The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/ufs/ffs/ffs_alloc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2002 Networks Associates Technology, Inc.
    3  * All rights reserved.
    4  *
    5  * This software was developed for the FreeBSD Project by Marshall
    6  * Kirk McKusick and Network Associates Laboratories, the Security
    7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
    8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
    9  * research program
   10  *
   11  * Copyright (c) 1982, 1986, 1989, 1993
   12  *      The Regents of the University of California.  All rights reserved.
   13  *
   14  * Redistribution and use in source and binary forms, with or without
   15  * modification, are permitted provided that the following conditions
   16  * are met:
   17  * 1. Redistributions of source code must retain the above copyright
   18  *    notice, this list of conditions and the following disclaimer.
   19  * 2. Redistributions in binary form must reproduce the above copyright
   20  *    notice, this list of conditions and the following disclaimer in the
   21  *    documentation and/or other materials provided with the distribution.
   22  * 3. All advertising materials mentioning features or use of this software
   23  *    must display the following acknowledgement:
   24  *      This product includes software developed by the University of
   25  *      California, Berkeley and its contributors.
   26  * 4. Neither the name of the University nor the names of its contributors
   27  *    may be used to endorse or promote products derived from this software
   28  *    without specific prior written permission.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   40  * SUCH DAMAGE.
   41  *
   42  *      @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95
   43  */
   44 
   45 #include <sys/cdefs.h>
   46 __FBSDID("$FreeBSD: releng/5.2/sys/ufs/ffs/ffs_alloc.c 121785 2003-10-31 07:25:06Z truckman $");
   47 
   48 #include "opt_quota.h"
   49 
   50 #include <sys/param.h>
   51 #include <sys/systm.h>
   52 #include <sys/bio.h>
   53 #include <sys/buf.h>
   54 #include <sys/conf.h>
   55 #include <sys/file.h>
   56 #include <sys/filedesc.h>
   57 #include <sys/proc.h>
   58 #include <sys/vnode.h>
   59 #include <sys/mount.h>
   60 #include <sys/kernel.h>
   61 #include <sys/sysctl.h>
   62 #include <sys/syslog.h>
   63 
   64 #include <ufs/ufs/extattr.h>
   65 #include <ufs/ufs/quota.h>
   66 #include <ufs/ufs/inode.h>
   67 #include <ufs/ufs/ufs_extern.h>
   68 #include <ufs/ufs/ufsmount.h>
   69 
   70 #include <ufs/ffs/fs.h>
   71 #include <ufs/ffs/ffs_extern.h>
   72 
   73 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, int cg, ufs2_daddr_t bpref,
   74                                   int size);
   75 
   76 static ufs2_daddr_t ffs_alloccg(struct inode *, int, ufs2_daddr_t, int);
   77 static ufs2_daddr_t
   78               ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t);
   79 #ifdef DIAGNOSTIC
   80 static int      ffs_checkblk(struct inode *, ufs2_daddr_t, long);
   81 #endif
   82 static ufs2_daddr_t ffs_clusteralloc(struct inode *, int, ufs2_daddr_t, int);
   83 static ino_t    ffs_dirpref(struct inode *);
   84 static ufs2_daddr_t ffs_fragextend(struct inode *, int, ufs2_daddr_t, int, int);
   85 static void     ffs_fserr(struct fs *, ino_t, char *);
   86 static ufs2_daddr_t     ffs_hashalloc
   87                 (struct inode *, int, ufs2_daddr_t, int, allocfcn_t *);
   88 static ufs2_daddr_t ffs_nodealloccg(struct inode *, int, ufs2_daddr_t, int);
   89 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
   90 static int      ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
   91 static int      ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
   92 
   93 /*
   94  * Allocate a block in the filesystem.
   95  *
   96  * The size of the requested block is given, which must be some
   97  * multiple of fs_fsize and <= fs_bsize.
   98  * A preference may be optionally specified. If a preference is given
   99  * the following hierarchy is used to allocate a block:
  100  *   1) allocate the requested block.
  101  *   2) allocate a rotationally optimal block in the same cylinder.
  102  *   3) allocate a block in the same cylinder group.
  103  *   4) quadradically rehash into other cylinder groups, until an
  104  *      available block is located.
  105  * If no block preference is given the following heirarchy is used
  106  * to allocate a block:
  107  *   1) allocate a block in the cylinder group that contains the
  108  *      inode for the file.
  109  *   2) quadradically rehash into other cylinder groups, until an
  110  *      available block is located.
  111  */
  112 int
  113 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
  114         struct inode *ip;
  115         ufs2_daddr_t lbn, bpref;
  116         int size;
  117         struct ucred *cred;
  118         ufs2_daddr_t *bnp;
  119 {
  120         struct fs *fs;
  121         ufs2_daddr_t bno;
  122         int cg, reclaimed;
  123 #ifdef QUOTA
  124         int error;
  125 #endif
  126 
  127         *bnp = 0;
  128         fs = ip->i_fs;
  129 #ifdef DIAGNOSTIC
  130         if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
  131                 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
  132                     devtoname(ip->i_dev), (long)fs->fs_bsize, size,
  133                     fs->fs_fsmnt);
  134                 panic("ffs_alloc: bad size");
  135         }
  136         if (cred == NOCRED)
  137                 panic("ffs_alloc: missing credential");
  138 #endif /* DIAGNOSTIC */
  139         reclaimed = 0;
  140 retry:
  141         if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
  142                 goto nospace;
  143         if (suser_cred(cred, PRISON_ROOT) &&
  144             freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
  145                 goto nospace;
  146 #ifdef QUOTA
  147         error = chkdq(ip, btodb(size), cred, 0);
  148         if (error)
  149                 return (error);
  150 #endif
  151         if (bpref >= fs->fs_size)
  152                 bpref = 0;
  153         if (bpref == 0)
  154                 cg = ino_to_cg(fs, ip->i_number);
  155         else
  156                 cg = dtog(fs, bpref);
  157         bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
  158         if (bno > 0) {
  159                 DIP(ip, i_blocks) += btodb(size);
  160                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  161                 *bnp = bno;
  162                 return (0);
  163         }
  164 #ifdef QUOTA
  165         /*
  166          * Restore user's disk quota because allocation failed.
  167          */
  168         (void) chkdq(ip, -btodb(size), cred, FORCE);
  169 #endif
  170 nospace:
  171         if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
  172                 reclaimed = 1;
  173                 softdep_request_cleanup(fs, ITOV(ip));
  174                 goto retry;
  175         }
  176         ffs_fserr(fs, ip->i_number, "filesystem full");
  177         uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
  178         return (ENOSPC);
  179 }
  180 
  181 /*
  182  * Reallocate a fragment to a bigger size
  183  *
  184  * The number and size of the old block is given, and a preference
  185  * and new size is also specified. The allocator attempts to extend
  186  * the original block. Failing that, the regular block allocator is
  187  * invoked to get an appropriate block.
  188  */
  189 int
  190 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, cred, bpp)
  191         struct inode *ip;
  192         ufs2_daddr_t lbprev;
  193         ufs2_daddr_t bprev;
  194         ufs2_daddr_t bpref;
  195         int osize, nsize;
  196         struct ucred *cred;
  197         struct buf **bpp;
  198 {
  199         struct vnode *vp;
  200         struct fs *fs;
  201         struct buf *bp;
  202         int cg, request, error, reclaimed;
  203         ufs2_daddr_t bno;
  204 
  205         *bpp = 0;
  206         vp = ITOV(ip);
  207         fs = ip->i_fs;
  208 #ifdef DIAGNOSTIC
  209         if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
  210                 panic("ffs_realloccg: allocation on suspended filesystem");
  211         if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
  212             (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
  213                 printf(
  214                 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
  215                     devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
  216                     nsize, fs->fs_fsmnt);
  217                 panic("ffs_realloccg: bad size");
  218         }
  219         if (cred == NOCRED)
  220                 panic("ffs_realloccg: missing credential");
  221 #endif /* DIAGNOSTIC */
  222         reclaimed = 0;
  223 retry:
  224         if (suser_cred(cred, PRISON_ROOT) &&
  225             freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0)
  226                 goto nospace;
  227         if (bprev == 0) {
  228                 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
  229                     devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev,
  230                     fs->fs_fsmnt);
  231                 panic("ffs_realloccg: bad bprev");
  232         }
  233         /*
  234          * Allocate the extra space in the buffer.
  235          */
  236         error = bread(vp, lbprev, osize, NOCRED, &bp);
  237         if (error) {
  238                 brelse(bp);
  239                 return (error);
  240         }
  241 
  242         if (bp->b_blkno == bp->b_lblkno) {
  243                 if (lbprev >= NDADDR)
  244                         panic("ffs_realloccg: lbprev out of range");
  245                 bp->b_blkno = fsbtodb(fs, bprev);
  246         }
  247 
  248 #ifdef QUOTA
  249         error = chkdq(ip, btodb(nsize - osize), cred, 0);
  250         if (error) {
  251                 brelse(bp);
  252                 return (error);
  253         }
  254 #endif
  255         /*
  256          * Check for extension in the existing location.
  257          */
  258         cg = dtog(fs, bprev);
  259         bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
  260         if (bno) {
  261                 if (bp->b_blkno != fsbtodb(fs, bno))
  262                         panic("ffs_realloccg: bad blockno");
  263                 DIP(ip, i_blocks) += btodb(nsize - osize);
  264                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  265                 allocbuf(bp, nsize);
  266                 bp->b_flags |= B_DONE;
  267                 bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
  268                 *bpp = bp;
  269                 return (0);
  270         }
  271         /*
  272          * Allocate a new disk location.
  273          */
  274         if (bpref >= fs->fs_size)
  275                 bpref = 0;
  276         switch ((int)fs->fs_optim) {
  277         case FS_OPTSPACE:
  278                 /*
  279                  * Allocate an exact sized fragment. Although this makes
  280                  * best use of space, we will waste time relocating it if
  281                  * the file continues to grow. If the fragmentation is
  282                  * less than half of the minimum free reserve, we choose
  283                  * to begin optimizing for time.
  284                  */
  285                 request = nsize;
  286                 if (fs->fs_minfree <= 5 ||
  287                     fs->fs_cstotal.cs_nffree >
  288                     (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
  289                         break;
  290                 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
  291                         fs->fs_fsmnt);
  292                 fs->fs_optim = FS_OPTTIME;
  293                 break;
  294         case FS_OPTTIME:
  295                 /*
  296                  * At this point we have discovered a file that is trying to
  297                  * grow a small fragment to a larger fragment. To save time,
  298                  * we allocate a full sized block, then free the unused portion.
  299                  * If the file continues to grow, the `ffs_fragextend' call
  300                  * above will be able to grow it in place without further
  301                  * copying. If aberrant programs cause disk fragmentation to
  302                  * grow within 2% of the free reserve, we choose to begin
  303                  * optimizing for space.
  304                  */
  305                 request = fs->fs_bsize;
  306                 if (fs->fs_cstotal.cs_nffree <
  307                     (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
  308                         break;
  309                 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
  310                         fs->fs_fsmnt);
  311                 fs->fs_optim = FS_OPTSPACE;
  312                 break;
  313         default:
  314                 printf("dev = %s, optim = %ld, fs = %s\n",
  315                     devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
  316                 panic("ffs_realloccg: bad optim");
  317                 /* NOTREACHED */
  318         }
  319         bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
  320         if (bno > 0) {
  321                 bp->b_blkno = fsbtodb(fs, bno);
  322                 if (!DOINGSOFTDEP(vp))
  323                         ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
  324                             ip->i_number);
  325                 if (nsize < request)
  326                         ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
  327                             (long)(request - nsize), ip->i_number);
  328                 DIP(ip, i_blocks) += btodb(nsize - osize);
  329                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  330                 allocbuf(bp, nsize);
  331                 bp->b_flags |= B_DONE;
  332                 bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
  333                 *bpp = bp;
  334                 return (0);
  335         }
  336 #ifdef QUOTA
  337         /*
  338          * Restore user's disk quota because allocation failed.
  339          */
  340         (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
  341 #endif
  342         brelse(bp);
  343 nospace:
  344         /*
  345          * no space available
  346          */
  347         if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
  348                 reclaimed = 1;
  349                 softdep_request_cleanup(fs, vp);
  350                 goto retry;
  351         }
  352         ffs_fserr(fs, ip->i_number, "filesystem full");
  353         uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
  354         return (ENOSPC);
  355 }
  356 
  357 /*
  358  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
  359  *
  360  * The vnode and an array of buffer pointers for a range of sequential
  361  * logical blocks to be made contiguous is given. The allocator attempts
  362  * to find a range of sequential blocks starting as close as possible
  363  * from the end of the allocation for the logical block immediately
  364  * preceding the current range. If successful, the physical block numbers
  365  * in the buffer pointers and in the inode are changed to reflect the new
  366  * allocation. If unsuccessful, the allocation is left unchanged. The
  367  * success in doing the reallocation is returned. Note that the error
  368  * return is not reflected back to the user. Rather the previous block
  369  * allocation will be used.
  370  */
  371 
  372 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
  373 
  374 static int doasyncfree = 1;
  375 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
  376 
  377 static int doreallocblks = 1;
  378 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
  379 
  380 #ifdef DEBUG
  381 static volatile int prtrealloc = 0;
  382 #endif
  383 
  384 int
  385 ffs_reallocblks(ap)
  386         struct vop_reallocblks_args /* {
  387                 struct vnode *a_vp;
  388                 struct cluster_save *a_buflist;
  389         } */ *ap;
  390 {
  391 
  392         if (doreallocblks == 0)
  393                 return (ENOSPC);
  394         if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1)
  395                 return (ffs_reallocblks_ufs1(ap));
  396         return (ffs_reallocblks_ufs2(ap));
  397 }
  398         
  399 static int
  400 ffs_reallocblks_ufs1(ap)
  401         struct vop_reallocblks_args /* {
  402                 struct vnode *a_vp;
  403                 struct cluster_save *a_buflist;
  404         } */ *ap;
  405 {
  406         struct fs *fs;
  407         struct inode *ip;
  408         struct vnode *vp;
  409         struct buf *sbp, *ebp;
  410         ufs1_daddr_t *bap, *sbap, *ebap = 0;
  411         struct cluster_save *buflist;
  412         ufs_lbn_t start_lbn, end_lbn;
  413         ufs1_daddr_t soff, newblk, blkno;
  414         ufs2_daddr_t pref;
  415         struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
  416         int i, len, start_lvl, end_lvl, ssize;
  417 
  418         vp = ap->a_vp;
  419         ip = VTOI(vp);
  420         fs = ip->i_fs;
  421         if (fs->fs_contigsumsize <= 0)
  422                 return (ENOSPC);
  423         buflist = ap->a_buflist;
  424         len = buflist->bs_nchildren;
  425         start_lbn = buflist->bs_children[0]->b_lblkno;
  426         end_lbn = start_lbn + len - 1;
  427 #ifdef DIAGNOSTIC
  428         for (i = 0; i < len; i++)
  429                 if (!ffs_checkblk(ip,
  430                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  431                         panic("ffs_reallocblks: unallocated block 1");
  432         for (i = 1; i < len; i++)
  433                 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
  434                         panic("ffs_reallocblks: non-logical cluster");
  435         blkno = buflist->bs_children[0]->b_blkno;
  436         ssize = fsbtodb(fs, fs->fs_frag);
  437         for (i = 1; i < len - 1; i++)
  438                 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
  439                         panic("ffs_reallocblks: non-physical cluster %d", i);
  440 #endif
  441         /*
  442          * If the latest allocation is in a new cylinder group, assume that
  443          * the filesystem has decided to move and do not force it back to
  444          * the previous cylinder group.
  445          */
  446         if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
  447             dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
  448                 return (ENOSPC);
  449         if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
  450             ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
  451                 return (ENOSPC);
  452         /*
  453          * Get the starting offset and block map for the first block.
  454          */
  455         if (start_lvl == 0) {
  456                 sbap = &ip->i_din1->di_db[0];
  457                 soff = start_lbn;
  458         } else {
  459                 idp = &start_ap[start_lvl - 1];
  460                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
  461                         brelse(sbp);
  462                         return (ENOSPC);
  463                 }
  464                 sbap = (ufs1_daddr_t *)sbp->b_data;
  465                 soff = idp->in_off;
  466         }
  467         /*
  468          * Find the preferred location for the cluster.
  469          */
  470         pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
  471         /*
  472          * If the block range spans two block maps, get the second map.
  473          */
  474         if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
  475                 ssize = len;
  476         } else {
  477 #ifdef DIAGNOSTIC
  478                 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
  479                         panic("ffs_reallocblk: start == end");
  480 #endif
  481                 ssize = len - (idp->in_off + 1);
  482                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
  483                         goto fail;
  484                 ebap = (ufs1_daddr_t *)ebp->b_data;
  485         }
  486         /*
  487          * Search the block map looking for an allocation of the desired size.
  488          */
  489         if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
  490             len, ffs_clusteralloc)) == 0)
  491                 goto fail;
  492         /*
  493          * We have found a new contiguous block.
  494          *
  495          * First we have to replace the old block pointers with the new
  496          * block pointers in the inode and indirect blocks associated
  497          * with the file.
  498          */
  499 #ifdef DEBUG
  500         if (prtrealloc)
  501                 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
  502                     (intmax_t)start_lbn, (intmax_t)end_lbn);
  503 #endif
  504         blkno = newblk;
  505         for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
  506                 if (i == ssize) {
  507                         bap = ebap;
  508                         soff = -i;
  509                 }
  510 #ifdef DIAGNOSTIC
  511                 if (!ffs_checkblk(ip,
  512                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  513                         panic("ffs_reallocblks: unallocated block 2");
  514                 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
  515                         panic("ffs_reallocblks: alloc mismatch");
  516 #endif
  517 #ifdef DEBUG
  518                 if (prtrealloc)
  519                         printf(" %d,", *bap);
  520 #endif
  521                 if (DOINGSOFTDEP(vp)) {
  522                         if (sbap == &ip->i_din1->di_db[0] && i < ssize)
  523                                 softdep_setup_allocdirect(ip, start_lbn + i,
  524                                     blkno, *bap, fs->fs_bsize, fs->fs_bsize,
  525                                     buflist->bs_children[i]);
  526                         else
  527                                 softdep_setup_allocindir_page(ip, start_lbn + i,
  528                                     i < ssize ? sbp : ebp, soff + i, blkno,
  529                                     *bap, buflist->bs_children[i]);
  530                 }
  531                 *bap++ = blkno;
  532         }
  533         /*
  534          * Next we must write out the modified inode and indirect blocks.
  535          * For strict correctness, the writes should be synchronous since
  536          * the old block values may have been written to disk. In practise
  537          * they are almost never written, but if we are concerned about
  538          * strict correctness, the `doasyncfree' flag should be set to zero.
  539          *
  540          * The test on `doasyncfree' should be changed to test a flag
  541          * that shows whether the associated buffers and inodes have
  542          * been written. The flag should be set when the cluster is
  543          * started and cleared whenever the buffer or inode is flushed.
  544          * We can then check below to see if it is set, and do the
  545          * synchronous write only when it has been cleared.
  546          */
  547         if (sbap != &ip->i_din1->di_db[0]) {
  548                 if (doasyncfree)
  549                         bdwrite(sbp);
  550                 else
  551                         bwrite(sbp);
  552         } else {
  553                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  554                 if (!doasyncfree)
  555                         UFS_UPDATE(vp, 1);
  556         }
  557         if (ssize < len) {
  558                 if (doasyncfree)
  559                         bdwrite(ebp);
  560                 else
  561                         bwrite(ebp);
  562         }
  563         /*
  564          * Last, free the old blocks and assign the new blocks to the buffers.
  565          */
  566 #ifdef DEBUG
  567         if (prtrealloc)
  568                 printf("\n\tnew:");
  569 #endif
  570         for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
  571                 if (!DOINGSOFTDEP(vp))
  572                         ffs_blkfree(fs, ip->i_devvp,
  573                             dbtofsb(fs, buflist->bs_children[i]->b_blkno),
  574                             fs->fs_bsize, ip->i_number);
  575                 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
  576 #ifdef DIAGNOSTIC
  577                 if (!ffs_checkblk(ip,
  578                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  579                         panic("ffs_reallocblks: unallocated block 3");
  580 #endif
  581 #ifdef DEBUG
  582                 if (prtrealloc)
  583                         printf(" %d,", blkno);
  584 #endif
  585         }
  586 #ifdef DEBUG
  587         if (prtrealloc) {
  588                 prtrealloc--;
  589                 printf("\n");
  590         }
  591 #endif
  592         return (0);
  593 
  594 fail:
  595         if (ssize < len)
  596                 brelse(ebp);
  597         if (sbap != &ip->i_din1->di_db[0])
  598                 brelse(sbp);
  599         return (ENOSPC);
  600 }
  601 
  602 static int
  603 ffs_reallocblks_ufs2(ap)
  604         struct vop_reallocblks_args /* {
  605                 struct vnode *a_vp;
  606                 struct cluster_save *a_buflist;
  607         } */ *ap;
  608 {
  609         struct fs *fs;
  610         struct inode *ip;
  611         struct vnode *vp;
  612         struct buf *sbp, *ebp;
  613         ufs2_daddr_t *bap, *sbap, *ebap = 0;
  614         struct cluster_save *buflist;
  615         ufs_lbn_t start_lbn, end_lbn;
  616         ufs2_daddr_t soff, newblk, blkno, pref;
  617         struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
  618         int i, len, start_lvl, end_lvl, ssize;
  619 
  620         vp = ap->a_vp;
  621         ip = VTOI(vp);
  622         fs = ip->i_fs;
  623         if (fs->fs_contigsumsize <= 0)
  624                 return (ENOSPC);
  625         buflist = ap->a_buflist;
  626         len = buflist->bs_nchildren;
  627         start_lbn = buflist->bs_children[0]->b_lblkno;
  628         end_lbn = start_lbn + len - 1;
  629 #ifdef DIAGNOSTIC
  630         for (i = 0; i < len; i++)
  631                 if (!ffs_checkblk(ip,
  632                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  633                         panic("ffs_reallocblks: unallocated block 1");
  634         for (i = 1; i < len; i++)
  635                 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
  636                         panic("ffs_reallocblks: non-logical cluster");
  637         blkno = buflist->bs_children[0]->b_blkno;
  638         ssize = fsbtodb(fs, fs->fs_frag);
  639         for (i = 1; i < len - 1; i++)
  640                 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
  641                         panic("ffs_reallocblks: non-physical cluster %d", i);
  642 #endif
  643         /*
  644          * If the latest allocation is in a new cylinder group, assume that
  645          * the filesystem has decided to move and do not force it back to
  646          * the previous cylinder group.
  647          */
  648         if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
  649             dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
  650                 return (ENOSPC);
  651         if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
  652             ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
  653                 return (ENOSPC);
  654         /*
  655          * Get the starting offset and block map for the first block.
  656          */
  657         if (start_lvl == 0) {
  658                 sbap = &ip->i_din2->di_db[0];
  659                 soff = start_lbn;
  660         } else {
  661                 idp = &start_ap[start_lvl - 1];
  662                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
  663                         brelse(sbp);
  664                         return (ENOSPC);
  665                 }
  666                 sbap = (ufs2_daddr_t *)sbp->b_data;
  667                 soff = idp->in_off;
  668         }
  669         /*
  670          * Find the preferred location for the cluster.
  671          */
  672         pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
  673         /*
  674          * If the block range spans two block maps, get the second map.
  675          */
  676         if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
  677                 ssize = len;
  678         } else {
  679 #ifdef DIAGNOSTIC
  680                 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
  681                         panic("ffs_reallocblk: start == end");
  682 #endif
  683                 ssize = len - (idp->in_off + 1);
  684                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
  685                         goto fail;
  686                 ebap = (ufs2_daddr_t *)ebp->b_data;
  687         }
  688         /*
  689          * Search the block map looking for an allocation of the desired size.
  690          */
  691         if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
  692             len, ffs_clusteralloc)) == 0)
  693                 goto fail;
  694         /*
  695          * We have found a new contiguous block.
  696          *
  697          * First we have to replace the old block pointers with the new
  698          * block pointers in the inode and indirect blocks associated
  699          * with the file.
  700          */
  701 #ifdef DEBUG
  702         if (prtrealloc)
  703                 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
  704                     (intmax_t)start_lbn, (intmax_t)end_lbn);
  705 #endif
  706         blkno = newblk;
  707         for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
  708                 if (i == ssize) {
  709                         bap = ebap;
  710                         soff = -i;
  711                 }
  712 #ifdef DIAGNOSTIC
  713                 if (!ffs_checkblk(ip,
  714                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  715                         panic("ffs_reallocblks: unallocated block 2");
  716                 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
  717                         panic("ffs_reallocblks: alloc mismatch");
  718 #endif
  719 #ifdef DEBUG
  720                 if (prtrealloc)
  721                         printf(" %jd,", (intmax_t)*bap);
  722 #endif
  723                 if (DOINGSOFTDEP(vp)) {
  724                         if (sbap == &ip->i_din2->di_db[0] && i < ssize)
  725                                 softdep_setup_allocdirect(ip, start_lbn + i,
  726                                     blkno, *bap, fs->fs_bsize, fs->fs_bsize,
  727                                     buflist->bs_children[i]);
  728                         else
  729                                 softdep_setup_allocindir_page(ip, start_lbn + i,
  730                                     i < ssize ? sbp : ebp, soff + i, blkno,
  731                                     *bap, buflist->bs_children[i]);
  732                 }
  733                 *bap++ = blkno;
  734         }
  735         /*
  736          * Next we must write out the modified inode and indirect blocks.
  737          * For strict correctness, the writes should be synchronous since
  738          * the old block values may have been written to disk. In practise
  739          * they are almost never written, but if we are concerned about
  740          * strict correctness, the `doasyncfree' flag should be set to zero.
  741          *
  742          * The test on `doasyncfree' should be changed to test a flag
  743          * that shows whether the associated buffers and inodes have
  744          * been written. The flag should be set when the cluster is
  745          * started and cleared whenever the buffer or inode is flushed.
  746          * We can then check below to see if it is set, and do the
  747          * synchronous write only when it has been cleared.
  748          */
  749         if (sbap != &ip->i_din2->di_db[0]) {
  750                 if (doasyncfree)
  751                         bdwrite(sbp);
  752                 else
  753                         bwrite(sbp);
  754         } else {
  755                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  756                 if (!doasyncfree)
  757                         UFS_UPDATE(vp, 1);
  758         }
  759         if (ssize < len) {
  760                 if (doasyncfree)
  761                         bdwrite(ebp);
  762                 else
  763                         bwrite(ebp);
  764         }
  765         /*
  766          * Last, free the old blocks and assign the new blocks to the buffers.
  767          */
  768 #ifdef DEBUG
  769         if (prtrealloc)
  770                 printf("\n\tnew:");
  771 #endif
  772         for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
  773                 if (!DOINGSOFTDEP(vp))
  774                         ffs_blkfree(fs, ip->i_devvp,
  775                             dbtofsb(fs, buflist->bs_children[i]->b_blkno),
  776                             fs->fs_bsize, ip->i_number);
  777                 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
  778 #ifdef DIAGNOSTIC
  779                 if (!ffs_checkblk(ip,
  780                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  781                         panic("ffs_reallocblks: unallocated block 3");
  782 #endif
  783 #ifdef DEBUG
  784                 if (prtrealloc)
  785                         printf(" %jd,", (intmax_t)blkno);
  786 #endif
  787         }
  788 #ifdef DEBUG
  789         if (prtrealloc) {
  790                 prtrealloc--;
  791                 printf("\n");
  792         }
  793 #endif
  794         return (0);
  795 
  796 fail:
  797         if (ssize < len)
  798                 brelse(ebp);
  799         if (sbap != &ip->i_din2->di_db[0])
  800                 brelse(sbp);
  801         return (ENOSPC);
  802 }
  803 
  804 /*
  805  * Allocate an inode in the filesystem.
  806  *
  807  * If allocating a directory, use ffs_dirpref to select the inode.
  808  * If allocating in a directory, the following hierarchy is followed:
  809  *   1) allocate the preferred inode.
  810  *   2) allocate an inode in the same cylinder group.
  811  *   3) quadradically rehash into other cylinder groups, until an
  812  *      available inode is located.
  813  * If no inode preference is given the following heirarchy is used
  814  * to allocate an inode:
  815  *   1) allocate an inode in cylinder group 0.
  816  *   2) quadradically rehash into other cylinder groups, until an
  817  *      available inode is located.
  818  */
  819 int
  820 ffs_valloc(pvp, mode, cred, vpp)
  821         struct vnode *pvp;
  822         int mode;
  823         struct ucred *cred;
  824         struct vnode **vpp;
  825 {
  826         struct inode *pip;
  827         struct fs *fs;
  828         struct inode *ip;
  829         struct timespec ts;
  830         ino_t ino, ipref;
  831         int cg, error;
  832 
  833         *vpp = NULL;
  834         pip = VTOI(pvp);
  835         fs = pip->i_fs;
  836         if (fs->fs_cstotal.cs_nifree == 0)
  837                 goto noinodes;
  838 
  839         if ((mode & IFMT) == IFDIR)
  840                 ipref = ffs_dirpref(pip);
  841         else
  842                 ipref = pip->i_number;
  843         if (ipref >= fs->fs_ncg * fs->fs_ipg)
  844                 ipref = 0;
  845         cg = ino_to_cg(fs, ipref);
  846         /*
  847          * Track number of dirs created one after another
  848          * in a same cg without intervening by files.
  849          */
  850         if ((mode & IFMT) == IFDIR) {
  851                 if (fs->fs_contigdirs[cg] < 255)
  852                         fs->fs_contigdirs[cg]++;
  853         } else {
  854                 if (fs->fs_contigdirs[cg] > 0)
  855                         fs->fs_contigdirs[cg]--;
  856         }
  857         ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode,
  858                                         (allocfcn_t *)ffs_nodealloccg);
  859         if (ino == 0)
  860                 goto noinodes;
  861         error = VFS_VGET(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
  862         if (error) {
  863                 UFS_VFREE(pvp, ino, mode);
  864                 return (error);
  865         }
  866         ip = VTOI(*vpp);
  867         if (ip->i_mode) {
  868                 printf("mode = 0%o, inum = %lu, fs = %s\n",
  869                     ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
  870                 panic("ffs_valloc: dup alloc");
  871         }
  872         if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
  873                 printf("free inode %s/%lu had %ld blocks\n",
  874                     fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
  875                 DIP(ip, i_blocks) = 0;
  876         }
  877         ip->i_flags = 0;
  878         DIP(ip, i_flags) = 0;
  879         /*
  880          * Set up a new generation number for this inode.
  881          */
  882         if (ip->i_gen == 0 || ++ip->i_gen == 0)
  883                 ip->i_gen = arc4random() / 2 + 1;
  884         DIP(ip, i_gen) = ip->i_gen;
  885         if (fs->fs_magic == FS_UFS2_MAGIC) {
  886                 vfs_timestamp(&ts);
  887                 ip->i_din2->di_birthtime = ts.tv_sec;
  888                 ip->i_din2->di_birthnsec = ts.tv_nsec;
  889         }
  890         return (0);
  891 noinodes:
  892         ffs_fserr(fs, pip->i_number, "out of inodes");
  893         uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
  894         return (ENOSPC);
  895 }
  896 
  897 /*
  898  * Find a cylinder group to place a directory.
  899  *
  900  * The policy implemented by this algorithm is to allocate a
  901  * directory inode in the same cylinder group as its parent
  902  * directory, but also to reserve space for its files inodes
  903  * and data. Restrict the number of directories which may be
  904  * allocated one after another in the same cylinder group
  905  * without intervening allocation of files.
  906  *
  907  * If we allocate a first level directory then force allocation
  908  * in another cylinder group.
  909  */
  910 static ino_t
  911 ffs_dirpref(pip)
  912         struct inode *pip;
  913 {
  914         struct fs *fs;
  915         int cg, prefcg, dirsize, cgsize;
  916         int avgifree, avgbfree, avgndir, curdirsize;
  917         int minifree, minbfree, maxndir;
  918         int mincg, minndir;
  919         int maxcontigdirs;
  920 
  921         fs = pip->i_fs;
  922 
  923         avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
  924         avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
  925         avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
  926 
  927         /*
  928          * Force allocation in another cg if creating a first level dir.
  929          */
  930         ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
  931         if (ITOV(pip)->v_vflag & VV_ROOT) {
  932                 prefcg = arc4random() % fs->fs_ncg;
  933                 mincg = prefcg;
  934                 minndir = fs->fs_ipg;
  935                 for (cg = prefcg; cg < fs->fs_ncg; cg++)
  936                         if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
  937                             fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
  938                             fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
  939                                 mincg = cg;
  940                                 minndir = fs->fs_cs(fs, cg).cs_ndir;
  941                         }
  942                 for (cg = 0; cg < prefcg; cg++)
  943                         if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
  944                             fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
  945                             fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
  946                                 mincg = cg;
  947                                 minndir = fs->fs_cs(fs, cg).cs_ndir;
  948                         }
  949                 return ((ino_t)(fs->fs_ipg * mincg));
  950         }
  951 
  952         /*
  953          * Count various limits which used for
  954          * optimal allocation of a directory inode.
  955          */
  956         maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
  957         minifree = avgifree - avgifree / 4;
  958         if (minifree < 1)
  959                 minifree = 1;
  960         minbfree = avgbfree - avgbfree / 4;
  961         if (minbfree < 1)
  962                 minbfree = 1;
  963         cgsize = fs->fs_fsize * fs->fs_fpg;
  964         dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
  965         curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
  966         if (dirsize < curdirsize)
  967                 dirsize = curdirsize;
  968         maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
  969         if (fs->fs_avgfpdir > 0)
  970                 maxcontigdirs = min(maxcontigdirs,
  971                                     fs->fs_ipg / fs->fs_avgfpdir);
  972         if (maxcontigdirs == 0)
  973                 maxcontigdirs = 1;
  974 
  975         /*
  976          * Limit number of dirs in one cg and reserve space for 
  977          * regular files, but only if we have no deficit in
  978          * inodes or space.
  979          */
  980         prefcg = ino_to_cg(fs, pip->i_number);
  981         for (cg = prefcg; cg < fs->fs_ncg; cg++)
  982                 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
  983                     fs->fs_cs(fs, cg).cs_nifree >= minifree &&
  984                     fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
  985                         if (fs->fs_contigdirs[cg] < maxcontigdirs)
  986                                 return ((ino_t)(fs->fs_ipg * cg));
  987                 }
  988         for (cg = 0; cg < prefcg; cg++)
  989                 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
  990                     fs->fs_cs(fs, cg).cs_nifree >= minifree &&
  991                     fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
  992                         if (fs->fs_contigdirs[cg] < maxcontigdirs)
  993                                 return ((ino_t)(fs->fs_ipg * cg));
  994                 }
  995         /*
  996          * This is a backstop when we have deficit in space.
  997          */
  998         for (cg = prefcg; cg < fs->fs_ncg; cg++)
  999                 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
 1000                         return ((ino_t)(fs->fs_ipg * cg));
 1001         for (cg = 0; cg < prefcg; cg++)
 1002                 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
 1003                         break;
 1004         return ((ino_t)(fs->fs_ipg * cg));
 1005 }
 1006 
 1007 /*
 1008  * Select the desired position for the next block in a file.  The file is
 1009  * logically divided into sections. The first section is composed of the
 1010  * direct blocks. Each additional section contains fs_maxbpg blocks.
 1011  *
 1012  * If no blocks have been allocated in the first section, the policy is to
 1013  * request a block in the same cylinder group as the inode that describes
 1014  * the file. If no blocks have been allocated in any other section, the
 1015  * policy is to place the section in a cylinder group with a greater than
 1016  * average number of free blocks.  An appropriate cylinder group is found
 1017  * by using a rotor that sweeps the cylinder groups. When a new group of
 1018  * blocks is needed, the sweep begins in the cylinder group following the
 1019  * cylinder group from which the previous allocation was made. The sweep
 1020  * continues until a cylinder group with greater than the average number
 1021  * of free blocks is found. If the allocation is for the first block in an
 1022  * indirect block, the information on the previous allocation is unavailable;
 1023  * here a best guess is made based upon the logical block number being
 1024  * allocated.
 1025  *
 1026  * If a section is already partially allocated, the policy is to
 1027  * contiguously allocate fs_maxcontig blocks. The end of one of these
 1028  * contiguous blocks and the beginning of the next is laid out
 1029  * contiguously if possible.
 1030  */
 1031 ufs2_daddr_t
 1032 ffs_blkpref_ufs1(ip, lbn, indx, bap)
 1033         struct inode *ip;
 1034         ufs_lbn_t lbn;
 1035         int indx;
 1036         ufs1_daddr_t *bap;
 1037 {
 1038         struct fs *fs;
 1039         int cg;
 1040         int avgbfree, startcg;
 1041 
 1042         fs = ip->i_fs;
 1043         if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
 1044                 if (lbn < NDADDR + NINDIR(fs)) {
 1045                         cg = ino_to_cg(fs, ip->i_number);
 1046                         return (fs->fs_fpg * cg + fs->fs_frag);
 1047                 }
 1048                 /*
 1049                  * Find a cylinder with greater than average number of
 1050                  * unused data blocks.
 1051                  */
 1052                 if (indx == 0 || bap[indx - 1] == 0)
 1053                         startcg =
 1054                             ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
 1055                 else
 1056                         startcg = dtog(fs, bap[indx - 1]) + 1;
 1057                 startcg %= fs->fs_ncg;
 1058                 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
 1059                 for (cg = startcg; cg < fs->fs_ncg; cg++)
 1060                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1061                                 fs->fs_cgrotor = cg;
 1062                                 return (fs->fs_fpg * cg + fs->fs_frag);
 1063                         }
 1064                 for (cg = 0; cg <= startcg; cg++)
 1065                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1066                                 fs->fs_cgrotor = cg;
 1067                                 return (fs->fs_fpg * cg + fs->fs_frag);
 1068                         }
 1069                 return (0);
 1070         }
 1071         /*
 1072          * We just always try to lay things out contiguously.
 1073          */
 1074         return (bap[indx - 1] + fs->fs_frag);
 1075 }
 1076 
 1077 /*
 1078  * Same as above, but for UFS2
 1079  */
 1080 ufs2_daddr_t
 1081 ffs_blkpref_ufs2(ip, lbn, indx, bap)
 1082         struct inode *ip;
 1083         ufs_lbn_t lbn;
 1084         int indx;
 1085         ufs2_daddr_t *bap;
 1086 {
 1087         struct fs *fs;
 1088         int cg;
 1089         int avgbfree, startcg;
 1090 
 1091         fs = ip->i_fs;
 1092         if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
 1093                 if (lbn < NDADDR + NINDIR(fs)) {
 1094                         cg = ino_to_cg(fs, ip->i_number);
 1095                         return (fs->fs_fpg * cg + fs->fs_frag);
 1096                 }
 1097                 /*
 1098                  * Find a cylinder with greater than average number of
 1099                  * unused data blocks.
 1100                  */
 1101                 if (indx == 0 || bap[indx - 1] == 0)
 1102                         startcg =
 1103                             ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
 1104                 else
 1105                         startcg = dtog(fs, bap[indx - 1]) + 1;
 1106                 startcg %= fs->fs_ncg;
 1107                 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
 1108                 for (cg = startcg; cg < fs->fs_ncg; cg++)
 1109                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1110                                 fs->fs_cgrotor = cg;
 1111                                 return (fs->fs_fpg * cg + fs->fs_frag);
 1112                         }
 1113                 for (cg = 0; cg <= startcg; cg++)
 1114                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1115                                 fs->fs_cgrotor = cg;
 1116                                 return (fs->fs_fpg * cg + fs->fs_frag);
 1117                         }
 1118                 return (0);
 1119         }
 1120         /*
 1121          * We just always try to lay things out contiguously.
 1122          */
 1123         return (bap[indx - 1] + fs->fs_frag);
 1124 }
 1125 
 1126 /*
 1127  * Implement the cylinder overflow algorithm.
 1128  *
 1129  * The policy implemented by this algorithm is:
 1130  *   1) allocate the block in its requested cylinder group.
 1131  *   2) quadradically rehash on the cylinder group number.
 1132  *   3) brute force search for a free block.
 1133  */
 1134 /*VARARGS5*/
 1135 static ufs2_daddr_t
 1136 ffs_hashalloc(ip, cg, pref, size, allocator)
 1137         struct inode *ip;
 1138         int cg;
 1139         ufs2_daddr_t pref;
 1140         int size;       /* size for data blocks, mode for inodes */
 1141         allocfcn_t *allocator;
 1142 {
 1143         struct fs *fs;
 1144         ufs2_daddr_t result;
 1145         int i, icg = cg;
 1146 
 1147 #ifdef DIAGNOSTIC
 1148         if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
 1149                 panic("ffs_hashalloc: allocation on suspended filesystem");
 1150 #endif
 1151         fs = ip->i_fs;
 1152         /*
 1153          * 1: preferred cylinder group
 1154          */
 1155         result = (*allocator)(ip, cg, pref, size);
 1156         if (result)
 1157                 return (result);
 1158         /*
 1159          * 2: quadratic rehash
 1160          */
 1161         for (i = 1; i < fs->fs_ncg; i *= 2) {
 1162                 cg += i;
 1163                 if (cg >= fs->fs_ncg)
 1164                         cg -= fs->fs_ncg;
 1165                 result = (*allocator)(ip, cg, 0, size);
 1166                 if (result)
 1167                         return (result);
 1168         }
 1169         /*
 1170          * 3: brute force search
 1171          * Note that we start at i == 2, since 0 was checked initially,
 1172          * and 1 is always checked in the quadratic rehash.
 1173          */
 1174         cg = (icg + 2) % fs->fs_ncg;
 1175         for (i = 2; i < fs->fs_ncg; i++) {
 1176                 result = (*allocator)(ip, cg, 0, size);
 1177                 if (result)
 1178                         return (result);
 1179                 cg++;
 1180                 if (cg == fs->fs_ncg)
 1181                         cg = 0;
 1182         }
 1183         return (0);
 1184 }
 1185 
 1186 /*
 1187  * Determine whether a fragment can be extended.
 1188  *
 1189  * Check to see if the necessary fragments are available, and
 1190  * if they are, allocate them.
 1191  */
 1192 static ufs2_daddr_t
 1193 ffs_fragextend(ip, cg, bprev, osize, nsize)
 1194         struct inode *ip;
 1195         int cg;
 1196         ufs2_daddr_t bprev;
 1197         int osize, nsize;
 1198 {
 1199         struct fs *fs;
 1200         struct cg *cgp;
 1201         struct buf *bp;
 1202         long bno;
 1203         int frags, bbase;
 1204         int i, error;
 1205         u_int8_t *blksfree;
 1206 
 1207         fs = ip->i_fs;
 1208         if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
 1209                 return (0);
 1210         frags = numfrags(fs, nsize);
 1211         bbase = fragnum(fs, bprev);
 1212         if (bbase > fragnum(fs, (bprev + frags - 1))) {
 1213                 /* cannot extend across a block boundary */
 1214                 return (0);
 1215         }
 1216         error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
 1217                 (int)fs->fs_cgsize, NOCRED, &bp);
 1218         if (error) {
 1219                 brelse(bp);
 1220                 return (0);
 1221         }
 1222         cgp = (struct cg *)bp->b_data;
 1223         if (!cg_chkmagic(cgp)) {
 1224                 brelse(bp);
 1225                 return (0);
 1226         }
 1227         bp->b_xflags |= BX_BKGRDWRITE;
 1228         cgp->cg_old_time = cgp->cg_time = time_second;
 1229         bno = dtogd(fs, bprev);
 1230         blksfree = cg_blksfree(cgp);
 1231         for (i = numfrags(fs, osize); i < frags; i++)
 1232                 if (isclr(blksfree, bno + i)) {
 1233                         brelse(bp);
 1234                         return (0);
 1235                 }
 1236         /*
 1237          * the current fragment can be extended
 1238          * deduct the count on fragment being extended into
 1239          * increase the count on the remaining fragment (if any)
 1240          * allocate the extended piece
 1241          */
 1242         for (i = frags; i < fs->fs_frag - bbase; i++)
 1243                 if (isclr(blksfree, bno + i))
 1244                         break;
 1245         cgp->cg_frsum[i - numfrags(fs, osize)]--;
 1246         if (i != frags)
 1247                 cgp->cg_frsum[i - frags]++;
 1248         for (i = numfrags(fs, osize); i < frags; i++) {
 1249                 clrbit(blksfree, bno + i);
 1250                 cgp->cg_cs.cs_nffree--;
 1251                 fs->fs_cstotal.cs_nffree--;
 1252                 fs->fs_cs(fs, cg).cs_nffree--;
 1253         }
 1254         fs->fs_fmod = 1;
 1255         if (DOINGSOFTDEP(ITOV(ip)))
 1256                 softdep_setup_blkmapdep(bp, fs, bprev);
 1257         if (fs->fs_active != 0)
 1258                 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
 1259         bdwrite(bp);
 1260         return (bprev);
 1261 }
 1262 
 1263 /*
 1264  * Determine whether a block can be allocated.
 1265  *
 1266  * Check to see if a block of the appropriate size is available,
 1267  * and if it is, allocate it.
 1268  */
 1269 static ufs2_daddr_t
 1270 ffs_alloccg(ip, cg, bpref, size)
 1271         struct inode *ip;
 1272         int cg;
 1273         ufs2_daddr_t bpref;
 1274         int size;
 1275 {
 1276         struct fs *fs;
 1277         struct cg *cgp;
 1278         struct buf *bp;
 1279         ufs1_daddr_t bno;
 1280         ufs2_daddr_t blkno;
 1281         int i, allocsiz, error, frags;
 1282         u_int8_t *blksfree;
 1283 
 1284         fs = ip->i_fs;
 1285         if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
 1286                 return (0);
 1287         error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
 1288                 (int)fs->fs_cgsize, NOCRED, &bp);
 1289         if (error) {
 1290                 brelse(bp);
 1291                 return (0);
 1292         }
 1293         cgp = (struct cg *)bp->b_data;
 1294         if (!cg_chkmagic(cgp) ||
 1295             (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
 1296                 brelse(bp);
 1297                 return (0);
 1298         }
 1299         bp->b_xflags |= BX_BKGRDWRITE;
 1300         cgp->cg_old_time = cgp->cg_time = time_second;
 1301         if (size == fs->fs_bsize) {
 1302                 blkno = ffs_alloccgblk(ip, bp, bpref);
 1303                 if (fs->fs_active != 0)
 1304                         atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
 1305                 bdwrite(bp);
 1306                 return (blkno);
 1307         }
 1308         /*
 1309          * check to see if any fragments are already available
 1310          * allocsiz is the size which will be allocated, hacking
 1311          * it down to a smaller size if necessary
 1312          */
 1313         blksfree = cg_blksfree(cgp);
 1314         frags = numfrags(fs, size);
 1315         for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
 1316                 if (cgp->cg_frsum[allocsiz] != 0)
 1317                         break;
 1318         if (allocsiz == fs->fs_frag) {
 1319                 /*
 1320                  * no fragments were available, so a block will be
 1321                  * allocated, and hacked up
 1322                  */
 1323                 if (cgp->cg_cs.cs_nbfree == 0) {
 1324                         brelse(bp);
 1325                         return (0);
 1326                 }
 1327                 blkno = ffs_alloccgblk(ip, bp, bpref);
 1328                 bno = dtogd(fs, blkno);
 1329                 for (i = frags; i < fs->fs_frag; i++)
 1330                         setbit(blksfree, bno + i);
 1331                 i = fs->fs_frag - frags;
 1332                 cgp->cg_cs.cs_nffree += i;
 1333                 fs->fs_cstotal.cs_nffree += i;
 1334                 fs->fs_cs(fs, cg).cs_nffree += i;
 1335                 fs->fs_fmod = 1;
 1336                 cgp->cg_frsum[i]++;
 1337                 if (fs->fs_active != 0)
 1338                         atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
 1339                 bdwrite(bp);
 1340                 return (blkno);
 1341         }
 1342         bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
 1343         if (bno < 0) {
 1344                 brelse(bp);
 1345                 return (0);
 1346         }
 1347         for (i = 0; i < frags; i++)
 1348                 clrbit(blksfree, bno + i);
 1349         cgp->cg_cs.cs_nffree -= frags;
 1350         fs->fs_cstotal.cs_nffree -= frags;
 1351         fs->fs_cs(fs, cg).cs_nffree -= frags;
 1352         fs->fs_fmod = 1;
 1353         cgp->cg_frsum[allocsiz]--;
 1354         if (frags != allocsiz)
 1355                 cgp->cg_frsum[allocsiz - frags]++;
 1356         blkno = cg * fs->fs_fpg + bno;
 1357         if (DOINGSOFTDEP(ITOV(ip)))
 1358                 softdep_setup_blkmapdep(bp, fs, blkno);
 1359         if (fs->fs_active != 0)
 1360                 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
 1361         bdwrite(bp);
 1362         return (blkno);
 1363 }
 1364 
 1365 /*
 1366  * Allocate a block in a cylinder group.
 1367  *
 1368  * This algorithm implements the following policy:
 1369  *   1) allocate the requested block.
 1370  *   2) allocate a rotationally optimal block in the same cylinder.
 1371  *   3) allocate the next available block on the block rotor for the
 1372  *      specified cylinder group.
 1373  * Note that this routine only allocates fs_bsize blocks; these
 1374  * blocks may be fragmented by the routine that allocates them.
 1375  */
 1376 static ufs2_daddr_t
 1377 ffs_alloccgblk(ip, bp, bpref)
 1378         struct inode *ip;
 1379         struct buf *bp;
 1380         ufs2_daddr_t bpref;
 1381 {
 1382         struct fs *fs;
 1383         struct cg *cgp;
 1384         ufs1_daddr_t bno;
 1385         ufs2_daddr_t blkno;
 1386         u_int8_t *blksfree;
 1387 
 1388         fs = ip->i_fs;
 1389         cgp = (struct cg *)bp->b_data;
 1390         blksfree = cg_blksfree(cgp);
 1391         if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
 1392                 bpref = cgp->cg_rotor;
 1393         } else {
 1394                 bpref = blknum(fs, bpref);
 1395                 bno = dtogd(fs, bpref);
 1396                 /*
 1397                  * if the requested block is available, use it
 1398                  */
 1399                 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
 1400                         goto gotit;
 1401         }
 1402         /*
 1403          * Take the next available block in this cylinder group.
 1404          */
 1405         bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
 1406         if (bno < 0)
 1407                 return (0);
 1408         cgp->cg_rotor = bno;
 1409 gotit:
 1410         blkno = fragstoblks(fs, bno);
 1411         ffs_clrblock(fs, blksfree, (long)blkno);
 1412         ffs_clusteracct(fs, cgp, blkno, -1);
 1413         cgp->cg_cs.cs_nbfree--;
 1414         fs->fs_cstotal.cs_nbfree--;
 1415         fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
 1416         fs->fs_fmod = 1;
 1417         blkno = cgp->cg_cgx * fs->fs_fpg + bno;
 1418         if (DOINGSOFTDEP(ITOV(ip)))
 1419                 softdep_setup_blkmapdep(bp, fs, blkno);
 1420         return (blkno);
 1421 }
 1422 
 1423 /*
 1424  * Determine whether a cluster can be allocated.
 1425  *
 1426  * We do not currently check for optimal rotational layout if there
 1427  * are multiple choices in the same cylinder group. Instead we just
 1428  * take the first one that we find following bpref.
 1429  */
 1430 static ufs2_daddr_t
 1431 ffs_clusteralloc(ip, cg, bpref, len)
 1432         struct inode *ip;
 1433         int cg;
 1434         ufs2_daddr_t bpref;
 1435         int len;
 1436 {
 1437         struct fs *fs;
 1438         struct cg *cgp;
 1439         struct buf *bp;
 1440         int i, run, bit, map, got;
 1441         ufs2_daddr_t bno;
 1442         u_char *mapp;
 1443         int32_t *lp;
 1444         u_int8_t *blksfree;
 1445 
 1446         fs = ip->i_fs;
 1447         if (fs->fs_maxcluster[cg] < len)
 1448                 return (0);
 1449         if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
 1450             NOCRED, &bp))
 1451                 goto fail;
 1452         cgp = (struct cg *)bp->b_data;
 1453         if (!cg_chkmagic(cgp))
 1454                 goto fail;
 1455         bp->b_xflags |= BX_BKGRDWRITE;
 1456         /*
 1457          * Check to see if a cluster of the needed size (or bigger) is
 1458          * available in this cylinder group.
 1459          */
 1460         lp = &cg_clustersum(cgp)[len];
 1461         for (i = len; i <= fs->fs_contigsumsize; i++)
 1462                 if (*lp++ > 0)
 1463                         break;
 1464         if (i > fs->fs_contigsumsize) {
 1465                 /*
 1466                  * This is the first time looking for a cluster in this
 1467                  * cylinder group. Update the cluster summary information
 1468                  * to reflect the true maximum sized cluster so that
 1469                  * future cluster allocation requests can avoid reading
 1470                  * the cylinder group map only to find no clusters.
 1471                  */
 1472                 lp = &cg_clustersum(cgp)[len - 1];
 1473                 for (i = len - 1; i > 0; i--)
 1474                         if (*lp-- > 0)
 1475                                 break;
 1476                 fs->fs_maxcluster[cg] = i;
 1477                 goto fail;
 1478         }
 1479         /*
 1480          * Search the cluster map to find a big enough cluster.
 1481          * We take the first one that we find, even if it is larger
 1482          * than we need as we prefer to get one close to the previous
 1483          * block allocation. We do not search before the current
 1484          * preference point as we do not want to allocate a block
 1485          * that is allocated before the previous one (as we will
 1486          * then have to wait for another pass of the elevator
 1487          * algorithm before it will be read). We prefer to fail and
 1488          * be recalled to try an allocation in the next cylinder group.
 1489          */
 1490         if (dtog(fs, bpref) != cg)
 1491                 bpref = 0;
 1492         else
 1493                 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
 1494         mapp = &cg_clustersfree(cgp)[bpref / NBBY];
 1495         map = *mapp++;
 1496         bit = 1 << (bpref % NBBY);
 1497         for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
 1498                 if ((map & bit) == 0) {
 1499                         run = 0;
 1500                 } else {
 1501                         run++;
 1502                         if (run == len)
 1503                                 break;
 1504                 }
 1505                 if ((got & (NBBY - 1)) != (NBBY - 1)) {
 1506                         bit <<= 1;
 1507                 } else {
 1508                         map = *mapp++;
 1509                         bit = 1;
 1510                 }
 1511         }
 1512         if (got >= cgp->cg_nclusterblks)
 1513                 goto fail;
 1514         /*
 1515          * Allocate the cluster that we have found.
 1516          */
 1517         blksfree = cg_blksfree(cgp);
 1518         for (i = 1; i <= len; i++)
 1519                 if (!ffs_isblock(fs, blksfree, got - run + i))
 1520                         panic("ffs_clusteralloc: map mismatch");
 1521         bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
 1522         if (dtog(fs, bno) != cg)
 1523                 panic("ffs_clusteralloc: allocated out of group");
 1524         len = blkstofrags(fs, len);
 1525         for (i = 0; i < len; i += fs->fs_frag)
 1526                 if (ffs_alloccgblk(ip, bp, bno + i) != bno + i)
 1527                         panic("ffs_clusteralloc: lost block");
 1528         if (fs->fs_active != 0)
 1529                 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
 1530         bdwrite(bp);
 1531         return (bno);
 1532 
 1533 fail:
 1534         brelse(bp);
 1535         return (0);
 1536 }
 1537 
 1538 /*
 1539  * Determine whether an inode can be allocated.
 1540  *
 1541  * Check to see if an inode is available, and if it is,
 1542  * allocate it using the following policy:
 1543  *   1) allocate the requested inode.
 1544  *   2) allocate the next available inode after the requested
 1545  *      inode in the specified cylinder group.
 1546  */
 1547 static ufs2_daddr_t
 1548 ffs_nodealloccg(ip, cg, ipref, mode)
 1549         struct inode *ip;
 1550         int cg;
 1551         ufs2_daddr_t ipref;
 1552         int mode;
 1553 {
 1554         struct fs *fs;
 1555         struct cg *cgp;
 1556         struct buf *bp, *ibp;
 1557         u_int8_t *inosused;
 1558         struct ufs2_dinode *dp2;
 1559         int error, start, len, loc, map, i;
 1560 
 1561         fs = ip->i_fs;
 1562         if (fs->fs_cs(fs, cg).cs_nifree == 0)
 1563                 return (0);
 1564         error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
 1565                 (int)fs->fs_cgsize, NOCRED, &bp);
 1566         if (error) {
 1567                 brelse(bp);
 1568                 return (0);
 1569         }
 1570         cgp = (struct cg *)bp->b_data;
 1571         if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
 1572                 brelse(bp);
 1573                 return (0);
 1574         }
 1575         bp->b_xflags |= BX_BKGRDWRITE;
 1576         cgp->cg_old_time = cgp->cg_time = time_second;
 1577         inosused = cg_inosused(cgp);
 1578         if (ipref) {
 1579                 ipref %= fs->fs_ipg;
 1580                 if (isclr(inosused, ipref))
 1581                         goto gotit;
 1582         }
 1583         start = cgp->cg_irotor / NBBY;
 1584         len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
 1585         loc = skpc(0xff, len, &inosused[start]);
 1586         if (loc == 0) {
 1587                 len = start + 1;
 1588                 start = 0;
 1589                 loc = skpc(0xff, len, &inosused[0]);
 1590                 if (loc == 0) {
 1591                         printf("cg = %d, irotor = %ld, fs = %s\n",
 1592                             cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
 1593                         panic("ffs_nodealloccg: map corrupted");
 1594                         /* NOTREACHED */
 1595                 }
 1596         }
 1597         i = start + len - loc;
 1598         map = inosused[i];
 1599         ipref = i * NBBY;
 1600         for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
 1601                 if ((map & i) == 0) {
 1602                         cgp->cg_irotor = ipref;
 1603                         goto gotit;
 1604                 }
 1605         }
 1606         printf("fs = %s\n", fs->fs_fsmnt);
 1607         panic("ffs_nodealloccg: block not in map");
 1608         /* NOTREACHED */
 1609 gotit:
 1610         if (DOINGSOFTDEP(ITOV(ip)))
 1611                 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
 1612         setbit(inosused, ipref);
 1613         cgp->cg_cs.cs_nifree--;
 1614         fs->fs_cstotal.cs_nifree--;
 1615         fs->fs_cs(fs, cg).cs_nifree--;
 1616         fs->fs_fmod = 1;
 1617         if ((mode & IFMT) == IFDIR) {
 1618                 cgp->cg_cs.cs_ndir++;
 1619                 fs->fs_cstotal.cs_ndir++;
 1620                 fs->fs_cs(fs, cg).cs_ndir++;
 1621         }
 1622         /*
 1623          * Check to see if we need to initialize more inodes.
 1624          */
 1625         if (fs->fs_magic == FS_UFS2_MAGIC &&
 1626             ipref + INOPB(fs) > cgp->cg_initediblk &&
 1627             cgp->cg_initediblk < cgp->cg_niblk) {
 1628                 ibp = getblk(ip->i_devvp, fsbtodb(fs,
 1629                     ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)),
 1630                     (int)fs->fs_bsize, 0, 0, 0);
 1631                 bzero(ibp->b_data, (int)fs->fs_bsize);
 1632                 dp2 = (struct ufs2_dinode *)(ibp->b_data);
 1633                 for (i = 0; i < INOPB(fs); i++) {
 1634                         dp2->di_gen = arc4random() / 2 + 1;
 1635                         dp2++;
 1636                 }
 1637                 bawrite(ibp);
 1638                 cgp->cg_initediblk += INOPB(fs);
 1639         }
 1640         if (fs->fs_active != 0)
 1641                 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
 1642         bdwrite(bp);
 1643         return (cg * fs->fs_ipg + ipref);
 1644 }
 1645 
 1646 /*
 1647  * check if a block is free
 1648  */
 1649 static int
 1650 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
 1651 {
 1652 
 1653         switch ((int)fs->fs_frag) {
 1654         case 8:
 1655                 return (cp[h] == 0);
 1656         case 4:
 1657                 return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0);
 1658         case 2:
 1659                 return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0);
 1660         case 1:
 1661                 return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0);
 1662         default:
 1663                 panic("ffs_isfreeblock");
 1664         }
 1665         return (0);
 1666 }
 1667 
 1668 /*
 1669  * Free a block or fragment.
 1670  *
 1671  * The specified block or fragment is placed back in the
 1672  * free map. If a fragment is deallocated, a possible
 1673  * block reassembly is checked.
 1674  */
 1675 void
 1676 ffs_blkfree(fs, devvp, bno, size, inum)
 1677         struct fs *fs;
 1678         struct vnode *devvp;
 1679         ufs2_daddr_t bno;
 1680         long size;
 1681         ino_t inum;
 1682 {
 1683         struct cg *cgp;
 1684         struct buf *bp;
 1685         ufs1_daddr_t fragno, cgbno;
 1686         ufs2_daddr_t cgblkno;
 1687         int i, cg, blk, frags, bbase;
 1688         u_int8_t *blksfree;
 1689         dev_t dev;
 1690 
 1691         cg = dtog(fs, bno);
 1692         if (devvp->v_type != VCHR) {
 1693                 /* devvp is a snapshot */
 1694                 dev = VTOI(devvp)->i_devvp->v_rdev;
 1695                 cgblkno = fragstoblks(fs, cgtod(fs, cg));
 1696         } else {
 1697                 /* devvp is a normal disk device */
 1698                 dev = devvp->v_rdev;
 1699                 cgblkno = fsbtodb(fs, cgtod(fs, cg));
 1700                 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree");
 1701                 if ((devvp->v_vflag & VV_COPYONWRITE) &&
 1702                     ffs_snapblkfree(fs, devvp, bno, size, inum))
 1703                         return;
 1704                 VOP_FREEBLKS(devvp, fsbtodb(fs, bno), size);
 1705         }
 1706 #ifdef DIAGNOSTIC
 1707         if (dev->si_mountpoint &&
 1708             (dev->si_mountpoint->mnt_kern_flag & MNTK_SUSPENDED))
 1709                 panic("ffs_blkfree: deallocation on suspended filesystem");
 1710         if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
 1711             fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
 1712                 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
 1713                     devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
 1714                     size, fs->fs_fsmnt);
 1715                 panic("ffs_blkfree: bad size");
 1716         }
 1717 #endif
 1718         if ((u_int)bno >= fs->fs_size) {
 1719                 printf("bad block %jd, ino %lu\n", (intmax_t)bno,
 1720                     (u_long)inum);
 1721                 ffs_fserr(fs, inum, "bad block");
 1722                 return;
 1723         }
 1724         if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) {
 1725                 brelse(bp);
 1726                 return;
 1727         }
 1728         cgp = (struct cg *)bp->b_data;
 1729         if (!cg_chkmagic(cgp)) {
 1730                 brelse(bp);
 1731                 return;
 1732         }
 1733         bp->b_xflags |= BX_BKGRDWRITE;
 1734         cgp->cg_old_time = cgp->cg_time = time_second;
 1735         cgbno = dtogd(fs, bno);
 1736         blksfree = cg_blksfree(cgp);
 1737         if (size == fs->fs_bsize) {
 1738                 fragno = fragstoblks(fs, cgbno);
 1739                 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
 1740                         if (devvp->v_type != VCHR) {
 1741                                 /* devvp is a snapshot */
 1742                                 brelse(bp);
 1743                                 return;
 1744                         }
 1745                         printf("dev = %s, block = %jd, fs = %s\n",
 1746                             devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
 1747                         panic("ffs_blkfree: freeing free block");
 1748                 }
 1749                 ffs_setblock(fs, blksfree, fragno);
 1750                 ffs_clusteracct(fs, cgp, fragno, 1);
 1751                 cgp->cg_cs.cs_nbfree++;
 1752                 fs->fs_cstotal.cs_nbfree++;
 1753                 fs->fs_cs(fs, cg).cs_nbfree++;
 1754         } else {
 1755                 bbase = cgbno - fragnum(fs, cgbno);
 1756                 /*
 1757                  * decrement the counts associated with the old frags
 1758                  */
 1759                 blk = blkmap(fs, blksfree, bbase);
 1760                 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
 1761                 /*
 1762                  * deallocate the fragment
 1763                  */
 1764                 frags = numfrags(fs, size);
 1765                 for (i = 0; i < frags; i++) {
 1766                         if (isset(blksfree, cgbno + i)) {
 1767                                 printf("dev = %s, block = %jd, fs = %s\n",
 1768                                     devtoname(dev), (intmax_t)(bno + i),
 1769                                     fs->fs_fsmnt);
 1770                                 panic("ffs_blkfree: freeing free frag");
 1771                         }
 1772                         setbit(blksfree, cgbno + i);
 1773                 }
 1774                 cgp->cg_cs.cs_nffree += i;
 1775                 fs->fs_cstotal.cs_nffree += i;
 1776                 fs->fs_cs(fs, cg).cs_nffree += i;
 1777                 /*
 1778                  * add back in counts associated with the new frags
 1779                  */
 1780                 blk = blkmap(fs, blksfree, bbase);
 1781                 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
 1782                 /*
 1783                  * if a complete block has been reassembled, account for it
 1784                  */
 1785                 fragno = fragstoblks(fs, bbase);
 1786                 if (ffs_isblock(fs, blksfree, fragno)) {
 1787                         cgp->cg_cs.cs_nffree -= fs->fs_frag;
 1788                         fs->fs_cstotal.cs_nffree -= fs->fs_frag;
 1789                         fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
 1790                         ffs_clusteracct(fs, cgp, fragno, 1);
 1791                         cgp->cg_cs.cs_nbfree++;
 1792                         fs->fs_cstotal.cs_nbfree++;
 1793                         fs->fs_cs(fs, cg).cs_nbfree++;
 1794                 }
 1795         }
 1796         fs->fs_fmod = 1;
 1797         if (fs->fs_active != 0)
 1798                 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
 1799         bdwrite(bp);
 1800 }
 1801 
 1802 #ifdef DIAGNOSTIC
 1803 /*
 1804  * Verify allocation of a block or fragment. Returns true if block or
 1805  * fragment is allocated, false if it is free.
 1806  */
 1807 static int
 1808 ffs_checkblk(ip, bno, size)
 1809         struct inode *ip;
 1810         ufs2_daddr_t bno;
 1811         long size;
 1812 {
 1813         struct fs *fs;
 1814         struct cg *cgp;
 1815         struct buf *bp;
 1816         ufs1_daddr_t cgbno;
 1817         int i, error, frags, free;
 1818         u_int8_t *blksfree;
 1819 
 1820         fs = ip->i_fs;
 1821         if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
 1822                 printf("bsize = %ld, size = %ld, fs = %s\n",
 1823                     (long)fs->fs_bsize, size, fs->fs_fsmnt);
 1824                 panic("ffs_checkblk: bad size");
 1825         }
 1826         if ((u_int)bno >= fs->fs_size)
 1827                 panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
 1828         error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
 1829                 (int)fs->fs_cgsize, NOCRED, &bp);
 1830         if (error)
 1831                 panic("ffs_checkblk: cg bread failed");
 1832         cgp = (struct cg *)bp->b_data;
 1833         if (!cg_chkmagic(cgp))
 1834                 panic("ffs_checkblk: cg magic mismatch");
 1835         bp->b_xflags |= BX_BKGRDWRITE;
 1836         blksfree = cg_blksfree(cgp);
 1837         cgbno = dtogd(fs, bno);
 1838         if (size == fs->fs_bsize) {
 1839                 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
 1840         } else {
 1841                 frags = numfrags(fs, size);
 1842                 for (free = 0, i = 0; i < frags; i++)
 1843                         if (isset(blksfree, cgbno + i))
 1844                                 free++;
 1845                 if (free != 0 && free != frags)
 1846                         panic("ffs_checkblk: partially free fragment");
 1847         }
 1848         brelse(bp);
 1849         return (!free);
 1850 }
 1851 #endif /* DIAGNOSTIC */
 1852 
 1853 /*
 1854  * Free an inode.
 1855  */
 1856 int
 1857 ffs_vfree(pvp, ino, mode)
 1858         struct vnode *pvp;
 1859         ino_t ino;
 1860         int mode;
 1861 {
 1862         if (DOINGSOFTDEP(pvp)) {
 1863                 softdep_freefile(pvp, ino, mode);
 1864                 return (0);
 1865         }
 1866         return (ffs_freefile(VTOI(pvp)->i_fs, VTOI(pvp)->i_devvp, ino, mode));
 1867 }
 1868 
 1869 /*
 1870  * Do the actual free operation.
 1871  * The specified inode is placed back in the free map.
 1872  */
 1873 int
 1874 ffs_freefile(fs, devvp, ino, mode)
 1875         struct fs *fs;
 1876         struct vnode *devvp;
 1877         ino_t ino;
 1878         int mode;
 1879 {
 1880         struct cg *cgp;
 1881         struct buf *bp;
 1882         ufs2_daddr_t cgbno;
 1883         int error, cg;
 1884         u_int8_t *inosused;
 1885         dev_t dev;
 1886 
 1887         cg = ino_to_cg(fs, ino);
 1888         if (devvp->v_type != VCHR) {
 1889                 /* devvp is a snapshot */
 1890                 dev = VTOI(devvp)->i_devvp->v_rdev;
 1891                 cgbno = fragstoblks(fs, cgtod(fs, cg));
 1892         } else {
 1893                 /* devvp is a normal disk device */
 1894                 dev = devvp->v_rdev;
 1895                 cgbno = fsbtodb(fs, cgtod(fs, cg));
 1896         }
 1897         if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
 1898                 panic("ffs_freefile: range: dev = %s, ino = %lu, fs = %s",
 1899                     devtoname(dev), (u_long)ino, fs->fs_fsmnt);
 1900         if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
 1901                 brelse(bp);
 1902                 return (error);
 1903         }
 1904         cgp = (struct cg *)bp->b_data;
 1905         if (!cg_chkmagic(cgp)) {
 1906                 brelse(bp);
 1907                 return (0);
 1908         }
 1909         bp->b_xflags |= BX_BKGRDWRITE;
 1910         cgp->cg_old_time = cgp->cg_time = time_second;
 1911         inosused = cg_inosused(cgp);
 1912         ino %= fs->fs_ipg;
 1913         if (isclr(inosused, ino)) {
 1914                 printf("dev = %s, ino = %lu, fs = %s\n", devtoname(dev),
 1915                     (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt);
 1916                 if (fs->fs_ronly == 0)
 1917                         panic("ffs_freefile: freeing free inode");
 1918         }
 1919         clrbit(inosused, ino);
 1920         if (ino < cgp->cg_irotor)
 1921                 cgp->cg_irotor = ino;
 1922         cgp->cg_cs.cs_nifree++;
 1923         fs->fs_cstotal.cs_nifree++;
 1924         fs->fs_cs(fs, cg).cs_nifree++;
 1925         if ((mode & IFMT) == IFDIR) {
 1926                 cgp->cg_cs.cs_ndir--;
 1927                 fs->fs_cstotal.cs_ndir--;
 1928                 fs->fs_cs(fs, cg).cs_ndir--;
 1929         }
 1930         fs->fs_fmod = 1;
 1931         if (fs->fs_active != 0)
 1932                 atomic_clear_int(&ACTIVECGNUM(fs, cg), ACTIVECGOFF(cg));
 1933         bdwrite(bp);
 1934         return (0);
 1935 }
 1936 
 1937 /*
 1938  * Check to see if a file is free.
 1939  */
 1940 int
 1941 ffs_checkfreefile(fs, devvp, ino)
 1942         struct fs *fs;
 1943         struct vnode *devvp;
 1944         ino_t ino;
 1945 {
 1946         struct cg *cgp;
 1947         struct buf *bp;
 1948         ufs2_daddr_t cgbno;
 1949         int ret, cg;
 1950         u_int8_t *inosused;
 1951 
 1952         cg = ino_to_cg(fs, ino);
 1953         if (devvp->v_type != VCHR) {
 1954                 /* devvp is a snapshot */
 1955                 cgbno = fragstoblks(fs, cgtod(fs, cg));
 1956         } else {
 1957                 /* devvp is a normal disk device */
 1958                 cgbno = fsbtodb(fs, cgtod(fs, cg));
 1959         }
 1960         if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
 1961                 return (1);
 1962         if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
 1963                 brelse(bp);
 1964                 return (1);
 1965         }
 1966         cgp = (struct cg *)bp->b_data;
 1967         if (!cg_chkmagic(cgp)) {
 1968                 brelse(bp);
 1969                 return (1);
 1970         }
 1971         inosused = cg_inosused(cgp);
 1972         ino %= fs->fs_ipg;
 1973         ret = isclr(inosused, ino);
 1974         brelse(bp);
 1975         return (ret);
 1976 }
 1977 
 1978 /*
 1979  * Find a block of the specified size in the specified cylinder group.
 1980  *
 1981  * It is a panic if a request is made to find a block if none are
 1982  * available.
 1983  */
 1984 static ufs1_daddr_t
 1985 ffs_mapsearch(fs, cgp, bpref, allocsiz)
 1986         struct fs *fs;
 1987         struct cg *cgp;
 1988         ufs2_daddr_t bpref;
 1989         int allocsiz;
 1990 {
 1991         ufs1_daddr_t bno;
 1992         int start, len, loc, i;
 1993         int blk, field, subfield, pos;
 1994         u_int8_t *blksfree;
 1995 
 1996         /*
 1997          * find the fragment by searching through the free block
 1998          * map for an appropriate bit pattern
 1999          */
 2000         if (bpref)
 2001                 start = dtogd(fs, bpref) / NBBY;
 2002         else
 2003                 start = cgp->cg_frotor / NBBY;
 2004         blksfree = cg_blksfree(cgp);
 2005         len = howmany(fs->fs_fpg, NBBY) - start;
 2006         loc = scanc((u_int)len, (u_char *)&blksfree[start],
 2007                 (u_char *)fragtbl[fs->fs_frag],
 2008                 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
 2009         if (loc == 0) {
 2010                 len = start + 1;
 2011                 start = 0;
 2012                 loc = scanc((u_int)len, (u_char *)&blksfree[0],
 2013                         (u_char *)fragtbl[fs->fs_frag],
 2014                         (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
 2015                 if (loc == 0) {
 2016                         printf("start = %d, len = %d, fs = %s\n",
 2017                             start, len, fs->fs_fsmnt);
 2018                         panic("ffs_alloccg: map corrupted");
 2019                         /* NOTREACHED */
 2020                 }
 2021         }
 2022         bno = (start + len - loc) * NBBY;
 2023         cgp->cg_frotor = bno;
 2024         /*
 2025          * found the byte in the map
 2026          * sift through the bits to find the selected frag
 2027          */
 2028         for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
 2029                 blk = blkmap(fs, blksfree, bno);
 2030                 blk <<= 1;
 2031                 field = around[allocsiz];
 2032                 subfield = inside[allocsiz];
 2033                 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
 2034                         if ((blk & field) == subfield)
 2035                                 return (bno + pos);
 2036                         field <<= 1;
 2037                         subfield <<= 1;
 2038                 }
 2039         }
 2040         printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
 2041         panic("ffs_alloccg: block not in map");
 2042         return (-1);
 2043 }
 2044 
 2045 /*
 2046  * Update the cluster map because of an allocation or free.
 2047  *
 2048  * Cnt == 1 means free; cnt == -1 means allocating.
 2049  */
 2050 void
 2051 ffs_clusteracct(fs, cgp, blkno, cnt)
 2052         struct fs *fs;
 2053         struct cg *cgp;
 2054         ufs1_daddr_t blkno;
 2055         int cnt;
 2056 {
 2057         int32_t *sump;
 2058         int32_t *lp;
 2059         u_char *freemapp, *mapp;
 2060         int i, start, end, forw, back, map, bit;
 2061 
 2062         if (fs->fs_contigsumsize <= 0)
 2063                 return;
 2064         freemapp = cg_clustersfree(cgp);
 2065         sump = cg_clustersum(cgp);
 2066         /*
 2067          * Allocate or clear the actual block.
 2068          */
 2069         if (cnt > 0)
 2070                 setbit(freemapp, blkno);
 2071         else
 2072                 clrbit(freemapp, blkno);
 2073         /*
 2074          * Find the size of the cluster going forward.
 2075          */
 2076         start = blkno + 1;
 2077         end = start + fs->fs_contigsumsize;
 2078         if (end >= cgp->cg_nclusterblks)
 2079                 end = cgp->cg_nclusterblks;
 2080         mapp = &freemapp[start / NBBY];
 2081         map = *mapp++;
 2082         bit = 1 << (start % NBBY);
 2083         for (i = start; i < end; i++) {
 2084                 if ((map & bit) == 0)
 2085                         break;
 2086                 if ((i & (NBBY - 1)) != (NBBY - 1)) {
 2087                         bit <<= 1;
 2088                 } else {
 2089                         map = *mapp++;
 2090                         bit = 1;
 2091                 }
 2092         }
 2093         forw = i - start;
 2094         /*
 2095          * Find the size of the cluster going backward.
 2096          */
 2097         start = blkno - 1;
 2098         end = start - fs->fs_contigsumsize;
 2099         if (end < 0)
 2100                 end = -1;
 2101         mapp = &freemapp[start / NBBY];
 2102         map = *mapp--;
 2103         bit = 1 << (start % NBBY);
 2104         for (i = start; i > end; i--) {
 2105                 if ((map & bit) == 0)
 2106                         break;
 2107                 if ((i & (NBBY - 1)) != 0) {
 2108                         bit >>= 1;
 2109                 } else {
 2110                         map = *mapp--;
 2111                         bit = 1 << (NBBY - 1);
 2112                 }
 2113         }
 2114         back = start - i;
 2115         /*
 2116          * Account for old cluster and the possibly new forward and
 2117          * back clusters.
 2118          */
 2119         i = back + forw + 1;
 2120         if (i > fs->fs_contigsumsize)
 2121                 i = fs->fs_contigsumsize;
 2122         sump[i] += cnt;
 2123         if (back > 0)
 2124                 sump[back] -= cnt;
 2125         if (forw > 0)
 2126                 sump[forw] -= cnt;
 2127         /*
 2128          * Update cluster summary information.
 2129          */
 2130         lp = &sump[fs->fs_contigsumsize];
 2131         for (i = fs->fs_contigsumsize; i > 0; i--)
 2132                 if (*lp-- > 0)
 2133                         break;
 2134         fs->fs_maxcluster[cgp->cg_cgx] = i;
 2135 }
 2136 
 2137 /*
 2138  * Fserr prints the name of a filesystem with an error diagnostic.
 2139  *
 2140  * The form of the error message is:
 2141  *      fs: error message
 2142  */
 2143 static void
 2144 ffs_fserr(fs, inum, cp)
 2145         struct fs *fs;
 2146         ino_t inum;
 2147         char *cp;
 2148 {
 2149         struct thread *td = curthread;  /* XXX */
 2150         struct proc *p = td->td_proc;
 2151 
 2152         log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n",
 2153             p->p_pid, p->p_comm, td->td_ucred->cr_uid, inum, fs->fs_fsmnt, cp);
 2154 }
 2155 
 2156 /*
 2157  * This function provides the capability for the fsck program to
 2158  * update an active filesystem. Six operations are provided:
 2159  *
 2160  * adjrefcnt(inode, amt) - adjusts the reference count on the
 2161  *      specified inode by the specified amount. Under normal
 2162  *      operation the count should always go down. Decrementing
 2163  *      the count to zero will cause the inode to be freed.
 2164  * adjblkcnt(inode, amt) - adjust the number of blocks used to
 2165  *      by the specifed amount.
 2166  * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
 2167  *      are marked as free. Inodes should never have to be marked
 2168  *      as in use.
 2169  * freefiles(inode, count) - file inodes [inode..inode + count - 1]
 2170  *      are marked as free. Inodes should never have to be marked
 2171  *      as in use.
 2172  * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
 2173  *      are marked as free. Blocks should never have to be marked
 2174  *      as in use.
 2175  * setflags(flags, set/clear) - the fs_flags field has the specified
 2176  *      flags set (second parameter +1) or cleared (second parameter -1).
 2177  */
 2178 
 2179 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
 2180 
 2181 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
 2182         0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
 2183 
 2184 SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
 2185         sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
 2186 
 2187 SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
 2188         sysctl_ffs_fsck, "Free Range of Directory Inodes");
 2189 
 2190 SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
 2191         sysctl_ffs_fsck, "Free Range of File Inodes");
 2192 
 2193 SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
 2194         sysctl_ffs_fsck, "Free Range of Blocks");
 2195 
 2196 SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
 2197         sysctl_ffs_fsck, "Change Filesystem Flags");
 2198 
 2199 #ifdef DEBUG
 2200 static int fsckcmds = 0;
 2201 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
 2202 #endif /* DEBUG */
 2203 
 2204 static int
 2205 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
 2206 {
 2207         struct fsck_cmd cmd;
 2208         struct ufsmount *ump;
 2209         struct vnode *vp;
 2210         struct inode *ip;
 2211         struct mount *mp;
 2212         struct fs *fs;
 2213         ufs2_daddr_t blkno;
 2214         long blkcnt, blksize;
 2215         struct file *fp;
 2216         int filetype, error;
 2217 
 2218         if (req->newlen > sizeof cmd)
 2219                 return (EBADRPC);
 2220         if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
 2221                 return (error);
 2222         if (cmd.version != FFS_CMD_VERSION)
 2223                 return (ERPCMISMATCH);
 2224         if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0)
 2225                 return (error);
 2226         vn_start_write(fp->f_data, &mp, V_WAIT);
 2227         if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
 2228                 vn_finished_write(mp);
 2229                 fdrop(fp, curthread);
 2230                 return (EINVAL);
 2231         }
 2232         if (mp->mnt_flag & MNT_RDONLY) {
 2233                 vn_finished_write(mp);
 2234                 fdrop(fp, curthread);
 2235                 return (EROFS);
 2236         }
 2237         ump = VFSTOUFS(mp);
 2238         fs = ump->um_fs;
 2239         filetype = IFREG;
 2240 
 2241         switch (oidp->oid_number) {
 2242 
 2243         case FFS_SET_FLAGS:
 2244 #ifdef DEBUG
 2245                 if (fsckcmds)
 2246                         printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
 2247                             cmd.size > 0 ? "set" : "clear");
 2248 #endif /* DEBUG */
 2249                 if (cmd.size > 0)
 2250                         fs->fs_flags |= (long)cmd.value;
 2251                 else
 2252                         fs->fs_flags &= ~(long)cmd.value;
 2253                 break;
 2254 
 2255         case FFS_ADJ_REFCNT:
 2256 #ifdef DEBUG
 2257                 if (fsckcmds) {
 2258                         printf("%s: adjust inode %jd count by %jd\n",
 2259                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
 2260                             (intmax_t)cmd.size);
 2261                 }
 2262 #endif /* DEBUG */
 2263                 if ((error = VFS_VGET(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
 2264                         break;
 2265                 ip = VTOI(vp);
 2266                 ip->i_nlink += cmd.size;
 2267                 DIP(ip, i_nlink) = ip->i_nlink;
 2268                 ip->i_effnlink += cmd.size;
 2269                 ip->i_flag |= IN_CHANGE;
 2270                 if (DOINGSOFTDEP(vp))
 2271                         softdep_change_linkcnt(ip);
 2272                 vput(vp);
 2273                 break;
 2274 
 2275         case FFS_ADJ_BLKCNT:
 2276 #ifdef DEBUG
 2277                 if (fsckcmds) {
 2278                         printf("%s: adjust inode %jd block count by %jd\n",
 2279                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
 2280                             (intmax_t)cmd.size);
 2281                 }
 2282 #endif /* DEBUG */
 2283                 if ((error = VFS_VGET(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
 2284                         break;
 2285                 ip = VTOI(vp);
 2286                 DIP(ip, i_blocks) += cmd.size;
 2287                 ip->i_flag |= IN_CHANGE;
 2288                 vput(vp);
 2289                 break;
 2290 
 2291         case FFS_DIR_FREE:
 2292                 filetype = IFDIR;
 2293                 /* fall through */
 2294 
 2295         case FFS_FILE_FREE:
 2296 #ifdef DEBUG
 2297                 if (fsckcmds) {
 2298                         if (cmd.size == 1)
 2299                                 printf("%s: free %s inode %d\n",
 2300                                     mp->mnt_stat.f_mntonname,
 2301                                     filetype == IFDIR ? "directory" : "file",
 2302                                     (ino_t)cmd.value);
 2303                         else
 2304                                 printf("%s: free %s inodes %d-%d\n",
 2305                                     mp->mnt_stat.f_mntonname,
 2306                                     filetype == IFDIR ? "directory" : "file",
 2307                                     (ino_t)cmd.value,
 2308                                     (ino_t)(cmd.value + cmd.size - 1));
 2309                 }
 2310 #endif /* DEBUG */
 2311                 while (cmd.size > 0) {
 2312                         if ((error = ffs_freefile(fs, ump->um_devvp, cmd.value,
 2313                             filetype)))
 2314                                 break;
 2315                         cmd.size -= 1;
 2316                         cmd.value += 1;
 2317                 }
 2318                 break;
 2319 
 2320         case FFS_BLK_FREE:
 2321 #ifdef DEBUG
 2322                 if (fsckcmds) {
 2323                         if (cmd.size == 1)
 2324                                 printf("%s: free block %jd\n",
 2325                                     mp->mnt_stat.f_mntonname,
 2326                                     (intmax_t)cmd.value);
 2327                         else
 2328                                 printf("%s: free blocks %jd-%jd\n",
 2329                                     mp->mnt_stat.f_mntonname, 
 2330                                     (intmax_t)cmd.value,
 2331                                     (intmax_t)cmd.value + cmd.size - 1);
 2332                 }
 2333 #endif /* DEBUG */
 2334                 blkno = cmd.value;
 2335                 blkcnt = cmd.size;
 2336                 blksize = fs->fs_frag - (blkno % fs->fs_frag);
 2337                 while (blkcnt > 0) {
 2338                         if (blksize > blkcnt)
 2339                                 blksize = blkcnt;
 2340                         ffs_blkfree(fs, ump->um_devvp, blkno,
 2341                             blksize * fs->fs_fsize, ROOTINO);
 2342                         blkno += blksize;
 2343                         blkcnt -= blksize;
 2344                         blksize = fs->fs_frag;
 2345                 }
 2346                 break;
 2347 
 2348         default:
 2349 #ifdef DEBUG
 2350                 if (fsckcmds) {
 2351                         printf("Invalid request %d from fsck\n",
 2352                             oidp->oid_number);
 2353                 }
 2354 #endif /* DEBUG */
 2355                 error = EINVAL;
 2356                 break;
 2357 
 2358         }
 2359         fdrop(fp, curthread);
 2360         vn_finished_write(mp);
 2361         return (error);
 2362 }

Cache object: e79e08ee872cffbc8c92e54289f5ad5f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.