The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/ufs/ffs/ffs_alloc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002 Networks Associates Technology, Inc.
    3  * All rights reserved.
    4  *
    5  * This software was developed for the FreeBSD Project by Marshall
    6  * Kirk McKusick and Network Associates Laboratories, the Security
    7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
    8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
    9  * research program
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  * Copyright (c) 1982, 1986, 1989, 1993
   33  *      The Regents of the University of California.  All rights reserved.
   34  *
   35  * Redistribution and use in source and binary forms, with or without
   36  * modification, are permitted provided that the following conditions
   37  * are met:
   38  * 1. Redistributions of source code must retain the above copyright
   39  *    notice, this list of conditions and the following disclaimer.
   40  * 2. Redistributions in binary form must reproduce the above copyright
   41  *    notice, this list of conditions and the following disclaimer in the
   42  *    documentation and/or other materials provided with the distribution.
   43  * 4. Neither the name of the University nor the names of its contributors
   44  *    may be used to endorse or promote products derived from this software
   45  *    without specific prior written permission.
   46  *
   47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   57  * SUCH DAMAGE.
   58  *
   59  *      @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95
   60  */
   61 
   62 #include <sys/cdefs.h>
   63 __FBSDID("$FreeBSD: releng/10.0/sys/ufs/ffs/ffs_alloc.c 255219 2013-09-05 00:09:56Z pjd $");
   64 
   65 #include "opt_quota.h"
   66 
   67 #include <sys/param.h>
   68 #include <sys/capability.h>
   69 #include <sys/systm.h>
   70 #include <sys/bio.h>
   71 #include <sys/buf.h>
   72 #include <sys/conf.h>
   73 #include <sys/fcntl.h>
   74 #include <sys/file.h>
   75 #include <sys/filedesc.h>
   76 #include <sys/priv.h>
   77 #include <sys/proc.h>
   78 #include <sys/vnode.h>
   79 #include <sys/mount.h>
   80 #include <sys/kernel.h>
   81 #include <sys/syscallsubr.h>
   82 #include <sys/sysctl.h>
   83 #include <sys/syslog.h>
   84 #include <sys/taskqueue.h>
   85 
   86 #include <security/audit/audit.h>
   87 
   88 #include <geom/geom.h>
   89 
   90 #include <ufs/ufs/dir.h>
   91 #include <ufs/ufs/extattr.h>
   92 #include <ufs/ufs/quota.h>
   93 #include <ufs/ufs/inode.h>
   94 #include <ufs/ufs/ufs_extern.h>
   95 #include <ufs/ufs/ufsmount.h>
   96 
   97 #include <ufs/ffs/fs.h>
   98 #include <ufs/ffs/ffs_extern.h>
   99 #include <ufs/ffs/softdep.h>
  100 
  101 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref,
  102                                   int size, int rsize);
  103 
  104 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int);
  105 static ufs2_daddr_t
  106               ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int);
  107 static void     ffs_blkfree_cg(struct ufsmount *, struct fs *,
  108                     struct vnode *, ufs2_daddr_t, long, ino_t,
  109                     struct workhead *);
  110 static void     ffs_blkfree_trim_completed(struct bio *);
  111 static void     ffs_blkfree_trim_task(void *ctx, int pending __unused);
  112 #ifdef INVARIANTS
  113 static int      ffs_checkblk(struct inode *, ufs2_daddr_t, long);
  114 #endif
  115 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int,
  116                     int);
  117 static ino_t    ffs_dirpref(struct inode *);
  118 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t,
  119                     int, int);
  120 static ufs2_daddr_t     ffs_hashalloc
  121                 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *);
  122 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int,
  123                     int);
  124 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
  125 static int      ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
  126 static int      ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
  127 
  128 /*
  129  * Allocate a block in the filesystem.
  130  *
  131  * The size of the requested block is given, which must be some
  132  * multiple of fs_fsize and <= fs_bsize.
  133  * A preference may be optionally specified. If a preference is given
  134  * the following hierarchy is used to allocate a block:
  135  *   1) allocate the requested block.
  136  *   2) allocate a rotationally optimal block in the same cylinder.
  137  *   3) allocate a block in the same cylinder group.
  138  *   4) quadradically rehash into other cylinder groups, until an
  139  *      available block is located.
  140  * If no block preference is given the following hierarchy is used
  141  * to allocate a block:
  142  *   1) allocate a block in the cylinder group that contains the
  143  *      inode for the file.
  144  *   2) quadradically rehash into other cylinder groups, until an
  145  *      available block is located.
  146  */
  147 int
  148 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp)
  149         struct inode *ip;
  150         ufs2_daddr_t lbn, bpref;
  151         int size, flags;
  152         struct ucred *cred;
  153         ufs2_daddr_t *bnp;
  154 {
  155         struct fs *fs;
  156         struct ufsmount *ump;
  157         ufs2_daddr_t bno;
  158         u_int cg, reclaimed;
  159         static struct timeval lastfail;
  160         static int curfail;
  161         int64_t delta;
  162 #ifdef QUOTA
  163         int error;
  164 #endif
  165 
  166         *bnp = 0;
  167         fs = ip->i_fs;
  168         ump = ip->i_ump;
  169         mtx_assert(UFS_MTX(ump), MA_OWNED);
  170 #ifdef INVARIANTS
  171         if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
  172                 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
  173                     devtoname(ip->i_dev), (long)fs->fs_bsize, size,
  174                     fs->fs_fsmnt);
  175                 panic("ffs_alloc: bad size");
  176         }
  177         if (cred == NOCRED)
  178                 panic("ffs_alloc: missing credential");
  179 #endif /* INVARIANTS */
  180         reclaimed = 0;
  181 retry:
  182 #ifdef QUOTA
  183         UFS_UNLOCK(ump);
  184         error = chkdq(ip, btodb(size), cred, 0);
  185         if (error)
  186                 return (error);
  187         UFS_LOCK(ump);
  188 #endif
  189         if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
  190                 goto nospace;
  191         if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
  192             freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
  193                 goto nospace;
  194         if (bpref >= fs->fs_size)
  195                 bpref = 0;
  196         if (bpref == 0)
  197                 cg = ino_to_cg(fs, ip->i_number);
  198         else
  199                 cg = dtog(fs, bpref);
  200         bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg);
  201         if (bno > 0) {
  202                 delta = btodb(size);
  203                 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
  204                 if (flags & IO_EXT)
  205                         ip->i_flag |= IN_CHANGE;
  206                 else
  207                         ip->i_flag |= IN_CHANGE | IN_UPDATE;
  208                 *bnp = bno;
  209                 return (0);
  210         }
  211 nospace:
  212 #ifdef QUOTA
  213         UFS_UNLOCK(ump);
  214         /*
  215          * Restore user's disk quota because allocation failed.
  216          */
  217         (void) chkdq(ip, -btodb(size), cred, FORCE);
  218         UFS_LOCK(ump);
  219 #endif
  220         if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
  221                 reclaimed = 1;
  222                 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT);
  223                 goto retry;
  224         }
  225         UFS_UNLOCK(ump);
  226         if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) {
  227                 ffs_fserr(fs, ip->i_number, "filesystem full");
  228                 uprintf("\n%s: write failed, filesystem is full\n",
  229                     fs->fs_fsmnt);
  230         }
  231         return (ENOSPC);
  232 }
  233 
  234 /*
  235  * Reallocate a fragment to a bigger size
  236  *
  237  * The number and size of the old block is given, and a preference
  238  * and new size is also specified. The allocator attempts to extend
  239  * the original block. Failing that, the regular block allocator is
  240  * invoked to get an appropriate block.
  241  */
  242 int
  243 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp)
  244         struct inode *ip;
  245         ufs2_daddr_t lbprev;
  246         ufs2_daddr_t bprev;
  247         ufs2_daddr_t bpref;
  248         int osize, nsize, flags;
  249         struct ucred *cred;
  250         struct buf **bpp;
  251 {
  252         struct vnode *vp;
  253         struct fs *fs;
  254         struct buf *bp;
  255         struct ufsmount *ump;
  256         u_int cg, request, reclaimed;
  257         int error, gbflags;
  258         ufs2_daddr_t bno;
  259         static struct timeval lastfail;
  260         static int curfail;
  261         int64_t delta;
  262 
  263         *bpp = 0;
  264         vp = ITOV(ip);
  265         fs = ip->i_fs;
  266         bp = NULL;
  267         ump = ip->i_ump;
  268         gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
  269 
  270         mtx_assert(UFS_MTX(ump), MA_OWNED);
  271 #ifdef INVARIANTS
  272         if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
  273                 panic("ffs_realloccg: allocation on suspended filesystem");
  274         if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
  275             (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
  276                 printf(
  277                 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
  278                     devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
  279                     nsize, fs->fs_fsmnt);
  280                 panic("ffs_realloccg: bad size");
  281         }
  282         if (cred == NOCRED)
  283                 panic("ffs_realloccg: missing credential");
  284 #endif /* INVARIANTS */
  285         reclaimed = 0;
  286 retry:
  287         if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
  288             freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0) {
  289                 goto nospace;
  290         }
  291         if (bprev == 0) {
  292                 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
  293                     devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev,
  294                     fs->fs_fsmnt);
  295                 panic("ffs_realloccg: bad bprev");
  296         }
  297         UFS_UNLOCK(ump);
  298         /*
  299          * Allocate the extra space in the buffer.
  300          */
  301         error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp);
  302         if (error) {
  303                 brelse(bp);
  304                 return (error);
  305         }
  306 
  307         if (bp->b_blkno == bp->b_lblkno) {
  308                 if (lbprev >= NDADDR)
  309                         panic("ffs_realloccg: lbprev out of range");
  310                 bp->b_blkno = fsbtodb(fs, bprev);
  311         }
  312 
  313 #ifdef QUOTA
  314         error = chkdq(ip, btodb(nsize - osize), cred, 0);
  315         if (error) {
  316                 brelse(bp);
  317                 return (error);
  318         }
  319 #endif
  320         /*
  321          * Check for extension in the existing location.
  322          */
  323         cg = dtog(fs, bprev);
  324         UFS_LOCK(ump);
  325         bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
  326         if (bno) {
  327                 if (bp->b_blkno != fsbtodb(fs, bno))
  328                         panic("ffs_realloccg: bad blockno");
  329                 delta = btodb(nsize - osize);
  330                 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
  331                 if (flags & IO_EXT)
  332                         ip->i_flag |= IN_CHANGE;
  333                 else
  334                         ip->i_flag |= IN_CHANGE | IN_UPDATE;
  335                 allocbuf(bp, nsize);
  336                 bp->b_flags |= B_DONE;
  337                 vfs_bio_bzero_buf(bp, osize, nsize - osize);
  338                 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
  339                         vfs_bio_set_valid(bp, osize, nsize - osize);
  340                 *bpp = bp;
  341                 return (0);
  342         }
  343         /*
  344          * Allocate a new disk location.
  345          */
  346         if (bpref >= fs->fs_size)
  347                 bpref = 0;
  348         switch ((int)fs->fs_optim) {
  349         case FS_OPTSPACE:
  350                 /*
  351                  * Allocate an exact sized fragment. Although this makes
  352                  * best use of space, we will waste time relocating it if
  353                  * the file continues to grow. If the fragmentation is
  354                  * less than half of the minimum free reserve, we choose
  355                  * to begin optimizing for time.
  356                  */
  357                 request = nsize;
  358                 if (fs->fs_minfree <= 5 ||
  359                     fs->fs_cstotal.cs_nffree >
  360                     (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
  361                         break;
  362                 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
  363                         fs->fs_fsmnt);
  364                 fs->fs_optim = FS_OPTTIME;
  365                 break;
  366         case FS_OPTTIME:
  367                 /*
  368                  * At this point we have discovered a file that is trying to
  369                  * grow a small fragment to a larger fragment. To save time,
  370                  * we allocate a full sized block, then free the unused portion.
  371                  * If the file continues to grow, the `ffs_fragextend' call
  372                  * above will be able to grow it in place without further
  373                  * copying. If aberrant programs cause disk fragmentation to
  374                  * grow within 2% of the free reserve, we choose to begin
  375                  * optimizing for space.
  376                  */
  377                 request = fs->fs_bsize;
  378                 if (fs->fs_cstotal.cs_nffree <
  379                     (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
  380                         break;
  381                 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
  382                         fs->fs_fsmnt);
  383                 fs->fs_optim = FS_OPTSPACE;
  384                 break;
  385         default:
  386                 printf("dev = %s, optim = %ld, fs = %s\n",
  387                     devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
  388                 panic("ffs_realloccg: bad optim");
  389                 /* NOTREACHED */
  390         }
  391         bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg);
  392         if (bno > 0) {
  393                 bp->b_blkno = fsbtodb(fs, bno);
  394                 if (!DOINGSOFTDEP(vp))
  395                         ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize,
  396                             ip->i_number, vp->v_type, NULL);
  397                 delta = btodb(nsize - osize);
  398                 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
  399                 if (flags & IO_EXT)
  400                         ip->i_flag |= IN_CHANGE;
  401                 else
  402                         ip->i_flag |= IN_CHANGE | IN_UPDATE;
  403                 allocbuf(bp, nsize);
  404                 bp->b_flags |= B_DONE;
  405                 vfs_bio_bzero_buf(bp, osize, nsize - osize);
  406                 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
  407                         vfs_bio_set_valid(bp, osize, nsize - osize);
  408                 *bpp = bp;
  409                 return (0);
  410         }
  411 #ifdef QUOTA
  412         UFS_UNLOCK(ump);
  413         /*
  414          * Restore user's disk quota because allocation failed.
  415          */
  416         (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
  417         UFS_LOCK(ump);
  418 #endif
  419 nospace:
  420         /*
  421          * no space available
  422          */
  423         if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
  424                 reclaimed = 1;
  425                 UFS_UNLOCK(ump);
  426                 if (bp) {
  427                         brelse(bp);
  428                         bp = NULL;
  429                 }
  430                 UFS_LOCK(ump);
  431                 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT);
  432                 goto retry;
  433         }
  434         UFS_UNLOCK(ump);
  435         if (bp)
  436                 brelse(bp);
  437         if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) {
  438                 ffs_fserr(fs, ip->i_number, "filesystem full");
  439                 uprintf("\n%s: write failed, filesystem is full\n",
  440                     fs->fs_fsmnt);
  441         }
  442         return (ENOSPC);
  443 }
  444 
  445 /*
  446  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
  447  *
  448  * The vnode and an array of buffer pointers for a range of sequential
  449  * logical blocks to be made contiguous is given. The allocator attempts
  450  * to find a range of sequential blocks starting as close as possible
  451  * from the end of the allocation for the logical block immediately
  452  * preceding the current range. If successful, the physical block numbers
  453  * in the buffer pointers and in the inode are changed to reflect the new
  454  * allocation. If unsuccessful, the allocation is left unchanged. The
  455  * success in doing the reallocation is returned. Note that the error
  456  * return is not reflected back to the user. Rather the previous block
  457  * allocation will be used.
  458  */
  459 
  460 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
  461 
  462 static int doasyncfree = 1;
  463 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
  464 
  465 static int doreallocblks = 1;
  466 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
  467 
  468 #ifdef DEBUG
  469 static volatile int prtrealloc = 0;
  470 #endif
  471 
  472 int
  473 ffs_reallocblks(ap)
  474         struct vop_reallocblks_args /* {
  475                 struct vnode *a_vp;
  476                 struct cluster_save *a_buflist;
  477         } */ *ap;
  478 {
  479 
  480         if (doreallocblks == 0)
  481                 return (ENOSPC);
  482         /*
  483          * We can't wait in softdep prealloc as it may fsync and recurse
  484          * here.  Instead we simply fail to reallocate blocks if this
  485          * rare condition arises.
  486          */
  487         if (DOINGSOFTDEP(ap->a_vp))
  488                 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0)
  489                         return (ENOSPC);
  490         if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1)
  491                 return (ffs_reallocblks_ufs1(ap));
  492         return (ffs_reallocblks_ufs2(ap));
  493 }
  494         
  495 static int
  496 ffs_reallocblks_ufs1(ap)
  497         struct vop_reallocblks_args /* {
  498                 struct vnode *a_vp;
  499                 struct cluster_save *a_buflist;
  500         } */ *ap;
  501 {
  502         struct fs *fs;
  503         struct inode *ip;
  504         struct vnode *vp;
  505         struct buf *sbp, *ebp;
  506         ufs1_daddr_t *bap, *sbap, *ebap = 0;
  507         struct cluster_save *buflist;
  508         struct ufsmount *ump;
  509         ufs_lbn_t start_lbn, end_lbn;
  510         ufs1_daddr_t soff, newblk, blkno;
  511         ufs2_daddr_t pref;
  512         struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
  513         int i, len, start_lvl, end_lvl, ssize;
  514 
  515         vp = ap->a_vp;
  516         ip = VTOI(vp);
  517         fs = ip->i_fs;
  518         ump = ip->i_ump;
  519         /*
  520          * If we are not tracking block clusters or if we have less than 2%
  521          * free blocks left, then do not attempt to cluster. Running with
  522          * less than 5% free block reserve is not recommended and those that
  523          * choose to do so do not expect to have good file layout.
  524          */
  525         if (fs->fs_contigsumsize <= 0 || freespace(fs, 2) < 0)
  526                 return (ENOSPC);
  527         buflist = ap->a_buflist;
  528         len = buflist->bs_nchildren;
  529         start_lbn = buflist->bs_children[0]->b_lblkno;
  530         end_lbn = start_lbn + len - 1;
  531 #ifdef INVARIANTS
  532         for (i = 0; i < len; i++)
  533                 if (!ffs_checkblk(ip,
  534                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  535                         panic("ffs_reallocblks: unallocated block 1");
  536         for (i = 1; i < len; i++)
  537                 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
  538                         panic("ffs_reallocblks: non-logical cluster");
  539         blkno = buflist->bs_children[0]->b_blkno;
  540         ssize = fsbtodb(fs, fs->fs_frag);
  541         for (i = 1; i < len - 1; i++)
  542                 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
  543                         panic("ffs_reallocblks: non-physical cluster %d", i);
  544 #endif
  545         /*
  546          * If the cluster crosses the boundary for the first indirect
  547          * block, leave space for the indirect block. Indirect blocks
  548          * are initially laid out in a position after the last direct
  549          * block. Block reallocation would usually destroy locality by
  550          * moving the indirect block out of the way to make room for
  551          * data blocks if we didn't compensate here. We should also do
  552          * this for other indirect block boundaries, but it is only
  553          * important for the first one.
  554          */
  555         if (start_lbn < NDADDR && end_lbn >= NDADDR)
  556                 return (ENOSPC);
  557         /*
  558          * If the latest allocation is in a new cylinder group, assume that
  559          * the filesystem has decided to move and do not force it back to
  560          * the previous cylinder group.
  561          */
  562         if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
  563             dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
  564                 return (ENOSPC);
  565         if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
  566             ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
  567                 return (ENOSPC);
  568         /*
  569          * Get the starting offset and block map for the first block.
  570          */
  571         if (start_lvl == 0) {
  572                 sbap = &ip->i_din1->di_db[0];
  573                 soff = start_lbn;
  574         } else {
  575                 idp = &start_ap[start_lvl - 1];
  576                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
  577                         brelse(sbp);
  578                         return (ENOSPC);
  579                 }
  580                 sbap = (ufs1_daddr_t *)sbp->b_data;
  581                 soff = idp->in_off;
  582         }
  583         /*
  584          * If the block range spans two block maps, get the second map.
  585          */
  586         if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
  587                 ssize = len;
  588         } else {
  589 #ifdef INVARIANTS
  590                 if (start_lvl > 0 &&
  591                     start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
  592                         panic("ffs_reallocblk: start == end");
  593 #endif
  594                 ssize = len - (idp->in_off + 1);
  595                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
  596                         goto fail;
  597                 ebap = (ufs1_daddr_t *)ebp->b_data;
  598         }
  599         /*
  600          * Find the preferred location for the cluster.
  601          */
  602         UFS_LOCK(ump);
  603         pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
  604         /*
  605          * Search the block map looking for an allocation of the desired size.
  606          */
  607         if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
  608             len, len, ffs_clusteralloc)) == 0) {
  609                 UFS_UNLOCK(ump);
  610                 goto fail;
  611         }
  612         /*
  613          * We have found a new contiguous block.
  614          *
  615          * First we have to replace the old block pointers with the new
  616          * block pointers in the inode and indirect blocks associated
  617          * with the file.
  618          */
  619 #ifdef DEBUG
  620         if (prtrealloc)
  621                 printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
  622                     (uintmax_t)ip->i_number,
  623                     (intmax_t)start_lbn, (intmax_t)end_lbn);
  624 #endif
  625         blkno = newblk;
  626         for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
  627                 if (i == ssize) {
  628                         bap = ebap;
  629                         soff = -i;
  630                 }
  631 #ifdef INVARIANTS
  632                 if (!ffs_checkblk(ip,
  633                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  634                         panic("ffs_reallocblks: unallocated block 2");
  635                 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
  636                         panic("ffs_reallocblks: alloc mismatch");
  637 #endif
  638 #ifdef DEBUG
  639                 if (prtrealloc)
  640                         printf(" %d,", *bap);
  641 #endif
  642                 if (DOINGSOFTDEP(vp)) {
  643                         if (sbap == &ip->i_din1->di_db[0] && i < ssize)
  644                                 softdep_setup_allocdirect(ip, start_lbn + i,
  645                                     blkno, *bap, fs->fs_bsize, fs->fs_bsize,
  646                                     buflist->bs_children[i]);
  647                         else
  648                                 softdep_setup_allocindir_page(ip, start_lbn + i,
  649                                     i < ssize ? sbp : ebp, soff + i, blkno,
  650                                     *bap, buflist->bs_children[i]);
  651                 }
  652                 *bap++ = blkno;
  653         }
  654         /*
  655          * Next we must write out the modified inode and indirect blocks.
  656          * For strict correctness, the writes should be synchronous since
  657          * the old block values may have been written to disk. In practise
  658          * they are almost never written, but if we are concerned about
  659          * strict correctness, the `doasyncfree' flag should be set to zero.
  660          *
  661          * The test on `doasyncfree' should be changed to test a flag
  662          * that shows whether the associated buffers and inodes have
  663          * been written. The flag should be set when the cluster is
  664          * started and cleared whenever the buffer or inode is flushed.
  665          * We can then check below to see if it is set, and do the
  666          * synchronous write only when it has been cleared.
  667          */
  668         if (sbap != &ip->i_din1->di_db[0]) {
  669                 if (doasyncfree)
  670                         bdwrite(sbp);
  671                 else
  672                         bwrite(sbp);
  673         } else {
  674                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  675                 if (!doasyncfree)
  676                         ffs_update(vp, 1);
  677         }
  678         if (ssize < len) {
  679                 if (doasyncfree)
  680                         bdwrite(ebp);
  681                 else
  682                         bwrite(ebp);
  683         }
  684         /*
  685          * Last, free the old blocks and assign the new blocks to the buffers.
  686          */
  687 #ifdef DEBUG
  688         if (prtrealloc)
  689                 printf("\n\tnew:");
  690 #endif
  691         for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
  692                 if (!DOINGSOFTDEP(vp))
  693                         ffs_blkfree(ump, fs, ip->i_devvp,
  694                             dbtofsb(fs, buflist->bs_children[i]->b_blkno),
  695                             fs->fs_bsize, ip->i_number, vp->v_type, NULL);
  696                 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
  697 #ifdef INVARIANTS
  698                 if (!ffs_checkblk(ip,
  699                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  700                         panic("ffs_reallocblks: unallocated block 3");
  701 #endif
  702 #ifdef DEBUG
  703                 if (prtrealloc)
  704                         printf(" %d,", blkno);
  705 #endif
  706         }
  707 #ifdef DEBUG
  708         if (prtrealloc) {
  709                 prtrealloc--;
  710                 printf("\n");
  711         }
  712 #endif
  713         return (0);
  714 
  715 fail:
  716         if (ssize < len)
  717                 brelse(ebp);
  718         if (sbap != &ip->i_din1->di_db[0])
  719                 brelse(sbp);
  720         return (ENOSPC);
  721 }
  722 
  723 static int
  724 ffs_reallocblks_ufs2(ap)
  725         struct vop_reallocblks_args /* {
  726                 struct vnode *a_vp;
  727                 struct cluster_save *a_buflist;
  728         } */ *ap;
  729 {
  730         struct fs *fs;
  731         struct inode *ip;
  732         struct vnode *vp;
  733         struct buf *sbp, *ebp;
  734         ufs2_daddr_t *bap, *sbap, *ebap = 0;
  735         struct cluster_save *buflist;
  736         struct ufsmount *ump;
  737         ufs_lbn_t start_lbn, end_lbn;
  738         ufs2_daddr_t soff, newblk, blkno, pref;
  739         struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
  740         int i, len, start_lvl, end_lvl, ssize;
  741 
  742         vp = ap->a_vp;
  743         ip = VTOI(vp);
  744         fs = ip->i_fs;
  745         ump = ip->i_ump;
  746         /*
  747          * If we are not tracking block clusters or if we have less than 2%
  748          * free blocks left, then do not attempt to cluster. Running with
  749          * less than 5% free block reserve is not recommended and those that
  750          * choose to do so do not expect to have good file layout.
  751          */
  752         if (fs->fs_contigsumsize <= 0 || freespace(fs, 2) < 0)
  753                 return (ENOSPC);
  754         buflist = ap->a_buflist;
  755         len = buflist->bs_nchildren;
  756         start_lbn = buflist->bs_children[0]->b_lblkno;
  757         end_lbn = start_lbn + len - 1;
  758 #ifdef INVARIANTS
  759         for (i = 0; i < len; i++)
  760                 if (!ffs_checkblk(ip,
  761                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  762                         panic("ffs_reallocblks: unallocated block 1");
  763         for (i = 1; i < len; i++)
  764                 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
  765                         panic("ffs_reallocblks: non-logical cluster");
  766         blkno = buflist->bs_children[0]->b_blkno;
  767         ssize = fsbtodb(fs, fs->fs_frag);
  768         for (i = 1; i < len - 1; i++)
  769                 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
  770                         panic("ffs_reallocblks: non-physical cluster %d", i);
  771 #endif
  772         /*
  773          * If the cluster crosses the boundary for the first indirect
  774          * block, do not move anything in it. Indirect blocks are
  775          * usually initially laid out in a position between the data
  776          * blocks. Block reallocation would usually destroy locality by
  777          * moving the indirect block out of the way to make room for
  778          * data blocks if we didn't compensate here. We should also do
  779          * this for other indirect block boundaries, but it is only
  780          * important for the first one.
  781          */
  782         if (start_lbn < NDADDR && end_lbn >= NDADDR)
  783                 return (ENOSPC);
  784         /*
  785          * If the latest allocation is in a new cylinder group, assume that
  786          * the filesystem has decided to move and do not force it back to
  787          * the previous cylinder group.
  788          */
  789         if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
  790             dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
  791                 return (ENOSPC);
  792         if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
  793             ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
  794                 return (ENOSPC);
  795         /*
  796          * Get the starting offset and block map for the first block.
  797          */
  798         if (start_lvl == 0) {
  799                 sbap = &ip->i_din2->di_db[0];
  800                 soff = start_lbn;
  801         } else {
  802                 idp = &start_ap[start_lvl - 1];
  803                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
  804                         brelse(sbp);
  805                         return (ENOSPC);
  806                 }
  807                 sbap = (ufs2_daddr_t *)sbp->b_data;
  808                 soff = idp->in_off;
  809         }
  810         /*
  811          * If the block range spans two block maps, get the second map.
  812          */
  813         if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
  814                 ssize = len;
  815         } else {
  816 #ifdef INVARIANTS
  817                 if (start_lvl > 0 &&
  818                     start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
  819                         panic("ffs_reallocblk: start == end");
  820 #endif
  821                 ssize = len - (idp->in_off + 1);
  822                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
  823                         goto fail;
  824                 ebap = (ufs2_daddr_t *)ebp->b_data;
  825         }
  826         /*
  827          * Find the preferred location for the cluster.
  828          */
  829         UFS_LOCK(ump);
  830         pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
  831         /*
  832          * Search the block map looking for an allocation of the desired size.
  833          */
  834         if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
  835             len, len, ffs_clusteralloc)) == 0) {
  836                 UFS_UNLOCK(ump);
  837                 goto fail;
  838         }
  839         /*
  840          * We have found a new contiguous block.
  841          *
  842          * First we have to replace the old block pointers with the new
  843          * block pointers in the inode and indirect blocks associated
  844          * with the file.
  845          */
  846 #ifdef DEBUG
  847         if (prtrealloc)
  848                 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
  849                     (intmax_t)start_lbn, (intmax_t)end_lbn);
  850 #endif
  851         blkno = newblk;
  852         for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
  853                 if (i == ssize) {
  854                         bap = ebap;
  855                         soff = -i;
  856                 }
  857 #ifdef INVARIANTS
  858                 if (!ffs_checkblk(ip,
  859                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  860                         panic("ffs_reallocblks: unallocated block 2");
  861                 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
  862                         panic("ffs_reallocblks: alloc mismatch");
  863 #endif
  864 #ifdef DEBUG
  865                 if (prtrealloc)
  866                         printf(" %jd,", (intmax_t)*bap);
  867 #endif
  868                 if (DOINGSOFTDEP(vp)) {
  869                         if (sbap == &ip->i_din2->di_db[0] && i < ssize)
  870                                 softdep_setup_allocdirect(ip, start_lbn + i,
  871                                     blkno, *bap, fs->fs_bsize, fs->fs_bsize,
  872                                     buflist->bs_children[i]);
  873                         else
  874                                 softdep_setup_allocindir_page(ip, start_lbn + i,
  875                                     i < ssize ? sbp : ebp, soff + i, blkno,
  876                                     *bap, buflist->bs_children[i]);
  877                 }
  878                 *bap++ = blkno;
  879         }
  880         /*
  881          * Next we must write out the modified inode and indirect blocks.
  882          * For strict correctness, the writes should be synchronous since
  883          * the old block values may have been written to disk. In practise
  884          * they are almost never written, but if we are concerned about
  885          * strict correctness, the `doasyncfree' flag should be set to zero.
  886          *
  887          * The test on `doasyncfree' should be changed to test a flag
  888          * that shows whether the associated buffers and inodes have
  889          * been written. The flag should be set when the cluster is
  890          * started and cleared whenever the buffer or inode is flushed.
  891          * We can then check below to see if it is set, and do the
  892          * synchronous write only when it has been cleared.
  893          */
  894         if (sbap != &ip->i_din2->di_db[0]) {
  895                 if (doasyncfree)
  896                         bdwrite(sbp);
  897                 else
  898                         bwrite(sbp);
  899         } else {
  900                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  901                 if (!doasyncfree)
  902                         ffs_update(vp, 1);
  903         }
  904         if (ssize < len) {
  905                 if (doasyncfree)
  906                         bdwrite(ebp);
  907                 else
  908                         bwrite(ebp);
  909         }
  910         /*
  911          * Last, free the old blocks and assign the new blocks to the buffers.
  912          */
  913 #ifdef DEBUG
  914         if (prtrealloc)
  915                 printf("\n\tnew:");
  916 #endif
  917         for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
  918                 if (!DOINGSOFTDEP(vp))
  919                         ffs_blkfree(ump, fs, ip->i_devvp,
  920                             dbtofsb(fs, buflist->bs_children[i]->b_blkno),
  921                             fs->fs_bsize, ip->i_number, vp->v_type, NULL);
  922                 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
  923 #ifdef INVARIANTS
  924                 if (!ffs_checkblk(ip,
  925                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  926                         panic("ffs_reallocblks: unallocated block 3");
  927 #endif
  928 #ifdef DEBUG
  929                 if (prtrealloc)
  930                         printf(" %jd,", (intmax_t)blkno);
  931 #endif
  932         }
  933 #ifdef DEBUG
  934         if (prtrealloc) {
  935                 prtrealloc--;
  936                 printf("\n");
  937         }
  938 #endif
  939         return (0);
  940 
  941 fail:
  942         if (ssize < len)
  943                 brelse(ebp);
  944         if (sbap != &ip->i_din2->di_db[0])
  945                 brelse(sbp);
  946         return (ENOSPC);
  947 }
  948 
  949 /*
  950  * Allocate an inode in the filesystem.
  951  *
  952  * If allocating a directory, use ffs_dirpref to select the inode.
  953  * If allocating in a directory, the following hierarchy is followed:
  954  *   1) allocate the preferred inode.
  955  *   2) allocate an inode in the same cylinder group.
  956  *   3) quadradically rehash into other cylinder groups, until an
  957  *      available inode is located.
  958  * If no inode preference is given the following hierarchy is used
  959  * to allocate an inode:
  960  *   1) allocate an inode in cylinder group 0.
  961  *   2) quadradically rehash into other cylinder groups, until an
  962  *      available inode is located.
  963  */
  964 int
  965 ffs_valloc(pvp, mode, cred, vpp)
  966         struct vnode *pvp;
  967         int mode;
  968         struct ucred *cred;
  969         struct vnode **vpp;
  970 {
  971         struct inode *pip;
  972         struct fs *fs;
  973         struct inode *ip;
  974         struct timespec ts;
  975         struct ufsmount *ump;
  976         ino_t ino, ipref;
  977         u_int cg;
  978         int error, error1, reclaimed;
  979         static struct timeval lastfail;
  980         static int curfail;
  981 
  982         *vpp = NULL;
  983         pip = VTOI(pvp);
  984         fs = pip->i_fs;
  985         ump = pip->i_ump;
  986 
  987         UFS_LOCK(ump);
  988         reclaimed = 0;
  989 retry:
  990         if (fs->fs_cstotal.cs_nifree == 0)
  991                 goto noinodes;
  992 
  993         if ((mode & IFMT) == IFDIR)
  994                 ipref = ffs_dirpref(pip);
  995         else
  996                 ipref = pip->i_number;
  997         if (ipref >= fs->fs_ncg * fs->fs_ipg)
  998                 ipref = 0;
  999         cg = ino_to_cg(fs, ipref);
 1000         /*
 1001          * Track number of dirs created one after another
 1002          * in a same cg without intervening by files.
 1003          */
 1004         if ((mode & IFMT) == IFDIR) {
 1005                 if (fs->fs_contigdirs[cg] < 255)
 1006                         fs->fs_contigdirs[cg]++;
 1007         } else {
 1008                 if (fs->fs_contigdirs[cg] > 0)
 1009                         fs->fs_contigdirs[cg]--;
 1010         }
 1011         ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0,
 1012                                         (allocfcn_t *)ffs_nodealloccg);
 1013         if (ino == 0)
 1014                 goto noinodes;
 1015         error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
 1016         if (error) {
 1017                 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp,
 1018                     FFSV_FORCEINSMQ);
 1019                 ffs_vfree(pvp, ino, mode);
 1020                 if (error1 == 0) {
 1021                         ip = VTOI(*vpp);
 1022                         if (ip->i_mode)
 1023                                 goto dup_alloc;
 1024                         ip->i_flag |= IN_MODIFIED;
 1025                         vput(*vpp);
 1026                 }
 1027                 return (error);
 1028         }
 1029         ip = VTOI(*vpp);
 1030         if (ip->i_mode) {
 1031 dup_alloc:
 1032                 printf("mode = 0%o, inum = %lu, fs = %s\n",
 1033                     ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
 1034                 panic("ffs_valloc: dup alloc");
 1035         }
 1036         if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
 1037                 printf("free inode %s/%lu had %ld blocks\n",
 1038                     fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
 1039                 DIP_SET(ip, i_blocks, 0);
 1040         }
 1041         ip->i_flags = 0;
 1042         DIP_SET(ip, i_flags, 0);
 1043         /*
 1044          * Set up a new generation number for this inode.
 1045          */
 1046         if (ip->i_gen == 0 || ++ip->i_gen == 0)
 1047                 ip->i_gen = arc4random() / 2 + 1;
 1048         DIP_SET(ip, i_gen, ip->i_gen);
 1049         if (fs->fs_magic == FS_UFS2_MAGIC) {
 1050                 vfs_timestamp(&ts);
 1051                 ip->i_din2->di_birthtime = ts.tv_sec;
 1052                 ip->i_din2->di_birthnsec = ts.tv_nsec;
 1053         }
 1054         ufs_prepare_reclaim(*vpp);
 1055         ip->i_flag = 0;
 1056         (*vpp)->v_vflag = 0;
 1057         (*vpp)->v_type = VNON;
 1058         if (fs->fs_magic == FS_UFS2_MAGIC)
 1059                 (*vpp)->v_op = &ffs_vnodeops2;
 1060         else
 1061                 (*vpp)->v_op = &ffs_vnodeops1;
 1062         return (0);
 1063 noinodes:
 1064         if (reclaimed == 0) {
 1065                 reclaimed = 1;
 1066                 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT);
 1067                 goto retry;
 1068         }
 1069         UFS_UNLOCK(ump);
 1070         if (ppsratecheck(&lastfail, &curfail, 1)) {
 1071                 ffs_fserr(fs, pip->i_number, "out of inodes");
 1072                 uprintf("\n%s: create/symlink failed, no inodes free\n",
 1073                     fs->fs_fsmnt);
 1074         }
 1075         return (ENOSPC);
 1076 }
 1077 
 1078 /*
 1079  * Find a cylinder group to place a directory.
 1080  *
 1081  * The policy implemented by this algorithm is to allocate a
 1082  * directory inode in the same cylinder group as its parent
 1083  * directory, but also to reserve space for its files inodes
 1084  * and data. Restrict the number of directories which may be
 1085  * allocated one after another in the same cylinder group
 1086  * without intervening allocation of files.
 1087  *
 1088  * If we allocate a first level directory then force allocation
 1089  * in another cylinder group.
 1090  */
 1091 static ino_t
 1092 ffs_dirpref(pip)
 1093         struct inode *pip;
 1094 {
 1095         struct fs *fs;
 1096         int cg, prefcg, dirsize, cgsize;
 1097         u_int avgifree, avgbfree, avgndir, curdirsize;
 1098         u_int minifree, minbfree, maxndir;
 1099         u_int mincg, minndir;
 1100         u_int maxcontigdirs;
 1101 
 1102         mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED);
 1103         fs = pip->i_fs;
 1104 
 1105         avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
 1106         avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
 1107         avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
 1108 
 1109         /*
 1110          * Force allocation in another cg if creating a first level dir.
 1111          */
 1112         ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
 1113         if (ITOV(pip)->v_vflag & VV_ROOT) {
 1114                 prefcg = arc4random() % fs->fs_ncg;
 1115                 mincg = prefcg;
 1116                 minndir = fs->fs_ipg;
 1117                 for (cg = prefcg; cg < fs->fs_ncg; cg++)
 1118                         if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
 1119                             fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
 1120                             fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1121                                 mincg = cg;
 1122                                 minndir = fs->fs_cs(fs, cg).cs_ndir;
 1123                         }
 1124                 for (cg = 0; cg < prefcg; cg++)
 1125                         if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
 1126                             fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
 1127                             fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1128                                 mincg = cg;
 1129                                 minndir = fs->fs_cs(fs, cg).cs_ndir;
 1130                         }
 1131                 return ((ino_t)(fs->fs_ipg * mincg));
 1132         }
 1133 
 1134         /*
 1135          * Count various limits which used for
 1136          * optimal allocation of a directory inode.
 1137          */
 1138         maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
 1139         minifree = avgifree - avgifree / 4;
 1140         if (minifree < 1)
 1141                 minifree = 1;
 1142         minbfree = avgbfree - avgbfree / 4;
 1143         if (minbfree < 1)
 1144                 minbfree = 1;
 1145         cgsize = fs->fs_fsize * fs->fs_fpg;
 1146         dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
 1147         curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
 1148         if (dirsize < curdirsize)
 1149                 dirsize = curdirsize;
 1150         if (dirsize <= 0)
 1151                 maxcontigdirs = 0;              /* dirsize overflowed */
 1152         else
 1153                 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
 1154         if (fs->fs_avgfpdir > 0)
 1155                 maxcontigdirs = min(maxcontigdirs,
 1156                                     fs->fs_ipg / fs->fs_avgfpdir);
 1157         if (maxcontigdirs == 0)
 1158                 maxcontigdirs = 1;
 1159 
 1160         /*
 1161          * Limit number of dirs in one cg and reserve space for 
 1162          * regular files, but only if we have no deficit in
 1163          * inodes or space.
 1164          *
 1165          * We are trying to find a suitable cylinder group nearby
 1166          * our preferred cylinder group to place a new directory.
 1167          * We scan from our preferred cylinder group forward looking
 1168          * for a cylinder group that meets our criterion. If we get
 1169          * to the final cylinder group and do not find anything,
 1170          * we start scanning backwards from our preferred cylinder
 1171          * group. The ideal would be to alternate looking forward
 1172          * and backward, but that is just too complex to code for
 1173          * the gain it would get. The most likely place where the
 1174          * backward scan would take effect is when we start near
 1175          * the end of the filesystem and do not find anything from
 1176          * where we are to the end. In that case, scanning backward
 1177          * will likely find us a suitable cylinder group much closer
 1178          * to our desired location than if we were to start scanning
 1179          * forward from the beginning of the filesystem.
 1180          */
 1181         prefcg = ino_to_cg(fs, pip->i_number);
 1182         for (cg = prefcg; cg < fs->fs_ncg; cg++)
 1183                 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
 1184                     fs->fs_cs(fs, cg).cs_nifree >= minifree &&
 1185                     fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
 1186                         if (fs->fs_contigdirs[cg] < maxcontigdirs)
 1187                                 return ((ino_t)(fs->fs_ipg * cg));
 1188                 }
 1189         for (cg = 0; cg < prefcg; cg++)
 1190                 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
 1191                     fs->fs_cs(fs, cg).cs_nifree >= minifree &&
 1192                     fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
 1193                         if (fs->fs_contigdirs[cg] < maxcontigdirs)
 1194                                 return ((ino_t)(fs->fs_ipg * cg));
 1195                 }
 1196         /*
 1197          * This is a backstop when we have deficit in space.
 1198          */
 1199         for (cg = prefcg; cg < fs->fs_ncg; cg++)
 1200                 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
 1201                         return ((ino_t)(fs->fs_ipg * cg));
 1202         for (cg = 0; cg < prefcg; cg++)
 1203                 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
 1204                         break;
 1205         return ((ino_t)(fs->fs_ipg * cg));
 1206 }
 1207 
 1208 /*
 1209  * Select the desired position for the next block in a file.  The file is
 1210  * logically divided into sections. The first section is composed of the
 1211  * direct blocks and the next fs_maxbpg blocks. Each additional section
 1212  * contains fs_maxbpg blocks.
 1213  *
 1214  * If no blocks have been allocated in the first section, the policy is to
 1215  * request a block in the same cylinder group as the inode that describes
 1216  * the file. The first indirect is allocated immediately following the last
 1217  * direct block and the data blocks for the first indirect immediately
 1218  * follow it.
 1219  *
 1220  * If no blocks have been allocated in any other section, the indirect 
 1221  * block(s) are allocated in the same cylinder group as its inode in an
 1222  * area reserved immediately following the inode blocks. The policy for
 1223  * the data blocks is to place them in a cylinder group with a greater than
 1224  * average number of free blocks. An appropriate cylinder group is found
 1225  * by using a rotor that sweeps the cylinder groups. When a new group of
 1226  * blocks is needed, the sweep begins in the cylinder group following the
 1227  * cylinder group from which the previous allocation was made. The sweep
 1228  * continues until a cylinder group with greater than the average number
 1229  * of free blocks is found. If the allocation is for the first block in an
 1230  * indirect block or the previous block is a hole, then the information on
 1231  * the previous allocation is unavailable; here a best guess is made based
 1232  * on the logical block number being allocated.
 1233  *
 1234  * If a section is already partially allocated, the policy is to
 1235  * allocate blocks contiguously within the section if possible.
 1236  */
 1237 ufs2_daddr_t
 1238 ffs_blkpref_ufs1(ip, lbn, indx, bap)
 1239         struct inode *ip;
 1240         ufs_lbn_t lbn;
 1241         int indx;
 1242         ufs1_daddr_t *bap;
 1243 {
 1244         struct fs *fs;
 1245         u_int cg, inocg;
 1246         u_int avgbfree, startcg;
 1247         ufs2_daddr_t pref;
 1248 
 1249         KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
 1250         mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
 1251         fs = ip->i_fs;
 1252         /*
 1253          * Allocation of indirect blocks is indicated by passing negative
 1254          * values in indx: -1 for single indirect, -2 for double indirect,
 1255          * -3 for triple indirect. As noted below, we attempt to allocate
 1256          * the first indirect inline with the file data. For all later
 1257          * indirect blocks, the data is often allocated in other cylinder
 1258          * groups. However to speed random file access and to speed up
 1259          * fsck, the filesystem reserves the first fs_metaspace blocks
 1260          * (typically half of fs_minfree) of the data area of each cylinder
 1261          * group to hold these later indirect blocks.
 1262          */
 1263         inocg = ino_to_cg(fs, ip->i_number);
 1264         if (indx < 0) {
 1265                 /*
 1266                  * Our preference for indirect blocks is the zone at the
 1267                  * beginning of the inode's cylinder group data area that
 1268                  * we try to reserve for indirect blocks.
 1269                  */
 1270                 pref = cgmeta(fs, inocg);
 1271                 /*
 1272                  * If we are allocating the first indirect block, try to
 1273                  * place it immediately following the last direct block.
 1274                  */
 1275                 if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
 1276                     ip->i_din1->di_db[NDADDR - 1] != 0)
 1277                         pref = ip->i_din1->di_db[NDADDR - 1] + fs->fs_frag;
 1278                 return (pref);
 1279         }
 1280         /*
 1281          * If we are allocating the first data block in the first indirect
 1282          * block and the indirect has been allocated in the data block area,
 1283          * try to place it immediately following the indirect block.
 1284          */
 1285         if (lbn == NDADDR) {
 1286                 pref = ip->i_din1->di_ib[0];
 1287                 if (pref != 0 && pref >= cgdata(fs, inocg) &&
 1288                     pref < cgbase(fs, inocg + 1))
 1289                         return (pref + fs->fs_frag);
 1290         }
 1291         /*
 1292          * If we are at the beginning of a file, or we have already allocated
 1293          * the maximum number of blocks per cylinder group, or we do not
 1294          * have a block allocated immediately preceeding us, then we need
 1295          * to decide where to start allocating new blocks.
 1296          */
 1297         if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
 1298                 /*
 1299                  * If we are allocating a directory data block, we want
 1300                  * to place it in the metadata area.
 1301                  */
 1302                 if ((ip->i_mode & IFMT) == IFDIR)
 1303                         return (cgmeta(fs, inocg));
 1304                 /*
 1305                  * Until we fill all the direct and all the first indirect's
 1306                  * blocks, we try to allocate in the data area of the inode's
 1307                  * cylinder group.
 1308                  */
 1309                 if (lbn < NDADDR + NINDIR(fs))
 1310                         return (cgdata(fs, inocg));
 1311                 /*
 1312                  * Find a cylinder with greater than average number of
 1313                  * unused data blocks.
 1314                  */
 1315                 if (indx == 0 || bap[indx - 1] == 0)
 1316                         startcg = inocg + lbn / fs->fs_maxbpg;
 1317                 else
 1318                         startcg = dtog(fs, bap[indx - 1]) + 1;
 1319                 startcg %= fs->fs_ncg;
 1320                 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
 1321                 for (cg = startcg; cg < fs->fs_ncg; cg++)
 1322                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1323                                 fs->fs_cgrotor = cg;
 1324                                 return (cgdata(fs, cg));
 1325                         }
 1326                 for (cg = 0; cg <= startcg; cg++)
 1327                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1328                                 fs->fs_cgrotor = cg;
 1329                                 return (cgdata(fs, cg));
 1330                         }
 1331                 return (0);
 1332         }
 1333         /*
 1334          * Otherwise, we just always try to lay things out contiguously.
 1335          */
 1336         return (bap[indx - 1] + fs->fs_frag);
 1337 }
 1338 
 1339 /*
 1340  * Same as above, but for UFS2
 1341  */
 1342 ufs2_daddr_t
 1343 ffs_blkpref_ufs2(ip, lbn, indx, bap)
 1344         struct inode *ip;
 1345         ufs_lbn_t lbn;
 1346         int indx;
 1347         ufs2_daddr_t *bap;
 1348 {
 1349         struct fs *fs;
 1350         u_int cg, inocg;
 1351         u_int avgbfree, startcg;
 1352         ufs2_daddr_t pref;
 1353 
 1354         KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
 1355         mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
 1356         fs = ip->i_fs;
 1357         /*
 1358          * Allocation of indirect blocks is indicated by passing negative
 1359          * values in indx: -1 for single indirect, -2 for double indirect,
 1360          * -3 for triple indirect. As noted below, we attempt to allocate
 1361          * the first indirect inline with the file data. For all later
 1362          * indirect blocks, the data is often allocated in other cylinder
 1363          * groups. However to speed random file access and to speed up
 1364          * fsck, the filesystem reserves the first fs_metaspace blocks
 1365          * (typically half of fs_minfree) of the data area of each cylinder
 1366          * group to hold these later indirect blocks.
 1367          */
 1368         inocg = ino_to_cg(fs, ip->i_number);
 1369         if (indx < 0) {
 1370                 /*
 1371                  * Our preference for indirect blocks is the zone at the
 1372                  * beginning of the inode's cylinder group data area that
 1373                  * we try to reserve for indirect blocks.
 1374                  */
 1375                 pref = cgmeta(fs, inocg);
 1376                 /*
 1377                  * If we are allocating the first indirect block, try to
 1378                  * place it immediately following the last direct block.
 1379                  */
 1380                 if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
 1381                     ip->i_din2->di_db[NDADDR - 1] != 0)
 1382                         pref = ip->i_din2->di_db[NDADDR - 1] + fs->fs_frag;
 1383                 return (pref);
 1384         }
 1385         /*
 1386          * If we are allocating the first data block in the first indirect
 1387          * block and the indirect has been allocated in the data block area,
 1388          * try to place it immediately following the indirect block.
 1389          */
 1390         if (lbn == NDADDR) {
 1391                 pref = ip->i_din2->di_ib[0];
 1392                 if (pref != 0 && pref >= cgdata(fs, inocg) &&
 1393                     pref < cgbase(fs, inocg + 1))
 1394                         return (pref + fs->fs_frag);
 1395         }
 1396         /*
 1397          * If we are at the beginning of a file, or we have already allocated
 1398          * the maximum number of blocks per cylinder group, or we do not
 1399          * have a block allocated immediately preceeding us, then we need
 1400          * to decide where to start allocating new blocks.
 1401          */
 1402         if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
 1403                 /*
 1404                  * If we are allocating a directory data block, we want
 1405                  * to place it in the metadata area.
 1406                  */
 1407                 if ((ip->i_mode & IFMT) == IFDIR)
 1408                         return (cgmeta(fs, inocg));
 1409                 /*
 1410                  * Until we fill all the direct and all the first indirect's
 1411                  * blocks, we try to allocate in the data area of the inode's
 1412                  * cylinder group.
 1413                  */
 1414                 if (lbn < NDADDR + NINDIR(fs))
 1415                         return (cgdata(fs, inocg));
 1416                 /*
 1417                  * Find a cylinder with greater than average number of
 1418                  * unused data blocks.
 1419                  */
 1420                 if (indx == 0 || bap[indx - 1] == 0)
 1421                         startcg = inocg + lbn / fs->fs_maxbpg;
 1422                 else
 1423                         startcg = dtog(fs, bap[indx - 1]) + 1;
 1424                 startcg %= fs->fs_ncg;
 1425                 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
 1426                 for (cg = startcg; cg < fs->fs_ncg; cg++)
 1427                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1428                                 fs->fs_cgrotor = cg;
 1429                                 return (cgdata(fs, cg));
 1430                         }
 1431                 for (cg = 0; cg <= startcg; cg++)
 1432                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1433                                 fs->fs_cgrotor = cg;
 1434                                 return (cgdata(fs, cg));
 1435                         }
 1436                 return (0);
 1437         }
 1438         /*
 1439          * Otherwise, we just always try to lay things out contiguously.
 1440          */
 1441         return (bap[indx - 1] + fs->fs_frag);
 1442 }
 1443 
 1444 /*
 1445  * Implement the cylinder overflow algorithm.
 1446  *
 1447  * The policy implemented by this algorithm is:
 1448  *   1) allocate the block in its requested cylinder group.
 1449  *   2) quadradically rehash on the cylinder group number.
 1450  *   3) brute force search for a free block.
 1451  *
 1452  * Must be called with the UFS lock held.  Will release the lock on success
 1453  * and return with it held on failure.
 1454  */
 1455 /*VARARGS5*/
 1456 static ufs2_daddr_t
 1457 ffs_hashalloc(ip, cg, pref, size, rsize, allocator)
 1458         struct inode *ip;
 1459         u_int cg;
 1460         ufs2_daddr_t pref;
 1461         int size;       /* Search size for data blocks, mode for inodes */
 1462         int rsize;      /* Real allocated size. */
 1463         allocfcn_t *allocator;
 1464 {
 1465         struct fs *fs;
 1466         ufs2_daddr_t result;
 1467         u_int i, icg = cg;
 1468 
 1469         mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
 1470 #ifdef INVARIANTS
 1471         if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
 1472                 panic("ffs_hashalloc: allocation on suspended filesystem");
 1473 #endif
 1474         fs = ip->i_fs;
 1475         /*
 1476          * 1: preferred cylinder group
 1477          */
 1478         result = (*allocator)(ip, cg, pref, size, rsize);
 1479         if (result)
 1480                 return (result);
 1481         /*
 1482          * 2: quadratic rehash
 1483          */
 1484         for (i = 1; i < fs->fs_ncg; i *= 2) {
 1485                 cg += i;
 1486                 if (cg >= fs->fs_ncg)
 1487                         cg -= fs->fs_ncg;
 1488                 result = (*allocator)(ip, cg, 0, size, rsize);
 1489                 if (result)
 1490                         return (result);
 1491         }
 1492         /*
 1493          * 3: brute force search
 1494          * Note that we start at i == 2, since 0 was checked initially,
 1495          * and 1 is always checked in the quadratic rehash.
 1496          */
 1497         cg = (icg + 2) % fs->fs_ncg;
 1498         for (i = 2; i < fs->fs_ncg; i++) {
 1499                 result = (*allocator)(ip, cg, 0, size, rsize);
 1500                 if (result)
 1501                         return (result);
 1502                 cg++;
 1503                 if (cg == fs->fs_ncg)
 1504                         cg = 0;
 1505         }
 1506         return (0);
 1507 }
 1508 
 1509 /*
 1510  * Determine whether a fragment can be extended.
 1511  *
 1512  * Check to see if the necessary fragments are available, and
 1513  * if they are, allocate them.
 1514  */
 1515 static ufs2_daddr_t
 1516 ffs_fragextend(ip, cg, bprev, osize, nsize)
 1517         struct inode *ip;
 1518         u_int cg;
 1519         ufs2_daddr_t bprev;
 1520         int osize, nsize;
 1521 {
 1522         struct fs *fs;
 1523         struct cg *cgp;
 1524         struct buf *bp;
 1525         struct ufsmount *ump;
 1526         int nffree;
 1527         long bno;
 1528         int frags, bbase;
 1529         int i, error;
 1530         u_int8_t *blksfree;
 1531 
 1532         ump = ip->i_ump;
 1533         fs = ip->i_fs;
 1534         if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
 1535                 return (0);
 1536         frags = numfrags(fs, nsize);
 1537         bbase = fragnum(fs, bprev);
 1538         if (bbase > fragnum(fs, (bprev + frags - 1))) {
 1539                 /* cannot extend across a block boundary */
 1540                 return (0);
 1541         }
 1542         UFS_UNLOCK(ump);
 1543         error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
 1544                 (int)fs->fs_cgsize, NOCRED, &bp);
 1545         if (error)
 1546                 goto fail;
 1547         cgp = (struct cg *)bp->b_data;
 1548         if (!cg_chkmagic(cgp))
 1549                 goto fail;
 1550         bp->b_xflags |= BX_BKGRDWRITE;
 1551         cgp->cg_old_time = cgp->cg_time = time_second;
 1552         bno = dtogd(fs, bprev);
 1553         blksfree = cg_blksfree(cgp);
 1554         for (i = numfrags(fs, osize); i < frags; i++)
 1555                 if (isclr(blksfree, bno + i))
 1556                         goto fail;
 1557         /*
 1558          * the current fragment can be extended
 1559          * deduct the count on fragment being extended into
 1560          * increase the count on the remaining fragment (if any)
 1561          * allocate the extended piece
 1562          */
 1563         for (i = frags; i < fs->fs_frag - bbase; i++)
 1564                 if (isclr(blksfree, bno + i))
 1565                         break;
 1566         cgp->cg_frsum[i - numfrags(fs, osize)]--;
 1567         if (i != frags)
 1568                 cgp->cg_frsum[i - frags]++;
 1569         for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
 1570                 clrbit(blksfree, bno + i);
 1571                 cgp->cg_cs.cs_nffree--;
 1572                 nffree++;
 1573         }
 1574         UFS_LOCK(ump);
 1575         fs->fs_cstotal.cs_nffree -= nffree;
 1576         fs->fs_cs(fs, cg).cs_nffree -= nffree;
 1577         fs->fs_fmod = 1;
 1578         ACTIVECLEAR(fs, cg);
 1579         UFS_UNLOCK(ump);
 1580         if (DOINGSOFTDEP(ITOV(ip)))
 1581                 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev,
 1582                     frags, numfrags(fs, osize));
 1583         bdwrite(bp);
 1584         return (bprev);
 1585 
 1586 fail:
 1587         brelse(bp);
 1588         UFS_LOCK(ump);
 1589         return (0);
 1590 
 1591 }
 1592 
 1593 /*
 1594  * Determine whether a block can be allocated.
 1595  *
 1596  * Check to see if a block of the appropriate size is available,
 1597  * and if it is, allocate it.
 1598  */
 1599 static ufs2_daddr_t
 1600 ffs_alloccg(ip, cg, bpref, size, rsize)
 1601         struct inode *ip;
 1602         u_int cg;
 1603         ufs2_daddr_t bpref;
 1604         int size;
 1605         int rsize;
 1606 {
 1607         struct fs *fs;
 1608         struct cg *cgp;
 1609         struct buf *bp;
 1610         struct ufsmount *ump;
 1611         ufs1_daddr_t bno;
 1612         ufs2_daddr_t blkno;
 1613         int i, allocsiz, error, frags;
 1614         u_int8_t *blksfree;
 1615 
 1616         ump = ip->i_ump;
 1617         fs = ip->i_fs;
 1618         if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
 1619                 return (0);
 1620         UFS_UNLOCK(ump);
 1621         error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
 1622                 (int)fs->fs_cgsize, NOCRED, &bp);
 1623         if (error)
 1624                 goto fail;
 1625         cgp = (struct cg *)bp->b_data;
 1626         if (!cg_chkmagic(cgp) ||
 1627             (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
 1628                 goto fail;
 1629         bp->b_xflags |= BX_BKGRDWRITE;
 1630         cgp->cg_old_time = cgp->cg_time = time_second;
 1631         if (size == fs->fs_bsize) {
 1632                 UFS_LOCK(ump);
 1633                 blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
 1634                 ACTIVECLEAR(fs, cg);
 1635                 UFS_UNLOCK(ump);
 1636                 bdwrite(bp);
 1637                 return (blkno);
 1638         }
 1639         /*
 1640          * check to see if any fragments are already available
 1641          * allocsiz is the size which will be allocated, hacking
 1642          * it down to a smaller size if necessary
 1643          */
 1644         blksfree = cg_blksfree(cgp);
 1645         frags = numfrags(fs, size);
 1646         for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
 1647                 if (cgp->cg_frsum[allocsiz] != 0)
 1648                         break;
 1649         if (allocsiz == fs->fs_frag) {
 1650                 /*
 1651                  * no fragments were available, so a block will be
 1652                  * allocated, and hacked up
 1653                  */
 1654                 if (cgp->cg_cs.cs_nbfree == 0)
 1655                         goto fail;
 1656                 UFS_LOCK(ump);
 1657                 blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
 1658                 ACTIVECLEAR(fs, cg);
 1659                 UFS_UNLOCK(ump);
 1660                 bdwrite(bp);
 1661                 return (blkno);
 1662         }
 1663         KASSERT(size == rsize,
 1664             ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize));
 1665         bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
 1666         if (bno < 0)
 1667                 goto fail;
 1668         for (i = 0; i < frags; i++)
 1669                 clrbit(blksfree, bno + i);
 1670         cgp->cg_cs.cs_nffree -= frags;
 1671         cgp->cg_frsum[allocsiz]--;
 1672         if (frags != allocsiz)
 1673                 cgp->cg_frsum[allocsiz - frags]++;
 1674         UFS_LOCK(ump);
 1675         fs->fs_cstotal.cs_nffree -= frags;
 1676         fs->fs_cs(fs, cg).cs_nffree -= frags;
 1677         fs->fs_fmod = 1;
 1678         blkno = cgbase(fs, cg) + bno;
 1679         ACTIVECLEAR(fs, cg);
 1680         UFS_UNLOCK(ump);
 1681         if (DOINGSOFTDEP(ITOV(ip)))
 1682                 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0);
 1683         bdwrite(bp);
 1684         return (blkno);
 1685 
 1686 fail:
 1687         brelse(bp);
 1688         UFS_LOCK(ump);
 1689         return (0);
 1690 }
 1691 
 1692 /*
 1693  * Allocate a block in a cylinder group.
 1694  *
 1695  * This algorithm implements the following policy:
 1696  *   1) allocate the requested block.
 1697  *   2) allocate a rotationally optimal block in the same cylinder.
 1698  *   3) allocate the next available block on the block rotor for the
 1699  *      specified cylinder group.
 1700  * Note that this routine only allocates fs_bsize blocks; these
 1701  * blocks may be fragmented by the routine that allocates them.
 1702  */
 1703 static ufs2_daddr_t
 1704 ffs_alloccgblk(ip, bp, bpref, size)
 1705         struct inode *ip;
 1706         struct buf *bp;
 1707         ufs2_daddr_t bpref;
 1708         int size;
 1709 {
 1710         struct fs *fs;
 1711         struct cg *cgp;
 1712         struct ufsmount *ump;
 1713         ufs1_daddr_t bno;
 1714         ufs2_daddr_t blkno;
 1715         u_int8_t *blksfree;
 1716         int i, cgbpref;
 1717 
 1718         fs = ip->i_fs;
 1719         ump = ip->i_ump;
 1720         mtx_assert(UFS_MTX(ump), MA_OWNED);
 1721         cgp = (struct cg *)bp->b_data;
 1722         blksfree = cg_blksfree(cgp);
 1723         if (bpref == 0) {
 1724                 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag;
 1725         } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
 1726                 /* map bpref to correct zone in this cg */
 1727                 if (bpref < cgdata(fs, cgbpref))
 1728                         bpref = cgmeta(fs, cgp->cg_cgx);
 1729                 else
 1730                         bpref = cgdata(fs, cgp->cg_cgx);
 1731         }
 1732         /*
 1733          * if the requested block is available, use it
 1734          */
 1735         bno = dtogd(fs, blknum(fs, bpref));
 1736         if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
 1737                 goto gotit;
 1738         /*
 1739          * Take the next available block in this cylinder group.
 1740          */
 1741         bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
 1742         if (bno < 0)
 1743                 return (0);
 1744         /* Update cg_rotor only if allocated from the data zone */
 1745         if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
 1746                 cgp->cg_rotor = bno;
 1747 gotit:
 1748         blkno = fragstoblks(fs, bno);
 1749         ffs_clrblock(fs, blksfree, (long)blkno);
 1750         ffs_clusteracct(fs, cgp, blkno, -1);
 1751         cgp->cg_cs.cs_nbfree--;
 1752         fs->fs_cstotal.cs_nbfree--;
 1753         fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
 1754         fs->fs_fmod = 1;
 1755         blkno = cgbase(fs, cgp->cg_cgx) + bno;
 1756         /*
 1757          * If the caller didn't want the whole block free the frags here.
 1758          */
 1759         size = numfrags(fs, size);
 1760         if (size != fs->fs_frag) {
 1761                 bno = dtogd(fs, blkno);
 1762                 for (i = size; i < fs->fs_frag; i++)
 1763                         setbit(blksfree, bno + i);
 1764                 i = fs->fs_frag - size;
 1765                 cgp->cg_cs.cs_nffree += i;
 1766                 fs->fs_cstotal.cs_nffree += i;
 1767                 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i;
 1768                 fs->fs_fmod = 1;
 1769                 cgp->cg_frsum[i]++;
 1770         }
 1771         /* XXX Fixme. */
 1772         UFS_UNLOCK(ump);
 1773         if (DOINGSOFTDEP(ITOV(ip)))
 1774                 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno,
 1775                     size, 0);
 1776         UFS_LOCK(ump);
 1777         return (blkno);
 1778 }
 1779 
 1780 /*
 1781  * Determine whether a cluster can be allocated.
 1782  *
 1783  * We do not currently check for optimal rotational layout if there
 1784  * are multiple choices in the same cylinder group. Instead we just
 1785  * take the first one that we find following bpref.
 1786  */
 1787 static ufs2_daddr_t
 1788 ffs_clusteralloc(ip, cg, bpref, len, unused)
 1789         struct inode *ip;
 1790         u_int cg;
 1791         ufs2_daddr_t bpref;
 1792         int len;
 1793         int unused;
 1794 {
 1795         struct fs *fs;
 1796         struct cg *cgp;
 1797         struct buf *bp;
 1798         struct ufsmount *ump;
 1799         int i, run, bit, map, got;
 1800         ufs2_daddr_t bno;
 1801         u_char *mapp;
 1802         int32_t *lp;
 1803         u_int8_t *blksfree;
 1804 
 1805         fs = ip->i_fs;
 1806         ump = ip->i_ump;
 1807         if (fs->fs_maxcluster[cg] < len)
 1808                 return (0);
 1809         UFS_UNLOCK(ump);
 1810         if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
 1811             NOCRED, &bp))
 1812                 goto fail_lock;
 1813         cgp = (struct cg *)bp->b_data;
 1814         if (!cg_chkmagic(cgp))
 1815                 goto fail_lock;
 1816         bp->b_xflags |= BX_BKGRDWRITE;
 1817         /*
 1818          * Check to see if a cluster of the needed size (or bigger) is
 1819          * available in this cylinder group.
 1820          */
 1821         lp = &cg_clustersum(cgp)[len];
 1822         for (i = len; i <= fs->fs_contigsumsize; i++)
 1823                 if (*lp++ > 0)
 1824                         break;
 1825         if (i > fs->fs_contigsumsize) {
 1826                 /*
 1827                  * This is the first time looking for a cluster in this
 1828                  * cylinder group. Update the cluster summary information
 1829                  * to reflect the true maximum sized cluster so that
 1830                  * future cluster allocation requests can avoid reading
 1831                  * the cylinder group map only to find no clusters.
 1832                  */
 1833                 lp = &cg_clustersum(cgp)[len - 1];
 1834                 for (i = len - 1; i > 0; i--)
 1835                         if (*lp-- > 0)
 1836                                 break;
 1837                 UFS_LOCK(ump);
 1838                 fs->fs_maxcluster[cg] = i;
 1839                 goto fail;
 1840         }
 1841         /*
 1842          * Search the cluster map to find a big enough cluster.
 1843          * We take the first one that we find, even if it is larger
 1844          * than we need as we prefer to get one close to the previous
 1845          * block allocation. We do not search before the current
 1846          * preference point as we do not want to allocate a block
 1847          * that is allocated before the previous one (as we will
 1848          * then have to wait for another pass of the elevator
 1849          * algorithm before it will be read). We prefer to fail and
 1850          * be recalled to try an allocation in the next cylinder group.
 1851          */
 1852         if (dtog(fs, bpref) != cg)
 1853                 bpref = cgdata(fs, cg);
 1854         else
 1855                 bpref = blknum(fs, bpref);
 1856         bpref = fragstoblks(fs, dtogd(fs, bpref));
 1857         mapp = &cg_clustersfree(cgp)[bpref / NBBY];
 1858         map = *mapp++;
 1859         bit = 1 << (bpref % NBBY);
 1860         for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
 1861                 if ((map & bit) == 0) {
 1862                         run = 0;
 1863                 } else {
 1864                         run++;
 1865                         if (run == len)
 1866                                 break;
 1867                 }
 1868                 if ((got & (NBBY - 1)) != (NBBY - 1)) {
 1869                         bit <<= 1;
 1870                 } else {
 1871                         map = *mapp++;
 1872                         bit = 1;
 1873                 }
 1874         }
 1875         if (got >= cgp->cg_nclusterblks)
 1876                 goto fail_lock;
 1877         /*
 1878          * Allocate the cluster that we have found.
 1879          */
 1880         blksfree = cg_blksfree(cgp);
 1881         for (i = 1; i <= len; i++)
 1882                 if (!ffs_isblock(fs, blksfree, got - run + i))
 1883                         panic("ffs_clusteralloc: map mismatch");
 1884         bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
 1885         if (dtog(fs, bno) != cg)
 1886                 panic("ffs_clusteralloc: allocated out of group");
 1887         len = blkstofrags(fs, len);
 1888         UFS_LOCK(ump);
 1889         for (i = 0; i < len; i += fs->fs_frag)
 1890                 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i)
 1891                         panic("ffs_clusteralloc: lost block");
 1892         ACTIVECLEAR(fs, cg);
 1893         UFS_UNLOCK(ump);
 1894         bdwrite(bp);
 1895         return (bno);
 1896 
 1897 fail_lock:
 1898         UFS_LOCK(ump);
 1899 fail:
 1900         brelse(bp);
 1901         return (0);
 1902 }
 1903 
 1904 static inline struct buf *
 1905 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags)
 1906 {
 1907         struct fs *fs;
 1908 
 1909         fs = ip->i_fs;
 1910         return (getblk(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs,
 1911             cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0,
 1912             gbflags));
 1913 }
 1914 
 1915 /*
 1916  * Determine whether an inode can be allocated.
 1917  *
 1918  * Check to see if an inode is available, and if it is,
 1919  * allocate it using the following policy:
 1920  *   1) allocate the requested inode.
 1921  *   2) allocate the next available inode after the requested
 1922  *      inode in the specified cylinder group.
 1923  */
 1924 static ufs2_daddr_t
 1925 ffs_nodealloccg(ip, cg, ipref, mode, unused)
 1926         struct inode *ip;
 1927         u_int cg;
 1928         ufs2_daddr_t ipref;
 1929         int mode;
 1930         int unused;
 1931 {
 1932         struct fs *fs;
 1933         struct cg *cgp;
 1934         struct buf *bp, *ibp;
 1935         struct ufsmount *ump;
 1936         u_int8_t *inosused, *loc;
 1937         struct ufs2_dinode *dp2;
 1938         int error, start, len, i;
 1939         u_int32_t old_initediblk;
 1940 
 1941         fs = ip->i_fs;
 1942         ump = ip->i_ump;
 1943 check_nifree:
 1944         if (fs->fs_cs(fs, cg).cs_nifree == 0)
 1945                 return (0);
 1946         UFS_UNLOCK(ump);
 1947         error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
 1948                 (int)fs->fs_cgsize, NOCRED, &bp);
 1949         if (error) {
 1950                 brelse(bp);
 1951                 UFS_LOCK(ump);
 1952                 return (0);
 1953         }
 1954         cgp = (struct cg *)bp->b_data;
 1955 restart:
 1956         if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
 1957                 brelse(bp);
 1958                 UFS_LOCK(ump);
 1959                 return (0);
 1960         }
 1961         bp->b_xflags |= BX_BKGRDWRITE;
 1962         inosused = cg_inosused(cgp);
 1963         if (ipref) {
 1964                 ipref %= fs->fs_ipg;
 1965                 if (isclr(inosused, ipref))
 1966                         goto gotit;
 1967         }
 1968         start = cgp->cg_irotor / NBBY;
 1969         len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
 1970         loc = memcchr(&inosused[start], 0xff, len);
 1971         if (loc == NULL) {
 1972                 len = start + 1;
 1973                 start = 0;
 1974                 loc = memcchr(&inosused[start], 0xff, len);
 1975                 if (loc == NULL) {
 1976                         printf("cg = %d, irotor = %ld, fs = %s\n",
 1977                             cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
 1978                         panic("ffs_nodealloccg: map corrupted");
 1979                         /* NOTREACHED */
 1980                 }
 1981         }
 1982         ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1;
 1983 gotit:
 1984         /*
 1985          * Check to see if we need to initialize more inodes.
 1986          */
 1987         if (fs->fs_magic == FS_UFS2_MAGIC &&
 1988             ipref + INOPB(fs) > cgp->cg_initediblk &&
 1989             cgp->cg_initediblk < cgp->cg_niblk) {
 1990                 old_initediblk = cgp->cg_initediblk;
 1991 
 1992                 /*
 1993                  * Free the cylinder group lock before writing the
 1994                  * initialized inode block.  Entering the
 1995                  * babarrierwrite() with the cylinder group lock
 1996                  * causes lock order violation between the lock and
 1997                  * snaplk.
 1998                  *
 1999                  * Another thread can decide to initialize the same
 2000                  * inode block, but whichever thread first gets the
 2001                  * cylinder group lock after writing the newly
 2002                  * allocated inode block will update it and the other
 2003                  * will realize that it has lost and leave the
 2004                  * cylinder group unchanged.
 2005                  */
 2006                 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT);
 2007                 brelse(bp);
 2008                 if (ibp == NULL) {
 2009                         /*
 2010                          * The inode block buffer is already owned by
 2011                          * another thread, which must initialize it.
 2012                          * Wait on the buffer to allow another thread
 2013                          * to finish the updates, with dropped cg
 2014                          * buffer lock, then retry.
 2015                          */
 2016                         ibp = getinobuf(ip, cg, old_initediblk, 0);
 2017                         brelse(ibp);
 2018                         UFS_LOCK(ump);
 2019                         goto check_nifree;
 2020                 }
 2021                 bzero(ibp->b_data, (int)fs->fs_bsize);
 2022                 dp2 = (struct ufs2_dinode *)(ibp->b_data);
 2023                 for (i = 0; i < INOPB(fs); i++) {
 2024                         dp2->di_gen = arc4random() / 2 + 1;
 2025                         dp2++;
 2026                 }
 2027                 /*
 2028                  * Rather than adding a soft updates dependency to ensure
 2029                  * that the new inode block is written before it is claimed
 2030                  * by the cylinder group map, we just do a barrier write
 2031                  * here. The barrier write will ensure that the inode block
 2032                  * gets written before the updated cylinder group map can be
 2033                  * written. The barrier write should only slow down bulk
 2034                  * loading of newly created filesystems.
 2035                  */
 2036                 babarrierwrite(ibp);
 2037 
 2038                 /*
 2039                  * After the inode block is written, try to update the
 2040                  * cg initediblk pointer.  If another thread beat us
 2041                  * to it, then leave it unchanged as the other thread
 2042                  * has already set it correctly.
 2043                  */
 2044                 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
 2045                     (int)fs->fs_cgsize, NOCRED, &bp);
 2046                 UFS_LOCK(ump);
 2047                 ACTIVECLEAR(fs, cg);
 2048                 UFS_UNLOCK(ump);
 2049                 if (error != 0) {
 2050                         brelse(bp);
 2051                         return (error);
 2052                 }
 2053                 cgp = (struct cg *)bp->b_data;
 2054                 if (cgp->cg_initediblk == old_initediblk)
 2055                         cgp->cg_initediblk += INOPB(fs);
 2056                 goto restart;
 2057         }
 2058         cgp->cg_old_time = cgp->cg_time = time_second;
 2059         cgp->cg_irotor = ipref;
 2060         UFS_LOCK(ump);
 2061         ACTIVECLEAR(fs, cg);
 2062         setbit(inosused, ipref);
 2063         cgp->cg_cs.cs_nifree--;
 2064         fs->fs_cstotal.cs_nifree--;
 2065         fs->fs_cs(fs, cg).cs_nifree--;
 2066         fs->fs_fmod = 1;
 2067         if ((mode & IFMT) == IFDIR) {
 2068                 cgp->cg_cs.cs_ndir++;
 2069                 fs->fs_cstotal.cs_ndir++;
 2070                 fs->fs_cs(fs, cg).cs_ndir++;
 2071         }
 2072         UFS_UNLOCK(ump);
 2073         if (DOINGSOFTDEP(ITOV(ip)))
 2074                 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode);
 2075         bdwrite(bp);
 2076         return ((ino_t)(cg * fs->fs_ipg + ipref));
 2077 }
 2078 
 2079 /*
 2080  * Free a block or fragment.
 2081  *
 2082  * The specified block or fragment is placed back in the
 2083  * free map. If a fragment is deallocated, a possible
 2084  * block reassembly is checked.
 2085  */
 2086 static void
 2087 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd)
 2088         struct ufsmount *ump;
 2089         struct fs *fs;
 2090         struct vnode *devvp;
 2091         ufs2_daddr_t bno;
 2092         long size;
 2093         ino_t inum;
 2094         struct workhead *dephd;
 2095 {
 2096         struct mount *mp;
 2097         struct cg *cgp;
 2098         struct buf *bp;
 2099         ufs1_daddr_t fragno, cgbno;
 2100         ufs2_daddr_t cgblkno;
 2101         int i, blk, frags, bbase;
 2102         u_int cg;
 2103         u_int8_t *blksfree;
 2104         struct cdev *dev;
 2105 
 2106         cg = dtog(fs, bno);
 2107         if (devvp->v_type == VREG) {
 2108                 /* devvp is a snapshot */
 2109                 dev = VTOI(devvp)->i_devvp->v_rdev;
 2110                 cgblkno = fragstoblks(fs, cgtod(fs, cg));
 2111         } else {
 2112                 /* devvp is a normal disk device */
 2113                 dev = devvp->v_rdev;
 2114                 cgblkno = fsbtodb(fs, cgtod(fs, cg));
 2115                 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg");
 2116         }
 2117 #ifdef INVARIANTS
 2118         if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
 2119             fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
 2120                 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
 2121                     devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
 2122                     size, fs->fs_fsmnt);
 2123                 panic("ffs_blkfree_cg: bad size");
 2124         }
 2125 #endif
 2126         if ((u_int)bno >= fs->fs_size) {
 2127                 printf("bad block %jd, ino %lu\n", (intmax_t)bno,
 2128                     (u_long)inum);
 2129                 ffs_fserr(fs, inum, "bad block");
 2130                 return;
 2131         }
 2132         if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) {
 2133                 brelse(bp);
 2134                 return;
 2135         }
 2136         cgp = (struct cg *)bp->b_data;
 2137         if (!cg_chkmagic(cgp)) {
 2138                 brelse(bp);
 2139                 return;
 2140         }
 2141         bp->b_xflags |= BX_BKGRDWRITE;
 2142         cgp->cg_old_time = cgp->cg_time = time_second;
 2143         cgbno = dtogd(fs, bno);
 2144         blksfree = cg_blksfree(cgp);
 2145         UFS_LOCK(ump);
 2146         if (size == fs->fs_bsize) {
 2147                 fragno = fragstoblks(fs, cgbno);
 2148                 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
 2149                         if (devvp->v_type == VREG) {
 2150                                 UFS_UNLOCK(ump);
 2151                                 /* devvp is a snapshot */
 2152                                 brelse(bp);
 2153                                 return;
 2154                         }
 2155                         printf("dev = %s, block = %jd, fs = %s\n",
 2156                             devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
 2157                         panic("ffs_blkfree_cg: freeing free block");
 2158                 }
 2159                 ffs_setblock(fs, blksfree, fragno);
 2160                 ffs_clusteracct(fs, cgp, fragno, 1);
 2161                 cgp->cg_cs.cs_nbfree++;
 2162                 fs->fs_cstotal.cs_nbfree++;
 2163                 fs->fs_cs(fs, cg).cs_nbfree++;
 2164         } else {
 2165                 bbase = cgbno - fragnum(fs, cgbno);
 2166                 /*
 2167                  * decrement the counts associated with the old frags
 2168                  */
 2169                 blk = blkmap(fs, blksfree, bbase);
 2170                 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
 2171                 /*
 2172                  * deallocate the fragment
 2173                  */
 2174                 frags = numfrags(fs, size);
 2175                 for (i = 0; i < frags; i++) {
 2176                         if (isset(blksfree, cgbno + i)) {
 2177                                 printf("dev = %s, block = %jd, fs = %s\n",
 2178                                     devtoname(dev), (intmax_t)(bno + i),
 2179                                     fs->fs_fsmnt);
 2180                                 panic("ffs_blkfree_cg: freeing free frag");
 2181                         }
 2182                         setbit(blksfree, cgbno + i);
 2183                 }
 2184                 cgp->cg_cs.cs_nffree += i;
 2185                 fs->fs_cstotal.cs_nffree += i;
 2186                 fs->fs_cs(fs, cg).cs_nffree += i;
 2187                 /*
 2188                  * add back in counts associated with the new frags
 2189                  */
 2190                 blk = blkmap(fs, blksfree, bbase);
 2191                 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
 2192                 /*
 2193                  * if a complete block has been reassembled, account for it
 2194                  */
 2195                 fragno = fragstoblks(fs, bbase);
 2196                 if (ffs_isblock(fs, blksfree, fragno)) {
 2197                         cgp->cg_cs.cs_nffree -= fs->fs_frag;
 2198                         fs->fs_cstotal.cs_nffree -= fs->fs_frag;
 2199                         fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
 2200                         ffs_clusteracct(fs, cgp, fragno, 1);
 2201                         cgp->cg_cs.cs_nbfree++;
 2202                         fs->fs_cstotal.cs_nbfree++;
 2203                         fs->fs_cs(fs, cg).cs_nbfree++;
 2204                 }
 2205         }
 2206         fs->fs_fmod = 1;
 2207         ACTIVECLEAR(fs, cg);
 2208         UFS_UNLOCK(ump);
 2209         mp = UFSTOVFS(ump);
 2210         if (MOUNTEDSOFTDEP(mp) && devvp->v_type != VREG)
 2211                 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
 2212                     numfrags(fs, size), dephd);
 2213         bdwrite(bp);
 2214 }
 2215 
 2216 TASKQUEUE_DEFINE_THREAD(ffs_trim);
 2217 
 2218 struct ffs_blkfree_trim_params {
 2219         struct task task;
 2220         struct ufsmount *ump;
 2221         struct vnode *devvp;
 2222         ufs2_daddr_t bno;
 2223         long size;
 2224         ino_t inum;
 2225         struct workhead *pdephd;
 2226         struct workhead dephd;
 2227 };
 2228 
 2229 static void
 2230 ffs_blkfree_trim_task(ctx, pending)
 2231         void *ctx;
 2232         int pending;
 2233 {
 2234         struct ffs_blkfree_trim_params *tp;
 2235 
 2236         tp = ctx;
 2237         ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size,
 2238             tp->inum, tp->pdephd);
 2239         vn_finished_secondary_write(UFSTOVFS(tp->ump));
 2240         free(tp, M_TEMP);
 2241 }
 2242 
 2243 static void
 2244 ffs_blkfree_trim_completed(bip)
 2245         struct bio *bip;
 2246 {
 2247         struct ffs_blkfree_trim_params *tp;
 2248 
 2249         tp = bip->bio_caller2;
 2250         g_destroy_bio(bip);
 2251         TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
 2252         taskqueue_enqueue(taskqueue_ffs_trim, &tp->task);
 2253 }
 2254 
 2255 void
 2256 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd)
 2257         struct ufsmount *ump;
 2258         struct fs *fs;
 2259         struct vnode *devvp;
 2260         ufs2_daddr_t bno;
 2261         long size;
 2262         ino_t inum;
 2263         enum vtype vtype;
 2264         struct workhead *dephd;
 2265 {
 2266         struct mount *mp;
 2267         struct bio *bip;
 2268         struct ffs_blkfree_trim_params *tp;
 2269 
 2270         /*
 2271          * Check to see if a snapshot wants to claim the block.
 2272          * Check that devvp is a normal disk device, not a snapshot,
 2273          * it has a snapshot(s) associated with it, and one of the
 2274          * snapshots wants to claim the block.
 2275          */
 2276         if (devvp->v_type != VREG &&
 2277             (devvp->v_vflag & VV_COPYONWRITE) &&
 2278             ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) {
 2279                 return;
 2280         }
 2281         /*
 2282          * Nothing to delay if TRIM is disabled, or the operation is
 2283          * performed on the snapshot.
 2284          */
 2285         if (!ump->um_candelete || devvp->v_type == VREG) {
 2286                 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd);
 2287                 return;
 2288         }
 2289 
 2290         /*
 2291          * Postpone the set of the free bit in the cg bitmap until the
 2292          * BIO_DELETE is completed.  Otherwise, due to disk queue
 2293          * reordering, TRIM might be issued after we reuse the block
 2294          * and write some new data into it.
 2295          */
 2296         tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK);
 2297         tp->ump = ump;
 2298         tp->devvp = devvp;
 2299         tp->bno = bno;
 2300         tp->size = size;
 2301         tp->inum = inum;
 2302         if (dephd != NULL) {
 2303                 LIST_INIT(&tp->dephd);
 2304                 LIST_SWAP(dephd, &tp->dephd, worklist, wk_list);
 2305                 tp->pdephd = &tp->dephd;
 2306         } else
 2307                 tp->pdephd = NULL;
 2308 
 2309         bip = g_alloc_bio();
 2310         bip->bio_cmd = BIO_DELETE;
 2311         bip->bio_offset = dbtob(fsbtodb(fs, bno));
 2312         bip->bio_done = ffs_blkfree_trim_completed;
 2313         bip->bio_length = size;
 2314         bip->bio_caller2 = tp;
 2315 
 2316         mp = UFSTOVFS(ump);
 2317         vn_start_secondary_write(NULL, &mp, 0);
 2318         g_io_request(bip, (struct g_consumer *)devvp->v_bufobj.bo_private);
 2319 }
 2320 
 2321 #ifdef INVARIANTS
 2322 /*
 2323  * Verify allocation of a block or fragment. Returns true if block or
 2324  * fragment is allocated, false if it is free.
 2325  */
 2326 static int
 2327 ffs_checkblk(ip, bno, size)
 2328         struct inode *ip;
 2329         ufs2_daddr_t bno;
 2330         long size;
 2331 {
 2332         struct fs *fs;
 2333         struct cg *cgp;
 2334         struct buf *bp;
 2335         ufs1_daddr_t cgbno;
 2336         int i, error, frags, free;
 2337         u_int8_t *blksfree;
 2338 
 2339         fs = ip->i_fs;
 2340         if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
 2341                 printf("bsize = %ld, size = %ld, fs = %s\n",
 2342                     (long)fs->fs_bsize, size, fs->fs_fsmnt);
 2343                 panic("ffs_checkblk: bad size");
 2344         }
 2345         if ((u_int)bno >= fs->fs_size)
 2346                 panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
 2347         error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
 2348                 (int)fs->fs_cgsize, NOCRED, &bp);
 2349         if (error)
 2350                 panic("ffs_checkblk: cg bread failed");
 2351         cgp = (struct cg *)bp->b_data;
 2352         if (!cg_chkmagic(cgp))
 2353                 panic("ffs_checkblk: cg magic mismatch");
 2354         bp->b_xflags |= BX_BKGRDWRITE;
 2355         blksfree = cg_blksfree(cgp);
 2356         cgbno = dtogd(fs, bno);
 2357         if (size == fs->fs_bsize) {
 2358                 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
 2359         } else {
 2360                 frags = numfrags(fs, size);
 2361                 for (free = 0, i = 0; i < frags; i++)
 2362                         if (isset(blksfree, cgbno + i))
 2363                                 free++;
 2364                 if (free != 0 && free != frags)
 2365                         panic("ffs_checkblk: partially free fragment");
 2366         }
 2367         brelse(bp);
 2368         return (!free);
 2369 }
 2370 #endif /* INVARIANTS */
 2371 
 2372 /*
 2373  * Free an inode.
 2374  */
 2375 int
 2376 ffs_vfree(pvp, ino, mode)
 2377         struct vnode *pvp;
 2378         ino_t ino;
 2379         int mode;
 2380 {
 2381         struct inode *ip;
 2382 
 2383         if (DOINGSOFTDEP(pvp)) {
 2384                 softdep_freefile(pvp, ino, mode);
 2385                 return (0);
 2386         }
 2387         ip = VTOI(pvp);
 2388         return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode,
 2389             NULL));
 2390 }
 2391 
 2392 /*
 2393  * Do the actual free operation.
 2394  * The specified inode is placed back in the free map.
 2395  */
 2396 int
 2397 ffs_freefile(ump, fs, devvp, ino, mode, wkhd)
 2398         struct ufsmount *ump;
 2399         struct fs *fs;
 2400         struct vnode *devvp;
 2401         ino_t ino;
 2402         int mode;
 2403         struct workhead *wkhd;
 2404 {
 2405         struct cg *cgp;
 2406         struct buf *bp;
 2407         ufs2_daddr_t cgbno;
 2408         int error;
 2409         u_int cg;
 2410         u_int8_t *inosused;
 2411         struct cdev *dev;
 2412 
 2413         cg = ino_to_cg(fs, ino);
 2414         if (devvp->v_type == VREG) {
 2415                 /* devvp is a snapshot */
 2416                 dev = VTOI(devvp)->i_devvp->v_rdev;
 2417                 cgbno = fragstoblks(fs, cgtod(fs, cg));
 2418         } else {
 2419                 /* devvp is a normal disk device */
 2420                 dev = devvp->v_rdev;
 2421                 cgbno = fsbtodb(fs, cgtod(fs, cg));
 2422         }
 2423         if (ino >= fs->fs_ipg * fs->fs_ncg)
 2424                 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s",
 2425                     devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt);
 2426         if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
 2427                 brelse(bp);
 2428                 return (error);
 2429         }
 2430         cgp = (struct cg *)bp->b_data;
 2431         if (!cg_chkmagic(cgp)) {
 2432                 brelse(bp);
 2433                 return (0);
 2434         }
 2435         bp->b_xflags |= BX_BKGRDWRITE;
 2436         cgp->cg_old_time = cgp->cg_time = time_second;
 2437         inosused = cg_inosused(cgp);
 2438         ino %= fs->fs_ipg;
 2439         if (isclr(inosused, ino)) {
 2440                 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev),
 2441                     (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt);
 2442                 if (fs->fs_ronly == 0)
 2443                         panic("ffs_freefile: freeing free inode");
 2444         }
 2445         clrbit(inosused, ino);
 2446         if (ino < cgp->cg_irotor)
 2447                 cgp->cg_irotor = ino;
 2448         cgp->cg_cs.cs_nifree++;
 2449         UFS_LOCK(ump);
 2450         fs->fs_cstotal.cs_nifree++;
 2451         fs->fs_cs(fs, cg).cs_nifree++;
 2452         if ((mode & IFMT) == IFDIR) {
 2453                 cgp->cg_cs.cs_ndir--;
 2454                 fs->fs_cstotal.cs_ndir--;
 2455                 fs->fs_cs(fs, cg).cs_ndir--;
 2456         }
 2457         fs->fs_fmod = 1;
 2458         ACTIVECLEAR(fs, cg);
 2459         UFS_UNLOCK(ump);
 2460         if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type != VREG)
 2461                 softdep_setup_inofree(UFSTOVFS(ump), bp,
 2462                     ino + cg * fs->fs_ipg, wkhd);
 2463         bdwrite(bp);
 2464         return (0);
 2465 }
 2466 
 2467 /*
 2468  * Check to see if a file is free.
 2469  */
 2470 int
 2471 ffs_checkfreefile(fs, devvp, ino)
 2472         struct fs *fs;
 2473         struct vnode *devvp;
 2474         ino_t ino;
 2475 {
 2476         struct cg *cgp;
 2477         struct buf *bp;
 2478         ufs2_daddr_t cgbno;
 2479         int ret;
 2480         u_int cg;
 2481         u_int8_t *inosused;
 2482 
 2483         cg = ino_to_cg(fs, ino);
 2484         if (devvp->v_type == VREG) {
 2485                 /* devvp is a snapshot */
 2486                 cgbno = fragstoblks(fs, cgtod(fs, cg));
 2487         } else {
 2488                 /* devvp is a normal disk device */
 2489                 cgbno = fsbtodb(fs, cgtod(fs, cg));
 2490         }
 2491         if (ino >= fs->fs_ipg * fs->fs_ncg)
 2492                 return (1);
 2493         if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
 2494                 brelse(bp);
 2495                 return (1);
 2496         }
 2497         cgp = (struct cg *)bp->b_data;
 2498         if (!cg_chkmagic(cgp)) {
 2499                 brelse(bp);
 2500                 return (1);
 2501         }
 2502         inosused = cg_inosused(cgp);
 2503         ino %= fs->fs_ipg;
 2504         ret = isclr(inosused, ino);
 2505         brelse(bp);
 2506         return (ret);
 2507 }
 2508 
 2509 /*
 2510  * Find a block of the specified size in the specified cylinder group.
 2511  *
 2512  * It is a panic if a request is made to find a block if none are
 2513  * available.
 2514  */
 2515 static ufs1_daddr_t
 2516 ffs_mapsearch(fs, cgp, bpref, allocsiz)
 2517         struct fs *fs;
 2518         struct cg *cgp;
 2519         ufs2_daddr_t bpref;
 2520         int allocsiz;
 2521 {
 2522         ufs1_daddr_t bno;
 2523         int start, len, loc, i;
 2524         int blk, field, subfield, pos;
 2525         u_int8_t *blksfree;
 2526 
 2527         /*
 2528          * find the fragment by searching through the free block
 2529          * map for an appropriate bit pattern
 2530          */
 2531         if (bpref)
 2532                 start = dtogd(fs, bpref) / NBBY;
 2533         else
 2534                 start = cgp->cg_frotor / NBBY;
 2535         blksfree = cg_blksfree(cgp);
 2536         len = howmany(fs->fs_fpg, NBBY) - start;
 2537         loc = scanc((u_int)len, (u_char *)&blksfree[start],
 2538                 fragtbl[fs->fs_frag],
 2539                 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
 2540         if (loc == 0) {
 2541                 len = start + 1;
 2542                 start = 0;
 2543                 loc = scanc((u_int)len, (u_char *)&blksfree[0],
 2544                         fragtbl[fs->fs_frag],
 2545                         (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
 2546                 if (loc == 0) {
 2547                         printf("start = %d, len = %d, fs = %s\n",
 2548                             start, len, fs->fs_fsmnt);
 2549                         panic("ffs_alloccg: map corrupted");
 2550                         /* NOTREACHED */
 2551                 }
 2552         }
 2553         bno = (start + len - loc) * NBBY;
 2554         cgp->cg_frotor = bno;
 2555         /*
 2556          * found the byte in the map
 2557          * sift through the bits to find the selected frag
 2558          */
 2559         for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
 2560                 blk = blkmap(fs, blksfree, bno);
 2561                 blk <<= 1;
 2562                 field = around[allocsiz];
 2563                 subfield = inside[allocsiz];
 2564                 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
 2565                         if ((blk & field) == subfield)
 2566                                 return (bno + pos);
 2567                         field <<= 1;
 2568                         subfield <<= 1;
 2569                 }
 2570         }
 2571         printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
 2572         panic("ffs_alloccg: block not in map");
 2573         return (-1);
 2574 }
 2575 
 2576 /*
 2577  * Fserr prints the name of a filesystem with an error diagnostic.
 2578  *
 2579  * The form of the error message is:
 2580  *      fs: error message
 2581  */
 2582 void
 2583 ffs_fserr(fs, inum, cp)
 2584         struct fs *fs;
 2585         ino_t inum;
 2586         char *cp;
 2587 {
 2588         struct thread *td = curthread;  /* XXX */
 2589         struct proc *p = td->td_proc;
 2590 
 2591         log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n",
 2592             p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum,
 2593             fs->fs_fsmnt, cp);
 2594 }
 2595 
 2596 /*
 2597  * This function provides the capability for the fsck program to
 2598  * update an active filesystem. Fourteen operations are provided:
 2599  *
 2600  * adjrefcnt(inode, amt) - adjusts the reference count on the
 2601  *      specified inode by the specified amount. Under normal
 2602  *      operation the count should always go down. Decrementing
 2603  *      the count to zero will cause the inode to be freed.
 2604  * adjblkcnt(inode, amt) - adjust the number of blocks used by the
 2605  *      inode by the specified amount.
 2606  * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
 2607  *      adjust the superblock summary.
 2608  * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
 2609  *      are marked as free. Inodes should never have to be marked
 2610  *      as in use.
 2611  * freefiles(inode, count) - file inodes [inode..inode + count - 1]
 2612  *      are marked as free. Inodes should never have to be marked
 2613  *      as in use.
 2614  * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
 2615  *      are marked as free. Blocks should never have to be marked
 2616  *      as in use.
 2617  * setflags(flags, set/clear) - the fs_flags field has the specified
 2618  *      flags set (second parameter +1) or cleared (second parameter -1).
 2619  * setcwd(dirinode) - set the current directory to dirinode in the
 2620  *      filesystem associated with the snapshot.
 2621  * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".."
 2622  *      in the current directory is oldvalue then change it to newvalue.
 2623  * unlink(nameptr, oldvalue) - Verify that the inode number associated
 2624  *      with nameptr in the current directory is oldvalue then unlink it.
 2625  *
 2626  * The following functions may only be used on a quiescent filesystem
 2627  * by the soft updates journal. They are not safe to be run on an active
 2628  * filesystem.
 2629  *
 2630  * setinode(inode, dip) - the specified disk inode is replaced with the
 2631  *      contents pointed to by dip.
 2632  * setbufoutput(fd, flags) - output associated with the specified file
 2633  *      descriptor (which must reference the character device supporting
 2634  *      the filesystem) switches from using physio to running through the
 2635  *      buffer cache when flags is set to 1. The descriptor reverts to
 2636  *      physio for output when flags is set to zero.
 2637  */
 2638 
 2639 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
 2640 
 2641 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
 2642         0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
 2643 
 2644 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
 2645         sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
 2646 
 2647 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR,
 2648         sysctl_ffs_fsck, "Adjust number of directories");
 2649 
 2650 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR,
 2651         sysctl_ffs_fsck, "Adjust number of free blocks");
 2652 
 2653 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR,
 2654         sysctl_ffs_fsck, "Adjust number of free inodes");
 2655 
 2656 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR,
 2657         sysctl_ffs_fsck, "Adjust number of free frags");
 2658 
 2659 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR,
 2660         sysctl_ffs_fsck, "Adjust number of free clusters");
 2661 
 2662 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
 2663         sysctl_ffs_fsck, "Free Range of Directory Inodes");
 2664 
 2665 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
 2666         sysctl_ffs_fsck, "Free Range of File Inodes");
 2667 
 2668 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
 2669         sysctl_ffs_fsck, "Free Range of Blocks");
 2670 
 2671 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
 2672         sysctl_ffs_fsck, "Change Filesystem Flags");
 2673 
 2674 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR,
 2675         sysctl_ffs_fsck, "Set Current Working Directory");
 2676 
 2677 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR,
 2678         sysctl_ffs_fsck, "Change Value of .. Entry");
 2679 
 2680 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR,
 2681         sysctl_ffs_fsck, "Unlink a Duplicate Name");
 2682 
 2683 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR,
 2684         sysctl_ffs_fsck, "Update an On-Disk Inode");
 2685 
 2686 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR,
 2687         sysctl_ffs_fsck, "Set Buffered Writing for Descriptor");
 2688 
 2689 #define DEBUG 1
 2690 #ifdef DEBUG
 2691 static int fsckcmds = 0;
 2692 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
 2693 #endif /* DEBUG */
 2694 
 2695 static int buffered_write(struct file *, struct uio *, struct ucred *,
 2696         int, struct thread *);
 2697 
 2698 static int
 2699 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
 2700 {
 2701         struct thread *td = curthread;
 2702         struct fsck_cmd cmd;
 2703         struct ufsmount *ump;
 2704         struct vnode *vp, *vpold, *dvp, *fdvp;
 2705         struct inode *ip, *dp;
 2706         struct mount *mp;
 2707         struct fs *fs;
 2708         ufs2_daddr_t blkno;
 2709         long blkcnt, blksize;
 2710         struct filedesc *fdp;
 2711         struct file *fp, *vfp;
 2712         cap_rights_t rights;
 2713         int filetype, error;
 2714         static struct fileops *origops, bufferedops;
 2715 
 2716         if (req->newlen > sizeof cmd)
 2717                 return (EBADRPC);
 2718         if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
 2719                 return (error);
 2720         if (cmd.version != FFS_CMD_VERSION)
 2721                 return (ERPCMISMATCH);
 2722         if ((error = getvnode(td->td_proc->p_fd, cmd.handle,
 2723             cap_rights_init(&rights, CAP_FSCK), &fp)) != 0)
 2724                 return (error);
 2725         vp = fp->f_data;
 2726         if (vp->v_type != VREG && vp->v_type != VDIR) {
 2727                 fdrop(fp, td);
 2728                 return (EINVAL);
 2729         }
 2730         vn_start_write(vp, &mp, V_WAIT);
 2731         if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
 2732                 vn_finished_write(mp);
 2733                 fdrop(fp, td);
 2734                 return (EINVAL);
 2735         }
 2736         ump = VFSTOUFS(mp);
 2737         if ((mp->mnt_flag & MNT_RDONLY) &&
 2738             ump->um_fsckpid != td->td_proc->p_pid) {
 2739                 vn_finished_write(mp);
 2740                 fdrop(fp, td);
 2741                 return (EROFS);
 2742         }
 2743         fs = ump->um_fs;
 2744         filetype = IFREG;
 2745 
 2746         switch (oidp->oid_number) {
 2747 
 2748         case FFS_SET_FLAGS:
 2749 #ifdef DEBUG
 2750                 if (fsckcmds)
 2751                         printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
 2752                             cmd.size > 0 ? "set" : "clear");
 2753 #endif /* DEBUG */
 2754                 if (cmd.size > 0)
 2755                         fs->fs_flags |= (long)cmd.value;
 2756                 else
 2757                         fs->fs_flags &= ~(long)cmd.value;
 2758                 break;
 2759 
 2760         case FFS_ADJ_REFCNT:
 2761 #ifdef DEBUG
 2762                 if (fsckcmds) {
 2763                         printf("%s: adjust inode %jd link count by %jd\n",
 2764                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
 2765                             (intmax_t)cmd.size);
 2766                 }
 2767 #endif /* DEBUG */
 2768                 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
 2769                         break;
 2770                 ip = VTOI(vp);
 2771                 ip->i_nlink += cmd.size;
 2772                 DIP_SET(ip, i_nlink, ip->i_nlink);
 2773                 ip->i_effnlink += cmd.size;
 2774                 ip->i_flag |= IN_CHANGE | IN_MODIFIED;
 2775                 error = ffs_update(vp, 1);
 2776                 if (DOINGSOFTDEP(vp))
 2777                         softdep_change_linkcnt(ip);
 2778                 vput(vp);
 2779                 break;
 2780 
 2781         case FFS_ADJ_BLKCNT:
 2782 #ifdef DEBUG
 2783                 if (fsckcmds) {
 2784                         printf("%s: adjust inode %jd block count by %jd\n",
 2785                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
 2786                             (intmax_t)cmd.size);
 2787                 }
 2788 #endif /* DEBUG */
 2789                 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
 2790                         break;
 2791                 ip = VTOI(vp);
 2792                 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
 2793                 ip->i_flag |= IN_CHANGE | IN_MODIFIED;
 2794                 error = ffs_update(vp, 1);
 2795                 vput(vp);
 2796                 break;
 2797 
 2798         case FFS_DIR_FREE:
 2799                 filetype = IFDIR;
 2800                 /* fall through */
 2801 
 2802         case FFS_FILE_FREE:
 2803 #ifdef DEBUG
 2804                 if (fsckcmds) {
 2805                         if (cmd.size == 1)
 2806                                 printf("%s: free %s inode %ju\n",
 2807                                     mp->mnt_stat.f_mntonname,
 2808                                     filetype == IFDIR ? "directory" : "file",
 2809                                     (uintmax_t)cmd.value);
 2810                         else
 2811                                 printf("%s: free %s inodes %ju-%ju\n",
 2812                                     mp->mnt_stat.f_mntonname,
 2813                                     filetype == IFDIR ? "directory" : "file",
 2814                                     (uintmax_t)cmd.value,
 2815                                     (uintmax_t)(cmd.value + cmd.size - 1));
 2816                 }
 2817 #endif /* DEBUG */
 2818                 while (cmd.size > 0) {
 2819                         if ((error = ffs_freefile(ump, fs, ump->um_devvp,
 2820                             cmd.value, filetype, NULL)))
 2821                                 break;
 2822                         cmd.size -= 1;
 2823                         cmd.value += 1;
 2824                 }
 2825                 break;
 2826 
 2827         case FFS_BLK_FREE:
 2828 #ifdef DEBUG
 2829                 if (fsckcmds) {
 2830                         if (cmd.size == 1)
 2831                                 printf("%s: free block %jd\n",
 2832                                     mp->mnt_stat.f_mntonname,
 2833                                     (intmax_t)cmd.value);
 2834                         else
 2835                                 printf("%s: free blocks %jd-%jd\n",
 2836                                     mp->mnt_stat.f_mntonname, 
 2837                                     (intmax_t)cmd.value,
 2838                                     (intmax_t)cmd.value + cmd.size - 1);
 2839                 }
 2840 #endif /* DEBUG */
 2841                 blkno = cmd.value;
 2842                 blkcnt = cmd.size;
 2843                 blksize = fs->fs_frag - (blkno % fs->fs_frag);
 2844                 while (blkcnt > 0) {
 2845                         if (blksize > blkcnt)
 2846                                 blksize = blkcnt;
 2847                         ffs_blkfree(ump, fs, ump->um_devvp, blkno,
 2848                             blksize * fs->fs_fsize, ROOTINO, VDIR, NULL);
 2849                         blkno += blksize;
 2850                         blkcnt -= blksize;
 2851                         blksize = fs->fs_frag;
 2852                 }
 2853                 break;
 2854 
 2855         /*
 2856          * Adjust superblock summaries.  fsck(8) is expected to
 2857          * submit deltas when necessary.
 2858          */
 2859         case FFS_ADJ_NDIR:
 2860 #ifdef DEBUG
 2861                 if (fsckcmds) {
 2862                         printf("%s: adjust number of directories by %jd\n",
 2863                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2864                 }
 2865 #endif /* DEBUG */
 2866                 fs->fs_cstotal.cs_ndir += cmd.value;
 2867                 break;
 2868 
 2869         case FFS_ADJ_NBFREE:
 2870 #ifdef DEBUG
 2871                 if (fsckcmds) {
 2872                         printf("%s: adjust number of free blocks by %+jd\n",
 2873                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2874                 }
 2875 #endif /* DEBUG */
 2876                 fs->fs_cstotal.cs_nbfree += cmd.value;
 2877                 break;
 2878 
 2879         case FFS_ADJ_NIFREE:
 2880 #ifdef DEBUG
 2881                 if (fsckcmds) {
 2882                         printf("%s: adjust number of free inodes by %+jd\n",
 2883                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2884                 }
 2885 #endif /* DEBUG */
 2886                 fs->fs_cstotal.cs_nifree += cmd.value;
 2887                 break;
 2888 
 2889         case FFS_ADJ_NFFREE:
 2890 #ifdef DEBUG
 2891                 if (fsckcmds) {
 2892                         printf("%s: adjust number of free frags by %+jd\n",
 2893                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2894                 }
 2895 #endif /* DEBUG */
 2896                 fs->fs_cstotal.cs_nffree += cmd.value;
 2897                 break;
 2898 
 2899         case FFS_ADJ_NUMCLUSTERS:
 2900 #ifdef DEBUG
 2901                 if (fsckcmds) {
 2902                         printf("%s: adjust number of free clusters by %+jd\n",
 2903                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2904                 }
 2905 #endif /* DEBUG */
 2906                 fs->fs_cstotal.cs_numclusters += cmd.value;
 2907                 break;
 2908 
 2909         case FFS_SET_CWD:
 2910 #ifdef DEBUG
 2911                 if (fsckcmds) {
 2912                         printf("%s: set current directory to inode %jd\n",
 2913                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2914                 }
 2915 #endif /* DEBUG */
 2916                 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp)))
 2917                         break;
 2918                 AUDIT_ARG_VNODE1(vp);
 2919                 if ((error = change_dir(vp, td)) != 0) {
 2920                         vput(vp);
 2921                         break;
 2922                 }
 2923                 VOP_UNLOCK(vp, 0);
 2924                 fdp = td->td_proc->p_fd;
 2925                 FILEDESC_XLOCK(fdp);
 2926                 vpold = fdp->fd_cdir;
 2927                 fdp->fd_cdir = vp;
 2928                 FILEDESC_XUNLOCK(fdp);
 2929                 vrele(vpold);
 2930                 break;
 2931 
 2932         case FFS_SET_DOTDOT:
 2933 #ifdef DEBUG
 2934                 if (fsckcmds) {
 2935                         printf("%s: change .. in cwd from %jd to %jd\n",
 2936                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
 2937                             (intmax_t)cmd.size);
 2938                 }
 2939 #endif /* DEBUG */
 2940                 /*
 2941                  * First we have to get and lock the parent directory
 2942                  * to which ".." points.
 2943                  */
 2944                 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp);
 2945                 if (error)
 2946                         break;
 2947                 /*
 2948                  * Now we get and lock the child directory containing "..".
 2949                  */
 2950                 FILEDESC_SLOCK(td->td_proc->p_fd);
 2951                 dvp = td->td_proc->p_fd->fd_cdir;
 2952                 FILEDESC_SUNLOCK(td->td_proc->p_fd);
 2953                 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) {
 2954                         vput(fdvp);
 2955                         break;
 2956                 }
 2957                 dp = VTOI(dvp);
 2958                 dp->i_offset = 12;      /* XXX mastertemplate.dot_reclen */
 2959                 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size,
 2960                     DT_DIR, 0);
 2961                 cache_purge(fdvp);
 2962                 cache_purge(dvp);
 2963                 vput(dvp);
 2964                 vput(fdvp);
 2965                 break;
 2966 
 2967         case FFS_UNLINK:
 2968 #ifdef DEBUG
 2969                 if (fsckcmds) {
 2970                         char buf[32];
 2971 
 2972                         if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL))
 2973                                 strncpy(buf, "Name_too_long", 32);
 2974                         printf("%s: unlink %s (inode %jd)\n",
 2975                             mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size);
 2976                 }
 2977 #endif /* DEBUG */
 2978                 /*
 2979                  * kern_unlinkat will do its own start/finish writes and
 2980                  * they do not nest, so drop ours here. Setting mp == NULL
 2981                  * indicates that vn_finished_write is not needed down below.
 2982                  */
 2983                 vn_finished_write(mp);
 2984                 mp = NULL;
 2985                 error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value,
 2986                     UIO_USERSPACE, (ino_t)cmd.size);
 2987                 break;
 2988 
 2989         case FFS_SET_INODE:
 2990                 if (ump->um_fsckpid != td->td_proc->p_pid) {
 2991                         error = EPERM;
 2992                         break;
 2993                 }
 2994 #ifdef DEBUG
 2995                 if (fsckcmds) {
 2996                         printf("%s: update inode %jd\n",
 2997                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2998                 }
 2999 #endif /* DEBUG */
 3000                 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
 3001                         break;
 3002                 AUDIT_ARG_VNODE1(vp);
 3003                 ip = VTOI(vp);
 3004                 if (ip->i_ump->um_fstype == UFS1)
 3005                         error = copyin((void *)(intptr_t)cmd.size, ip->i_din1,
 3006                             sizeof(struct ufs1_dinode));
 3007                 else
 3008                         error = copyin((void *)(intptr_t)cmd.size, ip->i_din2,
 3009                             sizeof(struct ufs2_dinode));
 3010                 if (error) {
 3011                         vput(vp);
 3012                         break;
 3013                 }
 3014                 ip->i_flag |= IN_CHANGE | IN_MODIFIED;
 3015                 error = ffs_update(vp, 1);
 3016                 vput(vp);
 3017                 break;
 3018 
 3019         case FFS_SET_BUFOUTPUT:
 3020                 if (ump->um_fsckpid != td->td_proc->p_pid) {
 3021                         error = EPERM;
 3022                         break;
 3023                 }
 3024                 if (VTOI(vp)->i_ump != ump) {
 3025                         error = EINVAL;
 3026                         break;
 3027                 }
 3028 #ifdef DEBUG
 3029                 if (fsckcmds) {
 3030                         printf("%s: %s buffered output for descriptor %jd\n",
 3031                             mp->mnt_stat.f_mntonname,
 3032                             cmd.size == 1 ? "enable" : "disable",
 3033                             (intmax_t)cmd.value);
 3034                 }
 3035 #endif /* DEBUG */
 3036                 if ((error = getvnode(td->td_proc->p_fd, cmd.value,
 3037                     cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0)
 3038                         break;
 3039                 if (vfp->f_vnode->v_type != VCHR) {
 3040                         fdrop(vfp, td);
 3041                         error = EINVAL;
 3042                         break;
 3043                 }
 3044                 if (origops == NULL) {
 3045                         origops = vfp->f_ops;
 3046                         bcopy((void *)origops, (void *)&bufferedops,
 3047                             sizeof(bufferedops));
 3048                         bufferedops.fo_write = buffered_write;
 3049                 }
 3050                 if (cmd.size == 1)
 3051                         atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
 3052                             (uintptr_t)&bufferedops);
 3053                 else
 3054                         atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
 3055                             (uintptr_t)origops);
 3056                 fdrop(vfp, td);
 3057                 break;
 3058 
 3059         default:
 3060 #ifdef DEBUG
 3061                 if (fsckcmds) {
 3062                         printf("Invalid request %d from fsck\n",
 3063                             oidp->oid_number);
 3064                 }
 3065 #endif /* DEBUG */
 3066                 error = EINVAL;
 3067                 break;
 3068 
 3069         }
 3070         fdrop(fp, td);
 3071         vn_finished_write(mp);
 3072         return (error);
 3073 }
 3074 
 3075 /*
 3076  * Function to switch a descriptor to use the buffer cache to stage
 3077  * its I/O. This is needed so that writes to the filesystem device
 3078  * will give snapshots a chance to copy modified blocks for which it
 3079  * needs to retain copies.
 3080  */
 3081 static int
 3082 buffered_write(fp, uio, active_cred, flags, td)
 3083         struct file *fp;
 3084         struct uio *uio;
 3085         struct ucred *active_cred;
 3086         int flags;
 3087         struct thread *td;
 3088 {
 3089         struct vnode *devvp, *vp;
 3090         struct inode *ip;
 3091         struct buf *bp;
 3092         struct fs *fs;
 3093         struct filedesc *fdp;
 3094         int error;
 3095         daddr_t lbn;
 3096 
 3097         /*
 3098          * The devvp is associated with the /dev filesystem. To discover
 3099          * the filesystem with which the device is associated, we depend
 3100          * on the application setting the current directory to a location
 3101          * within the filesystem being written. Yes, this is an ugly hack.
 3102          */
 3103         devvp = fp->f_vnode;
 3104         if (!vn_isdisk(devvp, NULL))
 3105                 return (EINVAL);
 3106         fdp = td->td_proc->p_fd;
 3107         FILEDESC_SLOCK(fdp);
 3108         vp = fdp->fd_cdir;
 3109         vref(vp);
 3110         FILEDESC_SUNLOCK(fdp);
 3111         vn_lock(vp, LK_SHARED | LK_RETRY);
 3112         /*
 3113          * Check that the current directory vnode indeed belongs to
 3114          * UFS before trying to dereference UFS-specific v_data fields.
 3115          */
 3116         if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) {
 3117                 vput(vp);
 3118                 return (EINVAL);
 3119         }
 3120         ip = VTOI(vp);
 3121         if (ip->i_devvp != devvp) {
 3122                 vput(vp);
 3123                 return (EINVAL);
 3124         }
 3125         fs = ip->i_fs;
 3126         vput(vp);
 3127         foffset_lock_uio(fp, uio, flags);
 3128         vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
 3129 #ifdef DEBUG
 3130         if (fsckcmds) {
 3131                 printf("%s: buffered write for block %jd\n",
 3132                     fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset));
 3133         }
 3134 #endif /* DEBUG */
 3135         /*
 3136          * All I/O must be contained within a filesystem block, start on
 3137          * a fragment boundary, and be a multiple of fragments in length.
 3138          */
 3139         if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) ||
 3140             fragoff(fs, uio->uio_offset) != 0 ||
 3141             fragoff(fs, uio->uio_resid) != 0) {
 3142                 error = EINVAL;
 3143                 goto out;
 3144         }
 3145         lbn = numfrags(fs, uio->uio_offset);
 3146         bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0);
 3147         bp->b_flags |= B_RELBUF;
 3148         if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) {
 3149                 brelse(bp);
 3150                 goto out;
 3151         }
 3152         error = bwrite(bp);
 3153 out:
 3154         VOP_UNLOCK(devvp, 0);
 3155         foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF);
 3156         return (error);
 3157 }

Cache object: 56847b678399b302a373a054e36304b1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.