The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/ufs/ffs/ffs_alloc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002 Networks Associates Technology, Inc.
    3  * All rights reserved.
    4  *
    5  * This software was developed for the FreeBSD Project by Marshall
    6  * Kirk McKusick and Network Associates Laboratories, the Security
    7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
    8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
    9  * research program
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  * Copyright (c) 1982, 1986, 1989, 1993
   33  *      The Regents of the University of California.  All rights reserved.
   34  *
   35  * Redistribution and use in source and binary forms, with or without
   36  * modification, are permitted provided that the following conditions
   37  * are met:
   38  * 1. Redistributions of source code must retain the above copyright
   39  *    notice, this list of conditions and the following disclaimer.
   40  * 2. Redistributions in binary form must reproduce the above copyright
   41  *    notice, this list of conditions and the following disclaimer in the
   42  *    documentation and/or other materials provided with the distribution.
   43  * 4. Neither the name of the University nor the names of its contributors
   44  *    may be used to endorse or promote products derived from this software
   45  *    without specific prior written permission.
   46  *
   47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   57  * SUCH DAMAGE.
   58  *
   59  *      @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95
   60  */
   61 
   62 #include <sys/cdefs.h>
   63 __FBSDID("$FreeBSD$");
   64 
   65 #include "opt_quota.h"
   66 
   67 #include <sys/param.h>
   68 #include <sys/capsicum.h>
   69 #include <sys/systm.h>
   70 #include <sys/bio.h>
   71 #include <sys/buf.h>
   72 #include <sys/conf.h>
   73 #include <sys/fcntl.h>
   74 #include <sys/file.h>
   75 #include <sys/filedesc.h>
   76 #include <sys/priv.h>
   77 #include <sys/proc.h>
   78 #include <sys/vnode.h>
   79 #include <sys/mount.h>
   80 #include <sys/kernel.h>
   81 #include <sys/syscallsubr.h>
   82 #include <sys/sysctl.h>
   83 #include <sys/syslog.h>
   84 #include <sys/taskqueue.h>
   85 
   86 #include <security/audit/audit.h>
   87 
   88 #include <geom/geom.h>
   89 
   90 #include <ufs/ufs/dir.h>
   91 #include <ufs/ufs/extattr.h>
   92 #include <ufs/ufs/quota.h>
   93 #include <ufs/ufs/inode.h>
   94 #include <ufs/ufs/ufs_extern.h>
   95 #include <ufs/ufs/ufsmount.h>
   96 
   97 #include <ufs/ffs/fs.h>
   98 #include <ufs/ffs/ffs_extern.h>
   99 #include <ufs/ffs/softdep.h>
  100 
  101 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref,
  102                                   int size, int rsize);
  103 
  104 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int);
  105 static ufs2_daddr_t
  106               ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int);
  107 static void     ffs_blkfree_cg(struct ufsmount *, struct fs *,
  108                     struct vnode *, ufs2_daddr_t, long, ino_t,
  109                     struct workhead *);
  110 static void     ffs_blkfree_trim_completed(struct bio *);
  111 static void     ffs_blkfree_trim_task(void *ctx, int pending __unused);
  112 #ifdef INVARIANTS
  113 static int      ffs_checkblk(struct inode *, ufs2_daddr_t, long);
  114 #endif
  115 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int);
  116 static ino_t    ffs_dirpref(struct inode *);
  117 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t,
  118                     int, int);
  119 static ufs2_daddr_t     ffs_hashalloc
  120                 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *);
  121 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int,
  122                     int);
  123 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
  124 static int      ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
  125 static int      ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
  126 
  127 /*
  128  * Allocate a block in the filesystem.
  129  *
  130  * The size of the requested block is given, which must be some
  131  * multiple of fs_fsize and <= fs_bsize.
  132  * A preference may be optionally specified. If a preference is given
  133  * the following hierarchy is used to allocate a block:
  134  *   1) allocate the requested block.
  135  *   2) allocate a rotationally optimal block in the same cylinder.
  136  *   3) allocate a block in the same cylinder group.
  137  *   4) quadradically rehash into other cylinder groups, until an
  138  *      available block is located.
  139  * If no block preference is given the following hierarchy is used
  140  * to allocate a block:
  141  *   1) allocate a block in the cylinder group that contains the
  142  *      inode for the file.
  143  *   2) quadradically rehash into other cylinder groups, until an
  144  *      available block is located.
  145  */
  146 int
  147 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp)
  148         struct inode *ip;
  149         ufs2_daddr_t lbn, bpref;
  150         int size, flags;
  151         struct ucred *cred;
  152         ufs2_daddr_t *bnp;
  153 {
  154         struct fs *fs;
  155         struct ufsmount *ump;
  156         ufs2_daddr_t bno;
  157         u_int cg, reclaimed;
  158         static struct timeval lastfail;
  159         static int curfail;
  160         int64_t delta;
  161 #ifdef QUOTA
  162         int error;
  163 #endif
  164 
  165         *bnp = 0;
  166         ump = ITOUMP(ip);
  167         fs = ump->um_fs;
  168         mtx_assert(UFS_MTX(ump), MA_OWNED);
  169 #ifdef INVARIANTS
  170         if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
  171                 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
  172                     devtoname(ump->um_dev), (long)fs->fs_bsize, size,
  173                     fs->fs_fsmnt);
  174                 panic("ffs_alloc: bad size");
  175         }
  176         if (cred == NOCRED)
  177                 panic("ffs_alloc: missing credential");
  178 #endif /* INVARIANTS */
  179         reclaimed = 0;
  180 retry:
  181 #ifdef QUOTA
  182         UFS_UNLOCK(ump);
  183         error = chkdq(ip, btodb(size), cred, 0);
  184         if (error)
  185                 return (error);
  186         UFS_LOCK(ump);
  187 #endif
  188         if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
  189                 goto nospace;
  190         if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
  191             freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
  192                 goto nospace;
  193         if (bpref >= fs->fs_size)
  194                 bpref = 0;
  195         if (bpref == 0)
  196                 cg = ino_to_cg(fs, ip->i_number);
  197         else
  198                 cg = dtog(fs, bpref);
  199         bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg);
  200         if (bno > 0) {
  201                 delta = btodb(size);
  202                 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
  203                 if (flags & IO_EXT)
  204                         ip->i_flag |= IN_CHANGE;
  205                 else
  206                         ip->i_flag |= IN_CHANGE | IN_UPDATE;
  207                 *bnp = bno;
  208                 return (0);
  209         }
  210 nospace:
  211 #ifdef QUOTA
  212         UFS_UNLOCK(ump);
  213         /*
  214          * Restore user's disk quota because allocation failed.
  215          */
  216         (void) chkdq(ip, -btodb(size), cred, FORCE);
  217         UFS_LOCK(ump);
  218 #endif
  219         if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
  220                 reclaimed = 1;
  221                 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT);
  222                 goto retry;
  223         }
  224         UFS_UNLOCK(ump);
  225         if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) {
  226                 ffs_fserr(fs, ip->i_number, "filesystem full");
  227                 uprintf("\n%s: write failed, filesystem is full\n",
  228                     fs->fs_fsmnt);
  229         }
  230         return (ENOSPC);
  231 }
  232 
  233 /*
  234  * Reallocate a fragment to a bigger size
  235  *
  236  * The number and size of the old block is given, and a preference
  237  * and new size is also specified. The allocator attempts to extend
  238  * the original block. Failing that, the regular block allocator is
  239  * invoked to get an appropriate block.
  240  */
  241 int
  242 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp)
  243         struct inode *ip;
  244         ufs2_daddr_t lbprev;
  245         ufs2_daddr_t bprev;
  246         ufs2_daddr_t bpref;
  247         int osize, nsize, flags;
  248         struct ucred *cred;
  249         struct buf **bpp;
  250 {
  251         struct vnode *vp;
  252         struct fs *fs;
  253         struct buf *bp;
  254         struct ufsmount *ump;
  255         u_int cg, request, reclaimed;
  256         int error, gbflags;
  257         ufs2_daddr_t bno;
  258         static struct timeval lastfail;
  259         static int curfail;
  260         int64_t delta;
  261 
  262         vp = ITOV(ip);
  263         ump = ITOUMP(ip);
  264         fs = ump->um_fs;
  265         bp = NULL;
  266         gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
  267 
  268         mtx_assert(UFS_MTX(ump), MA_OWNED);
  269 #ifdef INVARIANTS
  270         if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
  271                 panic("ffs_realloccg: allocation on suspended filesystem");
  272         if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
  273             (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
  274                 printf(
  275                 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
  276                     devtoname(ump->um_dev), (long)fs->fs_bsize, osize,
  277                     nsize, fs->fs_fsmnt);
  278                 panic("ffs_realloccg: bad size");
  279         }
  280         if (cred == NOCRED)
  281                 panic("ffs_realloccg: missing credential");
  282 #endif /* INVARIANTS */
  283         reclaimed = 0;
  284 retry:
  285         if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
  286             freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0) {
  287                 goto nospace;
  288         }
  289         if (bprev == 0) {
  290                 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
  291                     devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev,
  292                     fs->fs_fsmnt);
  293                 panic("ffs_realloccg: bad bprev");
  294         }
  295         UFS_UNLOCK(ump);
  296         /*
  297          * Allocate the extra space in the buffer.
  298          */
  299         error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp);
  300         if (error) {
  301                 brelse(bp);
  302                 return (error);
  303         }
  304 
  305         if (bp->b_blkno == bp->b_lblkno) {
  306                 if (lbprev >= NDADDR)
  307                         panic("ffs_realloccg: lbprev out of range");
  308                 bp->b_blkno = fsbtodb(fs, bprev);
  309         }
  310 
  311 #ifdef QUOTA
  312         error = chkdq(ip, btodb(nsize - osize), cred, 0);
  313         if (error) {
  314                 brelse(bp);
  315                 return (error);
  316         }
  317 #endif
  318         /*
  319          * Check for extension in the existing location.
  320          */
  321         *bpp = NULL;
  322         cg = dtog(fs, bprev);
  323         UFS_LOCK(ump);
  324         bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
  325         if (bno) {
  326                 if (bp->b_blkno != fsbtodb(fs, bno))
  327                         panic("ffs_realloccg: bad blockno");
  328                 delta = btodb(nsize - osize);
  329                 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
  330                 if (flags & IO_EXT)
  331                         ip->i_flag |= IN_CHANGE;
  332                 else
  333                         ip->i_flag |= IN_CHANGE | IN_UPDATE;
  334                 allocbuf(bp, nsize);
  335                 bp->b_flags |= B_DONE;
  336                 vfs_bio_bzero_buf(bp, osize, nsize - osize);
  337                 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
  338                         vfs_bio_set_valid(bp, osize, nsize - osize);
  339                 *bpp = bp;
  340                 return (0);
  341         }
  342         /*
  343          * Allocate a new disk location.
  344          */
  345         if (bpref >= fs->fs_size)
  346                 bpref = 0;
  347         switch ((int)fs->fs_optim) {
  348         case FS_OPTSPACE:
  349                 /*
  350                  * Allocate an exact sized fragment. Although this makes
  351                  * best use of space, we will waste time relocating it if
  352                  * the file continues to grow. If the fragmentation is
  353                  * less than half of the minimum free reserve, we choose
  354                  * to begin optimizing for time.
  355                  */
  356                 request = nsize;
  357                 if (fs->fs_minfree <= 5 ||
  358                     fs->fs_cstotal.cs_nffree >
  359                     (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
  360                         break;
  361                 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
  362                         fs->fs_fsmnt);
  363                 fs->fs_optim = FS_OPTTIME;
  364                 break;
  365         case FS_OPTTIME:
  366                 /*
  367                  * At this point we have discovered a file that is trying to
  368                  * grow a small fragment to a larger fragment. To save time,
  369                  * we allocate a full sized block, then free the unused portion.
  370                  * If the file continues to grow, the `ffs_fragextend' call
  371                  * above will be able to grow it in place without further
  372                  * copying. If aberrant programs cause disk fragmentation to
  373                  * grow within 2% of the free reserve, we choose to begin
  374                  * optimizing for space.
  375                  */
  376                 request = fs->fs_bsize;
  377                 if (fs->fs_cstotal.cs_nffree <
  378                     (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
  379                         break;
  380                 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
  381                         fs->fs_fsmnt);
  382                 fs->fs_optim = FS_OPTSPACE;
  383                 break;
  384         default:
  385                 printf("dev = %s, optim = %ld, fs = %s\n",
  386                     devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt);
  387                 panic("ffs_realloccg: bad optim");
  388                 /* NOTREACHED */
  389         }
  390         bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg);
  391         if (bno > 0) {
  392                 bp->b_blkno = fsbtodb(fs, bno);
  393                 if (!DOINGSOFTDEP(vp))
  394                         ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize,
  395                             ip->i_number, vp->v_type, NULL);
  396                 delta = btodb(nsize - osize);
  397                 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
  398                 if (flags & IO_EXT)
  399                         ip->i_flag |= IN_CHANGE;
  400                 else
  401                         ip->i_flag |= IN_CHANGE | IN_UPDATE;
  402                 allocbuf(bp, nsize);
  403                 bp->b_flags |= B_DONE;
  404                 vfs_bio_bzero_buf(bp, osize, nsize - osize);
  405                 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
  406                         vfs_bio_set_valid(bp, osize, nsize - osize);
  407                 *bpp = bp;
  408                 return (0);
  409         }
  410 #ifdef QUOTA
  411         UFS_UNLOCK(ump);
  412         /*
  413          * Restore user's disk quota because allocation failed.
  414          */
  415         (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
  416         UFS_LOCK(ump);
  417 #endif
  418 nospace:
  419         /*
  420          * no space available
  421          */
  422         if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
  423                 reclaimed = 1;
  424                 UFS_UNLOCK(ump);
  425                 if (bp) {
  426                         brelse(bp);
  427                         bp = NULL;
  428                 }
  429                 UFS_LOCK(ump);
  430                 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT);
  431                 goto retry;
  432         }
  433         UFS_UNLOCK(ump);
  434         if (bp)
  435                 brelse(bp);
  436         if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) {
  437                 ffs_fserr(fs, ip->i_number, "filesystem full");
  438                 uprintf("\n%s: write failed, filesystem is full\n",
  439                     fs->fs_fsmnt);
  440         }
  441         return (ENOSPC);
  442 }
  443 
  444 /*
  445  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
  446  *
  447  * The vnode and an array of buffer pointers for a range of sequential
  448  * logical blocks to be made contiguous is given. The allocator attempts
  449  * to find a range of sequential blocks starting as close as possible
  450  * from the end of the allocation for the logical block immediately
  451  * preceding the current range. If successful, the physical block numbers
  452  * in the buffer pointers and in the inode are changed to reflect the new
  453  * allocation. If unsuccessful, the allocation is left unchanged. The
  454  * success in doing the reallocation is returned. Note that the error
  455  * return is not reflected back to the user. Rather the previous block
  456  * allocation will be used.
  457  */
  458 
  459 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
  460 
  461 static int doasyncfree = 1;
  462 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
  463 "do not force synchronous writes when blocks are reallocated");
  464 
  465 static int doreallocblks = 1;
  466 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0,
  467 "enable block reallocation");
  468 
  469 static int maxclustersearch = 10;
  470 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch,
  471 0, "max number of cylinder group to search for contigous blocks");
  472 
  473 #ifdef DEBUG
  474 static volatile int prtrealloc = 0;
  475 #endif
  476 
  477 int
  478 ffs_reallocblks(ap)
  479         struct vop_reallocblks_args /* {
  480                 struct vnode *a_vp;
  481                 struct cluster_save *a_buflist;
  482         } */ *ap;
  483 {
  484         struct ufsmount *ump;
  485 
  486         /*
  487          * If the underlying device can do deletes, then skip reallocating
  488          * the blocks of this file into contiguous sequences. Devices that
  489          * benefit from BIO_DELETE also benefit from not moving the data.
  490          * These devices are flash and therefore work less well with this
  491          * optimization. Also skip if reallocblks has been disabled globally.
  492          */
  493         ump = ap->a_vp->v_mount->mnt_data;
  494         if (ump->um_candelete || doreallocblks == 0)
  495                 return (ENOSPC);
  496 
  497         /*
  498          * We can't wait in softdep prealloc as it may fsync and recurse
  499          * here.  Instead we simply fail to reallocate blocks if this
  500          * rare condition arises.
  501          */
  502         if (DOINGSOFTDEP(ap->a_vp))
  503                 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0)
  504                         return (ENOSPC);
  505         if (ump->um_fstype == UFS1)
  506                 return (ffs_reallocblks_ufs1(ap));
  507         return (ffs_reallocblks_ufs2(ap));
  508 }
  509         
  510 static int
  511 ffs_reallocblks_ufs1(ap)
  512         struct vop_reallocblks_args /* {
  513                 struct vnode *a_vp;
  514                 struct cluster_save *a_buflist;
  515         } */ *ap;
  516 {
  517         struct fs *fs;
  518         struct inode *ip;
  519         struct vnode *vp;
  520         struct buf *sbp, *ebp;
  521         ufs1_daddr_t *bap, *sbap, *ebap;
  522         struct cluster_save *buflist;
  523         struct ufsmount *ump;
  524         ufs_lbn_t start_lbn, end_lbn;
  525         ufs1_daddr_t soff, newblk, blkno;
  526         ufs2_daddr_t pref;
  527         struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
  528         int i, cg, len, start_lvl, end_lvl, ssize;
  529 
  530         vp = ap->a_vp;
  531         ip = VTOI(vp);
  532         ump = ITOUMP(ip);
  533         fs = ump->um_fs;
  534         /*
  535          * If we are not tracking block clusters or if we have less than 4%
  536          * free blocks left, then do not attempt to cluster. Running with
  537          * less than 5% free block reserve is not recommended and those that
  538          * choose to do so do not expect to have good file layout.
  539          */
  540         if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
  541                 return (ENOSPC);
  542         buflist = ap->a_buflist;
  543         len = buflist->bs_nchildren;
  544         start_lbn = buflist->bs_children[0]->b_lblkno;
  545         end_lbn = start_lbn + len - 1;
  546 #ifdef INVARIANTS
  547         for (i = 0; i < len; i++)
  548                 if (!ffs_checkblk(ip,
  549                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  550                         panic("ffs_reallocblks: unallocated block 1");
  551         for (i = 1; i < len; i++)
  552                 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
  553                         panic("ffs_reallocblks: non-logical cluster");
  554         blkno = buflist->bs_children[0]->b_blkno;
  555         ssize = fsbtodb(fs, fs->fs_frag);
  556         for (i = 1; i < len - 1; i++)
  557                 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
  558                         panic("ffs_reallocblks: non-physical cluster %d", i);
  559 #endif
  560         /*
  561          * If the cluster crosses the boundary for the first indirect
  562          * block, leave space for the indirect block. Indirect blocks
  563          * are initially laid out in a position after the last direct
  564          * block. Block reallocation would usually destroy locality by
  565          * moving the indirect block out of the way to make room for
  566          * data blocks if we didn't compensate here. We should also do
  567          * this for other indirect block boundaries, but it is only
  568          * important for the first one.
  569          */
  570         if (start_lbn < NDADDR && end_lbn >= NDADDR)
  571                 return (ENOSPC);
  572         /*
  573          * If the latest allocation is in a new cylinder group, assume that
  574          * the filesystem has decided to move and do not force it back to
  575          * the previous cylinder group.
  576          */
  577         if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
  578             dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
  579                 return (ENOSPC);
  580         if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
  581             ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
  582                 return (ENOSPC);
  583         /*
  584          * Get the starting offset and block map for the first block.
  585          */
  586         if (start_lvl == 0) {
  587                 sbap = &ip->i_din1->di_db[0];
  588                 soff = start_lbn;
  589         } else {
  590                 idp = &start_ap[start_lvl - 1];
  591                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
  592                         brelse(sbp);
  593                         return (ENOSPC);
  594                 }
  595                 sbap = (ufs1_daddr_t *)sbp->b_data;
  596                 soff = idp->in_off;
  597         }
  598         /*
  599          * If the block range spans two block maps, get the second map.
  600          */
  601         ebap = NULL;
  602         if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
  603                 ssize = len;
  604         } else {
  605 #ifdef INVARIANTS
  606                 if (start_lvl > 0 &&
  607                     start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
  608                         panic("ffs_reallocblk: start == end");
  609 #endif
  610                 ssize = len - (idp->in_off + 1);
  611                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
  612                         goto fail;
  613                 ebap = (ufs1_daddr_t *)ebp->b_data;
  614         }
  615         /*
  616          * Find the preferred location for the cluster. If we have not
  617          * previously failed at this endeavor, then follow our standard
  618          * preference calculation. If we have failed at it, then pick up
  619          * where we last ended our search.
  620          */
  621         UFS_LOCK(ump);
  622         if (ip->i_nextclustercg == -1)
  623                 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
  624         else
  625                 pref = cgdata(fs, ip->i_nextclustercg);
  626         /*
  627          * Search the block map looking for an allocation of the desired size.
  628          * To avoid wasting too much time, we limit the number of cylinder
  629          * groups that we will search.
  630          */
  631         cg = dtog(fs, pref);
  632         for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
  633                 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
  634                         break;
  635                 cg += 1;
  636                 if (cg >= fs->fs_ncg)
  637                         cg = 0;
  638         }
  639         /*
  640          * If we have failed in our search, record where we gave up for
  641          * next time. Otherwise, fall back to our usual search citerion.
  642          */
  643         if (newblk == 0) {
  644                 ip->i_nextclustercg = cg;
  645                 UFS_UNLOCK(ump);
  646                 goto fail;
  647         }
  648         ip->i_nextclustercg = -1;
  649         /*
  650          * We have found a new contiguous block.
  651          *
  652          * First we have to replace the old block pointers with the new
  653          * block pointers in the inode and indirect blocks associated
  654          * with the file.
  655          */
  656 #ifdef DEBUG
  657         if (prtrealloc)
  658                 printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
  659                     (uintmax_t)ip->i_number,
  660                     (intmax_t)start_lbn, (intmax_t)end_lbn);
  661 #endif
  662         blkno = newblk;
  663         for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
  664                 if (i == ssize) {
  665                         bap = ebap;
  666                         soff = -i;
  667                 }
  668 #ifdef INVARIANTS
  669                 if (!ffs_checkblk(ip,
  670                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  671                         panic("ffs_reallocblks: unallocated block 2");
  672                 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
  673                         panic("ffs_reallocblks: alloc mismatch");
  674 #endif
  675 #ifdef DEBUG
  676                 if (prtrealloc)
  677                         printf(" %d,", *bap);
  678 #endif
  679                 if (DOINGSOFTDEP(vp)) {
  680                         if (sbap == &ip->i_din1->di_db[0] && i < ssize)
  681                                 softdep_setup_allocdirect(ip, start_lbn + i,
  682                                     blkno, *bap, fs->fs_bsize, fs->fs_bsize,
  683                                     buflist->bs_children[i]);
  684                         else
  685                                 softdep_setup_allocindir_page(ip, start_lbn + i,
  686                                     i < ssize ? sbp : ebp, soff + i, blkno,
  687                                     *bap, buflist->bs_children[i]);
  688                 }
  689                 *bap++ = blkno;
  690         }
  691         /*
  692          * Next we must write out the modified inode and indirect blocks.
  693          * For strict correctness, the writes should be synchronous since
  694          * the old block values may have been written to disk. In practise
  695          * they are almost never written, but if we are concerned about
  696          * strict correctness, the `doasyncfree' flag should be set to zero.
  697          *
  698          * The test on `doasyncfree' should be changed to test a flag
  699          * that shows whether the associated buffers and inodes have
  700          * been written. The flag should be set when the cluster is
  701          * started and cleared whenever the buffer or inode is flushed.
  702          * We can then check below to see if it is set, and do the
  703          * synchronous write only when it has been cleared.
  704          */
  705         if (sbap != &ip->i_din1->di_db[0]) {
  706                 if (doasyncfree)
  707                         bdwrite(sbp);
  708                 else
  709                         bwrite(sbp);
  710         } else {
  711                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  712                 if (!doasyncfree)
  713                         ffs_update(vp, 1);
  714         }
  715         if (ssize < len) {
  716                 if (doasyncfree)
  717                         bdwrite(ebp);
  718                 else
  719                         bwrite(ebp);
  720         }
  721         /*
  722          * Last, free the old blocks and assign the new blocks to the buffers.
  723          */
  724 #ifdef DEBUG
  725         if (prtrealloc)
  726                 printf("\n\tnew:");
  727 #endif
  728         for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
  729                 if (!DOINGSOFTDEP(vp))
  730                         ffs_blkfree(ump, fs, ump->um_devvp,
  731                             dbtofsb(fs, buflist->bs_children[i]->b_blkno),
  732                             fs->fs_bsize, ip->i_number, vp->v_type, NULL);
  733                 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
  734 #ifdef INVARIANTS
  735                 if (!ffs_checkblk(ip,
  736                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  737                         panic("ffs_reallocblks: unallocated block 3");
  738 #endif
  739 #ifdef DEBUG
  740                 if (prtrealloc)
  741                         printf(" %d,", blkno);
  742 #endif
  743         }
  744 #ifdef DEBUG
  745         if (prtrealloc) {
  746                 prtrealloc--;
  747                 printf("\n");
  748         }
  749 #endif
  750         return (0);
  751 
  752 fail:
  753         if (ssize < len)
  754                 brelse(ebp);
  755         if (sbap != &ip->i_din1->di_db[0])
  756                 brelse(sbp);
  757         return (ENOSPC);
  758 }
  759 
  760 static int
  761 ffs_reallocblks_ufs2(ap)
  762         struct vop_reallocblks_args /* {
  763                 struct vnode *a_vp;
  764                 struct cluster_save *a_buflist;
  765         } */ *ap;
  766 {
  767         struct fs *fs;
  768         struct inode *ip;
  769         struct vnode *vp;
  770         struct buf *sbp, *ebp;
  771         ufs2_daddr_t *bap, *sbap, *ebap;
  772         struct cluster_save *buflist;
  773         struct ufsmount *ump;
  774         ufs_lbn_t start_lbn, end_lbn;
  775         ufs2_daddr_t soff, newblk, blkno, pref;
  776         struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
  777         int i, cg, len, start_lvl, end_lvl, ssize;
  778 
  779         vp = ap->a_vp;
  780         ip = VTOI(vp);
  781         ump = ITOUMP(ip);
  782         fs = ump->um_fs;
  783         /*
  784          * If we are not tracking block clusters or if we have less than 4%
  785          * free blocks left, then do not attempt to cluster. Running with
  786          * less than 5% free block reserve is not recommended and those that
  787          * choose to do so do not expect to have good file layout.
  788          */
  789         if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
  790                 return (ENOSPC);
  791         buflist = ap->a_buflist;
  792         len = buflist->bs_nchildren;
  793         start_lbn = buflist->bs_children[0]->b_lblkno;
  794         end_lbn = start_lbn + len - 1;
  795 #ifdef INVARIANTS
  796         for (i = 0; i < len; i++)
  797                 if (!ffs_checkblk(ip,
  798                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  799                         panic("ffs_reallocblks: unallocated block 1");
  800         for (i = 1; i < len; i++)
  801                 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
  802                         panic("ffs_reallocblks: non-logical cluster");
  803         blkno = buflist->bs_children[0]->b_blkno;
  804         ssize = fsbtodb(fs, fs->fs_frag);
  805         for (i = 1; i < len - 1; i++)
  806                 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
  807                         panic("ffs_reallocblks: non-physical cluster %d", i);
  808 #endif
  809         /*
  810          * If the cluster crosses the boundary for the first indirect
  811          * block, do not move anything in it. Indirect blocks are
  812          * usually initially laid out in a position between the data
  813          * blocks. Block reallocation would usually destroy locality by
  814          * moving the indirect block out of the way to make room for
  815          * data blocks if we didn't compensate here. We should also do
  816          * this for other indirect block boundaries, but it is only
  817          * important for the first one.
  818          */
  819         if (start_lbn < NDADDR && end_lbn >= NDADDR)
  820                 return (ENOSPC);
  821         /*
  822          * If the latest allocation is in a new cylinder group, assume that
  823          * the filesystem has decided to move and do not force it back to
  824          * the previous cylinder group.
  825          */
  826         if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
  827             dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
  828                 return (ENOSPC);
  829         if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
  830             ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
  831                 return (ENOSPC);
  832         /*
  833          * Get the starting offset and block map for the first block.
  834          */
  835         if (start_lvl == 0) {
  836                 sbap = &ip->i_din2->di_db[0];
  837                 soff = start_lbn;
  838         } else {
  839                 idp = &start_ap[start_lvl - 1];
  840                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
  841                         brelse(sbp);
  842                         return (ENOSPC);
  843                 }
  844                 sbap = (ufs2_daddr_t *)sbp->b_data;
  845                 soff = idp->in_off;
  846         }
  847         /*
  848          * If the block range spans two block maps, get the second map.
  849          */
  850         ebap = NULL;
  851         if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
  852                 ssize = len;
  853         } else {
  854 #ifdef INVARIANTS
  855                 if (start_lvl > 0 &&
  856                     start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
  857                         panic("ffs_reallocblk: start == end");
  858 #endif
  859                 ssize = len - (idp->in_off + 1);
  860                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
  861                         goto fail;
  862                 ebap = (ufs2_daddr_t *)ebp->b_data;
  863         }
  864         /*
  865          * Find the preferred location for the cluster. If we have not
  866          * previously failed at this endeavor, then follow our standard
  867          * preference calculation. If we have failed at it, then pick up
  868          * where we last ended our search.
  869          */
  870         UFS_LOCK(ump);
  871         if (ip->i_nextclustercg == -1)
  872                 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
  873         else
  874                 pref = cgdata(fs, ip->i_nextclustercg);
  875         /*
  876          * Search the block map looking for an allocation of the desired size.
  877          * To avoid wasting too much time, we limit the number of cylinder
  878          * groups that we will search.
  879          */
  880         cg = dtog(fs, pref);
  881         for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
  882                 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
  883                         break;
  884                 cg += 1;
  885                 if (cg >= fs->fs_ncg)
  886                         cg = 0;
  887         }
  888         /*
  889          * If we have failed in our search, record where we gave up for
  890          * next time. Otherwise, fall back to our usual search citerion.
  891          */
  892         if (newblk == 0) {
  893                 ip->i_nextclustercg = cg;
  894                 UFS_UNLOCK(ump);
  895                 goto fail;
  896         }
  897         ip->i_nextclustercg = -1;
  898         /*
  899          * We have found a new contiguous block.
  900          *
  901          * First we have to replace the old block pointers with the new
  902          * block pointers in the inode and indirect blocks associated
  903          * with the file.
  904          */
  905 #ifdef DEBUG
  906         if (prtrealloc)
  907                 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number,
  908                     (intmax_t)start_lbn, (intmax_t)end_lbn);
  909 #endif
  910         blkno = newblk;
  911         for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
  912                 if (i == ssize) {
  913                         bap = ebap;
  914                         soff = -i;
  915                 }
  916 #ifdef INVARIANTS
  917                 if (!ffs_checkblk(ip,
  918                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  919                         panic("ffs_reallocblks: unallocated block 2");
  920                 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
  921                         panic("ffs_reallocblks: alloc mismatch");
  922 #endif
  923 #ifdef DEBUG
  924                 if (prtrealloc)
  925                         printf(" %jd,", (intmax_t)*bap);
  926 #endif
  927                 if (DOINGSOFTDEP(vp)) {
  928                         if (sbap == &ip->i_din2->di_db[0] && i < ssize)
  929                                 softdep_setup_allocdirect(ip, start_lbn + i,
  930                                     blkno, *bap, fs->fs_bsize, fs->fs_bsize,
  931                                     buflist->bs_children[i]);
  932                         else
  933                                 softdep_setup_allocindir_page(ip, start_lbn + i,
  934                                     i < ssize ? sbp : ebp, soff + i, blkno,
  935                                     *bap, buflist->bs_children[i]);
  936                 }
  937                 *bap++ = blkno;
  938         }
  939         /*
  940          * Next we must write out the modified inode and indirect blocks.
  941          * For strict correctness, the writes should be synchronous since
  942          * the old block values may have been written to disk. In practise
  943          * they are almost never written, but if we are concerned about
  944          * strict correctness, the `doasyncfree' flag should be set to zero.
  945          *
  946          * The test on `doasyncfree' should be changed to test a flag
  947          * that shows whether the associated buffers and inodes have
  948          * been written. The flag should be set when the cluster is
  949          * started and cleared whenever the buffer or inode is flushed.
  950          * We can then check below to see if it is set, and do the
  951          * synchronous write only when it has been cleared.
  952          */
  953         if (sbap != &ip->i_din2->di_db[0]) {
  954                 if (doasyncfree)
  955                         bdwrite(sbp);
  956                 else
  957                         bwrite(sbp);
  958         } else {
  959                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  960                 if (!doasyncfree)
  961                         ffs_update(vp, 1);
  962         }
  963         if (ssize < len) {
  964                 if (doasyncfree)
  965                         bdwrite(ebp);
  966                 else
  967                         bwrite(ebp);
  968         }
  969         /*
  970          * Last, free the old blocks and assign the new blocks to the buffers.
  971          */
  972 #ifdef DEBUG
  973         if (prtrealloc)
  974                 printf("\n\tnew:");
  975 #endif
  976         for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
  977                 if (!DOINGSOFTDEP(vp))
  978                         ffs_blkfree(ump, fs, ump->um_devvp,
  979                             dbtofsb(fs, buflist->bs_children[i]->b_blkno),
  980                             fs->fs_bsize, ip->i_number, vp->v_type, NULL);
  981                 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
  982 #ifdef INVARIANTS
  983                 if (!ffs_checkblk(ip,
  984                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  985                         panic("ffs_reallocblks: unallocated block 3");
  986 #endif
  987 #ifdef DEBUG
  988                 if (prtrealloc)
  989                         printf(" %jd,", (intmax_t)blkno);
  990 #endif
  991         }
  992 #ifdef DEBUG
  993         if (prtrealloc) {
  994                 prtrealloc--;
  995                 printf("\n");
  996         }
  997 #endif
  998         return (0);
  999 
 1000 fail:
 1001         if (ssize < len)
 1002                 brelse(ebp);
 1003         if (sbap != &ip->i_din2->di_db[0])
 1004                 brelse(sbp);
 1005         return (ENOSPC);
 1006 }
 1007 
 1008 /*
 1009  * Allocate an inode in the filesystem.
 1010  *
 1011  * If allocating a directory, use ffs_dirpref to select the inode.
 1012  * If allocating in a directory, the following hierarchy is followed:
 1013  *   1) allocate the preferred inode.
 1014  *   2) allocate an inode in the same cylinder group.
 1015  *   3) quadradically rehash into other cylinder groups, until an
 1016  *      available inode is located.
 1017  * If no inode preference is given the following hierarchy is used
 1018  * to allocate an inode:
 1019  *   1) allocate an inode in cylinder group 0.
 1020  *   2) quadradically rehash into other cylinder groups, until an
 1021  *      available inode is located.
 1022  */
 1023 int
 1024 ffs_valloc(pvp, mode, cred, vpp)
 1025         struct vnode *pvp;
 1026         int mode;
 1027         struct ucred *cred;
 1028         struct vnode **vpp;
 1029 {
 1030         struct inode *pip;
 1031         struct fs *fs;
 1032         struct inode *ip;
 1033         struct timespec ts;
 1034         struct ufsmount *ump;
 1035         ino_t ino, ipref;
 1036         u_int cg;
 1037         int error, error1, reclaimed;
 1038         static struct timeval lastfail;
 1039         static int curfail;
 1040 
 1041         *vpp = NULL;
 1042         pip = VTOI(pvp);
 1043         ump = ITOUMP(pip);
 1044         fs = ump->um_fs;
 1045 
 1046         UFS_LOCK(ump);
 1047         reclaimed = 0;
 1048 retry:
 1049         if (fs->fs_cstotal.cs_nifree == 0)
 1050                 goto noinodes;
 1051 
 1052         if ((mode & IFMT) == IFDIR)
 1053                 ipref = ffs_dirpref(pip);
 1054         else
 1055                 ipref = pip->i_number;
 1056         if (ipref >= fs->fs_ncg * fs->fs_ipg)
 1057                 ipref = 0;
 1058         cg = ino_to_cg(fs, ipref);
 1059         /*
 1060          * Track number of dirs created one after another
 1061          * in a same cg without intervening by files.
 1062          */
 1063         if ((mode & IFMT) == IFDIR) {
 1064                 if (fs->fs_contigdirs[cg] < 255)
 1065                         fs->fs_contigdirs[cg]++;
 1066         } else {
 1067                 if (fs->fs_contigdirs[cg] > 0)
 1068                         fs->fs_contigdirs[cg]--;
 1069         }
 1070         ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0,
 1071                                         (allocfcn_t *)ffs_nodealloccg);
 1072         if (ino == 0)
 1073                 goto noinodes;
 1074         error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
 1075         if (error) {
 1076                 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp,
 1077                     FFSV_FORCEINSMQ);
 1078                 ffs_vfree(pvp, ino, mode);
 1079                 if (error1 == 0) {
 1080                         ip = VTOI(*vpp);
 1081                         if (ip->i_mode)
 1082                                 goto dup_alloc;
 1083                         ip->i_flag |= IN_MODIFIED;
 1084                         vput(*vpp);
 1085                 }
 1086                 return (error);
 1087         }
 1088         ip = VTOI(*vpp);
 1089         if (ip->i_mode) {
 1090 dup_alloc:
 1091                 printf("mode = 0%o, inum = %ju, fs = %s\n",
 1092                     ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt);
 1093                 panic("ffs_valloc: dup alloc");
 1094         }
 1095         if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
 1096                 printf("free inode %s/%lu had %ld blocks\n",
 1097                     fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
 1098                 DIP_SET(ip, i_blocks, 0);
 1099         }
 1100         ip->i_flags = 0;
 1101         DIP_SET(ip, i_flags, 0);
 1102         /*
 1103          * Set up a new generation number for this inode.
 1104          */
 1105         while (ip->i_gen == 0 || ++ip->i_gen == 0)
 1106                 ip->i_gen = arc4random();
 1107         DIP_SET(ip, i_gen, ip->i_gen);
 1108         if (fs->fs_magic == FS_UFS2_MAGIC) {
 1109                 vfs_timestamp(&ts);
 1110                 ip->i_din2->di_birthtime = ts.tv_sec;
 1111                 ip->i_din2->di_birthnsec = ts.tv_nsec;
 1112         }
 1113         ufs_prepare_reclaim(*vpp);
 1114         ip->i_flag = 0;
 1115         (*vpp)->v_vflag = 0;
 1116         (*vpp)->v_type = VNON;
 1117         if (fs->fs_magic == FS_UFS2_MAGIC) {
 1118                 (*vpp)->v_op = &ffs_vnodeops2;
 1119                 ip->i_flag |= IN_UFS2;
 1120         } else {
 1121                 (*vpp)->v_op = &ffs_vnodeops1;
 1122         }
 1123         return (0);
 1124 noinodes:
 1125         if (reclaimed == 0) {
 1126                 reclaimed = 1;
 1127                 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT);
 1128                 goto retry;
 1129         }
 1130         UFS_UNLOCK(ump);
 1131         if (ppsratecheck(&lastfail, &curfail, 1)) {
 1132                 ffs_fserr(fs, pip->i_number, "out of inodes");
 1133                 uprintf("\n%s: create/symlink failed, no inodes free\n",
 1134                     fs->fs_fsmnt);
 1135         }
 1136         return (ENOSPC);
 1137 }
 1138 
 1139 /*
 1140  * Find a cylinder group to place a directory.
 1141  *
 1142  * The policy implemented by this algorithm is to allocate a
 1143  * directory inode in the same cylinder group as its parent
 1144  * directory, but also to reserve space for its files inodes
 1145  * and data. Restrict the number of directories which may be
 1146  * allocated one after another in the same cylinder group
 1147  * without intervening allocation of files.
 1148  *
 1149  * If we allocate a first level directory then force allocation
 1150  * in another cylinder group.
 1151  */
 1152 static ino_t
 1153 ffs_dirpref(pip)
 1154         struct inode *pip;
 1155 {
 1156         struct fs *fs;
 1157         int cg, prefcg, dirsize, cgsize;
 1158         u_int avgifree, avgbfree, avgndir, curdirsize;
 1159         u_int minifree, minbfree, maxndir;
 1160         u_int mincg, minndir;
 1161         u_int maxcontigdirs;
 1162 
 1163         mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED);
 1164         fs = ITOFS(pip);
 1165 
 1166         avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
 1167         avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
 1168         avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
 1169 
 1170         /*
 1171          * Force allocation in another cg if creating a first level dir.
 1172          */
 1173         ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
 1174         if (ITOV(pip)->v_vflag & VV_ROOT) {
 1175                 prefcg = arc4random() % fs->fs_ncg;
 1176                 mincg = prefcg;
 1177                 minndir = fs->fs_ipg;
 1178                 for (cg = prefcg; cg < fs->fs_ncg; cg++)
 1179                         if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
 1180                             fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
 1181                             fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1182                                 mincg = cg;
 1183                                 minndir = fs->fs_cs(fs, cg).cs_ndir;
 1184                         }
 1185                 for (cg = 0; cg < prefcg; cg++)
 1186                         if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
 1187                             fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
 1188                             fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1189                                 mincg = cg;
 1190                                 minndir = fs->fs_cs(fs, cg).cs_ndir;
 1191                         }
 1192                 return ((ino_t)(fs->fs_ipg * mincg));
 1193         }
 1194 
 1195         /*
 1196          * Count various limits which used for
 1197          * optimal allocation of a directory inode.
 1198          */
 1199         maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
 1200         minifree = avgifree - avgifree / 4;
 1201         if (minifree < 1)
 1202                 minifree = 1;
 1203         minbfree = avgbfree - avgbfree / 4;
 1204         if (minbfree < 1)
 1205                 minbfree = 1;
 1206         cgsize = fs->fs_fsize * fs->fs_fpg;
 1207         dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
 1208         curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
 1209         if (dirsize < curdirsize)
 1210                 dirsize = curdirsize;
 1211         if (dirsize <= 0)
 1212                 maxcontigdirs = 0;              /* dirsize overflowed */
 1213         else
 1214                 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
 1215         if (fs->fs_avgfpdir > 0)
 1216                 maxcontigdirs = min(maxcontigdirs,
 1217                                     fs->fs_ipg / fs->fs_avgfpdir);
 1218         if (maxcontigdirs == 0)
 1219                 maxcontigdirs = 1;
 1220 
 1221         /*
 1222          * Limit number of dirs in one cg and reserve space for 
 1223          * regular files, but only if we have no deficit in
 1224          * inodes or space.
 1225          *
 1226          * We are trying to find a suitable cylinder group nearby
 1227          * our preferred cylinder group to place a new directory.
 1228          * We scan from our preferred cylinder group forward looking
 1229          * for a cylinder group that meets our criterion. If we get
 1230          * to the final cylinder group and do not find anything,
 1231          * we start scanning forwards from the beginning of the
 1232          * filesystem. While it might seem sensible to start scanning
 1233          * backwards or even to alternate looking forward and backward,
 1234          * this approach fails badly when the filesystem is nearly full.
 1235          * Specifically, we first search all the areas that have no space
 1236          * and finally try the one preceding that. We repeat this on
 1237          * every request and in the case of the final block end up
 1238          * searching the entire filesystem. By jumping to the front
 1239          * of the filesystem, our future forward searches always look
 1240          * in new cylinder groups so finds every possible block after
 1241          * one pass over the filesystem.
 1242          */
 1243         prefcg = ino_to_cg(fs, pip->i_number);
 1244         for (cg = prefcg; cg < fs->fs_ncg; cg++)
 1245                 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
 1246                     fs->fs_cs(fs, cg).cs_nifree >= minifree &&
 1247                     fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
 1248                         if (fs->fs_contigdirs[cg] < maxcontigdirs)
 1249                                 return ((ino_t)(fs->fs_ipg * cg));
 1250                 }
 1251         for (cg = 0; cg < prefcg; cg++)
 1252                 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
 1253                     fs->fs_cs(fs, cg).cs_nifree >= minifree &&
 1254                     fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
 1255                         if (fs->fs_contigdirs[cg] < maxcontigdirs)
 1256                                 return ((ino_t)(fs->fs_ipg * cg));
 1257                 }
 1258         /*
 1259          * This is a backstop when we have deficit in space.
 1260          */
 1261         for (cg = prefcg; cg < fs->fs_ncg; cg++)
 1262                 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
 1263                         return ((ino_t)(fs->fs_ipg * cg));
 1264         for (cg = 0; cg < prefcg; cg++)
 1265                 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
 1266                         break;
 1267         return ((ino_t)(fs->fs_ipg * cg));
 1268 }
 1269 
 1270 /*
 1271  * Select the desired position for the next block in a file.  The file is
 1272  * logically divided into sections. The first section is composed of the
 1273  * direct blocks and the next fs_maxbpg blocks. Each additional section
 1274  * contains fs_maxbpg blocks.
 1275  *
 1276  * If no blocks have been allocated in the first section, the policy is to
 1277  * request a block in the same cylinder group as the inode that describes
 1278  * the file. The first indirect is allocated immediately following the last
 1279  * direct block and the data blocks for the first indirect immediately
 1280  * follow it.
 1281  *
 1282  * If no blocks have been allocated in any other section, the indirect 
 1283  * block(s) are allocated in the same cylinder group as its inode in an
 1284  * area reserved immediately following the inode blocks. The policy for
 1285  * the data blocks is to place them in a cylinder group with a greater than
 1286  * average number of free blocks. An appropriate cylinder group is found
 1287  * by using a rotor that sweeps the cylinder groups. When a new group of
 1288  * blocks is needed, the sweep begins in the cylinder group following the
 1289  * cylinder group from which the previous allocation was made. The sweep
 1290  * continues until a cylinder group with greater than the average number
 1291  * of free blocks is found. If the allocation is for the first block in an
 1292  * indirect block or the previous block is a hole, then the information on
 1293  * the previous allocation is unavailable; here a best guess is made based
 1294  * on the logical block number being allocated.
 1295  *
 1296  * If a section is already partially allocated, the policy is to
 1297  * allocate blocks contiguously within the section if possible.
 1298  */
 1299 ufs2_daddr_t
 1300 ffs_blkpref_ufs1(ip, lbn, indx, bap)
 1301         struct inode *ip;
 1302         ufs_lbn_t lbn;
 1303         int indx;
 1304         ufs1_daddr_t *bap;
 1305 {
 1306         struct fs *fs;
 1307         u_int cg, inocg;
 1308         u_int avgbfree, startcg;
 1309         ufs2_daddr_t pref;
 1310 
 1311         KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
 1312         mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
 1313         fs = ITOFS(ip);
 1314         /*
 1315          * Allocation of indirect blocks is indicated by passing negative
 1316          * values in indx: -1 for single indirect, -2 for double indirect,
 1317          * -3 for triple indirect. As noted below, we attempt to allocate
 1318          * the first indirect inline with the file data. For all later
 1319          * indirect blocks, the data is often allocated in other cylinder
 1320          * groups. However to speed random file access and to speed up
 1321          * fsck, the filesystem reserves the first fs_metaspace blocks
 1322          * (typically half of fs_minfree) of the data area of each cylinder
 1323          * group to hold these later indirect blocks.
 1324          */
 1325         inocg = ino_to_cg(fs, ip->i_number);
 1326         if (indx < 0) {
 1327                 /*
 1328                  * Our preference for indirect blocks is the zone at the
 1329                  * beginning of the inode's cylinder group data area that
 1330                  * we try to reserve for indirect blocks.
 1331                  */
 1332                 pref = cgmeta(fs, inocg);
 1333                 /*
 1334                  * If we are allocating the first indirect block, try to
 1335                  * place it immediately following the last direct block.
 1336                  */
 1337                 if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
 1338                     ip->i_din1->di_db[NDADDR - 1] != 0)
 1339                         pref = ip->i_din1->di_db[NDADDR - 1] + fs->fs_frag;
 1340                 return (pref);
 1341         }
 1342         /*
 1343          * If we are allocating the first data block in the first indirect
 1344          * block and the indirect has been allocated in the data block area,
 1345          * try to place it immediately following the indirect block.
 1346          */
 1347         if (lbn == NDADDR) {
 1348                 pref = ip->i_din1->di_ib[0];
 1349                 if (pref != 0 && pref >= cgdata(fs, inocg) &&
 1350                     pref < cgbase(fs, inocg + 1))
 1351                         return (pref + fs->fs_frag);
 1352         }
 1353         /*
 1354          * If we are at the beginning of a file, or we have already allocated
 1355          * the maximum number of blocks per cylinder group, or we do not
 1356          * have a block allocated immediately preceding us, then we need
 1357          * to decide where to start allocating new blocks.
 1358          */
 1359         if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
 1360                 /*
 1361                  * If we are allocating a directory data block, we want
 1362                  * to place it in the metadata area.
 1363                  */
 1364                 if ((ip->i_mode & IFMT) == IFDIR)
 1365                         return (cgmeta(fs, inocg));
 1366                 /*
 1367                  * Until we fill all the direct and all the first indirect's
 1368                  * blocks, we try to allocate in the data area of the inode's
 1369                  * cylinder group.
 1370                  */
 1371                 if (lbn < NDADDR + NINDIR(fs))
 1372                         return (cgdata(fs, inocg));
 1373                 /*
 1374                  * Find a cylinder with greater than average number of
 1375                  * unused data blocks.
 1376                  */
 1377                 if (indx == 0 || bap[indx - 1] == 0)
 1378                         startcg = inocg + lbn / fs->fs_maxbpg;
 1379                 else
 1380                         startcg = dtog(fs, bap[indx - 1]) + 1;
 1381                 startcg %= fs->fs_ncg;
 1382                 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
 1383                 for (cg = startcg; cg < fs->fs_ncg; cg++)
 1384                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1385                                 fs->fs_cgrotor = cg;
 1386                                 return (cgdata(fs, cg));
 1387                         }
 1388                 for (cg = 0; cg <= startcg; cg++)
 1389                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1390                                 fs->fs_cgrotor = cg;
 1391                                 return (cgdata(fs, cg));
 1392                         }
 1393                 return (0);
 1394         }
 1395         /*
 1396          * Otherwise, we just always try to lay things out contiguously.
 1397          */
 1398         return (bap[indx - 1] + fs->fs_frag);
 1399 }
 1400 
 1401 /*
 1402  * Same as above, but for UFS2
 1403  */
 1404 ufs2_daddr_t
 1405 ffs_blkpref_ufs2(ip, lbn, indx, bap)
 1406         struct inode *ip;
 1407         ufs_lbn_t lbn;
 1408         int indx;
 1409         ufs2_daddr_t *bap;
 1410 {
 1411         struct fs *fs;
 1412         u_int cg, inocg;
 1413         u_int avgbfree, startcg;
 1414         ufs2_daddr_t pref;
 1415 
 1416         KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
 1417         mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
 1418         fs = ITOFS(ip);
 1419         /*
 1420          * Allocation of indirect blocks is indicated by passing negative
 1421          * values in indx: -1 for single indirect, -2 for double indirect,
 1422          * -3 for triple indirect. As noted below, we attempt to allocate
 1423          * the first indirect inline with the file data. For all later
 1424          * indirect blocks, the data is often allocated in other cylinder
 1425          * groups. However to speed random file access and to speed up
 1426          * fsck, the filesystem reserves the first fs_metaspace blocks
 1427          * (typically half of fs_minfree) of the data area of each cylinder
 1428          * group to hold these later indirect blocks.
 1429          */
 1430         inocg = ino_to_cg(fs, ip->i_number);
 1431         if (indx < 0) {
 1432                 /*
 1433                  * Our preference for indirect blocks is the zone at the
 1434                  * beginning of the inode's cylinder group data area that
 1435                  * we try to reserve for indirect blocks.
 1436                  */
 1437                 pref = cgmeta(fs, inocg);
 1438                 /*
 1439                  * If we are allocating the first indirect block, try to
 1440                  * place it immediately following the last direct block.
 1441                  */
 1442                 if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
 1443                     ip->i_din2->di_db[NDADDR - 1] != 0)
 1444                         pref = ip->i_din2->di_db[NDADDR - 1] + fs->fs_frag;
 1445                 return (pref);
 1446         }
 1447         /*
 1448          * If we are allocating the first data block in the first indirect
 1449          * block and the indirect has been allocated in the data block area,
 1450          * try to place it immediately following the indirect block.
 1451          */
 1452         if (lbn == NDADDR) {
 1453                 pref = ip->i_din2->di_ib[0];
 1454                 if (pref != 0 && pref >= cgdata(fs, inocg) &&
 1455                     pref < cgbase(fs, inocg + 1))
 1456                         return (pref + fs->fs_frag);
 1457         }
 1458         /*
 1459          * If we are at the beginning of a file, or we have already allocated
 1460          * the maximum number of blocks per cylinder group, or we do not
 1461          * have a block allocated immediately preceding us, then we need
 1462          * to decide where to start allocating new blocks.
 1463          */
 1464         if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
 1465                 /*
 1466                  * If we are allocating a directory data block, we want
 1467                  * to place it in the metadata area.
 1468                  */
 1469                 if ((ip->i_mode & IFMT) == IFDIR)
 1470                         return (cgmeta(fs, inocg));
 1471                 /*
 1472                  * Until we fill all the direct and all the first indirect's
 1473                  * blocks, we try to allocate in the data area of the inode's
 1474                  * cylinder group.
 1475                  */
 1476                 if (lbn < NDADDR + NINDIR(fs))
 1477                         return (cgdata(fs, inocg));
 1478                 /*
 1479                  * Find a cylinder with greater than average number of
 1480                  * unused data blocks.
 1481                  */
 1482                 if (indx == 0 || bap[indx - 1] == 0)
 1483                         startcg = inocg + lbn / fs->fs_maxbpg;
 1484                 else
 1485                         startcg = dtog(fs, bap[indx - 1]) + 1;
 1486                 startcg %= fs->fs_ncg;
 1487                 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
 1488                 for (cg = startcg; cg < fs->fs_ncg; cg++)
 1489                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1490                                 fs->fs_cgrotor = cg;
 1491                                 return (cgdata(fs, cg));
 1492                         }
 1493                 for (cg = 0; cg <= startcg; cg++)
 1494                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1495                                 fs->fs_cgrotor = cg;
 1496                                 return (cgdata(fs, cg));
 1497                         }
 1498                 return (0);
 1499         }
 1500         /*
 1501          * Otherwise, we just always try to lay things out contiguously.
 1502          */
 1503         return (bap[indx - 1] + fs->fs_frag);
 1504 }
 1505 
 1506 /*
 1507  * Implement the cylinder overflow algorithm.
 1508  *
 1509  * The policy implemented by this algorithm is:
 1510  *   1) allocate the block in its requested cylinder group.
 1511  *   2) quadradically rehash on the cylinder group number.
 1512  *   3) brute force search for a free block.
 1513  *
 1514  * Must be called with the UFS lock held.  Will release the lock on success
 1515  * and return with it held on failure.
 1516  */
 1517 /*VARARGS5*/
 1518 static ufs2_daddr_t
 1519 ffs_hashalloc(ip, cg, pref, size, rsize, allocator)
 1520         struct inode *ip;
 1521         u_int cg;
 1522         ufs2_daddr_t pref;
 1523         int size;       /* Search size for data blocks, mode for inodes */
 1524         int rsize;      /* Real allocated size. */
 1525         allocfcn_t *allocator;
 1526 {
 1527         struct fs *fs;
 1528         ufs2_daddr_t result;
 1529         u_int i, icg = cg;
 1530 
 1531         mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
 1532 #ifdef INVARIANTS
 1533         if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
 1534                 panic("ffs_hashalloc: allocation on suspended filesystem");
 1535 #endif
 1536         fs = ITOFS(ip);
 1537         /*
 1538          * 1: preferred cylinder group
 1539          */
 1540         result = (*allocator)(ip, cg, pref, size, rsize);
 1541         if (result)
 1542                 return (result);
 1543         /*
 1544          * 2: quadratic rehash
 1545          */
 1546         for (i = 1; i < fs->fs_ncg; i *= 2) {
 1547                 cg += i;
 1548                 if (cg >= fs->fs_ncg)
 1549                         cg -= fs->fs_ncg;
 1550                 result = (*allocator)(ip, cg, 0, size, rsize);
 1551                 if (result)
 1552                         return (result);
 1553         }
 1554         /*
 1555          * 3: brute force search
 1556          * Note that we start at i == 2, since 0 was checked initially,
 1557          * and 1 is always checked in the quadratic rehash.
 1558          */
 1559         cg = (icg + 2) % fs->fs_ncg;
 1560         for (i = 2; i < fs->fs_ncg; i++) {
 1561                 result = (*allocator)(ip, cg, 0, size, rsize);
 1562                 if (result)
 1563                         return (result);
 1564                 cg++;
 1565                 if (cg == fs->fs_ncg)
 1566                         cg = 0;
 1567         }
 1568         return (0);
 1569 }
 1570 
 1571 /*
 1572  * Determine whether a fragment can be extended.
 1573  *
 1574  * Check to see if the necessary fragments are available, and
 1575  * if they are, allocate them.
 1576  */
 1577 static ufs2_daddr_t
 1578 ffs_fragextend(ip, cg, bprev, osize, nsize)
 1579         struct inode *ip;
 1580         u_int cg;
 1581         ufs2_daddr_t bprev;
 1582         int osize, nsize;
 1583 {
 1584         struct fs *fs;
 1585         struct cg *cgp;
 1586         struct buf *bp;
 1587         struct ufsmount *ump;
 1588         int nffree;
 1589         long bno;
 1590         int frags, bbase;
 1591         int i, error;
 1592         u_int8_t *blksfree;
 1593 
 1594         ump = ITOUMP(ip);
 1595         fs = ump->um_fs;
 1596         if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
 1597                 return (0);
 1598         frags = numfrags(fs, nsize);
 1599         bbase = fragnum(fs, bprev);
 1600         if (bbase > fragnum(fs, (bprev + frags - 1))) {
 1601                 /* cannot extend across a block boundary */
 1602                 return (0);
 1603         }
 1604         UFS_UNLOCK(ump);
 1605         error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
 1606             (int)fs->fs_cgsize, NOCRED, &bp);
 1607         if (error)
 1608                 goto fail;
 1609         cgp = (struct cg *)bp->b_data;
 1610         if (!cg_chkmagic(cgp))
 1611                 goto fail;
 1612         bp->b_xflags |= BX_BKGRDWRITE;
 1613         cgp->cg_old_time = cgp->cg_time = time_second;
 1614         bno = dtogd(fs, bprev);
 1615         blksfree = cg_blksfree(cgp);
 1616         for (i = numfrags(fs, osize); i < frags; i++)
 1617                 if (isclr(blksfree, bno + i))
 1618                         goto fail;
 1619         /*
 1620          * the current fragment can be extended
 1621          * deduct the count on fragment being extended into
 1622          * increase the count on the remaining fragment (if any)
 1623          * allocate the extended piece
 1624          */
 1625         for (i = frags; i < fs->fs_frag - bbase; i++)
 1626                 if (isclr(blksfree, bno + i))
 1627                         break;
 1628         cgp->cg_frsum[i - numfrags(fs, osize)]--;
 1629         if (i != frags)
 1630                 cgp->cg_frsum[i - frags]++;
 1631         for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
 1632                 clrbit(blksfree, bno + i);
 1633                 cgp->cg_cs.cs_nffree--;
 1634                 nffree++;
 1635         }
 1636         UFS_LOCK(ump);
 1637         fs->fs_cstotal.cs_nffree -= nffree;
 1638         fs->fs_cs(fs, cg).cs_nffree -= nffree;
 1639         fs->fs_fmod = 1;
 1640         ACTIVECLEAR(fs, cg);
 1641         UFS_UNLOCK(ump);
 1642         if (DOINGSOFTDEP(ITOV(ip)))
 1643                 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev,
 1644                     frags, numfrags(fs, osize));
 1645         bdwrite(bp);
 1646         return (bprev);
 1647 
 1648 fail:
 1649         brelse(bp);
 1650         UFS_LOCK(ump);
 1651         return (0);
 1652 
 1653 }
 1654 
 1655 /*
 1656  * Determine whether a block can be allocated.
 1657  *
 1658  * Check to see if a block of the appropriate size is available,
 1659  * and if it is, allocate it.
 1660  */
 1661 static ufs2_daddr_t
 1662 ffs_alloccg(ip, cg, bpref, size, rsize)
 1663         struct inode *ip;
 1664         u_int cg;
 1665         ufs2_daddr_t bpref;
 1666         int size;
 1667         int rsize;
 1668 {
 1669         struct fs *fs;
 1670         struct cg *cgp;
 1671         struct buf *bp;
 1672         struct ufsmount *ump;
 1673         ufs1_daddr_t bno;
 1674         ufs2_daddr_t blkno;
 1675         int i, allocsiz, error, frags;
 1676         u_int8_t *blksfree;
 1677 
 1678         ump = ITOUMP(ip);
 1679         fs = ump->um_fs;
 1680         if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
 1681                 return (0);
 1682         UFS_UNLOCK(ump);
 1683         error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
 1684             (int)fs->fs_cgsize, NOCRED, &bp);
 1685         if (error)
 1686                 goto fail;
 1687         cgp = (struct cg *)bp->b_data;
 1688         if (!cg_chkmagic(cgp) ||
 1689             (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
 1690                 goto fail;
 1691         bp->b_xflags |= BX_BKGRDWRITE;
 1692         cgp->cg_old_time = cgp->cg_time = time_second;
 1693         if (size == fs->fs_bsize) {
 1694                 UFS_LOCK(ump);
 1695                 blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
 1696                 ACTIVECLEAR(fs, cg);
 1697                 UFS_UNLOCK(ump);
 1698                 bdwrite(bp);
 1699                 return (blkno);
 1700         }
 1701         /*
 1702          * check to see if any fragments are already available
 1703          * allocsiz is the size which will be allocated, hacking
 1704          * it down to a smaller size if necessary
 1705          */
 1706         blksfree = cg_blksfree(cgp);
 1707         frags = numfrags(fs, size);
 1708         for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
 1709                 if (cgp->cg_frsum[allocsiz] != 0)
 1710                         break;
 1711         if (allocsiz == fs->fs_frag) {
 1712                 /*
 1713                  * no fragments were available, so a block will be
 1714                  * allocated, and hacked up
 1715                  */
 1716                 if (cgp->cg_cs.cs_nbfree == 0)
 1717                         goto fail;
 1718                 UFS_LOCK(ump);
 1719                 blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
 1720                 ACTIVECLEAR(fs, cg);
 1721                 UFS_UNLOCK(ump);
 1722                 bdwrite(bp);
 1723                 return (blkno);
 1724         }
 1725         KASSERT(size == rsize,
 1726             ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize));
 1727         bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
 1728         if (bno < 0)
 1729                 goto fail;
 1730         for (i = 0; i < frags; i++)
 1731                 clrbit(blksfree, bno + i);
 1732         cgp->cg_cs.cs_nffree -= frags;
 1733         cgp->cg_frsum[allocsiz]--;
 1734         if (frags != allocsiz)
 1735                 cgp->cg_frsum[allocsiz - frags]++;
 1736         UFS_LOCK(ump);
 1737         fs->fs_cstotal.cs_nffree -= frags;
 1738         fs->fs_cs(fs, cg).cs_nffree -= frags;
 1739         fs->fs_fmod = 1;
 1740         blkno = cgbase(fs, cg) + bno;
 1741         ACTIVECLEAR(fs, cg);
 1742         UFS_UNLOCK(ump);
 1743         if (DOINGSOFTDEP(ITOV(ip)))
 1744                 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0);
 1745         bdwrite(bp);
 1746         return (blkno);
 1747 
 1748 fail:
 1749         brelse(bp);
 1750         UFS_LOCK(ump);
 1751         return (0);
 1752 }
 1753 
 1754 /*
 1755  * Allocate a block in a cylinder group.
 1756  *
 1757  * This algorithm implements the following policy:
 1758  *   1) allocate the requested block.
 1759  *   2) allocate a rotationally optimal block in the same cylinder.
 1760  *   3) allocate the next available block on the block rotor for the
 1761  *      specified cylinder group.
 1762  * Note that this routine only allocates fs_bsize blocks; these
 1763  * blocks may be fragmented by the routine that allocates them.
 1764  */
 1765 static ufs2_daddr_t
 1766 ffs_alloccgblk(ip, bp, bpref, size)
 1767         struct inode *ip;
 1768         struct buf *bp;
 1769         ufs2_daddr_t bpref;
 1770         int size;
 1771 {
 1772         struct fs *fs;
 1773         struct cg *cgp;
 1774         struct ufsmount *ump;
 1775         ufs1_daddr_t bno;
 1776         ufs2_daddr_t blkno;
 1777         u_int8_t *blksfree;
 1778         int i, cgbpref;
 1779 
 1780         ump = ITOUMP(ip);
 1781         fs = ump->um_fs;
 1782         mtx_assert(UFS_MTX(ump), MA_OWNED);
 1783         cgp = (struct cg *)bp->b_data;
 1784         blksfree = cg_blksfree(cgp);
 1785         if (bpref == 0) {
 1786                 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag;
 1787         } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
 1788                 /* map bpref to correct zone in this cg */
 1789                 if (bpref < cgdata(fs, cgbpref))
 1790                         bpref = cgmeta(fs, cgp->cg_cgx);
 1791                 else
 1792                         bpref = cgdata(fs, cgp->cg_cgx);
 1793         }
 1794         /*
 1795          * if the requested block is available, use it
 1796          */
 1797         bno = dtogd(fs, blknum(fs, bpref));
 1798         if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
 1799                 goto gotit;
 1800         /*
 1801          * Take the next available block in this cylinder group.
 1802          */
 1803         bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
 1804         if (bno < 0)
 1805                 return (0);
 1806         /* Update cg_rotor only if allocated from the data zone */
 1807         if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
 1808                 cgp->cg_rotor = bno;
 1809 gotit:
 1810         blkno = fragstoblks(fs, bno);
 1811         ffs_clrblock(fs, blksfree, (long)blkno);
 1812         ffs_clusteracct(fs, cgp, blkno, -1);
 1813         cgp->cg_cs.cs_nbfree--;
 1814         fs->fs_cstotal.cs_nbfree--;
 1815         fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
 1816         fs->fs_fmod = 1;
 1817         blkno = cgbase(fs, cgp->cg_cgx) + bno;
 1818         /*
 1819          * If the caller didn't want the whole block free the frags here.
 1820          */
 1821         size = numfrags(fs, size);
 1822         if (size != fs->fs_frag) {
 1823                 bno = dtogd(fs, blkno);
 1824                 for (i = size; i < fs->fs_frag; i++)
 1825                         setbit(blksfree, bno + i);
 1826                 i = fs->fs_frag - size;
 1827                 cgp->cg_cs.cs_nffree += i;
 1828                 fs->fs_cstotal.cs_nffree += i;
 1829                 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i;
 1830                 fs->fs_fmod = 1;
 1831                 cgp->cg_frsum[i]++;
 1832         }
 1833         /* XXX Fixme. */
 1834         UFS_UNLOCK(ump);
 1835         if (DOINGSOFTDEP(ITOV(ip)))
 1836                 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno,
 1837                     size, 0);
 1838         UFS_LOCK(ump);
 1839         return (blkno);
 1840 }
 1841 
 1842 /*
 1843  * Determine whether a cluster can be allocated.
 1844  *
 1845  * We do not currently check for optimal rotational layout if there
 1846  * are multiple choices in the same cylinder group. Instead we just
 1847  * take the first one that we find following bpref.
 1848  */
 1849 static ufs2_daddr_t
 1850 ffs_clusteralloc(ip, cg, bpref, len)
 1851         struct inode *ip;
 1852         u_int cg;
 1853         ufs2_daddr_t bpref;
 1854         int len;
 1855 {
 1856         struct fs *fs;
 1857         struct cg *cgp;
 1858         struct buf *bp;
 1859         struct ufsmount *ump;
 1860         int i, run, bit, map, got;
 1861         ufs2_daddr_t bno;
 1862         u_char *mapp;
 1863         int32_t *lp;
 1864         u_int8_t *blksfree;
 1865 
 1866         ump = ITOUMP(ip);
 1867         fs = ump->um_fs;
 1868         if (fs->fs_maxcluster[cg] < len)
 1869                 return (0);
 1870         UFS_UNLOCK(ump);
 1871         if (bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
 1872             NOCRED, &bp))
 1873                 goto fail_lock;
 1874         cgp = (struct cg *)bp->b_data;
 1875         if (!cg_chkmagic(cgp))
 1876                 goto fail_lock;
 1877         bp->b_xflags |= BX_BKGRDWRITE;
 1878         /*
 1879          * Check to see if a cluster of the needed size (or bigger) is
 1880          * available in this cylinder group.
 1881          */
 1882         lp = &cg_clustersum(cgp)[len];
 1883         for (i = len; i <= fs->fs_contigsumsize; i++)
 1884                 if (*lp++ > 0)
 1885                         break;
 1886         if (i > fs->fs_contigsumsize) {
 1887                 /*
 1888                  * This is the first time looking for a cluster in this
 1889                  * cylinder group. Update the cluster summary information
 1890                  * to reflect the true maximum sized cluster so that
 1891                  * future cluster allocation requests can avoid reading
 1892                  * the cylinder group map only to find no clusters.
 1893                  */
 1894                 lp = &cg_clustersum(cgp)[len - 1];
 1895                 for (i = len - 1; i > 0; i--)
 1896                         if (*lp-- > 0)
 1897                                 break;
 1898                 UFS_LOCK(ump);
 1899                 fs->fs_maxcluster[cg] = i;
 1900                 goto fail;
 1901         }
 1902         /*
 1903          * Search the cluster map to find a big enough cluster.
 1904          * We take the first one that we find, even if it is larger
 1905          * than we need as we prefer to get one close to the previous
 1906          * block allocation. We do not search before the current
 1907          * preference point as we do not want to allocate a block
 1908          * that is allocated before the previous one (as we will
 1909          * then have to wait for another pass of the elevator
 1910          * algorithm before it will be read). We prefer to fail and
 1911          * be recalled to try an allocation in the next cylinder group.
 1912          */
 1913         if (dtog(fs, bpref) != cg)
 1914                 bpref = cgdata(fs, cg);
 1915         else
 1916                 bpref = blknum(fs, bpref);
 1917         bpref = fragstoblks(fs, dtogd(fs, bpref));
 1918         mapp = &cg_clustersfree(cgp)[bpref / NBBY];
 1919         map = *mapp++;
 1920         bit = 1 << (bpref % NBBY);
 1921         for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
 1922                 if ((map & bit) == 0) {
 1923                         run = 0;
 1924                 } else {
 1925                         run++;
 1926                         if (run == len)
 1927                                 break;
 1928                 }
 1929                 if ((got & (NBBY - 1)) != (NBBY - 1)) {
 1930                         bit <<= 1;
 1931                 } else {
 1932                         map = *mapp++;
 1933                         bit = 1;
 1934                 }
 1935         }
 1936         if (got >= cgp->cg_nclusterblks)
 1937                 goto fail_lock;
 1938         /*
 1939          * Allocate the cluster that we have found.
 1940          */
 1941         blksfree = cg_blksfree(cgp);
 1942         for (i = 1; i <= len; i++)
 1943                 if (!ffs_isblock(fs, blksfree, got - run + i))
 1944                         panic("ffs_clusteralloc: map mismatch");
 1945         bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
 1946         if (dtog(fs, bno) != cg)
 1947                 panic("ffs_clusteralloc: allocated out of group");
 1948         len = blkstofrags(fs, len);
 1949         UFS_LOCK(ump);
 1950         for (i = 0; i < len; i += fs->fs_frag)
 1951                 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i)
 1952                         panic("ffs_clusteralloc: lost block");
 1953         ACTIVECLEAR(fs, cg);
 1954         UFS_UNLOCK(ump);
 1955         bdwrite(bp);
 1956         return (bno);
 1957 
 1958 fail_lock:
 1959         UFS_LOCK(ump);
 1960 fail:
 1961         brelse(bp);
 1962         return (0);
 1963 }
 1964 
 1965 static inline struct buf *
 1966 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags)
 1967 {
 1968         struct fs *fs;
 1969 
 1970         fs = ITOFS(ip);
 1971         return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs,
 1972             cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0,
 1973             gbflags));
 1974 }
 1975 
 1976 /*
 1977  * Synchronous inode initialization is needed only when barrier writes do not
 1978  * work as advertised, and will impose a heavy cost on file creation in a newly
 1979  * created filesystem.
 1980  */
 1981 static int doasyncinodeinit = 1;
 1982 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN,
 1983     &doasyncinodeinit, 0,
 1984     "Perform inode block initialization using asynchronous writes");
 1985 
 1986 /*
 1987  * Determine whether an inode can be allocated.
 1988  *
 1989  * Check to see if an inode is available, and if it is,
 1990  * allocate it using the following policy:
 1991  *   1) allocate the requested inode.
 1992  *   2) allocate the next available inode after the requested
 1993  *      inode in the specified cylinder group.
 1994  */
 1995 static ufs2_daddr_t
 1996 ffs_nodealloccg(ip, cg, ipref, mode, unused)
 1997         struct inode *ip;
 1998         u_int cg;
 1999         ufs2_daddr_t ipref;
 2000         int mode;
 2001         int unused;
 2002 {
 2003         struct fs *fs;
 2004         struct cg *cgp;
 2005         struct buf *bp, *ibp;
 2006         struct ufsmount *ump;
 2007         u_int8_t *inosused, *loc;
 2008         struct ufs2_dinode *dp2;
 2009         int error, start, len, i;
 2010         u_int32_t old_initediblk;
 2011 
 2012         ump = ITOUMP(ip);
 2013         fs = ump->um_fs;
 2014 check_nifree:
 2015         if (fs->fs_cs(fs, cg).cs_nifree == 0)
 2016                 return (0);
 2017         UFS_UNLOCK(ump);
 2018         error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
 2019                 (int)fs->fs_cgsize, NOCRED, &bp);
 2020         if (error) {
 2021                 brelse(bp);
 2022                 UFS_LOCK(ump);
 2023                 return (0);
 2024         }
 2025         cgp = (struct cg *)bp->b_data;
 2026 restart:
 2027         if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
 2028                 brelse(bp);
 2029                 UFS_LOCK(ump);
 2030                 return (0);
 2031         }
 2032         bp->b_xflags |= BX_BKGRDWRITE;
 2033         inosused = cg_inosused(cgp);
 2034         if (ipref) {
 2035                 ipref %= fs->fs_ipg;
 2036                 if (isclr(inosused, ipref))
 2037                         goto gotit;
 2038         }
 2039         start = cgp->cg_irotor / NBBY;
 2040         len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
 2041         loc = memcchr(&inosused[start], 0xff, len);
 2042         if (loc == NULL) {
 2043                 len = start + 1;
 2044                 start = 0;
 2045                 loc = memcchr(&inosused[start], 0xff, len);
 2046                 if (loc == NULL) {
 2047                         printf("cg = %d, irotor = %ld, fs = %s\n",
 2048                             cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
 2049                         panic("ffs_nodealloccg: map corrupted");
 2050                         /* NOTREACHED */
 2051                 }
 2052         }
 2053         ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1;
 2054 gotit:
 2055         /*
 2056          * Check to see if we need to initialize more inodes.
 2057          */
 2058         if (fs->fs_magic == FS_UFS2_MAGIC &&
 2059             ipref + INOPB(fs) > cgp->cg_initediblk &&
 2060             cgp->cg_initediblk < cgp->cg_niblk) {
 2061                 old_initediblk = cgp->cg_initediblk;
 2062 
 2063                 /*
 2064                  * Free the cylinder group lock before writing the
 2065                  * initialized inode block.  Entering the
 2066                  * babarrierwrite() with the cylinder group lock
 2067                  * causes lock order violation between the lock and
 2068                  * snaplk.
 2069                  *
 2070                  * Another thread can decide to initialize the same
 2071                  * inode block, but whichever thread first gets the
 2072                  * cylinder group lock after writing the newly
 2073                  * allocated inode block will update it and the other
 2074                  * will realize that it has lost and leave the
 2075                  * cylinder group unchanged.
 2076                  */
 2077                 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT);
 2078                 brelse(bp);
 2079                 if (ibp == NULL) {
 2080                         /*
 2081                          * The inode block buffer is already owned by
 2082                          * another thread, which must initialize it.
 2083                          * Wait on the buffer to allow another thread
 2084                          * to finish the updates, with dropped cg
 2085                          * buffer lock, then retry.
 2086                          */
 2087                         ibp = getinobuf(ip, cg, old_initediblk, 0);
 2088                         brelse(ibp);
 2089                         UFS_LOCK(ump);
 2090                         goto check_nifree;
 2091                 }
 2092                 bzero(ibp->b_data, (int)fs->fs_bsize);
 2093                 dp2 = (struct ufs2_dinode *)(ibp->b_data);
 2094                 for (i = 0; i < INOPB(fs); i++) {
 2095                         while (dp2->di_gen == 0)
 2096                                 dp2->di_gen = arc4random();
 2097                         dp2++;
 2098                 }
 2099 
 2100                 /*
 2101                  * Rather than adding a soft updates dependency to ensure
 2102                  * that the new inode block is written before it is claimed
 2103                  * by the cylinder group map, we just do a barrier write
 2104                  * here. The barrier write will ensure that the inode block
 2105                  * gets written before the updated cylinder group map can be
 2106                  * written. The barrier write should only slow down bulk
 2107                  * loading of newly created filesystems.
 2108                  */
 2109                 if (doasyncinodeinit)
 2110                         babarrierwrite(ibp);
 2111                 else
 2112                         bwrite(ibp);
 2113 
 2114                 /*
 2115                  * After the inode block is written, try to update the
 2116                  * cg initediblk pointer.  If another thread beat us
 2117                  * to it, then leave it unchanged as the other thread
 2118                  * has already set it correctly.
 2119                  */
 2120                 error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
 2121                     (int)fs->fs_cgsize, NOCRED, &bp);
 2122                 UFS_LOCK(ump);
 2123                 ACTIVECLEAR(fs, cg);
 2124                 UFS_UNLOCK(ump);
 2125                 if (error != 0) {
 2126                         brelse(bp);
 2127                         return (error);
 2128                 }
 2129                 cgp = (struct cg *)bp->b_data;
 2130                 if (cgp->cg_initediblk == old_initediblk)
 2131                         cgp->cg_initediblk += INOPB(fs);
 2132                 goto restart;
 2133         }
 2134         cgp->cg_old_time = cgp->cg_time = time_second;
 2135         cgp->cg_irotor = ipref;
 2136         UFS_LOCK(ump);
 2137         ACTIVECLEAR(fs, cg);
 2138         setbit(inosused, ipref);
 2139         cgp->cg_cs.cs_nifree--;
 2140         fs->fs_cstotal.cs_nifree--;
 2141         fs->fs_cs(fs, cg).cs_nifree--;
 2142         fs->fs_fmod = 1;
 2143         if ((mode & IFMT) == IFDIR) {
 2144                 cgp->cg_cs.cs_ndir++;
 2145                 fs->fs_cstotal.cs_ndir++;
 2146                 fs->fs_cs(fs, cg).cs_ndir++;
 2147         }
 2148         UFS_UNLOCK(ump);
 2149         if (DOINGSOFTDEP(ITOV(ip)))
 2150                 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode);
 2151         bdwrite(bp);
 2152         return ((ino_t)(cg * fs->fs_ipg + ipref));
 2153 }
 2154 
 2155 /*
 2156  * Free a block or fragment.
 2157  *
 2158  * The specified block or fragment is placed back in the
 2159  * free map. If a fragment is deallocated, a possible
 2160  * block reassembly is checked.
 2161  */
 2162 static void
 2163 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd)
 2164         struct ufsmount *ump;
 2165         struct fs *fs;
 2166         struct vnode *devvp;
 2167         ufs2_daddr_t bno;
 2168         long size;
 2169         ino_t inum;
 2170         struct workhead *dephd;
 2171 {
 2172         struct mount *mp;
 2173         struct cg *cgp;
 2174         struct buf *bp;
 2175         ufs1_daddr_t fragno, cgbno;
 2176         ufs2_daddr_t cgblkno;
 2177         int i, blk, frags, bbase;
 2178         u_int cg;
 2179         u_int8_t *blksfree;
 2180         struct cdev *dev;
 2181 
 2182         cg = dtog(fs, bno);
 2183         if (devvp->v_type == VREG) {
 2184                 /* devvp is a snapshot */
 2185                 MPASS(devvp->v_mount->mnt_data == ump);
 2186                 dev = ump->um_devvp->v_rdev;
 2187                 cgblkno = fragstoblks(fs, cgtod(fs, cg));
 2188         } else if (devvp->v_type == VCHR) {
 2189                 /* devvp is a normal disk device */
 2190                 dev = devvp->v_rdev;
 2191                 cgblkno = fsbtodb(fs, cgtod(fs, cg));
 2192                 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg");
 2193         } else
 2194                 return;
 2195 #ifdef INVARIANTS
 2196         if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
 2197             fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
 2198                 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
 2199                     devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
 2200                     size, fs->fs_fsmnt);
 2201                 panic("ffs_blkfree_cg: bad size");
 2202         }
 2203 #endif
 2204         if ((u_int)bno >= fs->fs_size) {
 2205                 printf("bad block %jd, ino %lu\n", (intmax_t)bno,
 2206                     (u_long)inum);
 2207                 ffs_fserr(fs, inum, "bad block");
 2208                 return;
 2209         }
 2210         if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) {
 2211                 brelse(bp);
 2212                 return;
 2213         }
 2214         cgp = (struct cg *)bp->b_data;
 2215         if (!cg_chkmagic(cgp)) {
 2216                 brelse(bp);
 2217                 return;
 2218         }
 2219         bp->b_xflags |= BX_BKGRDWRITE;
 2220         cgp->cg_old_time = cgp->cg_time = time_second;
 2221         cgbno = dtogd(fs, bno);
 2222         blksfree = cg_blksfree(cgp);
 2223         UFS_LOCK(ump);
 2224         if (size == fs->fs_bsize) {
 2225                 fragno = fragstoblks(fs, cgbno);
 2226                 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
 2227                         if (devvp->v_type == VREG) {
 2228                                 UFS_UNLOCK(ump);
 2229                                 /* devvp is a snapshot */
 2230                                 brelse(bp);
 2231                                 return;
 2232                         }
 2233                         printf("dev = %s, block = %jd, fs = %s\n",
 2234                             devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
 2235                         panic("ffs_blkfree_cg: freeing free block");
 2236                 }
 2237                 ffs_setblock(fs, blksfree, fragno);
 2238                 ffs_clusteracct(fs, cgp, fragno, 1);
 2239                 cgp->cg_cs.cs_nbfree++;
 2240                 fs->fs_cstotal.cs_nbfree++;
 2241                 fs->fs_cs(fs, cg).cs_nbfree++;
 2242         } else {
 2243                 bbase = cgbno - fragnum(fs, cgbno);
 2244                 /*
 2245                  * decrement the counts associated with the old frags
 2246                  */
 2247                 blk = blkmap(fs, blksfree, bbase);
 2248                 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
 2249                 /*
 2250                  * deallocate the fragment
 2251                  */
 2252                 frags = numfrags(fs, size);
 2253                 for (i = 0; i < frags; i++) {
 2254                         if (isset(blksfree, cgbno + i)) {
 2255                                 printf("dev = %s, block = %jd, fs = %s\n",
 2256                                     devtoname(dev), (intmax_t)(bno + i),
 2257                                     fs->fs_fsmnt);
 2258                                 panic("ffs_blkfree_cg: freeing free frag");
 2259                         }
 2260                         setbit(blksfree, cgbno + i);
 2261                 }
 2262                 cgp->cg_cs.cs_nffree += i;
 2263                 fs->fs_cstotal.cs_nffree += i;
 2264                 fs->fs_cs(fs, cg).cs_nffree += i;
 2265                 /*
 2266                  * add back in counts associated with the new frags
 2267                  */
 2268                 blk = blkmap(fs, blksfree, bbase);
 2269                 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
 2270                 /*
 2271                  * if a complete block has been reassembled, account for it
 2272                  */
 2273                 fragno = fragstoblks(fs, bbase);
 2274                 if (ffs_isblock(fs, blksfree, fragno)) {
 2275                         cgp->cg_cs.cs_nffree -= fs->fs_frag;
 2276                         fs->fs_cstotal.cs_nffree -= fs->fs_frag;
 2277                         fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
 2278                         ffs_clusteracct(fs, cgp, fragno, 1);
 2279                         cgp->cg_cs.cs_nbfree++;
 2280                         fs->fs_cstotal.cs_nbfree++;
 2281                         fs->fs_cs(fs, cg).cs_nbfree++;
 2282                 }
 2283         }
 2284         fs->fs_fmod = 1;
 2285         ACTIVECLEAR(fs, cg);
 2286         UFS_UNLOCK(ump);
 2287         mp = UFSTOVFS(ump);
 2288         if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR)
 2289                 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
 2290                     numfrags(fs, size), dephd);
 2291         bdwrite(bp);
 2292 }
 2293 
 2294 struct ffs_blkfree_trim_params {
 2295         struct task task;
 2296         struct ufsmount *ump;
 2297         struct vnode *devvp;
 2298         ufs2_daddr_t bno;
 2299         long size;
 2300         ino_t inum;
 2301         struct workhead *pdephd;
 2302         struct workhead dephd;
 2303 };
 2304 
 2305 static void
 2306 ffs_blkfree_trim_task(ctx, pending)
 2307         void *ctx;
 2308         int pending;
 2309 {
 2310         struct ffs_blkfree_trim_params *tp;
 2311 
 2312         tp = ctx;
 2313         ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size,
 2314             tp->inum, tp->pdephd);
 2315         vn_finished_secondary_write(UFSTOVFS(tp->ump));
 2316         atomic_add_int(&tp->ump->um_trim_inflight, -1);
 2317         free(tp, M_TEMP);
 2318 }
 2319 
 2320 static void
 2321 ffs_blkfree_trim_completed(bip)
 2322         struct bio *bip;
 2323 {
 2324         struct ffs_blkfree_trim_params *tp;
 2325 
 2326         tp = bip->bio_caller2;
 2327         g_destroy_bio(bip);
 2328         TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
 2329         taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task);
 2330 }
 2331 
 2332 void
 2333 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd)
 2334         struct ufsmount *ump;
 2335         struct fs *fs;
 2336         struct vnode *devvp;
 2337         ufs2_daddr_t bno;
 2338         long size;
 2339         ino_t inum;
 2340         enum vtype vtype;
 2341         struct workhead *dephd;
 2342 {
 2343         struct mount *mp;
 2344         struct bio *bip;
 2345         struct ffs_blkfree_trim_params *tp;
 2346 
 2347         /*
 2348          * Check to see if a snapshot wants to claim the block.
 2349          * Check that devvp is a normal disk device, not a snapshot,
 2350          * it has a snapshot(s) associated with it, and one of the
 2351          * snapshots wants to claim the block.
 2352          */
 2353         if (devvp->v_type == VCHR &&
 2354             (devvp->v_vflag & VV_COPYONWRITE) &&
 2355             ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) {
 2356                 return;
 2357         }
 2358         /*
 2359          * Nothing to delay if TRIM is disabled, or the operation is
 2360          * performed on the snapshot.
 2361          */
 2362         if (!ump->um_candelete || devvp->v_type == VREG) {
 2363                 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd);
 2364                 return;
 2365         }
 2366 
 2367         /*
 2368          * Postpone the set of the free bit in the cg bitmap until the
 2369          * BIO_DELETE is completed.  Otherwise, due to disk queue
 2370          * reordering, TRIM might be issued after we reuse the block
 2371          * and write some new data into it.
 2372          */
 2373         atomic_add_int(&ump->um_trim_inflight, 1);
 2374         tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK);
 2375         tp->ump = ump;
 2376         tp->devvp = devvp;
 2377         tp->bno = bno;
 2378         tp->size = size;
 2379         tp->inum = inum;
 2380         if (dephd != NULL) {
 2381                 LIST_INIT(&tp->dephd);
 2382                 LIST_SWAP(dephd, &tp->dephd, worklist, wk_list);
 2383                 tp->pdephd = &tp->dephd;
 2384         } else
 2385                 tp->pdephd = NULL;
 2386 
 2387         bip = g_alloc_bio();
 2388         bip->bio_cmd = BIO_DELETE;
 2389         bip->bio_offset = dbtob(fsbtodb(fs, bno));
 2390         bip->bio_done = ffs_blkfree_trim_completed;
 2391         bip->bio_length = size;
 2392         bip->bio_caller2 = tp;
 2393 
 2394         mp = UFSTOVFS(ump);
 2395         vn_start_secondary_write(NULL, &mp, 0);
 2396         g_io_request(bip, (struct g_consumer *)devvp->v_bufobj.bo_private);
 2397 }
 2398 
 2399 #ifdef INVARIANTS
 2400 /*
 2401  * Verify allocation of a block or fragment. Returns true if block or
 2402  * fragment is allocated, false if it is free.
 2403  */
 2404 static int
 2405 ffs_checkblk(ip, bno, size)
 2406         struct inode *ip;
 2407         ufs2_daddr_t bno;
 2408         long size;
 2409 {
 2410         struct fs *fs;
 2411         struct cg *cgp;
 2412         struct buf *bp;
 2413         ufs1_daddr_t cgbno;
 2414         int i, error, frags, free;
 2415         u_int8_t *blksfree;
 2416 
 2417         fs = ITOFS(ip);
 2418         if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
 2419                 printf("bsize = %ld, size = %ld, fs = %s\n",
 2420                     (long)fs->fs_bsize, size, fs->fs_fsmnt);
 2421                 panic("ffs_checkblk: bad size");
 2422         }
 2423         if ((u_int)bno >= fs->fs_size)
 2424                 panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
 2425         error = bread(ITODEVVP(ip), fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
 2426                 (int)fs->fs_cgsize, NOCRED, &bp);
 2427         if (error)
 2428                 panic("ffs_checkblk: cg bread failed");
 2429         cgp = (struct cg *)bp->b_data;
 2430         if (!cg_chkmagic(cgp))
 2431                 panic("ffs_checkblk: cg magic mismatch");
 2432         bp->b_xflags |= BX_BKGRDWRITE;
 2433         blksfree = cg_blksfree(cgp);
 2434         cgbno = dtogd(fs, bno);
 2435         if (size == fs->fs_bsize) {
 2436                 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
 2437         } else {
 2438                 frags = numfrags(fs, size);
 2439                 for (free = 0, i = 0; i < frags; i++)
 2440                         if (isset(blksfree, cgbno + i))
 2441                                 free++;
 2442                 if (free != 0 && free != frags)
 2443                         panic("ffs_checkblk: partially free fragment");
 2444         }
 2445         brelse(bp);
 2446         return (!free);
 2447 }
 2448 #endif /* INVARIANTS */
 2449 
 2450 /*
 2451  * Free an inode.
 2452  */
 2453 int
 2454 ffs_vfree(pvp, ino, mode)
 2455         struct vnode *pvp;
 2456         ino_t ino;
 2457         int mode;
 2458 {
 2459         struct ufsmount *ump;
 2460         struct inode *ip;
 2461 
 2462         if (DOINGSOFTDEP(pvp)) {
 2463                 softdep_freefile(pvp, ino, mode);
 2464                 return (0);
 2465         }
 2466         ip = VTOI(pvp);
 2467         ump = VFSTOUFS(pvp->v_mount);
 2468         return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL));
 2469 }
 2470 
 2471 /*
 2472  * Do the actual free operation.
 2473  * The specified inode is placed back in the free map.
 2474  */
 2475 int
 2476 ffs_freefile(ump, fs, devvp, ino, mode, wkhd)
 2477         struct ufsmount *ump;
 2478         struct fs *fs;
 2479         struct vnode *devvp;
 2480         ino_t ino;
 2481         int mode;
 2482         struct workhead *wkhd;
 2483 {
 2484         struct cg *cgp;
 2485         struct buf *bp;
 2486         ufs2_daddr_t cgbno;
 2487         int error;
 2488         u_int cg;
 2489         u_int8_t *inosused;
 2490         struct cdev *dev;
 2491 
 2492         cg = ino_to_cg(fs, ino);
 2493         if (devvp->v_type == VREG) {
 2494                 /* devvp is a snapshot */
 2495                 MPASS(devvp->v_mount->mnt_data == ump);
 2496                 dev = ump->um_devvp->v_rdev;
 2497                 cgbno = fragstoblks(fs, cgtod(fs, cg));
 2498         } else if (devvp->v_type == VCHR) {
 2499                 /* devvp is a normal disk device */
 2500                 dev = devvp->v_rdev;
 2501                 cgbno = fsbtodb(fs, cgtod(fs, cg));
 2502         } else {
 2503                 bp = NULL;
 2504                 return (0);
 2505         }
 2506         if (ino >= fs->fs_ipg * fs->fs_ncg)
 2507                 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s",
 2508                     devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt);
 2509         if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
 2510                 brelse(bp);
 2511                 return (error);
 2512         }
 2513         cgp = (struct cg *)bp->b_data;
 2514         if (!cg_chkmagic(cgp)) {
 2515                 brelse(bp);
 2516                 return (0);
 2517         }
 2518         bp->b_xflags |= BX_BKGRDWRITE;
 2519         cgp->cg_old_time = cgp->cg_time = time_second;
 2520         inosused = cg_inosused(cgp);
 2521         ino %= fs->fs_ipg;
 2522         if (isclr(inosused, ino)) {
 2523                 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev),
 2524                     (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt);
 2525                 if (fs->fs_ronly == 0)
 2526                         panic("ffs_freefile: freeing free inode");
 2527         }
 2528         clrbit(inosused, ino);
 2529         if (ino < cgp->cg_irotor)
 2530                 cgp->cg_irotor = ino;
 2531         cgp->cg_cs.cs_nifree++;
 2532         UFS_LOCK(ump);
 2533         fs->fs_cstotal.cs_nifree++;
 2534         fs->fs_cs(fs, cg).cs_nifree++;
 2535         if ((mode & IFMT) == IFDIR) {
 2536                 cgp->cg_cs.cs_ndir--;
 2537                 fs->fs_cstotal.cs_ndir--;
 2538                 fs->fs_cs(fs, cg).cs_ndir--;
 2539         }
 2540         fs->fs_fmod = 1;
 2541         ACTIVECLEAR(fs, cg);
 2542         UFS_UNLOCK(ump);
 2543         if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR)
 2544                 softdep_setup_inofree(UFSTOVFS(ump), bp,
 2545                     ino + cg * fs->fs_ipg, wkhd);
 2546         bdwrite(bp);
 2547         return (0);
 2548 }
 2549 
 2550 /*
 2551  * Check to see if a file is free.
 2552  */
 2553 int
 2554 ffs_checkfreefile(fs, devvp, ino)
 2555         struct fs *fs;
 2556         struct vnode *devvp;
 2557         ino_t ino;
 2558 {
 2559         struct cg *cgp;
 2560         struct buf *bp;
 2561         ufs2_daddr_t cgbno;
 2562         int ret;
 2563         u_int cg;
 2564         u_int8_t *inosused;
 2565 
 2566         cg = ino_to_cg(fs, ino);
 2567         if (devvp->v_type == VREG) {
 2568                 /* devvp is a snapshot */
 2569                 cgbno = fragstoblks(fs, cgtod(fs, cg));
 2570         } else if (devvp->v_type == VCHR) {
 2571                 /* devvp is a normal disk device */
 2572                 cgbno = fsbtodb(fs, cgtod(fs, cg));
 2573         } else {
 2574                 return (1);
 2575         }
 2576         if (ino >= fs->fs_ipg * fs->fs_ncg)
 2577                 return (1);
 2578         if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
 2579                 brelse(bp);
 2580                 return (1);
 2581         }
 2582         cgp = (struct cg *)bp->b_data;
 2583         if (!cg_chkmagic(cgp)) {
 2584                 brelse(bp);
 2585                 return (1);
 2586         }
 2587         inosused = cg_inosused(cgp);
 2588         ino %= fs->fs_ipg;
 2589         ret = isclr(inosused, ino);
 2590         brelse(bp);
 2591         return (ret);
 2592 }
 2593 
 2594 /*
 2595  * Find a block of the specified size in the specified cylinder group.
 2596  *
 2597  * It is a panic if a request is made to find a block if none are
 2598  * available.
 2599  */
 2600 static ufs1_daddr_t
 2601 ffs_mapsearch(fs, cgp, bpref, allocsiz)
 2602         struct fs *fs;
 2603         struct cg *cgp;
 2604         ufs2_daddr_t bpref;
 2605         int allocsiz;
 2606 {
 2607         ufs1_daddr_t bno;
 2608         int start, len, loc, i;
 2609         int blk, field, subfield, pos;
 2610         u_int8_t *blksfree;
 2611 
 2612         /*
 2613          * find the fragment by searching through the free block
 2614          * map for an appropriate bit pattern
 2615          */
 2616         if (bpref)
 2617                 start = dtogd(fs, bpref) / NBBY;
 2618         else
 2619                 start = cgp->cg_frotor / NBBY;
 2620         blksfree = cg_blksfree(cgp);
 2621         len = howmany(fs->fs_fpg, NBBY) - start;
 2622         loc = scanc((u_int)len, (u_char *)&blksfree[start],
 2623                 fragtbl[fs->fs_frag],
 2624                 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
 2625         if (loc == 0) {
 2626                 len = start + 1;
 2627                 start = 0;
 2628                 loc = scanc((u_int)len, (u_char *)&blksfree[0],
 2629                         fragtbl[fs->fs_frag],
 2630                         (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
 2631                 if (loc == 0) {
 2632                         printf("start = %d, len = %d, fs = %s\n",
 2633                             start, len, fs->fs_fsmnt);
 2634                         panic("ffs_alloccg: map corrupted");
 2635                         /* NOTREACHED */
 2636                 }
 2637         }
 2638         bno = (start + len - loc) * NBBY;
 2639         cgp->cg_frotor = bno;
 2640         /*
 2641          * found the byte in the map
 2642          * sift through the bits to find the selected frag
 2643          */
 2644         for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
 2645                 blk = blkmap(fs, blksfree, bno);
 2646                 blk <<= 1;
 2647                 field = around[allocsiz];
 2648                 subfield = inside[allocsiz];
 2649                 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
 2650                         if ((blk & field) == subfield)
 2651                                 return (bno + pos);
 2652                         field <<= 1;
 2653                         subfield <<= 1;
 2654                 }
 2655         }
 2656         printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
 2657         panic("ffs_alloccg: block not in map");
 2658         return (-1);
 2659 }
 2660 
 2661 /*
 2662  * Fserr prints the name of a filesystem with an error diagnostic.
 2663  *
 2664  * The form of the error message is:
 2665  *      fs: error message
 2666  */
 2667 void
 2668 ffs_fserr(fs, inum, cp)
 2669         struct fs *fs;
 2670         ino_t inum;
 2671         char *cp;
 2672 {
 2673         struct thread *td = curthread;  /* XXX */
 2674         struct proc *p = td->td_proc;
 2675 
 2676         log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n",
 2677             p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum,
 2678             fs->fs_fsmnt, cp);
 2679 }
 2680 
 2681 /*
 2682  * This function provides the capability for the fsck program to
 2683  * update an active filesystem. Fourteen operations are provided:
 2684  *
 2685  * adjrefcnt(inode, amt) - adjusts the reference count on the
 2686  *      specified inode by the specified amount. Under normal
 2687  *      operation the count should always go down. Decrementing
 2688  *      the count to zero will cause the inode to be freed.
 2689  * adjblkcnt(inode, amt) - adjust the number of blocks used by the
 2690  *      inode by the specified amount.
 2691  * adjsize(inode, size) - set the size of the inode to the
 2692  *      specified size.
 2693  * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
 2694  *      adjust the superblock summary.
 2695  * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
 2696  *      are marked as free. Inodes should never have to be marked
 2697  *      as in use.
 2698  * freefiles(inode, count) - file inodes [inode..inode + count - 1]
 2699  *      are marked as free. Inodes should never have to be marked
 2700  *      as in use.
 2701  * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
 2702  *      are marked as free. Blocks should never have to be marked
 2703  *      as in use.
 2704  * setflags(flags, set/clear) - the fs_flags field has the specified
 2705  *      flags set (second parameter +1) or cleared (second parameter -1).
 2706  * setcwd(dirinode) - set the current directory to dirinode in the
 2707  *      filesystem associated with the snapshot.
 2708  * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".."
 2709  *      in the current directory is oldvalue then change it to newvalue.
 2710  * unlink(nameptr, oldvalue) - Verify that the inode number associated
 2711  *      with nameptr in the current directory is oldvalue then unlink it.
 2712  *
 2713  * The following functions may only be used on a quiescent filesystem
 2714  * by the soft updates journal. They are not safe to be run on an active
 2715  * filesystem.
 2716  *
 2717  * setinode(inode, dip) - the specified disk inode is replaced with the
 2718  *      contents pointed to by dip.
 2719  * setbufoutput(fd, flags) - output associated with the specified file
 2720  *      descriptor (which must reference the character device supporting
 2721  *      the filesystem) switches from using physio to running through the
 2722  *      buffer cache when flags is set to 1. The descriptor reverts to
 2723  *      physio for output when flags is set to zero.
 2724  */
 2725 
 2726 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
 2727 
 2728 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
 2729         0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
 2730 
 2731 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
 2732         sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
 2733 
 2734 static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize, CTLFLAG_WR,
 2735         sysctl_ffs_fsck, "Set the inode size");
 2736 
 2737 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR,
 2738         sysctl_ffs_fsck, "Adjust number of directories");
 2739 
 2740 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR,
 2741         sysctl_ffs_fsck, "Adjust number of free blocks");
 2742 
 2743 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR,
 2744         sysctl_ffs_fsck, "Adjust number of free inodes");
 2745 
 2746 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR,
 2747         sysctl_ffs_fsck, "Adjust number of free frags");
 2748 
 2749 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR,
 2750         sysctl_ffs_fsck, "Adjust number of free clusters");
 2751 
 2752 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
 2753         sysctl_ffs_fsck, "Free Range of Directory Inodes");
 2754 
 2755 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
 2756         sysctl_ffs_fsck, "Free Range of File Inodes");
 2757 
 2758 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
 2759         sysctl_ffs_fsck, "Free Range of Blocks");
 2760 
 2761 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
 2762         sysctl_ffs_fsck, "Change Filesystem Flags");
 2763 
 2764 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR,
 2765         sysctl_ffs_fsck, "Set Current Working Directory");
 2766 
 2767 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR,
 2768         sysctl_ffs_fsck, "Change Value of .. Entry");
 2769 
 2770 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR,
 2771         sysctl_ffs_fsck, "Unlink a Duplicate Name");
 2772 
 2773 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR,
 2774         sysctl_ffs_fsck, "Update an On-Disk Inode");
 2775 
 2776 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR,
 2777         sysctl_ffs_fsck, "Set Buffered Writing for Descriptor");
 2778 
 2779 #define DEBUG 1
 2780 #ifdef DEBUG
 2781 static int fsckcmds = 0;
 2782 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
 2783 #endif /* DEBUG */
 2784 
 2785 static int buffered_write(struct file *, struct uio *, struct ucred *,
 2786         int, struct thread *);
 2787 
 2788 static int
 2789 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
 2790 {
 2791         struct thread *td = curthread;
 2792         struct fsck_cmd cmd;
 2793         struct ufsmount *ump;
 2794         struct vnode *vp, *dvp, *fdvp;
 2795         struct inode *ip, *dp;
 2796         struct mount *mp;
 2797         struct fs *fs;
 2798         ufs2_daddr_t blkno;
 2799         long blkcnt, blksize;
 2800         struct file *fp, *vfp;
 2801         cap_rights_t rights;
 2802         int filetype, error;
 2803         static struct fileops *origops, bufferedops;
 2804 
 2805         if (req->newlen > sizeof cmd)
 2806                 return (EBADRPC);
 2807         if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
 2808                 return (error);
 2809         if (cmd.version != FFS_CMD_VERSION)
 2810                 return (ERPCMISMATCH);
 2811         if ((error = getvnode(td, cmd.handle,
 2812             cap_rights_init(&rights, CAP_FSCK), &fp)) != 0)
 2813                 return (error);
 2814         vp = fp->f_data;
 2815         if (vp->v_type != VREG && vp->v_type != VDIR) {
 2816                 fdrop(fp, td);
 2817                 return (EINVAL);
 2818         }
 2819         vn_start_write(vp, &mp, V_WAIT);
 2820         if (mp == NULL ||
 2821             strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
 2822                 vn_finished_write(mp);
 2823                 fdrop(fp, td);
 2824                 return (EINVAL);
 2825         }
 2826         ump = VFSTOUFS(mp);
 2827         if ((mp->mnt_flag & MNT_RDONLY) &&
 2828             ump->um_fsckpid != td->td_proc->p_pid) {
 2829                 vn_finished_write(mp);
 2830                 fdrop(fp, td);
 2831                 return (EROFS);
 2832         }
 2833         fs = ump->um_fs;
 2834         filetype = IFREG;
 2835 
 2836         switch (oidp->oid_number) {
 2837 
 2838         case FFS_SET_FLAGS:
 2839 #ifdef DEBUG
 2840                 if (fsckcmds)
 2841                         printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
 2842                             cmd.size > 0 ? "set" : "clear");
 2843 #endif /* DEBUG */
 2844                 if (cmd.size > 0)
 2845                         fs->fs_flags |= (long)cmd.value;
 2846                 else
 2847                         fs->fs_flags &= ~(long)cmd.value;
 2848                 break;
 2849 
 2850         case FFS_ADJ_REFCNT:
 2851 #ifdef DEBUG
 2852                 if (fsckcmds) {
 2853                         printf("%s: adjust inode %jd link count by %jd\n",
 2854                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
 2855                             (intmax_t)cmd.size);
 2856                 }
 2857 #endif /* DEBUG */
 2858                 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
 2859                         break;
 2860                 ip = VTOI(vp);
 2861                 ip->i_nlink += cmd.size;
 2862                 DIP_SET(ip, i_nlink, ip->i_nlink);
 2863                 ip->i_effnlink += cmd.size;
 2864                 ip->i_flag |= IN_CHANGE | IN_MODIFIED;
 2865                 error = ffs_update(vp, 1);
 2866                 if (DOINGSOFTDEP(vp))
 2867                         softdep_change_linkcnt(ip);
 2868                 vput(vp);
 2869                 break;
 2870 
 2871         case FFS_ADJ_BLKCNT:
 2872 #ifdef DEBUG
 2873                 if (fsckcmds) {
 2874                         printf("%s: adjust inode %jd block count by %jd\n",
 2875                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
 2876                             (intmax_t)cmd.size);
 2877                 }
 2878 #endif /* DEBUG */
 2879                 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
 2880                         break;
 2881                 ip = VTOI(vp);
 2882                 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
 2883                 ip->i_flag |= IN_CHANGE | IN_MODIFIED;
 2884                 error = ffs_update(vp, 1);
 2885                 vput(vp);
 2886                 break;
 2887 
 2888         case FFS_SET_SIZE:
 2889 #ifdef DEBUG
 2890                 if (fsckcmds) {
 2891                         printf("%s: set inode %jd size to %jd\n",
 2892                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
 2893                             (intmax_t)cmd.size);
 2894                 }
 2895 #endif /* DEBUG */
 2896                 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
 2897                         break;
 2898                 ip = VTOI(vp);
 2899                 DIP_SET(ip, i_size, cmd.size);
 2900                 ip->i_flag |= IN_SIZEMOD | IN_CHANGE | IN_MODIFIED;
 2901                 error = ffs_update(vp, 1);
 2902                 vput(vp);
 2903                 break;
 2904 
 2905         case FFS_DIR_FREE:
 2906                 filetype = IFDIR;
 2907                 /* fall through */
 2908 
 2909         case FFS_FILE_FREE:
 2910 #ifdef DEBUG
 2911                 if (fsckcmds) {
 2912                         if (cmd.size == 1)
 2913                                 printf("%s: free %s inode %ju\n",
 2914                                     mp->mnt_stat.f_mntonname,
 2915                                     filetype == IFDIR ? "directory" : "file",
 2916                                     (uintmax_t)cmd.value);
 2917                         else
 2918                                 printf("%s: free %s inodes %ju-%ju\n",
 2919                                     mp->mnt_stat.f_mntonname,
 2920                                     filetype == IFDIR ? "directory" : "file",
 2921                                     (uintmax_t)cmd.value,
 2922                                     (uintmax_t)(cmd.value + cmd.size - 1));
 2923                 }
 2924 #endif /* DEBUG */
 2925                 while (cmd.size > 0) {
 2926                         if ((error = ffs_freefile(ump, fs, ump->um_devvp,
 2927                             cmd.value, filetype, NULL)))
 2928                                 break;
 2929                         cmd.size -= 1;
 2930                         cmd.value += 1;
 2931                 }
 2932                 break;
 2933 
 2934         case FFS_BLK_FREE:
 2935 #ifdef DEBUG
 2936                 if (fsckcmds) {
 2937                         if (cmd.size == 1)
 2938                                 printf("%s: free block %jd\n",
 2939                                     mp->mnt_stat.f_mntonname,
 2940                                     (intmax_t)cmd.value);
 2941                         else
 2942                                 printf("%s: free blocks %jd-%jd\n",
 2943                                     mp->mnt_stat.f_mntonname, 
 2944                                     (intmax_t)cmd.value,
 2945                                     (intmax_t)cmd.value + cmd.size - 1);
 2946                 }
 2947 #endif /* DEBUG */
 2948                 blkno = cmd.value;
 2949                 blkcnt = cmd.size;
 2950                 blksize = fs->fs_frag - (blkno % fs->fs_frag);
 2951                 while (blkcnt > 0) {
 2952                         if (blksize > blkcnt)
 2953                                 blksize = blkcnt;
 2954                         ffs_blkfree(ump, fs, ump->um_devvp, blkno,
 2955                             blksize * fs->fs_fsize, ROOTINO, VDIR, NULL);
 2956                         blkno += blksize;
 2957                         blkcnt -= blksize;
 2958                         blksize = fs->fs_frag;
 2959                 }
 2960                 break;
 2961 
 2962         /*
 2963          * Adjust superblock summaries.  fsck(8) is expected to
 2964          * submit deltas when necessary.
 2965          */
 2966         case FFS_ADJ_NDIR:
 2967 #ifdef DEBUG
 2968                 if (fsckcmds) {
 2969                         printf("%s: adjust number of directories by %jd\n",
 2970                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2971                 }
 2972 #endif /* DEBUG */
 2973                 fs->fs_cstotal.cs_ndir += cmd.value;
 2974                 break;
 2975 
 2976         case FFS_ADJ_NBFREE:
 2977 #ifdef DEBUG
 2978                 if (fsckcmds) {
 2979                         printf("%s: adjust number of free blocks by %+jd\n",
 2980                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2981                 }
 2982 #endif /* DEBUG */
 2983                 fs->fs_cstotal.cs_nbfree += cmd.value;
 2984                 break;
 2985 
 2986         case FFS_ADJ_NIFREE:
 2987 #ifdef DEBUG
 2988                 if (fsckcmds) {
 2989                         printf("%s: adjust number of free inodes by %+jd\n",
 2990                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2991                 }
 2992 #endif /* DEBUG */
 2993                 fs->fs_cstotal.cs_nifree += cmd.value;
 2994                 break;
 2995 
 2996         case FFS_ADJ_NFFREE:
 2997 #ifdef DEBUG
 2998                 if (fsckcmds) {
 2999                         printf("%s: adjust number of free frags by %+jd\n",
 3000                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 3001                 }
 3002 #endif /* DEBUG */
 3003                 fs->fs_cstotal.cs_nffree += cmd.value;
 3004                 break;
 3005 
 3006         case FFS_ADJ_NUMCLUSTERS:
 3007 #ifdef DEBUG
 3008                 if (fsckcmds) {
 3009                         printf("%s: adjust number of free clusters by %+jd\n",
 3010                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 3011                 }
 3012 #endif /* DEBUG */
 3013                 fs->fs_cstotal.cs_numclusters += cmd.value;
 3014                 break;
 3015 
 3016         case FFS_SET_CWD:
 3017 #ifdef DEBUG
 3018                 if (fsckcmds) {
 3019                         printf("%s: set current directory to inode %jd\n",
 3020                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 3021                 }
 3022 #endif /* DEBUG */
 3023                 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp)))
 3024                         break;
 3025                 AUDIT_ARG_VNODE1(vp);
 3026                 if ((error = change_dir(vp, td)) != 0) {
 3027                         vput(vp);
 3028                         break;
 3029                 }
 3030                 VOP_UNLOCK(vp, 0);
 3031                 pwd_chdir(td, vp);
 3032                 break;
 3033 
 3034         case FFS_SET_DOTDOT:
 3035 #ifdef DEBUG
 3036                 if (fsckcmds) {
 3037                         printf("%s: change .. in cwd from %jd to %jd\n",
 3038                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
 3039                             (intmax_t)cmd.size);
 3040                 }
 3041 #endif /* DEBUG */
 3042                 /*
 3043                  * First we have to get and lock the parent directory
 3044                  * to which ".." points.
 3045                  */
 3046                 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp);
 3047                 if (error)
 3048                         break;
 3049                 /*
 3050                  * Now we get and lock the child directory containing "..".
 3051                  */
 3052                 FILEDESC_SLOCK(td->td_proc->p_fd);
 3053                 dvp = td->td_proc->p_fd->fd_cdir;
 3054                 FILEDESC_SUNLOCK(td->td_proc->p_fd);
 3055                 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) {
 3056                         vput(fdvp);
 3057                         break;
 3058                 }
 3059                 dp = VTOI(dvp);
 3060                 dp->i_offset = 12;      /* XXX mastertemplate.dot_reclen */
 3061                 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size,
 3062                     DT_DIR, 0);
 3063                 cache_purge(fdvp);
 3064                 cache_purge(dvp);
 3065                 vput(dvp);
 3066                 vput(fdvp);
 3067                 break;
 3068 
 3069         case FFS_UNLINK:
 3070 #ifdef DEBUG
 3071                 if (fsckcmds) {
 3072                         char buf[32];
 3073 
 3074                         if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL))
 3075                                 strncpy(buf, "Name_too_long", 32);
 3076                         printf("%s: unlink %s (inode %jd)\n",
 3077                             mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size);
 3078                 }
 3079 #endif /* DEBUG */
 3080                 /*
 3081                  * kern_unlinkat will do its own start/finish writes and
 3082                  * they do not nest, so drop ours here. Setting mp == NULL
 3083                  * indicates that vn_finished_write is not needed down below.
 3084                  */
 3085                 vn_finished_write(mp);
 3086                 mp = NULL;
 3087                 error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value,
 3088                     UIO_USERSPACE, (ino_t)cmd.size);
 3089                 break;
 3090 
 3091         case FFS_SET_INODE:
 3092                 if (ump->um_fsckpid != td->td_proc->p_pid) {
 3093                         error = EPERM;
 3094                         break;
 3095                 }
 3096 #ifdef DEBUG
 3097                 if (fsckcmds) {
 3098                         printf("%s: update inode %jd\n",
 3099                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 3100                 }
 3101 #endif /* DEBUG */
 3102                 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
 3103                         break;
 3104                 AUDIT_ARG_VNODE1(vp);
 3105                 ip = VTOI(vp);
 3106                 if (I_IS_UFS1(ip))
 3107                         error = copyin((void *)(intptr_t)cmd.size, ip->i_din1,
 3108                             sizeof(struct ufs1_dinode));
 3109                 else
 3110                         error = copyin((void *)(intptr_t)cmd.size, ip->i_din2,
 3111                             sizeof(struct ufs2_dinode));
 3112                 if (error) {
 3113                         vput(vp);
 3114                         break;
 3115                 }
 3116                 ip->i_flag |= IN_CHANGE | IN_MODIFIED;
 3117                 error = ffs_update(vp, 1);
 3118                 vput(vp);
 3119                 break;
 3120 
 3121         case FFS_SET_BUFOUTPUT:
 3122                 if (ump->um_fsckpid != td->td_proc->p_pid) {
 3123                         error = EPERM;
 3124                         break;
 3125                 }
 3126                 if (ITOUMP(VTOI(vp)) != ump) {
 3127                         error = EINVAL;
 3128                         break;
 3129                 }
 3130 #ifdef DEBUG
 3131                 if (fsckcmds) {
 3132                         printf("%s: %s buffered output for descriptor %jd\n",
 3133                             mp->mnt_stat.f_mntonname,
 3134                             cmd.size == 1 ? "enable" : "disable",
 3135                             (intmax_t)cmd.value);
 3136                 }
 3137 #endif /* DEBUG */
 3138                 if ((error = getvnode(td, cmd.value,
 3139                     cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0)
 3140                         break;
 3141                 if (vfp->f_vnode->v_type != VCHR) {
 3142                         fdrop(vfp, td);
 3143                         error = EINVAL;
 3144                         break;
 3145                 }
 3146                 if (origops == NULL) {
 3147                         origops = vfp->f_ops;
 3148                         bcopy((void *)origops, (void *)&bufferedops,
 3149                             sizeof(bufferedops));
 3150                         bufferedops.fo_write = buffered_write;
 3151                 }
 3152                 if (cmd.size == 1)
 3153                         atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
 3154                             (uintptr_t)&bufferedops);
 3155                 else
 3156                         atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
 3157                             (uintptr_t)origops);
 3158                 fdrop(vfp, td);
 3159                 break;
 3160 
 3161         default:
 3162 #ifdef DEBUG
 3163                 if (fsckcmds) {
 3164                         printf("Invalid request %d from fsck\n",
 3165                             oidp->oid_number);
 3166                 }
 3167 #endif /* DEBUG */
 3168                 error = EINVAL;
 3169                 break;
 3170 
 3171         }
 3172         fdrop(fp, td);
 3173         vn_finished_write(mp);
 3174         return (error);
 3175 }
 3176 
 3177 /*
 3178  * Function to switch a descriptor to use the buffer cache to stage
 3179  * its I/O. This is needed so that writes to the filesystem device
 3180  * will give snapshots a chance to copy modified blocks for which it
 3181  * needs to retain copies.
 3182  */
 3183 static int
 3184 buffered_write(fp, uio, active_cred, flags, td)
 3185         struct file *fp;
 3186         struct uio *uio;
 3187         struct ucred *active_cred;
 3188         int flags;
 3189         struct thread *td;
 3190 {
 3191         struct vnode *devvp, *vp;
 3192         struct inode *ip;
 3193         struct buf *bp;
 3194         struct fs *fs;
 3195         struct filedesc *fdp;
 3196         int error;
 3197         daddr_t lbn;
 3198 
 3199         /*
 3200          * The devvp is associated with the /dev filesystem. To discover
 3201          * the filesystem with which the device is associated, we depend
 3202          * on the application setting the current directory to a location
 3203          * within the filesystem being written. Yes, this is an ugly hack.
 3204          */
 3205         devvp = fp->f_vnode;
 3206         if (!vn_isdisk(devvp, NULL))
 3207                 return (EINVAL);
 3208         fdp = td->td_proc->p_fd;
 3209         FILEDESC_SLOCK(fdp);
 3210         vp = fdp->fd_cdir;
 3211         vref(vp);
 3212         FILEDESC_SUNLOCK(fdp);
 3213         vn_lock(vp, LK_SHARED | LK_RETRY);
 3214         /*
 3215          * Check that the current directory vnode indeed belongs to
 3216          * UFS before trying to dereference UFS-specific v_data fields.
 3217          */
 3218         if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) {
 3219                 vput(vp);
 3220                 return (EINVAL);
 3221         }
 3222         ip = VTOI(vp);
 3223         if (ITODEVVP(ip) != devvp) {
 3224                 vput(vp);
 3225                 return (EINVAL);
 3226         }
 3227         fs = ITOFS(ip);
 3228         vput(vp);
 3229         foffset_lock_uio(fp, uio, flags);
 3230         vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
 3231 #ifdef DEBUG
 3232         if (fsckcmds) {
 3233                 printf("%s: buffered write for block %jd\n",
 3234                     fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset));
 3235         }
 3236 #endif /* DEBUG */
 3237         /*
 3238          * All I/O must be contained within a filesystem block, start on
 3239          * a fragment boundary, and be a multiple of fragments in length.
 3240          */
 3241         if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) ||
 3242             fragoff(fs, uio->uio_offset) != 0 ||
 3243             fragoff(fs, uio->uio_resid) != 0) {
 3244                 error = EINVAL;
 3245                 goto out;
 3246         }
 3247         lbn = numfrags(fs, uio->uio_offset);
 3248         bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0);
 3249         bp->b_flags |= B_RELBUF;
 3250         if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) {
 3251                 brelse(bp);
 3252                 goto out;
 3253         }
 3254         error = bwrite(bp);
 3255 out:
 3256         VOP_UNLOCK(devvp, 0);
 3257         foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF);
 3258         return (error);
 3259 }

Cache object: 458bab410ad4b2d07df6f5deabd97fde


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.