1 /*-
2 * Copyright (c) 2002 Networks Associates Technology, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Marshall
6 * Kirk McKusick and Network Associates Laboratories, the Security
7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9 * research program
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * Copyright (c) 1982, 1986, 1989, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 4. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95
60 */
61
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD: releng/10.0/sys/ufs/ffs/ffs_alloc.c 255219 2013-09-05 00:09:56Z pjd $");
64
65 #include "opt_quota.h"
66
67 #include <sys/param.h>
68 #include <sys/capability.h>
69 #include <sys/systm.h>
70 #include <sys/bio.h>
71 #include <sys/buf.h>
72 #include <sys/conf.h>
73 #include <sys/fcntl.h>
74 #include <sys/file.h>
75 #include <sys/filedesc.h>
76 #include <sys/priv.h>
77 #include <sys/proc.h>
78 #include <sys/vnode.h>
79 #include <sys/mount.h>
80 #include <sys/kernel.h>
81 #include <sys/syscallsubr.h>
82 #include <sys/sysctl.h>
83 #include <sys/syslog.h>
84 #include <sys/taskqueue.h>
85
86 #include <security/audit/audit.h>
87
88 #include <geom/geom.h>
89
90 #include <ufs/ufs/dir.h>
91 #include <ufs/ufs/extattr.h>
92 #include <ufs/ufs/quota.h>
93 #include <ufs/ufs/inode.h>
94 #include <ufs/ufs/ufs_extern.h>
95 #include <ufs/ufs/ufsmount.h>
96
97 #include <ufs/ffs/fs.h>
98 #include <ufs/ffs/ffs_extern.h>
99 #include <ufs/ffs/softdep.h>
100
101 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref,
102 int size, int rsize);
103
104 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int);
105 static ufs2_daddr_t
106 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int);
107 static void ffs_blkfree_cg(struct ufsmount *, struct fs *,
108 struct vnode *, ufs2_daddr_t, long, ino_t,
109 struct workhead *);
110 static void ffs_blkfree_trim_completed(struct bio *);
111 static void ffs_blkfree_trim_task(void *ctx, int pending __unused);
112 #ifdef INVARIANTS
113 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long);
114 #endif
115 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int,
116 int);
117 static ino_t ffs_dirpref(struct inode *);
118 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t,
119 int, int);
120 static ufs2_daddr_t ffs_hashalloc
121 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *);
122 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int,
123 int);
124 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
125 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
126 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
127
128 /*
129 * Allocate a block in the filesystem.
130 *
131 * The size of the requested block is given, which must be some
132 * multiple of fs_fsize and <= fs_bsize.
133 * A preference may be optionally specified. If a preference is given
134 * the following hierarchy is used to allocate a block:
135 * 1) allocate the requested block.
136 * 2) allocate a rotationally optimal block in the same cylinder.
137 * 3) allocate a block in the same cylinder group.
138 * 4) quadradically rehash into other cylinder groups, until an
139 * available block is located.
140 * If no block preference is given the following hierarchy is used
141 * to allocate a block:
142 * 1) allocate a block in the cylinder group that contains the
143 * inode for the file.
144 * 2) quadradically rehash into other cylinder groups, until an
145 * available block is located.
146 */
147 int
148 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp)
149 struct inode *ip;
150 ufs2_daddr_t lbn, bpref;
151 int size, flags;
152 struct ucred *cred;
153 ufs2_daddr_t *bnp;
154 {
155 struct fs *fs;
156 struct ufsmount *ump;
157 ufs2_daddr_t bno;
158 u_int cg, reclaimed;
159 static struct timeval lastfail;
160 static int curfail;
161 int64_t delta;
162 #ifdef QUOTA
163 int error;
164 #endif
165
166 *bnp = 0;
167 fs = ip->i_fs;
168 ump = ip->i_ump;
169 mtx_assert(UFS_MTX(ump), MA_OWNED);
170 #ifdef INVARIANTS
171 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
172 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
173 devtoname(ip->i_dev), (long)fs->fs_bsize, size,
174 fs->fs_fsmnt);
175 panic("ffs_alloc: bad size");
176 }
177 if (cred == NOCRED)
178 panic("ffs_alloc: missing credential");
179 #endif /* INVARIANTS */
180 reclaimed = 0;
181 retry:
182 #ifdef QUOTA
183 UFS_UNLOCK(ump);
184 error = chkdq(ip, btodb(size), cred, 0);
185 if (error)
186 return (error);
187 UFS_LOCK(ump);
188 #endif
189 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
190 goto nospace;
191 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
192 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
193 goto nospace;
194 if (bpref >= fs->fs_size)
195 bpref = 0;
196 if (bpref == 0)
197 cg = ino_to_cg(fs, ip->i_number);
198 else
199 cg = dtog(fs, bpref);
200 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg);
201 if (bno > 0) {
202 delta = btodb(size);
203 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
204 if (flags & IO_EXT)
205 ip->i_flag |= IN_CHANGE;
206 else
207 ip->i_flag |= IN_CHANGE | IN_UPDATE;
208 *bnp = bno;
209 return (0);
210 }
211 nospace:
212 #ifdef QUOTA
213 UFS_UNLOCK(ump);
214 /*
215 * Restore user's disk quota because allocation failed.
216 */
217 (void) chkdq(ip, -btodb(size), cred, FORCE);
218 UFS_LOCK(ump);
219 #endif
220 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
221 reclaimed = 1;
222 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT);
223 goto retry;
224 }
225 UFS_UNLOCK(ump);
226 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) {
227 ffs_fserr(fs, ip->i_number, "filesystem full");
228 uprintf("\n%s: write failed, filesystem is full\n",
229 fs->fs_fsmnt);
230 }
231 return (ENOSPC);
232 }
233
234 /*
235 * Reallocate a fragment to a bigger size
236 *
237 * The number and size of the old block is given, and a preference
238 * and new size is also specified. The allocator attempts to extend
239 * the original block. Failing that, the regular block allocator is
240 * invoked to get an appropriate block.
241 */
242 int
243 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp)
244 struct inode *ip;
245 ufs2_daddr_t lbprev;
246 ufs2_daddr_t bprev;
247 ufs2_daddr_t bpref;
248 int osize, nsize, flags;
249 struct ucred *cred;
250 struct buf **bpp;
251 {
252 struct vnode *vp;
253 struct fs *fs;
254 struct buf *bp;
255 struct ufsmount *ump;
256 u_int cg, request, reclaimed;
257 int error, gbflags;
258 ufs2_daddr_t bno;
259 static struct timeval lastfail;
260 static int curfail;
261 int64_t delta;
262
263 *bpp = 0;
264 vp = ITOV(ip);
265 fs = ip->i_fs;
266 bp = NULL;
267 ump = ip->i_ump;
268 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
269
270 mtx_assert(UFS_MTX(ump), MA_OWNED);
271 #ifdef INVARIANTS
272 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
273 panic("ffs_realloccg: allocation on suspended filesystem");
274 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
275 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
276 printf(
277 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
278 devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
279 nsize, fs->fs_fsmnt);
280 panic("ffs_realloccg: bad size");
281 }
282 if (cred == NOCRED)
283 panic("ffs_realloccg: missing credential");
284 #endif /* INVARIANTS */
285 reclaimed = 0;
286 retry:
287 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
288 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) {
289 goto nospace;
290 }
291 if (bprev == 0) {
292 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
293 devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev,
294 fs->fs_fsmnt);
295 panic("ffs_realloccg: bad bprev");
296 }
297 UFS_UNLOCK(ump);
298 /*
299 * Allocate the extra space in the buffer.
300 */
301 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp);
302 if (error) {
303 brelse(bp);
304 return (error);
305 }
306
307 if (bp->b_blkno == bp->b_lblkno) {
308 if (lbprev >= NDADDR)
309 panic("ffs_realloccg: lbprev out of range");
310 bp->b_blkno = fsbtodb(fs, bprev);
311 }
312
313 #ifdef QUOTA
314 error = chkdq(ip, btodb(nsize - osize), cred, 0);
315 if (error) {
316 brelse(bp);
317 return (error);
318 }
319 #endif
320 /*
321 * Check for extension in the existing location.
322 */
323 cg = dtog(fs, bprev);
324 UFS_LOCK(ump);
325 bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
326 if (bno) {
327 if (bp->b_blkno != fsbtodb(fs, bno))
328 panic("ffs_realloccg: bad blockno");
329 delta = btodb(nsize - osize);
330 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
331 if (flags & IO_EXT)
332 ip->i_flag |= IN_CHANGE;
333 else
334 ip->i_flag |= IN_CHANGE | IN_UPDATE;
335 allocbuf(bp, nsize);
336 bp->b_flags |= B_DONE;
337 vfs_bio_bzero_buf(bp, osize, nsize - osize);
338 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
339 vfs_bio_set_valid(bp, osize, nsize - osize);
340 *bpp = bp;
341 return (0);
342 }
343 /*
344 * Allocate a new disk location.
345 */
346 if (bpref >= fs->fs_size)
347 bpref = 0;
348 switch ((int)fs->fs_optim) {
349 case FS_OPTSPACE:
350 /*
351 * Allocate an exact sized fragment. Although this makes
352 * best use of space, we will waste time relocating it if
353 * the file continues to grow. If the fragmentation is
354 * less than half of the minimum free reserve, we choose
355 * to begin optimizing for time.
356 */
357 request = nsize;
358 if (fs->fs_minfree <= 5 ||
359 fs->fs_cstotal.cs_nffree >
360 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
361 break;
362 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
363 fs->fs_fsmnt);
364 fs->fs_optim = FS_OPTTIME;
365 break;
366 case FS_OPTTIME:
367 /*
368 * At this point we have discovered a file that is trying to
369 * grow a small fragment to a larger fragment. To save time,
370 * we allocate a full sized block, then free the unused portion.
371 * If the file continues to grow, the `ffs_fragextend' call
372 * above will be able to grow it in place without further
373 * copying. If aberrant programs cause disk fragmentation to
374 * grow within 2% of the free reserve, we choose to begin
375 * optimizing for space.
376 */
377 request = fs->fs_bsize;
378 if (fs->fs_cstotal.cs_nffree <
379 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
380 break;
381 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
382 fs->fs_fsmnt);
383 fs->fs_optim = FS_OPTSPACE;
384 break;
385 default:
386 printf("dev = %s, optim = %ld, fs = %s\n",
387 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
388 panic("ffs_realloccg: bad optim");
389 /* NOTREACHED */
390 }
391 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg);
392 if (bno > 0) {
393 bp->b_blkno = fsbtodb(fs, bno);
394 if (!DOINGSOFTDEP(vp))
395 ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize,
396 ip->i_number, vp->v_type, NULL);
397 delta = btodb(nsize - osize);
398 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
399 if (flags & IO_EXT)
400 ip->i_flag |= IN_CHANGE;
401 else
402 ip->i_flag |= IN_CHANGE | IN_UPDATE;
403 allocbuf(bp, nsize);
404 bp->b_flags |= B_DONE;
405 vfs_bio_bzero_buf(bp, osize, nsize - osize);
406 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
407 vfs_bio_set_valid(bp, osize, nsize - osize);
408 *bpp = bp;
409 return (0);
410 }
411 #ifdef QUOTA
412 UFS_UNLOCK(ump);
413 /*
414 * Restore user's disk quota because allocation failed.
415 */
416 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
417 UFS_LOCK(ump);
418 #endif
419 nospace:
420 /*
421 * no space available
422 */
423 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
424 reclaimed = 1;
425 UFS_UNLOCK(ump);
426 if (bp) {
427 brelse(bp);
428 bp = NULL;
429 }
430 UFS_LOCK(ump);
431 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT);
432 goto retry;
433 }
434 UFS_UNLOCK(ump);
435 if (bp)
436 brelse(bp);
437 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) {
438 ffs_fserr(fs, ip->i_number, "filesystem full");
439 uprintf("\n%s: write failed, filesystem is full\n",
440 fs->fs_fsmnt);
441 }
442 return (ENOSPC);
443 }
444
445 /*
446 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
447 *
448 * The vnode and an array of buffer pointers for a range of sequential
449 * logical blocks to be made contiguous is given. The allocator attempts
450 * to find a range of sequential blocks starting as close as possible
451 * from the end of the allocation for the logical block immediately
452 * preceding the current range. If successful, the physical block numbers
453 * in the buffer pointers and in the inode are changed to reflect the new
454 * allocation. If unsuccessful, the allocation is left unchanged. The
455 * success in doing the reallocation is returned. Note that the error
456 * return is not reflected back to the user. Rather the previous block
457 * allocation will be used.
458 */
459
460 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
461
462 static int doasyncfree = 1;
463 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
464
465 static int doreallocblks = 1;
466 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
467
468 #ifdef DEBUG
469 static volatile int prtrealloc = 0;
470 #endif
471
472 int
473 ffs_reallocblks(ap)
474 struct vop_reallocblks_args /* {
475 struct vnode *a_vp;
476 struct cluster_save *a_buflist;
477 } */ *ap;
478 {
479
480 if (doreallocblks == 0)
481 return (ENOSPC);
482 /*
483 * We can't wait in softdep prealloc as it may fsync and recurse
484 * here. Instead we simply fail to reallocate blocks if this
485 * rare condition arises.
486 */
487 if (DOINGSOFTDEP(ap->a_vp))
488 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0)
489 return (ENOSPC);
490 if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1)
491 return (ffs_reallocblks_ufs1(ap));
492 return (ffs_reallocblks_ufs2(ap));
493 }
494
495 static int
496 ffs_reallocblks_ufs1(ap)
497 struct vop_reallocblks_args /* {
498 struct vnode *a_vp;
499 struct cluster_save *a_buflist;
500 } */ *ap;
501 {
502 struct fs *fs;
503 struct inode *ip;
504 struct vnode *vp;
505 struct buf *sbp, *ebp;
506 ufs1_daddr_t *bap, *sbap, *ebap = 0;
507 struct cluster_save *buflist;
508 struct ufsmount *ump;
509 ufs_lbn_t start_lbn, end_lbn;
510 ufs1_daddr_t soff, newblk, blkno;
511 ufs2_daddr_t pref;
512 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
513 int i, len, start_lvl, end_lvl, ssize;
514
515 vp = ap->a_vp;
516 ip = VTOI(vp);
517 fs = ip->i_fs;
518 ump = ip->i_ump;
519 /*
520 * If we are not tracking block clusters or if we have less than 2%
521 * free blocks left, then do not attempt to cluster. Running with
522 * less than 5% free block reserve is not recommended and those that
523 * choose to do so do not expect to have good file layout.
524 */
525 if (fs->fs_contigsumsize <= 0 || freespace(fs, 2) < 0)
526 return (ENOSPC);
527 buflist = ap->a_buflist;
528 len = buflist->bs_nchildren;
529 start_lbn = buflist->bs_children[0]->b_lblkno;
530 end_lbn = start_lbn + len - 1;
531 #ifdef INVARIANTS
532 for (i = 0; i < len; i++)
533 if (!ffs_checkblk(ip,
534 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
535 panic("ffs_reallocblks: unallocated block 1");
536 for (i = 1; i < len; i++)
537 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
538 panic("ffs_reallocblks: non-logical cluster");
539 blkno = buflist->bs_children[0]->b_blkno;
540 ssize = fsbtodb(fs, fs->fs_frag);
541 for (i = 1; i < len - 1; i++)
542 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
543 panic("ffs_reallocblks: non-physical cluster %d", i);
544 #endif
545 /*
546 * If the cluster crosses the boundary for the first indirect
547 * block, leave space for the indirect block. Indirect blocks
548 * are initially laid out in a position after the last direct
549 * block. Block reallocation would usually destroy locality by
550 * moving the indirect block out of the way to make room for
551 * data blocks if we didn't compensate here. We should also do
552 * this for other indirect block boundaries, but it is only
553 * important for the first one.
554 */
555 if (start_lbn < NDADDR && end_lbn >= NDADDR)
556 return (ENOSPC);
557 /*
558 * If the latest allocation is in a new cylinder group, assume that
559 * the filesystem has decided to move and do not force it back to
560 * the previous cylinder group.
561 */
562 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
563 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
564 return (ENOSPC);
565 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
566 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
567 return (ENOSPC);
568 /*
569 * Get the starting offset and block map for the first block.
570 */
571 if (start_lvl == 0) {
572 sbap = &ip->i_din1->di_db[0];
573 soff = start_lbn;
574 } else {
575 idp = &start_ap[start_lvl - 1];
576 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
577 brelse(sbp);
578 return (ENOSPC);
579 }
580 sbap = (ufs1_daddr_t *)sbp->b_data;
581 soff = idp->in_off;
582 }
583 /*
584 * If the block range spans two block maps, get the second map.
585 */
586 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
587 ssize = len;
588 } else {
589 #ifdef INVARIANTS
590 if (start_lvl > 0 &&
591 start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
592 panic("ffs_reallocblk: start == end");
593 #endif
594 ssize = len - (idp->in_off + 1);
595 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
596 goto fail;
597 ebap = (ufs1_daddr_t *)ebp->b_data;
598 }
599 /*
600 * Find the preferred location for the cluster.
601 */
602 UFS_LOCK(ump);
603 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
604 /*
605 * Search the block map looking for an allocation of the desired size.
606 */
607 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
608 len, len, ffs_clusteralloc)) == 0) {
609 UFS_UNLOCK(ump);
610 goto fail;
611 }
612 /*
613 * We have found a new contiguous block.
614 *
615 * First we have to replace the old block pointers with the new
616 * block pointers in the inode and indirect blocks associated
617 * with the file.
618 */
619 #ifdef DEBUG
620 if (prtrealloc)
621 printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
622 (uintmax_t)ip->i_number,
623 (intmax_t)start_lbn, (intmax_t)end_lbn);
624 #endif
625 blkno = newblk;
626 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
627 if (i == ssize) {
628 bap = ebap;
629 soff = -i;
630 }
631 #ifdef INVARIANTS
632 if (!ffs_checkblk(ip,
633 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
634 panic("ffs_reallocblks: unallocated block 2");
635 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
636 panic("ffs_reallocblks: alloc mismatch");
637 #endif
638 #ifdef DEBUG
639 if (prtrealloc)
640 printf(" %d,", *bap);
641 #endif
642 if (DOINGSOFTDEP(vp)) {
643 if (sbap == &ip->i_din1->di_db[0] && i < ssize)
644 softdep_setup_allocdirect(ip, start_lbn + i,
645 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
646 buflist->bs_children[i]);
647 else
648 softdep_setup_allocindir_page(ip, start_lbn + i,
649 i < ssize ? sbp : ebp, soff + i, blkno,
650 *bap, buflist->bs_children[i]);
651 }
652 *bap++ = blkno;
653 }
654 /*
655 * Next we must write out the modified inode and indirect blocks.
656 * For strict correctness, the writes should be synchronous since
657 * the old block values may have been written to disk. In practise
658 * they are almost never written, but if we are concerned about
659 * strict correctness, the `doasyncfree' flag should be set to zero.
660 *
661 * The test on `doasyncfree' should be changed to test a flag
662 * that shows whether the associated buffers and inodes have
663 * been written. The flag should be set when the cluster is
664 * started and cleared whenever the buffer or inode is flushed.
665 * We can then check below to see if it is set, and do the
666 * synchronous write only when it has been cleared.
667 */
668 if (sbap != &ip->i_din1->di_db[0]) {
669 if (doasyncfree)
670 bdwrite(sbp);
671 else
672 bwrite(sbp);
673 } else {
674 ip->i_flag |= IN_CHANGE | IN_UPDATE;
675 if (!doasyncfree)
676 ffs_update(vp, 1);
677 }
678 if (ssize < len) {
679 if (doasyncfree)
680 bdwrite(ebp);
681 else
682 bwrite(ebp);
683 }
684 /*
685 * Last, free the old blocks and assign the new blocks to the buffers.
686 */
687 #ifdef DEBUG
688 if (prtrealloc)
689 printf("\n\tnew:");
690 #endif
691 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
692 if (!DOINGSOFTDEP(vp))
693 ffs_blkfree(ump, fs, ip->i_devvp,
694 dbtofsb(fs, buflist->bs_children[i]->b_blkno),
695 fs->fs_bsize, ip->i_number, vp->v_type, NULL);
696 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
697 #ifdef INVARIANTS
698 if (!ffs_checkblk(ip,
699 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
700 panic("ffs_reallocblks: unallocated block 3");
701 #endif
702 #ifdef DEBUG
703 if (prtrealloc)
704 printf(" %d,", blkno);
705 #endif
706 }
707 #ifdef DEBUG
708 if (prtrealloc) {
709 prtrealloc--;
710 printf("\n");
711 }
712 #endif
713 return (0);
714
715 fail:
716 if (ssize < len)
717 brelse(ebp);
718 if (sbap != &ip->i_din1->di_db[0])
719 brelse(sbp);
720 return (ENOSPC);
721 }
722
723 static int
724 ffs_reallocblks_ufs2(ap)
725 struct vop_reallocblks_args /* {
726 struct vnode *a_vp;
727 struct cluster_save *a_buflist;
728 } */ *ap;
729 {
730 struct fs *fs;
731 struct inode *ip;
732 struct vnode *vp;
733 struct buf *sbp, *ebp;
734 ufs2_daddr_t *bap, *sbap, *ebap = 0;
735 struct cluster_save *buflist;
736 struct ufsmount *ump;
737 ufs_lbn_t start_lbn, end_lbn;
738 ufs2_daddr_t soff, newblk, blkno, pref;
739 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
740 int i, len, start_lvl, end_lvl, ssize;
741
742 vp = ap->a_vp;
743 ip = VTOI(vp);
744 fs = ip->i_fs;
745 ump = ip->i_ump;
746 /*
747 * If we are not tracking block clusters or if we have less than 2%
748 * free blocks left, then do not attempt to cluster. Running with
749 * less than 5% free block reserve is not recommended and those that
750 * choose to do so do not expect to have good file layout.
751 */
752 if (fs->fs_contigsumsize <= 0 || freespace(fs, 2) < 0)
753 return (ENOSPC);
754 buflist = ap->a_buflist;
755 len = buflist->bs_nchildren;
756 start_lbn = buflist->bs_children[0]->b_lblkno;
757 end_lbn = start_lbn + len - 1;
758 #ifdef INVARIANTS
759 for (i = 0; i < len; i++)
760 if (!ffs_checkblk(ip,
761 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
762 panic("ffs_reallocblks: unallocated block 1");
763 for (i = 1; i < len; i++)
764 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
765 panic("ffs_reallocblks: non-logical cluster");
766 blkno = buflist->bs_children[0]->b_blkno;
767 ssize = fsbtodb(fs, fs->fs_frag);
768 for (i = 1; i < len - 1; i++)
769 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
770 panic("ffs_reallocblks: non-physical cluster %d", i);
771 #endif
772 /*
773 * If the cluster crosses the boundary for the first indirect
774 * block, do not move anything in it. Indirect blocks are
775 * usually initially laid out in a position between the data
776 * blocks. Block reallocation would usually destroy locality by
777 * moving the indirect block out of the way to make room for
778 * data blocks if we didn't compensate here. We should also do
779 * this for other indirect block boundaries, but it is only
780 * important for the first one.
781 */
782 if (start_lbn < NDADDR && end_lbn >= NDADDR)
783 return (ENOSPC);
784 /*
785 * If the latest allocation is in a new cylinder group, assume that
786 * the filesystem has decided to move and do not force it back to
787 * the previous cylinder group.
788 */
789 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
790 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
791 return (ENOSPC);
792 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
793 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
794 return (ENOSPC);
795 /*
796 * Get the starting offset and block map for the first block.
797 */
798 if (start_lvl == 0) {
799 sbap = &ip->i_din2->di_db[0];
800 soff = start_lbn;
801 } else {
802 idp = &start_ap[start_lvl - 1];
803 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
804 brelse(sbp);
805 return (ENOSPC);
806 }
807 sbap = (ufs2_daddr_t *)sbp->b_data;
808 soff = idp->in_off;
809 }
810 /*
811 * If the block range spans two block maps, get the second map.
812 */
813 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
814 ssize = len;
815 } else {
816 #ifdef INVARIANTS
817 if (start_lvl > 0 &&
818 start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
819 panic("ffs_reallocblk: start == end");
820 #endif
821 ssize = len - (idp->in_off + 1);
822 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
823 goto fail;
824 ebap = (ufs2_daddr_t *)ebp->b_data;
825 }
826 /*
827 * Find the preferred location for the cluster.
828 */
829 UFS_LOCK(ump);
830 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
831 /*
832 * Search the block map looking for an allocation of the desired size.
833 */
834 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
835 len, len, ffs_clusteralloc)) == 0) {
836 UFS_UNLOCK(ump);
837 goto fail;
838 }
839 /*
840 * We have found a new contiguous block.
841 *
842 * First we have to replace the old block pointers with the new
843 * block pointers in the inode and indirect blocks associated
844 * with the file.
845 */
846 #ifdef DEBUG
847 if (prtrealloc)
848 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
849 (intmax_t)start_lbn, (intmax_t)end_lbn);
850 #endif
851 blkno = newblk;
852 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
853 if (i == ssize) {
854 bap = ebap;
855 soff = -i;
856 }
857 #ifdef INVARIANTS
858 if (!ffs_checkblk(ip,
859 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
860 panic("ffs_reallocblks: unallocated block 2");
861 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
862 panic("ffs_reallocblks: alloc mismatch");
863 #endif
864 #ifdef DEBUG
865 if (prtrealloc)
866 printf(" %jd,", (intmax_t)*bap);
867 #endif
868 if (DOINGSOFTDEP(vp)) {
869 if (sbap == &ip->i_din2->di_db[0] && i < ssize)
870 softdep_setup_allocdirect(ip, start_lbn + i,
871 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
872 buflist->bs_children[i]);
873 else
874 softdep_setup_allocindir_page(ip, start_lbn + i,
875 i < ssize ? sbp : ebp, soff + i, blkno,
876 *bap, buflist->bs_children[i]);
877 }
878 *bap++ = blkno;
879 }
880 /*
881 * Next we must write out the modified inode and indirect blocks.
882 * For strict correctness, the writes should be synchronous since
883 * the old block values may have been written to disk. In practise
884 * they are almost never written, but if we are concerned about
885 * strict correctness, the `doasyncfree' flag should be set to zero.
886 *
887 * The test on `doasyncfree' should be changed to test a flag
888 * that shows whether the associated buffers and inodes have
889 * been written. The flag should be set when the cluster is
890 * started and cleared whenever the buffer or inode is flushed.
891 * We can then check below to see if it is set, and do the
892 * synchronous write only when it has been cleared.
893 */
894 if (sbap != &ip->i_din2->di_db[0]) {
895 if (doasyncfree)
896 bdwrite(sbp);
897 else
898 bwrite(sbp);
899 } else {
900 ip->i_flag |= IN_CHANGE | IN_UPDATE;
901 if (!doasyncfree)
902 ffs_update(vp, 1);
903 }
904 if (ssize < len) {
905 if (doasyncfree)
906 bdwrite(ebp);
907 else
908 bwrite(ebp);
909 }
910 /*
911 * Last, free the old blocks and assign the new blocks to the buffers.
912 */
913 #ifdef DEBUG
914 if (prtrealloc)
915 printf("\n\tnew:");
916 #endif
917 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
918 if (!DOINGSOFTDEP(vp))
919 ffs_blkfree(ump, fs, ip->i_devvp,
920 dbtofsb(fs, buflist->bs_children[i]->b_blkno),
921 fs->fs_bsize, ip->i_number, vp->v_type, NULL);
922 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
923 #ifdef INVARIANTS
924 if (!ffs_checkblk(ip,
925 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
926 panic("ffs_reallocblks: unallocated block 3");
927 #endif
928 #ifdef DEBUG
929 if (prtrealloc)
930 printf(" %jd,", (intmax_t)blkno);
931 #endif
932 }
933 #ifdef DEBUG
934 if (prtrealloc) {
935 prtrealloc--;
936 printf("\n");
937 }
938 #endif
939 return (0);
940
941 fail:
942 if (ssize < len)
943 brelse(ebp);
944 if (sbap != &ip->i_din2->di_db[0])
945 brelse(sbp);
946 return (ENOSPC);
947 }
948
949 /*
950 * Allocate an inode in the filesystem.
951 *
952 * If allocating a directory, use ffs_dirpref to select the inode.
953 * If allocating in a directory, the following hierarchy is followed:
954 * 1) allocate the preferred inode.
955 * 2) allocate an inode in the same cylinder group.
956 * 3) quadradically rehash into other cylinder groups, until an
957 * available inode is located.
958 * If no inode preference is given the following hierarchy is used
959 * to allocate an inode:
960 * 1) allocate an inode in cylinder group 0.
961 * 2) quadradically rehash into other cylinder groups, until an
962 * available inode is located.
963 */
964 int
965 ffs_valloc(pvp, mode, cred, vpp)
966 struct vnode *pvp;
967 int mode;
968 struct ucred *cred;
969 struct vnode **vpp;
970 {
971 struct inode *pip;
972 struct fs *fs;
973 struct inode *ip;
974 struct timespec ts;
975 struct ufsmount *ump;
976 ino_t ino, ipref;
977 u_int cg;
978 int error, error1, reclaimed;
979 static struct timeval lastfail;
980 static int curfail;
981
982 *vpp = NULL;
983 pip = VTOI(pvp);
984 fs = pip->i_fs;
985 ump = pip->i_ump;
986
987 UFS_LOCK(ump);
988 reclaimed = 0;
989 retry:
990 if (fs->fs_cstotal.cs_nifree == 0)
991 goto noinodes;
992
993 if ((mode & IFMT) == IFDIR)
994 ipref = ffs_dirpref(pip);
995 else
996 ipref = pip->i_number;
997 if (ipref >= fs->fs_ncg * fs->fs_ipg)
998 ipref = 0;
999 cg = ino_to_cg(fs, ipref);
1000 /*
1001 * Track number of dirs created one after another
1002 * in a same cg without intervening by files.
1003 */
1004 if ((mode & IFMT) == IFDIR) {
1005 if (fs->fs_contigdirs[cg] < 255)
1006 fs->fs_contigdirs[cg]++;
1007 } else {
1008 if (fs->fs_contigdirs[cg] > 0)
1009 fs->fs_contigdirs[cg]--;
1010 }
1011 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0,
1012 (allocfcn_t *)ffs_nodealloccg);
1013 if (ino == 0)
1014 goto noinodes;
1015 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
1016 if (error) {
1017 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp,
1018 FFSV_FORCEINSMQ);
1019 ffs_vfree(pvp, ino, mode);
1020 if (error1 == 0) {
1021 ip = VTOI(*vpp);
1022 if (ip->i_mode)
1023 goto dup_alloc;
1024 ip->i_flag |= IN_MODIFIED;
1025 vput(*vpp);
1026 }
1027 return (error);
1028 }
1029 ip = VTOI(*vpp);
1030 if (ip->i_mode) {
1031 dup_alloc:
1032 printf("mode = 0%o, inum = %lu, fs = %s\n",
1033 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
1034 panic("ffs_valloc: dup alloc");
1035 }
1036 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */
1037 printf("free inode %s/%lu had %ld blocks\n",
1038 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
1039 DIP_SET(ip, i_blocks, 0);
1040 }
1041 ip->i_flags = 0;
1042 DIP_SET(ip, i_flags, 0);
1043 /*
1044 * Set up a new generation number for this inode.
1045 */
1046 if (ip->i_gen == 0 || ++ip->i_gen == 0)
1047 ip->i_gen = arc4random() / 2 + 1;
1048 DIP_SET(ip, i_gen, ip->i_gen);
1049 if (fs->fs_magic == FS_UFS2_MAGIC) {
1050 vfs_timestamp(&ts);
1051 ip->i_din2->di_birthtime = ts.tv_sec;
1052 ip->i_din2->di_birthnsec = ts.tv_nsec;
1053 }
1054 ufs_prepare_reclaim(*vpp);
1055 ip->i_flag = 0;
1056 (*vpp)->v_vflag = 0;
1057 (*vpp)->v_type = VNON;
1058 if (fs->fs_magic == FS_UFS2_MAGIC)
1059 (*vpp)->v_op = &ffs_vnodeops2;
1060 else
1061 (*vpp)->v_op = &ffs_vnodeops1;
1062 return (0);
1063 noinodes:
1064 if (reclaimed == 0) {
1065 reclaimed = 1;
1066 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT);
1067 goto retry;
1068 }
1069 UFS_UNLOCK(ump);
1070 if (ppsratecheck(&lastfail, &curfail, 1)) {
1071 ffs_fserr(fs, pip->i_number, "out of inodes");
1072 uprintf("\n%s: create/symlink failed, no inodes free\n",
1073 fs->fs_fsmnt);
1074 }
1075 return (ENOSPC);
1076 }
1077
1078 /*
1079 * Find a cylinder group to place a directory.
1080 *
1081 * The policy implemented by this algorithm is to allocate a
1082 * directory inode in the same cylinder group as its parent
1083 * directory, but also to reserve space for its files inodes
1084 * and data. Restrict the number of directories which may be
1085 * allocated one after another in the same cylinder group
1086 * without intervening allocation of files.
1087 *
1088 * If we allocate a first level directory then force allocation
1089 * in another cylinder group.
1090 */
1091 static ino_t
1092 ffs_dirpref(pip)
1093 struct inode *pip;
1094 {
1095 struct fs *fs;
1096 int cg, prefcg, dirsize, cgsize;
1097 u_int avgifree, avgbfree, avgndir, curdirsize;
1098 u_int minifree, minbfree, maxndir;
1099 u_int mincg, minndir;
1100 u_int maxcontigdirs;
1101
1102 mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED);
1103 fs = pip->i_fs;
1104
1105 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
1106 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1107 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
1108
1109 /*
1110 * Force allocation in another cg if creating a first level dir.
1111 */
1112 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
1113 if (ITOV(pip)->v_vflag & VV_ROOT) {
1114 prefcg = arc4random() % fs->fs_ncg;
1115 mincg = prefcg;
1116 minndir = fs->fs_ipg;
1117 for (cg = prefcg; cg < fs->fs_ncg; cg++)
1118 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1119 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1120 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1121 mincg = cg;
1122 minndir = fs->fs_cs(fs, cg).cs_ndir;
1123 }
1124 for (cg = 0; cg < prefcg; cg++)
1125 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1126 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1127 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1128 mincg = cg;
1129 minndir = fs->fs_cs(fs, cg).cs_ndir;
1130 }
1131 return ((ino_t)(fs->fs_ipg * mincg));
1132 }
1133
1134 /*
1135 * Count various limits which used for
1136 * optimal allocation of a directory inode.
1137 */
1138 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
1139 minifree = avgifree - avgifree / 4;
1140 if (minifree < 1)
1141 minifree = 1;
1142 minbfree = avgbfree - avgbfree / 4;
1143 if (minbfree < 1)
1144 minbfree = 1;
1145 cgsize = fs->fs_fsize * fs->fs_fpg;
1146 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
1147 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
1148 if (dirsize < curdirsize)
1149 dirsize = curdirsize;
1150 if (dirsize <= 0)
1151 maxcontigdirs = 0; /* dirsize overflowed */
1152 else
1153 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
1154 if (fs->fs_avgfpdir > 0)
1155 maxcontigdirs = min(maxcontigdirs,
1156 fs->fs_ipg / fs->fs_avgfpdir);
1157 if (maxcontigdirs == 0)
1158 maxcontigdirs = 1;
1159
1160 /*
1161 * Limit number of dirs in one cg and reserve space for
1162 * regular files, but only if we have no deficit in
1163 * inodes or space.
1164 *
1165 * We are trying to find a suitable cylinder group nearby
1166 * our preferred cylinder group to place a new directory.
1167 * We scan from our preferred cylinder group forward looking
1168 * for a cylinder group that meets our criterion. If we get
1169 * to the final cylinder group and do not find anything,
1170 * we start scanning backwards from our preferred cylinder
1171 * group. The ideal would be to alternate looking forward
1172 * and backward, but that is just too complex to code for
1173 * the gain it would get. The most likely place where the
1174 * backward scan would take effect is when we start near
1175 * the end of the filesystem and do not find anything from
1176 * where we are to the end. In that case, scanning backward
1177 * will likely find us a suitable cylinder group much closer
1178 * to our desired location than if we were to start scanning
1179 * forward from the beginning of the filesystem.
1180 */
1181 prefcg = ino_to_cg(fs, pip->i_number);
1182 for (cg = prefcg; cg < fs->fs_ncg; cg++)
1183 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1184 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1185 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1186 if (fs->fs_contigdirs[cg] < maxcontigdirs)
1187 return ((ino_t)(fs->fs_ipg * cg));
1188 }
1189 for (cg = 0; cg < prefcg; cg++)
1190 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1191 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1192 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1193 if (fs->fs_contigdirs[cg] < maxcontigdirs)
1194 return ((ino_t)(fs->fs_ipg * cg));
1195 }
1196 /*
1197 * This is a backstop when we have deficit in space.
1198 */
1199 for (cg = prefcg; cg < fs->fs_ncg; cg++)
1200 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1201 return ((ino_t)(fs->fs_ipg * cg));
1202 for (cg = 0; cg < prefcg; cg++)
1203 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1204 break;
1205 return ((ino_t)(fs->fs_ipg * cg));
1206 }
1207
1208 /*
1209 * Select the desired position for the next block in a file. The file is
1210 * logically divided into sections. The first section is composed of the
1211 * direct blocks and the next fs_maxbpg blocks. Each additional section
1212 * contains fs_maxbpg blocks.
1213 *
1214 * If no blocks have been allocated in the first section, the policy is to
1215 * request a block in the same cylinder group as the inode that describes
1216 * the file. The first indirect is allocated immediately following the last
1217 * direct block and the data blocks for the first indirect immediately
1218 * follow it.
1219 *
1220 * If no blocks have been allocated in any other section, the indirect
1221 * block(s) are allocated in the same cylinder group as its inode in an
1222 * area reserved immediately following the inode blocks. The policy for
1223 * the data blocks is to place them in a cylinder group with a greater than
1224 * average number of free blocks. An appropriate cylinder group is found
1225 * by using a rotor that sweeps the cylinder groups. When a new group of
1226 * blocks is needed, the sweep begins in the cylinder group following the
1227 * cylinder group from which the previous allocation was made. The sweep
1228 * continues until a cylinder group with greater than the average number
1229 * of free blocks is found. If the allocation is for the first block in an
1230 * indirect block or the previous block is a hole, then the information on
1231 * the previous allocation is unavailable; here a best guess is made based
1232 * on the logical block number being allocated.
1233 *
1234 * If a section is already partially allocated, the policy is to
1235 * allocate blocks contiguously within the section if possible.
1236 */
1237 ufs2_daddr_t
1238 ffs_blkpref_ufs1(ip, lbn, indx, bap)
1239 struct inode *ip;
1240 ufs_lbn_t lbn;
1241 int indx;
1242 ufs1_daddr_t *bap;
1243 {
1244 struct fs *fs;
1245 u_int cg, inocg;
1246 u_int avgbfree, startcg;
1247 ufs2_daddr_t pref;
1248
1249 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1250 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1251 fs = ip->i_fs;
1252 /*
1253 * Allocation of indirect blocks is indicated by passing negative
1254 * values in indx: -1 for single indirect, -2 for double indirect,
1255 * -3 for triple indirect. As noted below, we attempt to allocate
1256 * the first indirect inline with the file data. For all later
1257 * indirect blocks, the data is often allocated in other cylinder
1258 * groups. However to speed random file access and to speed up
1259 * fsck, the filesystem reserves the first fs_metaspace blocks
1260 * (typically half of fs_minfree) of the data area of each cylinder
1261 * group to hold these later indirect blocks.
1262 */
1263 inocg = ino_to_cg(fs, ip->i_number);
1264 if (indx < 0) {
1265 /*
1266 * Our preference for indirect blocks is the zone at the
1267 * beginning of the inode's cylinder group data area that
1268 * we try to reserve for indirect blocks.
1269 */
1270 pref = cgmeta(fs, inocg);
1271 /*
1272 * If we are allocating the first indirect block, try to
1273 * place it immediately following the last direct block.
1274 */
1275 if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
1276 ip->i_din1->di_db[NDADDR - 1] != 0)
1277 pref = ip->i_din1->di_db[NDADDR - 1] + fs->fs_frag;
1278 return (pref);
1279 }
1280 /*
1281 * If we are allocating the first data block in the first indirect
1282 * block and the indirect has been allocated in the data block area,
1283 * try to place it immediately following the indirect block.
1284 */
1285 if (lbn == NDADDR) {
1286 pref = ip->i_din1->di_ib[0];
1287 if (pref != 0 && pref >= cgdata(fs, inocg) &&
1288 pref < cgbase(fs, inocg + 1))
1289 return (pref + fs->fs_frag);
1290 }
1291 /*
1292 * If we are at the beginning of a file, or we have already allocated
1293 * the maximum number of blocks per cylinder group, or we do not
1294 * have a block allocated immediately preceeding us, then we need
1295 * to decide where to start allocating new blocks.
1296 */
1297 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1298 /*
1299 * If we are allocating a directory data block, we want
1300 * to place it in the metadata area.
1301 */
1302 if ((ip->i_mode & IFMT) == IFDIR)
1303 return (cgmeta(fs, inocg));
1304 /*
1305 * Until we fill all the direct and all the first indirect's
1306 * blocks, we try to allocate in the data area of the inode's
1307 * cylinder group.
1308 */
1309 if (lbn < NDADDR + NINDIR(fs))
1310 return (cgdata(fs, inocg));
1311 /*
1312 * Find a cylinder with greater than average number of
1313 * unused data blocks.
1314 */
1315 if (indx == 0 || bap[indx - 1] == 0)
1316 startcg = inocg + lbn / fs->fs_maxbpg;
1317 else
1318 startcg = dtog(fs, bap[indx - 1]) + 1;
1319 startcg %= fs->fs_ncg;
1320 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1321 for (cg = startcg; cg < fs->fs_ncg; cg++)
1322 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1323 fs->fs_cgrotor = cg;
1324 return (cgdata(fs, cg));
1325 }
1326 for (cg = 0; cg <= startcg; cg++)
1327 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1328 fs->fs_cgrotor = cg;
1329 return (cgdata(fs, cg));
1330 }
1331 return (0);
1332 }
1333 /*
1334 * Otherwise, we just always try to lay things out contiguously.
1335 */
1336 return (bap[indx - 1] + fs->fs_frag);
1337 }
1338
1339 /*
1340 * Same as above, but for UFS2
1341 */
1342 ufs2_daddr_t
1343 ffs_blkpref_ufs2(ip, lbn, indx, bap)
1344 struct inode *ip;
1345 ufs_lbn_t lbn;
1346 int indx;
1347 ufs2_daddr_t *bap;
1348 {
1349 struct fs *fs;
1350 u_int cg, inocg;
1351 u_int avgbfree, startcg;
1352 ufs2_daddr_t pref;
1353
1354 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1355 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1356 fs = ip->i_fs;
1357 /*
1358 * Allocation of indirect blocks is indicated by passing negative
1359 * values in indx: -1 for single indirect, -2 for double indirect,
1360 * -3 for triple indirect. As noted below, we attempt to allocate
1361 * the first indirect inline with the file data. For all later
1362 * indirect blocks, the data is often allocated in other cylinder
1363 * groups. However to speed random file access and to speed up
1364 * fsck, the filesystem reserves the first fs_metaspace blocks
1365 * (typically half of fs_minfree) of the data area of each cylinder
1366 * group to hold these later indirect blocks.
1367 */
1368 inocg = ino_to_cg(fs, ip->i_number);
1369 if (indx < 0) {
1370 /*
1371 * Our preference for indirect blocks is the zone at the
1372 * beginning of the inode's cylinder group data area that
1373 * we try to reserve for indirect blocks.
1374 */
1375 pref = cgmeta(fs, inocg);
1376 /*
1377 * If we are allocating the first indirect block, try to
1378 * place it immediately following the last direct block.
1379 */
1380 if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
1381 ip->i_din2->di_db[NDADDR - 1] != 0)
1382 pref = ip->i_din2->di_db[NDADDR - 1] + fs->fs_frag;
1383 return (pref);
1384 }
1385 /*
1386 * If we are allocating the first data block in the first indirect
1387 * block and the indirect has been allocated in the data block area,
1388 * try to place it immediately following the indirect block.
1389 */
1390 if (lbn == NDADDR) {
1391 pref = ip->i_din2->di_ib[0];
1392 if (pref != 0 && pref >= cgdata(fs, inocg) &&
1393 pref < cgbase(fs, inocg + 1))
1394 return (pref + fs->fs_frag);
1395 }
1396 /*
1397 * If we are at the beginning of a file, or we have already allocated
1398 * the maximum number of blocks per cylinder group, or we do not
1399 * have a block allocated immediately preceeding us, then we need
1400 * to decide where to start allocating new blocks.
1401 */
1402 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1403 /*
1404 * If we are allocating a directory data block, we want
1405 * to place it in the metadata area.
1406 */
1407 if ((ip->i_mode & IFMT) == IFDIR)
1408 return (cgmeta(fs, inocg));
1409 /*
1410 * Until we fill all the direct and all the first indirect's
1411 * blocks, we try to allocate in the data area of the inode's
1412 * cylinder group.
1413 */
1414 if (lbn < NDADDR + NINDIR(fs))
1415 return (cgdata(fs, inocg));
1416 /*
1417 * Find a cylinder with greater than average number of
1418 * unused data blocks.
1419 */
1420 if (indx == 0 || bap[indx - 1] == 0)
1421 startcg = inocg + lbn / fs->fs_maxbpg;
1422 else
1423 startcg = dtog(fs, bap[indx - 1]) + 1;
1424 startcg %= fs->fs_ncg;
1425 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1426 for (cg = startcg; cg < fs->fs_ncg; cg++)
1427 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1428 fs->fs_cgrotor = cg;
1429 return (cgdata(fs, cg));
1430 }
1431 for (cg = 0; cg <= startcg; cg++)
1432 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1433 fs->fs_cgrotor = cg;
1434 return (cgdata(fs, cg));
1435 }
1436 return (0);
1437 }
1438 /*
1439 * Otherwise, we just always try to lay things out contiguously.
1440 */
1441 return (bap[indx - 1] + fs->fs_frag);
1442 }
1443
1444 /*
1445 * Implement the cylinder overflow algorithm.
1446 *
1447 * The policy implemented by this algorithm is:
1448 * 1) allocate the block in its requested cylinder group.
1449 * 2) quadradically rehash on the cylinder group number.
1450 * 3) brute force search for a free block.
1451 *
1452 * Must be called with the UFS lock held. Will release the lock on success
1453 * and return with it held on failure.
1454 */
1455 /*VARARGS5*/
1456 static ufs2_daddr_t
1457 ffs_hashalloc(ip, cg, pref, size, rsize, allocator)
1458 struct inode *ip;
1459 u_int cg;
1460 ufs2_daddr_t pref;
1461 int size; /* Search size for data blocks, mode for inodes */
1462 int rsize; /* Real allocated size. */
1463 allocfcn_t *allocator;
1464 {
1465 struct fs *fs;
1466 ufs2_daddr_t result;
1467 u_int i, icg = cg;
1468
1469 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1470 #ifdef INVARIANTS
1471 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1472 panic("ffs_hashalloc: allocation on suspended filesystem");
1473 #endif
1474 fs = ip->i_fs;
1475 /*
1476 * 1: preferred cylinder group
1477 */
1478 result = (*allocator)(ip, cg, pref, size, rsize);
1479 if (result)
1480 return (result);
1481 /*
1482 * 2: quadratic rehash
1483 */
1484 for (i = 1; i < fs->fs_ncg; i *= 2) {
1485 cg += i;
1486 if (cg >= fs->fs_ncg)
1487 cg -= fs->fs_ncg;
1488 result = (*allocator)(ip, cg, 0, size, rsize);
1489 if (result)
1490 return (result);
1491 }
1492 /*
1493 * 3: brute force search
1494 * Note that we start at i == 2, since 0 was checked initially,
1495 * and 1 is always checked in the quadratic rehash.
1496 */
1497 cg = (icg + 2) % fs->fs_ncg;
1498 for (i = 2; i < fs->fs_ncg; i++) {
1499 result = (*allocator)(ip, cg, 0, size, rsize);
1500 if (result)
1501 return (result);
1502 cg++;
1503 if (cg == fs->fs_ncg)
1504 cg = 0;
1505 }
1506 return (0);
1507 }
1508
1509 /*
1510 * Determine whether a fragment can be extended.
1511 *
1512 * Check to see if the necessary fragments are available, and
1513 * if they are, allocate them.
1514 */
1515 static ufs2_daddr_t
1516 ffs_fragextend(ip, cg, bprev, osize, nsize)
1517 struct inode *ip;
1518 u_int cg;
1519 ufs2_daddr_t bprev;
1520 int osize, nsize;
1521 {
1522 struct fs *fs;
1523 struct cg *cgp;
1524 struct buf *bp;
1525 struct ufsmount *ump;
1526 int nffree;
1527 long bno;
1528 int frags, bbase;
1529 int i, error;
1530 u_int8_t *blksfree;
1531
1532 ump = ip->i_ump;
1533 fs = ip->i_fs;
1534 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1535 return (0);
1536 frags = numfrags(fs, nsize);
1537 bbase = fragnum(fs, bprev);
1538 if (bbase > fragnum(fs, (bprev + frags - 1))) {
1539 /* cannot extend across a block boundary */
1540 return (0);
1541 }
1542 UFS_UNLOCK(ump);
1543 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1544 (int)fs->fs_cgsize, NOCRED, &bp);
1545 if (error)
1546 goto fail;
1547 cgp = (struct cg *)bp->b_data;
1548 if (!cg_chkmagic(cgp))
1549 goto fail;
1550 bp->b_xflags |= BX_BKGRDWRITE;
1551 cgp->cg_old_time = cgp->cg_time = time_second;
1552 bno = dtogd(fs, bprev);
1553 blksfree = cg_blksfree(cgp);
1554 for (i = numfrags(fs, osize); i < frags; i++)
1555 if (isclr(blksfree, bno + i))
1556 goto fail;
1557 /*
1558 * the current fragment can be extended
1559 * deduct the count on fragment being extended into
1560 * increase the count on the remaining fragment (if any)
1561 * allocate the extended piece
1562 */
1563 for (i = frags; i < fs->fs_frag - bbase; i++)
1564 if (isclr(blksfree, bno + i))
1565 break;
1566 cgp->cg_frsum[i - numfrags(fs, osize)]--;
1567 if (i != frags)
1568 cgp->cg_frsum[i - frags]++;
1569 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
1570 clrbit(blksfree, bno + i);
1571 cgp->cg_cs.cs_nffree--;
1572 nffree++;
1573 }
1574 UFS_LOCK(ump);
1575 fs->fs_cstotal.cs_nffree -= nffree;
1576 fs->fs_cs(fs, cg).cs_nffree -= nffree;
1577 fs->fs_fmod = 1;
1578 ACTIVECLEAR(fs, cg);
1579 UFS_UNLOCK(ump);
1580 if (DOINGSOFTDEP(ITOV(ip)))
1581 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev,
1582 frags, numfrags(fs, osize));
1583 bdwrite(bp);
1584 return (bprev);
1585
1586 fail:
1587 brelse(bp);
1588 UFS_LOCK(ump);
1589 return (0);
1590
1591 }
1592
1593 /*
1594 * Determine whether a block can be allocated.
1595 *
1596 * Check to see if a block of the appropriate size is available,
1597 * and if it is, allocate it.
1598 */
1599 static ufs2_daddr_t
1600 ffs_alloccg(ip, cg, bpref, size, rsize)
1601 struct inode *ip;
1602 u_int cg;
1603 ufs2_daddr_t bpref;
1604 int size;
1605 int rsize;
1606 {
1607 struct fs *fs;
1608 struct cg *cgp;
1609 struct buf *bp;
1610 struct ufsmount *ump;
1611 ufs1_daddr_t bno;
1612 ufs2_daddr_t blkno;
1613 int i, allocsiz, error, frags;
1614 u_int8_t *blksfree;
1615
1616 ump = ip->i_ump;
1617 fs = ip->i_fs;
1618 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1619 return (0);
1620 UFS_UNLOCK(ump);
1621 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1622 (int)fs->fs_cgsize, NOCRED, &bp);
1623 if (error)
1624 goto fail;
1625 cgp = (struct cg *)bp->b_data;
1626 if (!cg_chkmagic(cgp) ||
1627 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1628 goto fail;
1629 bp->b_xflags |= BX_BKGRDWRITE;
1630 cgp->cg_old_time = cgp->cg_time = time_second;
1631 if (size == fs->fs_bsize) {
1632 UFS_LOCK(ump);
1633 blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1634 ACTIVECLEAR(fs, cg);
1635 UFS_UNLOCK(ump);
1636 bdwrite(bp);
1637 return (blkno);
1638 }
1639 /*
1640 * check to see if any fragments are already available
1641 * allocsiz is the size which will be allocated, hacking
1642 * it down to a smaller size if necessary
1643 */
1644 blksfree = cg_blksfree(cgp);
1645 frags = numfrags(fs, size);
1646 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1647 if (cgp->cg_frsum[allocsiz] != 0)
1648 break;
1649 if (allocsiz == fs->fs_frag) {
1650 /*
1651 * no fragments were available, so a block will be
1652 * allocated, and hacked up
1653 */
1654 if (cgp->cg_cs.cs_nbfree == 0)
1655 goto fail;
1656 UFS_LOCK(ump);
1657 blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1658 ACTIVECLEAR(fs, cg);
1659 UFS_UNLOCK(ump);
1660 bdwrite(bp);
1661 return (blkno);
1662 }
1663 KASSERT(size == rsize,
1664 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize));
1665 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1666 if (bno < 0)
1667 goto fail;
1668 for (i = 0; i < frags; i++)
1669 clrbit(blksfree, bno + i);
1670 cgp->cg_cs.cs_nffree -= frags;
1671 cgp->cg_frsum[allocsiz]--;
1672 if (frags != allocsiz)
1673 cgp->cg_frsum[allocsiz - frags]++;
1674 UFS_LOCK(ump);
1675 fs->fs_cstotal.cs_nffree -= frags;
1676 fs->fs_cs(fs, cg).cs_nffree -= frags;
1677 fs->fs_fmod = 1;
1678 blkno = cgbase(fs, cg) + bno;
1679 ACTIVECLEAR(fs, cg);
1680 UFS_UNLOCK(ump);
1681 if (DOINGSOFTDEP(ITOV(ip)))
1682 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0);
1683 bdwrite(bp);
1684 return (blkno);
1685
1686 fail:
1687 brelse(bp);
1688 UFS_LOCK(ump);
1689 return (0);
1690 }
1691
1692 /*
1693 * Allocate a block in a cylinder group.
1694 *
1695 * This algorithm implements the following policy:
1696 * 1) allocate the requested block.
1697 * 2) allocate a rotationally optimal block in the same cylinder.
1698 * 3) allocate the next available block on the block rotor for the
1699 * specified cylinder group.
1700 * Note that this routine only allocates fs_bsize blocks; these
1701 * blocks may be fragmented by the routine that allocates them.
1702 */
1703 static ufs2_daddr_t
1704 ffs_alloccgblk(ip, bp, bpref, size)
1705 struct inode *ip;
1706 struct buf *bp;
1707 ufs2_daddr_t bpref;
1708 int size;
1709 {
1710 struct fs *fs;
1711 struct cg *cgp;
1712 struct ufsmount *ump;
1713 ufs1_daddr_t bno;
1714 ufs2_daddr_t blkno;
1715 u_int8_t *blksfree;
1716 int i, cgbpref;
1717
1718 fs = ip->i_fs;
1719 ump = ip->i_ump;
1720 mtx_assert(UFS_MTX(ump), MA_OWNED);
1721 cgp = (struct cg *)bp->b_data;
1722 blksfree = cg_blksfree(cgp);
1723 if (bpref == 0) {
1724 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag;
1725 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
1726 /* map bpref to correct zone in this cg */
1727 if (bpref < cgdata(fs, cgbpref))
1728 bpref = cgmeta(fs, cgp->cg_cgx);
1729 else
1730 bpref = cgdata(fs, cgp->cg_cgx);
1731 }
1732 /*
1733 * if the requested block is available, use it
1734 */
1735 bno = dtogd(fs, blknum(fs, bpref));
1736 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1737 goto gotit;
1738 /*
1739 * Take the next available block in this cylinder group.
1740 */
1741 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1742 if (bno < 0)
1743 return (0);
1744 /* Update cg_rotor only if allocated from the data zone */
1745 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
1746 cgp->cg_rotor = bno;
1747 gotit:
1748 blkno = fragstoblks(fs, bno);
1749 ffs_clrblock(fs, blksfree, (long)blkno);
1750 ffs_clusteracct(fs, cgp, blkno, -1);
1751 cgp->cg_cs.cs_nbfree--;
1752 fs->fs_cstotal.cs_nbfree--;
1753 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1754 fs->fs_fmod = 1;
1755 blkno = cgbase(fs, cgp->cg_cgx) + bno;
1756 /*
1757 * If the caller didn't want the whole block free the frags here.
1758 */
1759 size = numfrags(fs, size);
1760 if (size != fs->fs_frag) {
1761 bno = dtogd(fs, blkno);
1762 for (i = size; i < fs->fs_frag; i++)
1763 setbit(blksfree, bno + i);
1764 i = fs->fs_frag - size;
1765 cgp->cg_cs.cs_nffree += i;
1766 fs->fs_cstotal.cs_nffree += i;
1767 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i;
1768 fs->fs_fmod = 1;
1769 cgp->cg_frsum[i]++;
1770 }
1771 /* XXX Fixme. */
1772 UFS_UNLOCK(ump);
1773 if (DOINGSOFTDEP(ITOV(ip)))
1774 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno,
1775 size, 0);
1776 UFS_LOCK(ump);
1777 return (blkno);
1778 }
1779
1780 /*
1781 * Determine whether a cluster can be allocated.
1782 *
1783 * We do not currently check for optimal rotational layout if there
1784 * are multiple choices in the same cylinder group. Instead we just
1785 * take the first one that we find following bpref.
1786 */
1787 static ufs2_daddr_t
1788 ffs_clusteralloc(ip, cg, bpref, len, unused)
1789 struct inode *ip;
1790 u_int cg;
1791 ufs2_daddr_t bpref;
1792 int len;
1793 int unused;
1794 {
1795 struct fs *fs;
1796 struct cg *cgp;
1797 struct buf *bp;
1798 struct ufsmount *ump;
1799 int i, run, bit, map, got;
1800 ufs2_daddr_t bno;
1801 u_char *mapp;
1802 int32_t *lp;
1803 u_int8_t *blksfree;
1804
1805 fs = ip->i_fs;
1806 ump = ip->i_ump;
1807 if (fs->fs_maxcluster[cg] < len)
1808 return (0);
1809 UFS_UNLOCK(ump);
1810 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1811 NOCRED, &bp))
1812 goto fail_lock;
1813 cgp = (struct cg *)bp->b_data;
1814 if (!cg_chkmagic(cgp))
1815 goto fail_lock;
1816 bp->b_xflags |= BX_BKGRDWRITE;
1817 /*
1818 * Check to see if a cluster of the needed size (or bigger) is
1819 * available in this cylinder group.
1820 */
1821 lp = &cg_clustersum(cgp)[len];
1822 for (i = len; i <= fs->fs_contigsumsize; i++)
1823 if (*lp++ > 0)
1824 break;
1825 if (i > fs->fs_contigsumsize) {
1826 /*
1827 * This is the first time looking for a cluster in this
1828 * cylinder group. Update the cluster summary information
1829 * to reflect the true maximum sized cluster so that
1830 * future cluster allocation requests can avoid reading
1831 * the cylinder group map only to find no clusters.
1832 */
1833 lp = &cg_clustersum(cgp)[len - 1];
1834 for (i = len - 1; i > 0; i--)
1835 if (*lp-- > 0)
1836 break;
1837 UFS_LOCK(ump);
1838 fs->fs_maxcluster[cg] = i;
1839 goto fail;
1840 }
1841 /*
1842 * Search the cluster map to find a big enough cluster.
1843 * We take the first one that we find, even if it is larger
1844 * than we need as we prefer to get one close to the previous
1845 * block allocation. We do not search before the current
1846 * preference point as we do not want to allocate a block
1847 * that is allocated before the previous one (as we will
1848 * then have to wait for another pass of the elevator
1849 * algorithm before it will be read). We prefer to fail and
1850 * be recalled to try an allocation in the next cylinder group.
1851 */
1852 if (dtog(fs, bpref) != cg)
1853 bpref = cgdata(fs, cg);
1854 else
1855 bpref = blknum(fs, bpref);
1856 bpref = fragstoblks(fs, dtogd(fs, bpref));
1857 mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1858 map = *mapp++;
1859 bit = 1 << (bpref % NBBY);
1860 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1861 if ((map & bit) == 0) {
1862 run = 0;
1863 } else {
1864 run++;
1865 if (run == len)
1866 break;
1867 }
1868 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1869 bit <<= 1;
1870 } else {
1871 map = *mapp++;
1872 bit = 1;
1873 }
1874 }
1875 if (got >= cgp->cg_nclusterblks)
1876 goto fail_lock;
1877 /*
1878 * Allocate the cluster that we have found.
1879 */
1880 blksfree = cg_blksfree(cgp);
1881 for (i = 1; i <= len; i++)
1882 if (!ffs_isblock(fs, blksfree, got - run + i))
1883 panic("ffs_clusteralloc: map mismatch");
1884 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
1885 if (dtog(fs, bno) != cg)
1886 panic("ffs_clusteralloc: allocated out of group");
1887 len = blkstofrags(fs, len);
1888 UFS_LOCK(ump);
1889 for (i = 0; i < len; i += fs->fs_frag)
1890 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i)
1891 panic("ffs_clusteralloc: lost block");
1892 ACTIVECLEAR(fs, cg);
1893 UFS_UNLOCK(ump);
1894 bdwrite(bp);
1895 return (bno);
1896
1897 fail_lock:
1898 UFS_LOCK(ump);
1899 fail:
1900 brelse(bp);
1901 return (0);
1902 }
1903
1904 static inline struct buf *
1905 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags)
1906 {
1907 struct fs *fs;
1908
1909 fs = ip->i_fs;
1910 return (getblk(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs,
1911 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0,
1912 gbflags));
1913 }
1914
1915 /*
1916 * Determine whether an inode can be allocated.
1917 *
1918 * Check to see if an inode is available, and if it is,
1919 * allocate it using the following policy:
1920 * 1) allocate the requested inode.
1921 * 2) allocate the next available inode after the requested
1922 * inode in the specified cylinder group.
1923 */
1924 static ufs2_daddr_t
1925 ffs_nodealloccg(ip, cg, ipref, mode, unused)
1926 struct inode *ip;
1927 u_int cg;
1928 ufs2_daddr_t ipref;
1929 int mode;
1930 int unused;
1931 {
1932 struct fs *fs;
1933 struct cg *cgp;
1934 struct buf *bp, *ibp;
1935 struct ufsmount *ump;
1936 u_int8_t *inosused, *loc;
1937 struct ufs2_dinode *dp2;
1938 int error, start, len, i;
1939 u_int32_t old_initediblk;
1940
1941 fs = ip->i_fs;
1942 ump = ip->i_ump;
1943 check_nifree:
1944 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1945 return (0);
1946 UFS_UNLOCK(ump);
1947 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1948 (int)fs->fs_cgsize, NOCRED, &bp);
1949 if (error) {
1950 brelse(bp);
1951 UFS_LOCK(ump);
1952 return (0);
1953 }
1954 cgp = (struct cg *)bp->b_data;
1955 restart:
1956 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1957 brelse(bp);
1958 UFS_LOCK(ump);
1959 return (0);
1960 }
1961 bp->b_xflags |= BX_BKGRDWRITE;
1962 inosused = cg_inosused(cgp);
1963 if (ipref) {
1964 ipref %= fs->fs_ipg;
1965 if (isclr(inosused, ipref))
1966 goto gotit;
1967 }
1968 start = cgp->cg_irotor / NBBY;
1969 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1970 loc = memcchr(&inosused[start], 0xff, len);
1971 if (loc == NULL) {
1972 len = start + 1;
1973 start = 0;
1974 loc = memcchr(&inosused[start], 0xff, len);
1975 if (loc == NULL) {
1976 printf("cg = %d, irotor = %ld, fs = %s\n",
1977 cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
1978 panic("ffs_nodealloccg: map corrupted");
1979 /* NOTREACHED */
1980 }
1981 }
1982 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1;
1983 gotit:
1984 /*
1985 * Check to see if we need to initialize more inodes.
1986 */
1987 if (fs->fs_magic == FS_UFS2_MAGIC &&
1988 ipref + INOPB(fs) > cgp->cg_initediblk &&
1989 cgp->cg_initediblk < cgp->cg_niblk) {
1990 old_initediblk = cgp->cg_initediblk;
1991
1992 /*
1993 * Free the cylinder group lock before writing the
1994 * initialized inode block. Entering the
1995 * babarrierwrite() with the cylinder group lock
1996 * causes lock order violation between the lock and
1997 * snaplk.
1998 *
1999 * Another thread can decide to initialize the same
2000 * inode block, but whichever thread first gets the
2001 * cylinder group lock after writing the newly
2002 * allocated inode block will update it and the other
2003 * will realize that it has lost and leave the
2004 * cylinder group unchanged.
2005 */
2006 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT);
2007 brelse(bp);
2008 if (ibp == NULL) {
2009 /*
2010 * The inode block buffer is already owned by
2011 * another thread, which must initialize it.
2012 * Wait on the buffer to allow another thread
2013 * to finish the updates, with dropped cg
2014 * buffer lock, then retry.
2015 */
2016 ibp = getinobuf(ip, cg, old_initediblk, 0);
2017 brelse(ibp);
2018 UFS_LOCK(ump);
2019 goto check_nifree;
2020 }
2021 bzero(ibp->b_data, (int)fs->fs_bsize);
2022 dp2 = (struct ufs2_dinode *)(ibp->b_data);
2023 for (i = 0; i < INOPB(fs); i++) {
2024 dp2->di_gen = arc4random() / 2 + 1;
2025 dp2++;
2026 }
2027 /*
2028 * Rather than adding a soft updates dependency to ensure
2029 * that the new inode block is written before it is claimed
2030 * by the cylinder group map, we just do a barrier write
2031 * here. The barrier write will ensure that the inode block
2032 * gets written before the updated cylinder group map can be
2033 * written. The barrier write should only slow down bulk
2034 * loading of newly created filesystems.
2035 */
2036 babarrierwrite(ibp);
2037
2038 /*
2039 * After the inode block is written, try to update the
2040 * cg initediblk pointer. If another thread beat us
2041 * to it, then leave it unchanged as the other thread
2042 * has already set it correctly.
2043 */
2044 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
2045 (int)fs->fs_cgsize, NOCRED, &bp);
2046 UFS_LOCK(ump);
2047 ACTIVECLEAR(fs, cg);
2048 UFS_UNLOCK(ump);
2049 if (error != 0) {
2050 brelse(bp);
2051 return (error);
2052 }
2053 cgp = (struct cg *)bp->b_data;
2054 if (cgp->cg_initediblk == old_initediblk)
2055 cgp->cg_initediblk += INOPB(fs);
2056 goto restart;
2057 }
2058 cgp->cg_old_time = cgp->cg_time = time_second;
2059 cgp->cg_irotor = ipref;
2060 UFS_LOCK(ump);
2061 ACTIVECLEAR(fs, cg);
2062 setbit(inosused, ipref);
2063 cgp->cg_cs.cs_nifree--;
2064 fs->fs_cstotal.cs_nifree--;
2065 fs->fs_cs(fs, cg).cs_nifree--;
2066 fs->fs_fmod = 1;
2067 if ((mode & IFMT) == IFDIR) {
2068 cgp->cg_cs.cs_ndir++;
2069 fs->fs_cstotal.cs_ndir++;
2070 fs->fs_cs(fs, cg).cs_ndir++;
2071 }
2072 UFS_UNLOCK(ump);
2073 if (DOINGSOFTDEP(ITOV(ip)))
2074 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode);
2075 bdwrite(bp);
2076 return ((ino_t)(cg * fs->fs_ipg + ipref));
2077 }
2078
2079 /*
2080 * Free a block or fragment.
2081 *
2082 * The specified block or fragment is placed back in the
2083 * free map. If a fragment is deallocated, a possible
2084 * block reassembly is checked.
2085 */
2086 static void
2087 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd)
2088 struct ufsmount *ump;
2089 struct fs *fs;
2090 struct vnode *devvp;
2091 ufs2_daddr_t bno;
2092 long size;
2093 ino_t inum;
2094 struct workhead *dephd;
2095 {
2096 struct mount *mp;
2097 struct cg *cgp;
2098 struct buf *bp;
2099 ufs1_daddr_t fragno, cgbno;
2100 ufs2_daddr_t cgblkno;
2101 int i, blk, frags, bbase;
2102 u_int cg;
2103 u_int8_t *blksfree;
2104 struct cdev *dev;
2105
2106 cg = dtog(fs, bno);
2107 if (devvp->v_type == VREG) {
2108 /* devvp is a snapshot */
2109 dev = VTOI(devvp)->i_devvp->v_rdev;
2110 cgblkno = fragstoblks(fs, cgtod(fs, cg));
2111 } else {
2112 /* devvp is a normal disk device */
2113 dev = devvp->v_rdev;
2114 cgblkno = fsbtodb(fs, cgtod(fs, cg));
2115 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg");
2116 }
2117 #ifdef INVARIANTS
2118 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
2119 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
2120 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
2121 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
2122 size, fs->fs_fsmnt);
2123 panic("ffs_blkfree_cg: bad size");
2124 }
2125 #endif
2126 if ((u_int)bno >= fs->fs_size) {
2127 printf("bad block %jd, ino %lu\n", (intmax_t)bno,
2128 (u_long)inum);
2129 ffs_fserr(fs, inum, "bad block");
2130 return;
2131 }
2132 if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) {
2133 brelse(bp);
2134 return;
2135 }
2136 cgp = (struct cg *)bp->b_data;
2137 if (!cg_chkmagic(cgp)) {
2138 brelse(bp);
2139 return;
2140 }
2141 bp->b_xflags |= BX_BKGRDWRITE;
2142 cgp->cg_old_time = cgp->cg_time = time_second;
2143 cgbno = dtogd(fs, bno);
2144 blksfree = cg_blksfree(cgp);
2145 UFS_LOCK(ump);
2146 if (size == fs->fs_bsize) {
2147 fragno = fragstoblks(fs, cgbno);
2148 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
2149 if (devvp->v_type == VREG) {
2150 UFS_UNLOCK(ump);
2151 /* devvp is a snapshot */
2152 brelse(bp);
2153 return;
2154 }
2155 printf("dev = %s, block = %jd, fs = %s\n",
2156 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
2157 panic("ffs_blkfree_cg: freeing free block");
2158 }
2159 ffs_setblock(fs, blksfree, fragno);
2160 ffs_clusteracct(fs, cgp, fragno, 1);
2161 cgp->cg_cs.cs_nbfree++;
2162 fs->fs_cstotal.cs_nbfree++;
2163 fs->fs_cs(fs, cg).cs_nbfree++;
2164 } else {
2165 bbase = cgbno - fragnum(fs, cgbno);
2166 /*
2167 * decrement the counts associated with the old frags
2168 */
2169 blk = blkmap(fs, blksfree, bbase);
2170 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
2171 /*
2172 * deallocate the fragment
2173 */
2174 frags = numfrags(fs, size);
2175 for (i = 0; i < frags; i++) {
2176 if (isset(blksfree, cgbno + i)) {
2177 printf("dev = %s, block = %jd, fs = %s\n",
2178 devtoname(dev), (intmax_t)(bno + i),
2179 fs->fs_fsmnt);
2180 panic("ffs_blkfree_cg: freeing free frag");
2181 }
2182 setbit(blksfree, cgbno + i);
2183 }
2184 cgp->cg_cs.cs_nffree += i;
2185 fs->fs_cstotal.cs_nffree += i;
2186 fs->fs_cs(fs, cg).cs_nffree += i;
2187 /*
2188 * add back in counts associated with the new frags
2189 */
2190 blk = blkmap(fs, blksfree, bbase);
2191 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
2192 /*
2193 * if a complete block has been reassembled, account for it
2194 */
2195 fragno = fragstoblks(fs, bbase);
2196 if (ffs_isblock(fs, blksfree, fragno)) {
2197 cgp->cg_cs.cs_nffree -= fs->fs_frag;
2198 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
2199 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
2200 ffs_clusteracct(fs, cgp, fragno, 1);
2201 cgp->cg_cs.cs_nbfree++;
2202 fs->fs_cstotal.cs_nbfree++;
2203 fs->fs_cs(fs, cg).cs_nbfree++;
2204 }
2205 }
2206 fs->fs_fmod = 1;
2207 ACTIVECLEAR(fs, cg);
2208 UFS_UNLOCK(ump);
2209 mp = UFSTOVFS(ump);
2210 if (MOUNTEDSOFTDEP(mp) && devvp->v_type != VREG)
2211 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2212 numfrags(fs, size), dephd);
2213 bdwrite(bp);
2214 }
2215
2216 TASKQUEUE_DEFINE_THREAD(ffs_trim);
2217
2218 struct ffs_blkfree_trim_params {
2219 struct task task;
2220 struct ufsmount *ump;
2221 struct vnode *devvp;
2222 ufs2_daddr_t bno;
2223 long size;
2224 ino_t inum;
2225 struct workhead *pdephd;
2226 struct workhead dephd;
2227 };
2228
2229 static void
2230 ffs_blkfree_trim_task(ctx, pending)
2231 void *ctx;
2232 int pending;
2233 {
2234 struct ffs_blkfree_trim_params *tp;
2235
2236 tp = ctx;
2237 ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size,
2238 tp->inum, tp->pdephd);
2239 vn_finished_secondary_write(UFSTOVFS(tp->ump));
2240 free(tp, M_TEMP);
2241 }
2242
2243 static void
2244 ffs_blkfree_trim_completed(bip)
2245 struct bio *bip;
2246 {
2247 struct ffs_blkfree_trim_params *tp;
2248
2249 tp = bip->bio_caller2;
2250 g_destroy_bio(bip);
2251 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
2252 taskqueue_enqueue(taskqueue_ffs_trim, &tp->task);
2253 }
2254
2255 void
2256 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd)
2257 struct ufsmount *ump;
2258 struct fs *fs;
2259 struct vnode *devvp;
2260 ufs2_daddr_t bno;
2261 long size;
2262 ino_t inum;
2263 enum vtype vtype;
2264 struct workhead *dephd;
2265 {
2266 struct mount *mp;
2267 struct bio *bip;
2268 struct ffs_blkfree_trim_params *tp;
2269
2270 /*
2271 * Check to see if a snapshot wants to claim the block.
2272 * Check that devvp is a normal disk device, not a snapshot,
2273 * it has a snapshot(s) associated with it, and one of the
2274 * snapshots wants to claim the block.
2275 */
2276 if (devvp->v_type != VREG &&
2277 (devvp->v_vflag & VV_COPYONWRITE) &&
2278 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) {
2279 return;
2280 }
2281 /*
2282 * Nothing to delay if TRIM is disabled, or the operation is
2283 * performed on the snapshot.
2284 */
2285 if (!ump->um_candelete || devvp->v_type == VREG) {
2286 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd);
2287 return;
2288 }
2289
2290 /*
2291 * Postpone the set of the free bit in the cg bitmap until the
2292 * BIO_DELETE is completed. Otherwise, due to disk queue
2293 * reordering, TRIM might be issued after we reuse the block
2294 * and write some new data into it.
2295 */
2296 tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK);
2297 tp->ump = ump;
2298 tp->devvp = devvp;
2299 tp->bno = bno;
2300 tp->size = size;
2301 tp->inum = inum;
2302 if (dephd != NULL) {
2303 LIST_INIT(&tp->dephd);
2304 LIST_SWAP(dephd, &tp->dephd, worklist, wk_list);
2305 tp->pdephd = &tp->dephd;
2306 } else
2307 tp->pdephd = NULL;
2308
2309 bip = g_alloc_bio();
2310 bip->bio_cmd = BIO_DELETE;
2311 bip->bio_offset = dbtob(fsbtodb(fs, bno));
2312 bip->bio_done = ffs_blkfree_trim_completed;
2313 bip->bio_length = size;
2314 bip->bio_caller2 = tp;
2315
2316 mp = UFSTOVFS(ump);
2317 vn_start_secondary_write(NULL, &mp, 0);
2318 g_io_request(bip, (struct g_consumer *)devvp->v_bufobj.bo_private);
2319 }
2320
2321 #ifdef INVARIANTS
2322 /*
2323 * Verify allocation of a block or fragment. Returns true if block or
2324 * fragment is allocated, false if it is free.
2325 */
2326 static int
2327 ffs_checkblk(ip, bno, size)
2328 struct inode *ip;
2329 ufs2_daddr_t bno;
2330 long size;
2331 {
2332 struct fs *fs;
2333 struct cg *cgp;
2334 struct buf *bp;
2335 ufs1_daddr_t cgbno;
2336 int i, error, frags, free;
2337 u_int8_t *blksfree;
2338
2339 fs = ip->i_fs;
2340 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
2341 printf("bsize = %ld, size = %ld, fs = %s\n",
2342 (long)fs->fs_bsize, size, fs->fs_fsmnt);
2343 panic("ffs_checkblk: bad size");
2344 }
2345 if ((u_int)bno >= fs->fs_size)
2346 panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
2347 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
2348 (int)fs->fs_cgsize, NOCRED, &bp);
2349 if (error)
2350 panic("ffs_checkblk: cg bread failed");
2351 cgp = (struct cg *)bp->b_data;
2352 if (!cg_chkmagic(cgp))
2353 panic("ffs_checkblk: cg magic mismatch");
2354 bp->b_xflags |= BX_BKGRDWRITE;
2355 blksfree = cg_blksfree(cgp);
2356 cgbno = dtogd(fs, bno);
2357 if (size == fs->fs_bsize) {
2358 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
2359 } else {
2360 frags = numfrags(fs, size);
2361 for (free = 0, i = 0; i < frags; i++)
2362 if (isset(blksfree, cgbno + i))
2363 free++;
2364 if (free != 0 && free != frags)
2365 panic("ffs_checkblk: partially free fragment");
2366 }
2367 brelse(bp);
2368 return (!free);
2369 }
2370 #endif /* INVARIANTS */
2371
2372 /*
2373 * Free an inode.
2374 */
2375 int
2376 ffs_vfree(pvp, ino, mode)
2377 struct vnode *pvp;
2378 ino_t ino;
2379 int mode;
2380 {
2381 struct inode *ip;
2382
2383 if (DOINGSOFTDEP(pvp)) {
2384 softdep_freefile(pvp, ino, mode);
2385 return (0);
2386 }
2387 ip = VTOI(pvp);
2388 return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode,
2389 NULL));
2390 }
2391
2392 /*
2393 * Do the actual free operation.
2394 * The specified inode is placed back in the free map.
2395 */
2396 int
2397 ffs_freefile(ump, fs, devvp, ino, mode, wkhd)
2398 struct ufsmount *ump;
2399 struct fs *fs;
2400 struct vnode *devvp;
2401 ino_t ino;
2402 int mode;
2403 struct workhead *wkhd;
2404 {
2405 struct cg *cgp;
2406 struct buf *bp;
2407 ufs2_daddr_t cgbno;
2408 int error;
2409 u_int cg;
2410 u_int8_t *inosused;
2411 struct cdev *dev;
2412
2413 cg = ino_to_cg(fs, ino);
2414 if (devvp->v_type == VREG) {
2415 /* devvp is a snapshot */
2416 dev = VTOI(devvp)->i_devvp->v_rdev;
2417 cgbno = fragstoblks(fs, cgtod(fs, cg));
2418 } else {
2419 /* devvp is a normal disk device */
2420 dev = devvp->v_rdev;
2421 cgbno = fsbtodb(fs, cgtod(fs, cg));
2422 }
2423 if (ino >= fs->fs_ipg * fs->fs_ncg)
2424 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s",
2425 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt);
2426 if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
2427 brelse(bp);
2428 return (error);
2429 }
2430 cgp = (struct cg *)bp->b_data;
2431 if (!cg_chkmagic(cgp)) {
2432 brelse(bp);
2433 return (0);
2434 }
2435 bp->b_xflags |= BX_BKGRDWRITE;
2436 cgp->cg_old_time = cgp->cg_time = time_second;
2437 inosused = cg_inosused(cgp);
2438 ino %= fs->fs_ipg;
2439 if (isclr(inosused, ino)) {
2440 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev),
2441 (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt);
2442 if (fs->fs_ronly == 0)
2443 panic("ffs_freefile: freeing free inode");
2444 }
2445 clrbit(inosused, ino);
2446 if (ino < cgp->cg_irotor)
2447 cgp->cg_irotor = ino;
2448 cgp->cg_cs.cs_nifree++;
2449 UFS_LOCK(ump);
2450 fs->fs_cstotal.cs_nifree++;
2451 fs->fs_cs(fs, cg).cs_nifree++;
2452 if ((mode & IFMT) == IFDIR) {
2453 cgp->cg_cs.cs_ndir--;
2454 fs->fs_cstotal.cs_ndir--;
2455 fs->fs_cs(fs, cg).cs_ndir--;
2456 }
2457 fs->fs_fmod = 1;
2458 ACTIVECLEAR(fs, cg);
2459 UFS_UNLOCK(ump);
2460 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type != VREG)
2461 softdep_setup_inofree(UFSTOVFS(ump), bp,
2462 ino + cg * fs->fs_ipg, wkhd);
2463 bdwrite(bp);
2464 return (0);
2465 }
2466
2467 /*
2468 * Check to see if a file is free.
2469 */
2470 int
2471 ffs_checkfreefile(fs, devvp, ino)
2472 struct fs *fs;
2473 struct vnode *devvp;
2474 ino_t ino;
2475 {
2476 struct cg *cgp;
2477 struct buf *bp;
2478 ufs2_daddr_t cgbno;
2479 int ret;
2480 u_int cg;
2481 u_int8_t *inosused;
2482
2483 cg = ino_to_cg(fs, ino);
2484 if (devvp->v_type == VREG) {
2485 /* devvp is a snapshot */
2486 cgbno = fragstoblks(fs, cgtod(fs, cg));
2487 } else {
2488 /* devvp is a normal disk device */
2489 cgbno = fsbtodb(fs, cgtod(fs, cg));
2490 }
2491 if (ino >= fs->fs_ipg * fs->fs_ncg)
2492 return (1);
2493 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
2494 brelse(bp);
2495 return (1);
2496 }
2497 cgp = (struct cg *)bp->b_data;
2498 if (!cg_chkmagic(cgp)) {
2499 brelse(bp);
2500 return (1);
2501 }
2502 inosused = cg_inosused(cgp);
2503 ino %= fs->fs_ipg;
2504 ret = isclr(inosused, ino);
2505 brelse(bp);
2506 return (ret);
2507 }
2508
2509 /*
2510 * Find a block of the specified size in the specified cylinder group.
2511 *
2512 * It is a panic if a request is made to find a block if none are
2513 * available.
2514 */
2515 static ufs1_daddr_t
2516 ffs_mapsearch(fs, cgp, bpref, allocsiz)
2517 struct fs *fs;
2518 struct cg *cgp;
2519 ufs2_daddr_t bpref;
2520 int allocsiz;
2521 {
2522 ufs1_daddr_t bno;
2523 int start, len, loc, i;
2524 int blk, field, subfield, pos;
2525 u_int8_t *blksfree;
2526
2527 /*
2528 * find the fragment by searching through the free block
2529 * map for an appropriate bit pattern
2530 */
2531 if (bpref)
2532 start = dtogd(fs, bpref) / NBBY;
2533 else
2534 start = cgp->cg_frotor / NBBY;
2535 blksfree = cg_blksfree(cgp);
2536 len = howmany(fs->fs_fpg, NBBY) - start;
2537 loc = scanc((u_int)len, (u_char *)&blksfree[start],
2538 fragtbl[fs->fs_frag],
2539 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2540 if (loc == 0) {
2541 len = start + 1;
2542 start = 0;
2543 loc = scanc((u_int)len, (u_char *)&blksfree[0],
2544 fragtbl[fs->fs_frag],
2545 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2546 if (loc == 0) {
2547 printf("start = %d, len = %d, fs = %s\n",
2548 start, len, fs->fs_fsmnt);
2549 panic("ffs_alloccg: map corrupted");
2550 /* NOTREACHED */
2551 }
2552 }
2553 bno = (start + len - loc) * NBBY;
2554 cgp->cg_frotor = bno;
2555 /*
2556 * found the byte in the map
2557 * sift through the bits to find the selected frag
2558 */
2559 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2560 blk = blkmap(fs, blksfree, bno);
2561 blk <<= 1;
2562 field = around[allocsiz];
2563 subfield = inside[allocsiz];
2564 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2565 if ((blk & field) == subfield)
2566 return (bno + pos);
2567 field <<= 1;
2568 subfield <<= 1;
2569 }
2570 }
2571 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
2572 panic("ffs_alloccg: block not in map");
2573 return (-1);
2574 }
2575
2576 /*
2577 * Fserr prints the name of a filesystem with an error diagnostic.
2578 *
2579 * The form of the error message is:
2580 * fs: error message
2581 */
2582 void
2583 ffs_fserr(fs, inum, cp)
2584 struct fs *fs;
2585 ino_t inum;
2586 char *cp;
2587 {
2588 struct thread *td = curthread; /* XXX */
2589 struct proc *p = td->td_proc;
2590
2591 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n",
2592 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum,
2593 fs->fs_fsmnt, cp);
2594 }
2595
2596 /*
2597 * This function provides the capability for the fsck program to
2598 * update an active filesystem. Fourteen operations are provided:
2599 *
2600 * adjrefcnt(inode, amt) - adjusts the reference count on the
2601 * specified inode by the specified amount. Under normal
2602 * operation the count should always go down. Decrementing
2603 * the count to zero will cause the inode to be freed.
2604 * adjblkcnt(inode, amt) - adjust the number of blocks used by the
2605 * inode by the specified amount.
2606 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
2607 * adjust the superblock summary.
2608 * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
2609 * are marked as free. Inodes should never have to be marked
2610 * as in use.
2611 * freefiles(inode, count) - file inodes [inode..inode + count - 1]
2612 * are marked as free. Inodes should never have to be marked
2613 * as in use.
2614 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
2615 * are marked as free. Blocks should never have to be marked
2616 * as in use.
2617 * setflags(flags, set/clear) - the fs_flags field has the specified
2618 * flags set (second parameter +1) or cleared (second parameter -1).
2619 * setcwd(dirinode) - set the current directory to dirinode in the
2620 * filesystem associated with the snapshot.
2621 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".."
2622 * in the current directory is oldvalue then change it to newvalue.
2623 * unlink(nameptr, oldvalue) - Verify that the inode number associated
2624 * with nameptr in the current directory is oldvalue then unlink it.
2625 *
2626 * The following functions may only be used on a quiescent filesystem
2627 * by the soft updates journal. They are not safe to be run on an active
2628 * filesystem.
2629 *
2630 * setinode(inode, dip) - the specified disk inode is replaced with the
2631 * contents pointed to by dip.
2632 * setbufoutput(fd, flags) - output associated with the specified file
2633 * descriptor (which must reference the character device supporting
2634 * the filesystem) switches from using physio to running through the
2635 * buffer cache when flags is set to 1. The descriptor reverts to
2636 * physio for output when flags is set to zero.
2637 */
2638
2639 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
2640
2641 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
2642 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
2643
2644 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
2645 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
2646
2647 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR,
2648 sysctl_ffs_fsck, "Adjust number of directories");
2649
2650 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR,
2651 sysctl_ffs_fsck, "Adjust number of free blocks");
2652
2653 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR,
2654 sysctl_ffs_fsck, "Adjust number of free inodes");
2655
2656 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR,
2657 sysctl_ffs_fsck, "Adjust number of free frags");
2658
2659 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR,
2660 sysctl_ffs_fsck, "Adjust number of free clusters");
2661
2662 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
2663 sysctl_ffs_fsck, "Free Range of Directory Inodes");
2664
2665 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
2666 sysctl_ffs_fsck, "Free Range of File Inodes");
2667
2668 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
2669 sysctl_ffs_fsck, "Free Range of Blocks");
2670
2671 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
2672 sysctl_ffs_fsck, "Change Filesystem Flags");
2673
2674 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR,
2675 sysctl_ffs_fsck, "Set Current Working Directory");
2676
2677 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR,
2678 sysctl_ffs_fsck, "Change Value of .. Entry");
2679
2680 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR,
2681 sysctl_ffs_fsck, "Unlink a Duplicate Name");
2682
2683 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR,
2684 sysctl_ffs_fsck, "Update an On-Disk Inode");
2685
2686 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR,
2687 sysctl_ffs_fsck, "Set Buffered Writing for Descriptor");
2688
2689 #define DEBUG 1
2690 #ifdef DEBUG
2691 static int fsckcmds = 0;
2692 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
2693 #endif /* DEBUG */
2694
2695 static int buffered_write(struct file *, struct uio *, struct ucred *,
2696 int, struct thread *);
2697
2698 static int
2699 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
2700 {
2701 struct thread *td = curthread;
2702 struct fsck_cmd cmd;
2703 struct ufsmount *ump;
2704 struct vnode *vp, *vpold, *dvp, *fdvp;
2705 struct inode *ip, *dp;
2706 struct mount *mp;
2707 struct fs *fs;
2708 ufs2_daddr_t blkno;
2709 long blkcnt, blksize;
2710 struct filedesc *fdp;
2711 struct file *fp, *vfp;
2712 cap_rights_t rights;
2713 int filetype, error;
2714 static struct fileops *origops, bufferedops;
2715
2716 if (req->newlen > sizeof cmd)
2717 return (EBADRPC);
2718 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
2719 return (error);
2720 if (cmd.version != FFS_CMD_VERSION)
2721 return (ERPCMISMATCH);
2722 if ((error = getvnode(td->td_proc->p_fd, cmd.handle,
2723 cap_rights_init(&rights, CAP_FSCK), &fp)) != 0)
2724 return (error);
2725 vp = fp->f_data;
2726 if (vp->v_type != VREG && vp->v_type != VDIR) {
2727 fdrop(fp, td);
2728 return (EINVAL);
2729 }
2730 vn_start_write(vp, &mp, V_WAIT);
2731 if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
2732 vn_finished_write(mp);
2733 fdrop(fp, td);
2734 return (EINVAL);
2735 }
2736 ump = VFSTOUFS(mp);
2737 if ((mp->mnt_flag & MNT_RDONLY) &&
2738 ump->um_fsckpid != td->td_proc->p_pid) {
2739 vn_finished_write(mp);
2740 fdrop(fp, td);
2741 return (EROFS);
2742 }
2743 fs = ump->um_fs;
2744 filetype = IFREG;
2745
2746 switch (oidp->oid_number) {
2747
2748 case FFS_SET_FLAGS:
2749 #ifdef DEBUG
2750 if (fsckcmds)
2751 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
2752 cmd.size > 0 ? "set" : "clear");
2753 #endif /* DEBUG */
2754 if (cmd.size > 0)
2755 fs->fs_flags |= (long)cmd.value;
2756 else
2757 fs->fs_flags &= ~(long)cmd.value;
2758 break;
2759
2760 case FFS_ADJ_REFCNT:
2761 #ifdef DEBUG
2762 if (fsckcmds) {
2763 printf("%s: adjust inode %jd link count by %jd\n",
2764 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2765 (intmax_t)cmd.size);
2766 }
2767 #endif /* DEBUG */
2768 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2769 break;
2770 ip = VTOI(vp);
2771 ip->i_nlink += cmd.size;
2772 DIP_SET(ip, i_nlink, ip->i_nlink);
2773 ip->i_effnlink += cmd.size;
2774 ip->i_flag |= IN_CHANGE | IN_MODIFIED;
2775 error = ffs_update(vp, 1);
2776 if (DOINGSOFTDEP(vp))
2777 softdep_change_linkcnt(ip);
2778 vput(vp);
2779 break;
2780
2781 case FFS_ADJ_BLKCNT:
2782 #ifdef DEBUG
2783 if (fsckcmds) {
2784 printf("%s: adjust inode %jd block count by %jd\n",
2785 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2786 (intmax_t)cmd.size);
2787 }
2788 #endif /* DEBUG */
2789 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2790 break;
2791 ip = VTOI(vp);
2792 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
2793 ip->i_flag |= IN_CHANGE | IN_MODIFIED;
2794 error = ffs_update(vp, 1);
2795 vput(vp);
2796 break;
2797
2798 case FFS_DIR_FREE:
2799 filetype = IFDIR;
2800 /* fall through */
2801
2802 case FFS_FILE_FREE:
2803 #ifdef DEBUG
2804 if (fsckcmds) {
2805 if (cmd.size == 1)
2806 printf("%s: free %s inode %ju\n",
2807 mp->mnt_stat.f_mntonname,
2808 filetype == IFDIR ? "directory" : "file",
2809 (uintmax_t)cmd.value);
2810 else
2811 printf("%s: free %s inodes %ju-%ju\n",
2812 mp->mnt_stat.f_mntonname,
2813 filetype == IFDIR ? "directory" : "file",
2814 (uintmax_t)cmd.value,
2815 (uintmax_t)(cmd.value + cmd.size - 1));
2816 }
2817 #endif /* DEBUG */
2818 while (cmd.size > 0) {
2819 if ((error = ffs_freefile(ump, fs, ump->um_devvp,
2820 cmd.value, filetype, NULL)))
2821 break;
2822 cmd.size -= 1;
2823 cmd.value += 1;
2824 }
2825 break;
2826
2827 case FFS_BLK_FREE:
2828 #ifdef DEBUG
2829 if (fsckcmds) {
2830 if (cmd.size == 1)
2831 printf("%s: free block %jd\n",
2832 mp->mnt_stat.f_mntonname,
2833 (intmax_t)cmd.value);
2834 else
2835 printf("%s: free blocks %jd-%jd\n",
2836 mp->mnt_stat.f_mntonname,
2837 (intmax_t)cmd.value,
2838 (intmax_t)cmd.value + cmd.size - 1);
2839 }
2840 #endif /* DEBUG */
2841 blkno = cmd.value;
2842 blkcnt = cmd.size;
2843 blksize = fs->fs_frag - (blkno % fs->fs_frag);
2844 while (blkcnt > 0) {
2845 if (blksize > blkcnt)
2846 blksize = blkcnt;
2847 ffs_blkfree(ump, fs, ump->um_devvp, blkno,
2848 blksize * fs->fs_fsize, ROOTINO, VDIR, NULL);
2849 blkno += blksize;
2850 blkcnt -= blksize;
2851 blksize = fs->fs_frag;
2852 }
2853 break;
2854
2855 /*
2856 * Adjust superblock summaries. fsck(8) is expected to
2857 * submit deltas when necessary.
2858 */
2859 case FFS_ADJ_NDIR:
2860 #ifdef DEBUG
2861 if (fsckcmds) {
2862 printf("%s: adjust number of directories by %jd\n",
2863 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2864 }
2865 #endif /* DEBUG */
2866 fs->fs_cstotal.cs_ndir += cmd.value;
2867 break;
2868
2869 case FFS_ADJ_NBFREE:
2870 #ifdef DEBUG
2871 if (fsckcmds) {
2872 printf("%s: adjust number of free blocks by %+jd\n",
2873 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2874 }
2875 #endif /* DEBUG */
2876 fs->fs_cstotal.cs_nbfree += cmd.value;
2877 break;
2878
2879 case FFS_ADJ_NIFREE:
2880 #ifdef DEBUG
2881 if (fsckcmds) {
2882 printf("%s: adjust number of free inodes by %+jd\n",
2883 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2884 }
2885 #endif /* DEBUG */
2886 fs->fs_cstotal.cs_nifree += cmd.value;
2887 break;
2888
2889 case FFS_ADJ_NFFREE:
2890 #ifdef DEBUG
2891 if (fsckcmds) {
2892 printf("%s: adjust number of free frags by %+jd\n",
2893 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2894 }
2895 #endif /* DEBUG */
2896 fs->fs_cstotal.cs_nffree += cmd.value;
2897 break;
2898
2899 case FFS_ADJ_NUMCLUSTERS:
2900 #ifdef DEBUG
2901 if (fsckcmds) {
2902 printf("%s: adjust number of free clusters by %+jd\n",
2903 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2904 }
2905 #endif /* DEBUG */
2906 fs->fs_cstotal.cs_numclusters += cmd.value;
2907 break;
2908
2909 case FFS_SET_CWD:
2910 #ifdef DEBUG
2911 if (fsckcmds) {
2912 printf("%s: set current directory to inode %jd\n",
2913 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2914 }
2915 #endif /* DEBUG */
2916 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp)))
2917 break;
2918 AUDIT_ARG_VNODE1(vp);
2919 if ((error = change_dir(vp, td)) != 0) {
2920 vput(vp);
2921 break;
2922 }
2923 VOP_UNLOCK(vp, 0);
2924 fdp = td->td_proc->p_fd;
2925 FILEDESC_XLOCK(fdp);
2926 vpold = fdp->fd_cdir;
2927 fdp->fd_cdir = vp;
2928 FILEDESC_XUNLOCK(fdp);
2929 vrele(vpold);
2930 break;
2931
2932 case FFS_SET_DOTDOT:
2933 #ifdef DEBUG
2934 if (fsckcmds) {
2935 printf("%s: change .. in cwd from %jd to %jd\n",
2936 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2937 (intmax_t)cmd.size);
2938 }
2939 #endif /* DEBUG */
2940 /*
2941 * First we have to get and lock the parent directory
2942 * to which ".." points.
2943 */
2944 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp);
2945 if (error)
2946 break;
2947 /*
2948 * Now we get and lock the child directory containing "..".
2949 */
2950 FILEDESC_SLOCK(td->td_proc->p_fd);
2951 dvp = td->td_proc->p_fd->fd_cdir;
2952 FILEDESC_SUNLOCK(td->td_proc->p_fd);
2953 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) {
2954 vput(fdvp);
2955 break;
2956 }
2957 dp = VTOI(dvp);
2958 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */
2959 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size,
2960 DT_DIR, 0);
2961 cache_purge(fdvp);
2962 cache_purge(dvp);
2963 vput(dvp);
2964 vput(fdvp);
2965 break;
2966
2967 case FFS_UNLINK:
2968 #ifdef DEBUG
2969 if (fsckcmds) {
2970 char buf[32];
2971
2972 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL))
2973 strncpy(buf, "Name_too_long", 32);
2974 printf("%s: unlink %s (inode %jd)\n",
2975 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size);
2976 }
2977 #endif /* DEBUG */
2978 /*
2979 * kern_unlinkat will do its own start/finish writes and
2980 * they do not nest, so drop ours here. Setting mp == NULL
2981 * indicates that vn_finished_write is not needed down below.
2982 */
2983 vn_finished_write(mp);
2984 mp = NULL;
2985 error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value,
2986 UIO_USERSPACE, (ino_t)cmd.size);
2987 break;
2988
2989 case FFS_SET_INODE:
2990 if (ump->um_fsckpid != td->td_proc->p_pid) {
2991 error = EPERM;
2992 break;
2993 }
2994 #ifdef DEBUG
2995 if (fsckcmds) {
2996 printf("%s: update inode %jd\n",
2997 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2998 }
2999 #endif /* DEBUG */
3000 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3001 break;
3002 AUDIT_ARG_VNODE1(vp);
3003 ip = VTOI(vp);
3004 if (ip->i_ump->um_fstype == UFS1)
3005 error = copyin((void *)(intptr_t)cmd.size, ip->i_din1,
3006 sizeof(struct ufs1_dinode));
3007 else
3008 error = copyin((void *)(intptr_t)cmd.size, ip->i_din2,
3009 sizeof(struct ufs2_dinode));
3010 if (error) {
3011 vput(vp);
3012 break;
3013 }
3014 ip->i_flag |= IN_CHANGE | IN_MODIFIED;
3015 error = ffs_update(vp, 1);
3016 vput(vp);
3017 break;
3018
3019 case FFS_SET_BUFOUTPUT:
3020 if (ump->um_fsckpid != td->td_proc->p_pid) {
3021 error = EPERM;
3022 break;
3023 }
3024 if (VTOI(vp)->i_ump != ump) {
3025 error = EINVAL;
3026 break;
3027 }
3028 #ifdef DEBUG
3029 if (fsckcmds) {
3030 printf("%s: %s buffered output for descriptor %jd\n",
3031 mp->mnt_stat.f_mntonname,
3032 cmd.size == 1 ? "enable" : "disable",
3033 (intmax_t)cmd.value);
3034 }
3035 #endif /* DEBUG */
3036 if ((error = getvnode(td->td_proc->p_fd, cmd.value,
3037 cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0)
3038 break;
3039 if (vfp->f_vnode->v_type != VCHR) {
3040 fdrop(vfp, td);
3041 error = EINVAL;
3042 break;
3043 }
3044 if (origops == NULL) {
3045 origops = vfp->f_ops;
3046 bcopy((void *)origops, (void *)&bufferedops,
3047 sizeof(bufferedops));
3048 bufferedops.fo_write = buffered_write;
3049 }
3050 if (cmd.size == 1)
3051 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
3052 (uintptr_t)&bufferedops);
3053 else
3054 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
3055 (uintptr_t)origops);
3056 fdrop(vfp, td);
3057 break;
3058
3059 default:
3060 #ifdef DEBUG
3061 if (fsckcmds) {
3062 printf("Invalid request %d from fsck\n",
3063 oidp->oid_number);
3064 }
3065 #endif /* DEBUG */
3066 error = EINVAL;
3067 break;
3068
3069 }
3070 fdrop(fp, td);
3071 vn_finished_write(mp);
3072 return (error);
3073 }
3074
3075 /*
3076 * Function to switch a descriptor to use the buffer cache to stage
3077 * its I/O. This is needed so that writes to the filesystem device
3078 * will give snapshots a chance to copy modified blocks for which it
3079 * needs to retain copies.
3080 */
3081 static int
3082 buffered_write(fp, uio, active_cred, flags, td)
3083 struct file *fp;
3084 struct uio *uio;
3085 struct ucred *active_cred;
3086 int flags;
3087 struct thread *td;
3088 {
3089 struct vnode *devvp, *vp;
3090 struct inode *ip;
3091 struct buf *bp;
3092 struct fs *fs;
3093 struct filedesc *fdp;
3094 int error;
3095 daddr_t lbn;
3096
3097 /*
3098 * The devvp is associated with the /dev filesystem. To discover
3099 * the filesystem with which the device is associated, we depend
3100 * on the application setting the current directory to a location
3101 * within the filesystem being written. Yes, this is an ugly hack.
3102 */
3103 devvp = fp->f_vnode;
3104 if (!vn_isdisk(devvp, NULL))
3105 return (EINVAL);
3106 fdp = td->td_proc->p_fd;
3107 FILEDESC_SLOCK(fdp);
3108 vp = fdp->fd_cdir;
3109 vref(vp);
3110 FILEDESC_SUNLOCK(fdp);
3111 vn_lock(vp, LK_SHARED | LK_RETRY);
3112 /*
3113 * Check that the current directory vnode indeed belongs to
3114 * UFS before trying to dereference UFS-specific v_data fields.
3115 */
3116 if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) {
3117 vput(vp);
3118 return (EINVAL);
3119 }
3120 ip = VTOI(vp);
3121 if (ip->i_devvp != devvp) {
3122 vput(vp);
3123 return (EINVAL);
3124 }
3125 fs = ip->i_fs;
3126 vput(vp);
3127 foffset_lock_uio(fp, uio, flags);
3128 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
3129 #ifdef DEBUG
3130 if (fsckcmds) {
3131 printf("%s: buffered write for block %jd\n",
3132 fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset));
3133 }
3134 #endif /* DEBUG */
3135 /*
3136 * All I/O must be contained within a filesystem block, start on
3137 * a fragment boundary, and be a multiple of fragments in length.
3138 */
3139 if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) ||
3140 fragoff(fs, uio->uio_offset) != 0 ||
3141 fragoff(fs, uio->uio_resid) != 0) {
3142 error = EINVAL;
3143 goto out;
3144 }
3145 lbn = numfrags(fs, uio->uio_offset);
3146 bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0);
3147 bp->b_flags |= B_RELBUF;
3148 if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) {
3149 brelse(bp);
3150 goto out;
3151 }
3152 error = bwrite(bp);
3153 out:
3154 VOP_UNLOCK(devvp, 0);
3155 foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF);
3156 return (error);
3157 }
Cache object: 56847b678399b302a373a054e36304b1
|