhash != bp->b_ckhash) {
3004 sfs = ffs_getmntstat(devvp);
3005 printf("UFS %s%s (%s) cylinder checksum failed: cg %u, cgp: "
3006 "0x%x != bp: 0x%jx\n",
3007 devvp->v_type == VCHR ? "" : "snapshot of ",
3008 sfs->f_mntfromname, sfs->f_mntonname,
3009 cg, cgp->cg_ckhash, (uintmax_t)bp->b_ckhash);
3010 bp->b_flags &= ~B_CKHASH;
3011 bp->b_flags |= B_INVAL | B_NOCACHE;
3012 brelse(bp);
3013 return (EIO);
3014 }
3015 if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) {
3016 sfs = ffs_getmntstat(devvp);
3017 printf("UFS %s%s (%s)",
3018 devvp->v_type == VCHR ? "" : "snapshot of ",
3019 sfs->f_mntfromname, sfs->f_mntonname);
3020 if (!cg_chkmagic(cgp))
3021 printf(" cg %u: bad magic number 0x%x should be 0x%x\n",
3022 cg, cgp->cg_magic, CG_MAGIC);
3023 else
3024 printf(": wrong cylinder group cg %u != cgx %u\n", cg,
3025 cgp->cg_cgx);
3026 bp->b_flags &= ~B_CKHASH;
3027 bp->b_flags |= B_INVAL | B_NOCACHE;
3028 brelse(bp);
3029 return (EIO);
3030 }
3031 bp->b_flags &= ~B_CKHASH;
3032 bp->b_xflags |= BX_BKGRDWRITE;
3033 /*
3034 * If we are using check hashes on the cylinder group then we want
3035 * to limit changing the cylinder group time to when we are actually
3036 * going to write it to disk so that its check hash remains correct
3037 * in memory. If the CK_CYLGRP flag is set the time is updated in
3038 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we
3039 * update the time here as we have done historically.
3040 */
3041 if ((fs->fs_metackhash & CK_CYLGRP) != 0)
3042 bp->b_xflags |= BX_CYLGRP;
3043 else
3044 cgp->cg_old_time = cgp->cg_time = time_second;
3045 *bpp = bp;
3046 *cgpp = cgp;
3047 return (0);
3048 }
3049
3050 static void
3051 ffs_ckhash_cg(struct buf *bp)
3052 {
3053 uint32_t ckhash;
3054 struct cg *cgp;
3055
3056 cgp = (struct cg *)bp->b_data;
3057 ckhash = cgp->cg_ckhash;
3058 cgp->cg_ckhash = 0;
3059 bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount);
3060 cgp->cg_ckhash = ckhash;
3061 }
3062
3063 /*
3064 * Fserr prints the name of a filesystem with an error diagnostic.
3065 *
3066 * The form of the error message is:
3067 * fs: error message
3068 */
3069 void
3070 ffs_fserr(struct fs *fs,
3071 ino_t inum,
3072 char *cp)
3073 {
3074 struct thread *td = curthread; /* XXX */
3075 struct proc *p = td->td_proc;
3076
3077 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n",
3078 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum,
3079 fs->fs_fsmnt, cp);
3080 }
3081
3082 /*
3083 * This function provides the capability for the fsck program to
3084 * update an active filesystem. Fourteen operations are provided:
3085 *
3086 * adjrefcnt(inode, amt) - adjusts the reference count on the
3087 * specified inode by the specified amount. Under normal
3088 * operation the count should always go down. Decrementing
3089 * the count to zero will cause the inode to be freed.
3090 * adjblkcnt(inode, amt) - adjust the number of blocks used by the
3091 * inode by the specified amount.
3092 * setsize(inode, size) - set the size of the inode to the
3093 * specified size.
3094 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
3095 * adjust the superblock summary.
3096 * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
3097 * are marked as free. Inodes should never have to be marked
3098 * as in use.
3099 * freefiles(inode, count) - file inodes [inode..inode + count - 1]
3100 * are marked as free. Inodes should never have to be marked
3101 * as in use.
3102 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
3103 * are marked as free. Blocks should never have to be marked
3104 * as in use.
3105 * setflags(flags, set/clear) - the fs_flags field has the specified
3106 * flags set (second parameter +1) or cleared (second parameter -1).
3107 * setcwd(dirinode) - set the current directory to dirinode in the
3108 * filesystem associated with the snapshot.
3109 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".."
3110 * in the current directory is oldvalue then change it to newvalue.
3111 * unlink(nameptr, oldvalue) - Verify that the inode number associated
3112 * with nameptr in the current directory is oldvalue then unlink it.
3113 */
3114
3115 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
3116
3117 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt,
3118 CTLFLAG_WR | CTLTYPE_STRUCT | CTLFLAG_NEEDGIANT,
3119 0, 0, sysctl_ffs_fsck, "S,fsck",
3120 "Adjust Inode Reference Count");
3121
3122 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt,
3123 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3124 "Adjust Inode Used Blocks Count");
3125
3126 static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize,
3127 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3128 "Set the inode size");
3129
3130 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir,
3131 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3132 "Adjust number of directories");
3133
3134 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree,
3135 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3136 "Adjust number of free blocks");
3137
3138 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree,
3139 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3140 "Adjust number of free inodes");
3141
3142 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree,
3143 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3144 "Adjust number of free frags");
3145
3146 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters,
3147 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3148 "Adjust number of free clusters");
3149
3150 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs,
3151 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3152 "Free Range of Directory Inodes");
3153
3154 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles,
3155 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3156 "Free Range of File Inodes");
3157
3158 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks,
3159 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3160 "Free Range of Blocks");
3161
3162 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags,
3163 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3164 "Change Filesystem Flags");
3165
3166 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd,
3167 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3168 "Set Current Working Directory");
3169
3170 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot,
3171 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3172 "Change Value of .. Entry");
3173
3174 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink,
3175 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3176 "Unlink a Duplicate Name");
3177
3178 #ifdef DIAGNOSTIC
3179 static int fsckcmds = 0;
3180 SYSCTL_INT(_debug, OID_AUTO, ffs_fsckcmds, CTLFLAG_RW, &fsckcmds, 0,
3181 "print out fsck_ffs-based filesystem update commands");
3182 #endif /* DIAGNOSTIC */
3183
3184 static int
3185 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
3186 {
3187 struct thread *td = curthread;
3188 struct fsck_cmd cmd;
3189 struct ufsmount *ump;
3190 struct vnode *vp, *dvp, *fdvp;
3191 struct inode *ip, *dp;
3192 struct mount *mp;
3193 struct fs *fs;
3194 struct pwd *pwd;
3195 ufs2_daddr_t blkno;
3196 long blkcnt, blksize;
3197 u_long key;
3198 struct file *fp;
3199 cap_rights_t rights;
3200 int filetype, error;
3201
3202 if (req->newptr == NULL || req->newlen > sizeof(cmd))
3203 return (EBADRPC);
3204 if ((error = SYSCTL_IN(req, &cmd, sizeof(cmd))) != 0)
3205 return (error);
3206 if (cmd.version != FFS_CMD_VERSION)
3207 return (ERPCMISMATCH);
3208 if ((error = getvnode(td, cmd.handle,
3209 cap_rights_init_one(&rights, CAP_FSCK), &fp)) != 0)
3210 return (error);
3211 vp = fp->f_vnode;
3212 if (vp->v_type != VREG && vp->v_type != VDIR) {
3213 fdrop(fp, td);
3214 return (EINVAL);
3215 }
3216 vn_start_write(vp, &mp, V_WAIT);
3217 if (mp == NULL ||
3218 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
3219 vn_finished_write(mp);
3220 fdrop(fp, td);
3221 return (EINVAL);
3222 }
3223 ump = VFSTOUFS(mp);
3224 if (mp->mnt_flag & MNT_RDONLY) {
3225 vn_finished_write(mp);
3226 fdrop(fp, td);
3227 return (EROFS);
3228 }
3229 fs = ump->um_fs;
3230 filetype = IFREG;
3231
3232 switch (oidp->oid_number) {
3233 case FFS_SET_FLAGS:
3234 #ifdef DIAGNOSTIC
3235 if (fsckcmds)
3236 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
3237 cmd.size > 0 ? "set" : "clear");
3238 #endif /* DIAGNOSTIC */
3239 if (cmd.size > 0)
3240 fs->fs_flags |= (long)cmd.value;
3241 else
3242 fs->fs_flags &= ~(long)cmd.value;
3243 break;
3244
3245 case FFS_ADJ_REFCNT:
3246 #ifdef DIAGNOSTIC
3247 if (fsckcmds) {
3248 printf("%s: adjust inode %jd link count by %jd\n",
3249 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3250 (intmax_t)cmd.size);
3251 }
3252 #endif /* DIAGNOSTIC */
3253 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3254 break;
3255 ip = VTOI(vp);
3256 ip->i_nlink += cmd.size;
3257 DIP_SET(ip, i_nlink, ip->i_nlink);
3258 ip->i_effnlink += cmd.size;
3259 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
3260 error = ffs_update(vp, 1);
3261 if (DOINGSOFTDEP(vp))
3262 softdep_change_linkcnt(ip);
3263 vput(vp);
3264 break;
3265
3266 case FFS_ADJ_BLKCNT:
3267 #ifdef DIAGNOSTIC
3268 if (fsckcmds) {
3269 printf("%s: adjust inode %jd block count by %jd\n",
3270 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3271 (intmax_t)cmd.size);
3272 }
3273 #endif /* DIAGNOSTIC */
3274 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3275 break;
3276 ip = VTOI(vp);
3277 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
3278 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
3279 error = ffs_update(vp, 1);
3280 vput(vp);
3281 break;
3282
3283 case FFS_SET_SIZE:
3284 #ifdef DIAGNOSTIC
3285 if (fsckcmds) {
3286 printf("%s: set inode %jd size to %jd\n",
3287 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3288 (intmax_t)cmd.size);
3289 }
3290 #endif /* DIAGNOSTIC */
3291 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3292 break;
3293 ip = VTOI(vp);
3294 DIP_SET(ip, i_size, cmd.size);
3295 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_MODIFIED);
3296 error = ffs_update(vp, 1);
3297 vput(vp);
3298 break;
3299
3300 case FFS_DIR_FREE:
3301 filetype = IFDIR;
3302 /* fall through */
3303
3304 case FFS_FILE_FREE:
3305 #ifdef DIAGNOSTIC
3306 if (fsckcmds) {
3307 if (cmd.size == 1)
3308 printf("%s: free %s inode %ju\n",
3309 mp->mnt_stat.f_mntonname,
3310 filetype == IFDIR ? "directory" : "file",
3311 (uintmax_t)cmd.value);
3312 else
3313 printf("%s: free %s inodes %ju-%ju\n",
3314 mp->mnt_stat.f_mntonname,
3315 filetype == IFDIR ? "directory" : "file",
3316 (uintmax_t)cmd.value,
3317 (uintmax_t)(cmd.value + cmd.size - 1));
3318 }
3319 #endif /* DIAGNOSTIC */
3320 while (cmd.size > 0) {
3321 if ((error = ffs_freefile(ump, fs, ump->um_devvp,
3322 cmd.value, filetype, NULL)))
3323 break;
3324 cmd.size -= 1;
3325 cmd.value += 1;
3326 }
3327 break;
3328
3329 case FFS_BLK_FREE:
3330 #ifdef DIAGNOSTIC
3331 if (fsckcmds) {
3332 if (cmd.size == 1)
3333 printf("%s: free block %jd\n",
3334 mp->mnt_stat.f_mntonname,
3335 (intmax_t)cmd.value);
3336 else
3337 printf("%s: free blocks %jd-%jd\n",
3338 mp->mnt_stat.f_mntonname,
3339 (intmax_t)cmd.value,
3340 (intmax_t)cmd.value + cmd.size - 1);
3341 }
3342 #endif /* DIAGNOSTIC */
3343 blkno = cmd.value;
3344 blkcnt = cmd.size;
3345 blksize = fs->fs_frag - (blkno % fs->fs_frag);
3346 key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO);
3347 while (blkcnt > 0) {
3348 if (blkcnt < blksize)
3349 blksize = blkcnt;
3350 ffs_blkfree(ump, fs, ump->um_devvp, blkno,
3351 blksize * fs->fs_fsize, UFS_ROOTINO,
3352 VDIR, NULL, key);
3353 blkno += blksize;
3354 blkcnt -= blksize;
3355 blksize = fs->fs_frag;
3356 }
3357 ffs_blkrelease_finish(ump, key);
3358 break;
3359
3360 /*
3361 * Adjust superblock summaries. fsck(8) is expected to
3362 * submit deltas when necessary.
3363 */
3364 case FFS_ADJ_NDIR:
3365 #ifdef DIAGNOSTIC
3366 if (fsckcmds) {
3367 printf("%s: adjust number of directories by %jd\n",
3368 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3369 }
3370 #endif /* DIAGNOSTIC */
3371 fs->fs_cstotal.cs_ndir += cmd.value;
3372 break;
3373
3374 case FFS_ADJ_NBFREE:
3375 #ifdef DIAGNOSTIC
3376 if (fsckcmds) {
3377 printf("%s: adjust number of free blocks by %+jd\n",
3378 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3379 }
3380 #endif /* DIAGNOSTIC */
3381 fs->fs_cstotal.cs_nbfree += cmd.value;
3382 break;
3383
3384 case FFS_ADJ_NIFREE:
3385 #ifdef DIAGNOSTIC
3386 if (fsckcmds) {
3387 printf("%s: adjust number of free inodes by %+jd\n",
3388 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3389 }
3390 #endif /* DIAGNOSTIC */
3391 fs->fs_cstotal.cs_nifree += cmd.value;
3392 break;
3393
3394 case FFS_ADJ_NFFREE:
3395 #ifdef DIAGNOSTIC
3396 if (fsckcmds) {
3397 printf("%s: adjust number of free frags by %+jd\n",
3398 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3399 }
3400 #endif /* DIAGNOSTIC */
3401 fs->fs_cstotal.cs_nffree += cmd.value;
3402 break;
3403
3404 case FFS_ADJ_NUMCLUSTERS:
3405 #ifdef DIAGNOSTIC
3406 if (fsckcmds) {
3407 printf("%s: adjust number of free clusters by %+jd\n",
3408 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3409 }
3410 #endif /* DIAGNOSTIC */
3411 fs->fs_cstotal.cs_numclusters += cmd.value;
3412 break;
3413
3414 case FFS_SET_CWD:
3415 #ifdef DIAGNOSTIC
3416 if (fsckcmds) {
3417 printf("%s: set current directory to inode %jd\n",
3418 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3419 }
3420 #endif /* DIAGNOSTIC */
3421 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp)))
3422 break;
3423 AUDIT_ARG_VNODE1(vp);
3424 if ((error = change_dir(vp, td)) != 0) {
3425 vput(vp);
3426 break;
3427 }
3428 VOP_UNLOCK(vp);
3429 pwd_chdir(td, vp);
3430 break;
3431
3432 case FFS_SET_DOTDOT:
3433 #ifdef DIAGNOSTIC
3434 if (fsckcmds) {
3435 printf("%s: change .. in cwd from %jd to %jd\n",
3436 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3437 (intmax_t)cmd.size);
3438 }
3439 #endif /* DIAGNOSTIC */
3440 /*
3441 * First we have to get and lock the parent directory
3442 * to which ".." points.
3443 */
3444 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp);
3445 if (error)
3446 break;
3447 /*
3448 * Now we get and lock the child directory containing "..".
3449 */
3450 pwd = pwd_hold(td);
3451 dvp = pwd->pwd_cdir;
3452 if ((error = vget(dvp, LK_EXCLUSIVE)) != 0) {
3453 vput(fdvp);
3454 pwd_drop(pwd);
3455 break;
3456 }
3457 dp = VTOI(dvp);
3458 SET_I_OFFSET(dp, 12); /* XXX mastertemplate.dot_reclen */
3459 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size,
3460 DT_DIR, 0);
3461 cache_purge(fdvp);
3462 cache_purge(dvp);
3463 vput(dvp);
3464 vput(fdvp);
3465 pwd_drop(pwd);
3466 break;
3467
3468 case FFS_UNLINK:
3469 #ifdef DIAGNOSTIC
3470 if (fsckcmds) {
3471 char buf[32];
3472
3473 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL))
3474 strncpy(buf, "Name_too_long", 32);
3475 printf("%s: unlink %s (inode %jd)\n",
3476 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size);
3477 }
3478 #endif /* DIAGNOSTIC */
3479 /*
3480 * kern_funlinkat will do its own start/finish writes and
3481 * they do not nest, so drop ours here. Setting mp == NULL
3482 * indicates that vn_finished_write is not needed down below.
3483 */
3484 vn_finished_write(mp);
3485 mp = NULL;
3486 error = kern_funlinkat(td, AT_FDCWD,
3487 (char *)(intptr_t)cmd.value, FD_NONE, UIO_USERSPACE,
3488 0, (ino_t)cmd.size);
3489 break;
3490
3491 default:
3492 #ifdef DIAGNOSTIC
3493 if (fsckcmds) {
3494 printf("Invalid request %d from fsck\n",
3495 oidp->oid_number);
3496 }
3497 #endif /* DIAGNOSTIC */
3498 error = EINVAL;
3499 break;
3500 }
3501 fdrop(fp, td);
3502 vn_finished_write(mp);
3503 return (error);
3504 }
Cache object: 9198be8cb917a108fb5a830eeccf442a
|