The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/ufs/ffs/ffs_alloc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002 Networks Associates Technology, Inc.
    3  * All rights reserved.
    4  *
    5  * This software was developed for the FreeBSD Project by Marshall
    6  * Kirk McKusick and Network Associates Laboratories, the Security
    7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
    8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
    9  * research program
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  * Copyright (c) 1982, 1986, 1989, 1993
   33  *      The Regents of the University of California.  All rights reserved.
   34  *
   35  * Redistribution and use in source and binary forms, with or without
   36  * modification, are permitted provided that the following conditions
   37  * are met:
   38  * 1. Redistributions of source code must retain the above copyright
   39  *    notice, this list of conditions and the following disclaimer.
   40  * 2. Redistributions in binary form must reproduce the above copyright
   41  *    notice, this list of conditions and the following disclaimer in the
   42  *    documentation and/or other materials provided with the distribution.
   43  * 4. Neither the name of the University nor the names of its contributors
   44  *    may be used to endorse or promote products derived from this software
   45  *    without specific prior written permission.
   46  *
   47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   57  * SUCH DAMAGE.
   58  *
   59  *      @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95
   60  */
   61 
   62 #include <sys/cdefs.h>
   63 __FBSDID("$FreeBSD$");
   64 
   65 #include "opt_quota.h"
   66 
   67 #include <sys/param.h>
   68 #include <sys/systm.h>
   69 #include <sys/bio.h>
   70 #include <sys/buf.h>
   71 #include <sys/conf.h>
   72 #include <sys/file.h>
   73 #include <sys/filedesc.h>
   74 #include <sys/priv.h>
   75 #include <sys/proc.h>
   76 #include <sys/vnode.h>
   77 #include <sys/mount.h>
   78 #include <sys/kernel.h>
   79 #include <sys/sysctl.h>
   80 #include <sys/syslog.h>
   81 
   82 #include <ufs/ufs/extattr.h>
   83 #include <ufs/ufs/quota.h>
   84 #include <ufs/ufs/inode.h>
   85 #include <ufs/ufs/ufs_extern.h>
   86 #include <ufs/ufs/ufsmount.h>
   87 
   88 #include <ufs/ffs/fs.h>
   89 #include <ufs/ffs/ffs_extern.h>
   90 
   91 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, int cg, ufs2_daddr_t bpref,
   92                                   int size);
   93 
   94 static ufs2_daddr_t ffs_alloccg(struct inode *, int, ufs2_daddr_t, int);
   95 static ufs2_daddr_t
   96               ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t);
   97 #ifdef DIAGNOSTIC
   98 static int      ffs_checkblk(struct inode *, ufs2_daddr_t, long);
   99 #endif
  100 static ufs2_daddr_t ffs_clusteralloc(struct inode *, int, ufs2_daddr_t, int);
  101 static void     ffs_clusteracct(struct ufsmount *, struct fs *, struct cg *,
  102                     ufs1_daddr_t, int);
  103 static ino_t    ffs_dirpref(struct inode *);
  104 static ufs2_daddr_t ffs_fragextend(struct inode *, int, ufs2_daddr_t, int, int);
  105 static void     ffs_fserr(struct fs *, ino_t, char *);
  106 static ufs2_daddr_t     ffs_hashalloc
  107                 (struct inode *, int, ufs2_daddr_t, int, allocfcn_t *);
  108 static ufs2_daddr_t ffs_nodealloccg(struct inode *, int, ufs2_daddr_t, int);
  109 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
  110 static int      ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
  111 static int      ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
  112 
  113 /*
  114  * Allocate a block in the filesystem.
  115  *
  116  * The size of the requested block is given, which must be some
  117  * multiple of fs_fsize and <= fs_bsize.
  118  * A preference may be optionally specified. If a preference is given
  119  * the following hierarchy is used to allocate a block:
  120  *   1) allocate the requested block.
  121  *   2) allocate a rotationally optimal block in the same cylinder.
  122  *   3) allocate a block in the same cylinder group.
  123  *   4) quadradically rehash into other cylinder groups, until an
  124  *      available block is located.
  125  * If no block preference is given the following hierarchy is used
  126  * to allocate a block:
  127  *   1) allocate a block in the cylinder group that contains the
  128  *      inode for the file.
  129  *   2) quadradically rehash into other cylinder groups, until an
  130  *      available block is located.
  131  */
  132 int
  133 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
  134         struct inode *ip;
  135         ufs2_daddr_t lbn, bpref;
  136         int size;
  137         struct ucred *cred;
  138         ufs2_daddr_t *bnp;
  139 {
  140         struct fs *fs;
  141         struct ufsmount *ump;
  142         ufs2_daddr_t bno;
  143         int cg, reclaimed;
  144         static struct timeval lastfail;
  145         static int curfail;
  146         int64_t delta;
  147 #ifdef QUOTA
  148         int error;
  149 #endif
  150 
  151         *bnp = 0;
  152         fs = ip->i_fs;
  153         ump = ip->i_ump;
  154         mtx_assert(UFS_MTX(ump), MA_OWNED);
  155 #ifdef DIAGNOSTIC
  156         if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
  157                 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
  158                     devtoname(ip->i_dev), (long)fs->fs_bsize, size,
  159                     fs->fs_fsmnt);
  160                 panic("ffs_alloc: bad size");
  161         }
  162         if (cred == NOCRED)
  163                 panic("ffs_alloc: missing credential");
  164 #endif /* DIAGNOSTIC */
  165         reclaimed = 0;
  166 retry:
  167 #ifdef QUOTA
  168         UFS_UNLOCK(ump);
  169         error = chkdq(ip, btodb(size), cred, 0);
  170         if (error)
  171                 return (error);
  172         UFS_LOCK(ump);
  173 #endif
  174         if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
  175                 goto nospace;
  176         if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
  177             freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
  178                 goto nospace;
  179         if (bpref >= fs->fs_size)
  180                 bpref = 0;
  181         if (bpref == 0)
  182                 cg = ino_to_cg(fs, ip->i_number);
  183         else
  184                 cg = dtog(fs, bpref);
  185         bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
  186         if (bno > 0) {
  187                 delta = btodb(size);
  188                 if (ip->i_flag & IN_SPACECOUNTED) {
  189                         UFS_LOCK(ump);
  190                         fs->fs_pendingblocks += delta;
  191                         UFS_UNLOCK(ump);
  192                 }
  193                 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
  194                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  195                 *bnp = bno;
  196                 return (0);
  197         }
  198 nospace:
  199 #ifdef QUOTA
  200         UFS_UNLOCK(ump);
  201         /*
  202          * Restore user's disk quota because allocation failed.
  203          */
  204         (void) chkdq(ip, -btodb(size), cred, FORCE);
  205         UFS_LOCK(ump);
  206 #endif
  207         if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
  208                 reclaimed = 1;
  209                 softdep_request_cleanup(fs, ITOV(ip));
  210                 goto retry;
  211         }
  212         UFS_UNLOCK(ump);
  213         if (ppsratecheck(&lastfail, &curfail, 1)) {
  214                 ffs_fserr(fs, ip->i_number, "filesystem full");
  215                 uprintf("\n%s: write failed, filesystem is full\n",
  216                     fs->fs_fsmnt);
  217         }
  218         return (ENOSPC);
  219 }
  220 
  221 /*
  222  * Reallocate a fragment to a bigger size
  223  *
  224  * The number and size of the old block is given, and a preference
  225  * and new size is also specified. The allocator attempts to extend
  226  * the original block. Failing that, the regular block allocator is
  227  * invoked to get an appropriate block.
  228  */
  229 int
  230 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, cred, bpp)
  231         struct inode *ip;
  232         ufs2_daddr_t lbprev;
  233         ufs2_daddr_t bprev;
  234         ufs2_daddr_t bpref;
  235         int osize, nsize;
  236         struct ucred *cred;
  237         struct buf **bpp;
  238 {
  239         struct vnode *vp;
  240         struct fs *fs;
  241         struct buf *bp;
  242         struct ufsmount *ump;
  243         int cg, request, error, reclaimed;
  244         ufs2_daddr_t bno;
  245         static struct timeval lastfail;
  246         static int curfail;
  247         int64_t delta;
  248 
  249         *bpp = 0;
  250         vp = ITOV(ip);
  251         fs = ip->i_fs;
  252         bp = NULL;
  253         ump = ip->i_ump;
  254         mtx_assert(UFS_MTX(ump), MA_OWNED);
  255 #ifdef DIAGNOSTIC
  256         if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
  257                 panic("ffs_realloccg: allocation on suspended filesystem");
  258         if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
  259             (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
  260                 printf(
  261                 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
  262                     devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
  263                     nsize, fs->fs_fsmnt);
  264                 panic("ffs_realloccg: bad size");
  265         }
  266         if (cred == NOCRED)
  267                 panic("ffs_realloccg: missing credential");
  268 #endif /* DIAGNOSTIC */
  269         reclaimed = 0;
  270 retry:
  271         if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
  272             freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0) {
  273                 goto nospace;
  274         }
  275         if (bprev == 0) {
  276                 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
  277                     devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev,
  278                     fs->fs_fsmnt);
  279                 panic("ffs_realloccg: bad bprev");
  280         }
  281         UFS_UNLOCK(ump);
  282         /*
  283          * Allocate the extra space in the buffer.
  284          */
  285         error = bread(vp, lbprev, osize, NOCRED, &bp);
  286         if (error) {
  287                 brelse(bp);
  288                 return (error);
  289         }
  290 
  291         if (bp->b_blkno == bp->b_lblkno) {
  292                 if (lbprev >= NDADDR)
  293                         panic("ffs_realloccg: lbprev out of range");
  294                 bp->b_blkno = fsbtodb(fs, bprev);
  295         }
  296 
  297 #ifdef QUOTA
  298         error = chkdq(ip, btodb(nsize - osize), cred, 0);
  299         if (error) {
  300                 brelse(bp);
  301                 return (error);
  302         }
  303 #endif
  304         /*
  305          * Check for extension in the existing location.
  306          */
  307         cg = dtog(fs, bprev);
  308         UFS_LOCK(ump);
  309         bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
  310         if (bno) {
  311                 if (bp->b_blkno != fsbtodb(fs, bno))
  312                         panic("ffs_realloccg: bad blockno");
  313                 delta = btodb(nsize - osize);
  314                 if (ip->i_flag & IN_SPACECOUNTED) {
  315                         UFS_LOCK(ump);
  316                         fs->fs_pendingblocks += delta;
  317                         UFS_UNLOCK(ump);
  318                 }
  319                 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
  320                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  321                 allocbuf(bp, nsize);
  322                 bp->b_flags |= B_DONE;
  323                 if ((bp->b_flags & (B_MALLOC | B_VMIO)) != B_VMIO)
  324                         bzero((char *)bp->b_data + osize, nsize - osize);
  325                 else
  326                         vfs_bio_clrbuf(bp);
  327                 *bpp = bp;
  328                 return (0);
  329         }
  330         /*
  331          * Allocate a new disk location.
  332          */
  333         if (bpref >= fs->fs_size)
  334                 bpref = 0;
  335         switch ((int)fs->fs_optim) {
  336         case FS_OPTSPACE:
  337                 /*
  338                  * Allocate an exact sized fragment. Although this makes
  339                  * best use of space, we will waste time relocating it if
  340                  * the file continues to grow. If the fragmentation is
  341                  * less than half of the minimum free reserve, we choose
  342                  * to begin optimizing for time.
  343                  */
  344                 request = nsize;
  345                 if (fs->fs_minfree <= 5 ||
  346                     fs->fs_cstotal.cs_nffree >
  347                     (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
  348                         break;
  349                 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
  350                         fs->fs_fsmnt);
  351                 fs->fs_optim = FS_OPTTIME;
  352                 break;
  353         case FS_OPTTIME:
  354                 /*
  355                  * At this point we have discovered a file that is trying to
  356                  * grow a small fragment to a larger fragment. To save time,
  357                  * we allocate a full sized block, then free the unused portion.
  358                  * If the file continues to grow, the `ffs_fragextend' call
  359                  * above will be able to grow it in place without further
  360                  * copying. If aberrant programs cause disk fragmentation to
  361                  * grow within 2% of the free reserve, we choose to begin
  362                  * optimizing for space.
  363                  */
  364                 request = fs->fs_bsize;
  365                 if (fs->fs_cstotal.cs_nffree <
  366                     (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
  367                         break;
  368                 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
  369                         fs->fs_fsmnt);
  370                 fs->fs_optim = FS_OPTSPACE;
  371                 break;
  372         default:
  373                 printf("dev = %s, optim = %ld, fs = %s\n",
  374                     devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
  375                 panic("ffs_realloccg: bad optim");
  376                 /* NOTREACHED */
  377         }
  378         bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
  379         if (bno > 0) {
  380                 bp->b_blkno = fsbtodb(fs, bno);
  381                 if (!DOINGSOFTDEP(vp))
  382                         ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize,
  383                             ip->i_number);
  384                 if (nsize < request)
  385                         ffs_blkfree(ump, fs, ip->i_devvp,
  386                             bno + numfrags(fs, nsize),
  387                             (long)(request - nsize), ip->i_number);
  388                 delta = btodb(nsize - osize);
  389                 if (ip->i_flag & IN_SPACECOUNTED) {
  390                         UFS_LOCK(ump);
  391                         fs->fs_pendingblocks += delta;
  392                         UFS_UNLOCK(ump);
  393                 }
  394                 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
  395                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  396                 allocbuf(bp, nsize);
  397                 bp->b_flags |= B_DONE;
  398                 if ((bp->b_flags & (B_MALLOC | B_VMIO)) != B_VMIO)
  399                         bzero((char *)bp->b_data + osize, nsize - osize);
  400                 else
  401                         vfs_bio_clrbuf(bp);
  402                 *bpp = bp;
  403                 return (0);
  404         }
  405 #ifdef QUOTA
  406         UFS_UNLOCK(ump);
  407         /*
  408          * Restore user's disk quota because allocation failed.
  409          */
  410         (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
  411         UFS_LOCK(ump);
  412 #endif
  413 nospace:
  414         /*
  415          * no space available
  416          */
  417         if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
  418                 reclaimed = 1;
  419                 softdep_request_cleanup(fs, vp);
  420                 UFS_UNLOCK(ump);
  421                 if (bp)
  422                         brelse(bp);
  423                 UFS_LOCK(ump);
  424                 goto retry;
  425         }
  426         UFS_UNLOCK(ump);
  427         if (bp)
  428                 brelse(bp);
  429         if (ppsratecheck(&lastfail, &curfail, 1)) {
  430                 ffs_fserr(fs, ip->i_number, "filesystem full");
  431                 uprintf("\n%s: write failed, filesystem is full\n",
  432                     fs->fs_fsmnt);
  433         }
  434         return (ENOSPC);
  435 }
  436 
  437 /*
  438  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
  439  *
  440  * The vnode and an array of buffer pointers for a range of sequential
  441  * logical blocks to be made contiguous is given. The allocator attempts
  442  * to find a range of sequential blocks starting as close as possible
  443  * from the end of the allocation for the logical block immediately
  444  * preceding the current range. If successful, the physical block numbers
  445  * in the buffer pointers and in the inode are changed to reflect the new
  446  * allocation. If unsuccessful, the allocation is left unchanged. The
  447  * success in doing the reallocation is returned. Note that the error
  448  * return is not reflected back to the user. Rather the previous block
  449  * allocation will be used.
  450  */
  451 
  452 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
  453 
  454 static int doasyncfree = 1;
  455 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
  456 
  457 static int doreallocblks = 1;
  458 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
  459 
  460 #ifdef DEBUG
  461 static volatile int prtrealloc = 0;
  462 #endif
  463 
  464 int
  465 ffs_reallocblks(ap)
  466         struct vop_reallocblks_args /* {
  467                 struct vnode *a_vp;
  468                 struct cluster_save *a_buflist;
  469         } */ *ap;
  470 {
  471 
  472         if (doreallocblks == 0)
  473                 return (ENOSPC);
  474         if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1)
  475                 return (ffs_reallocblks_ufs1(ap));
  476         return (ffs_reallocblks_ufs2(ap));
  477 }
  478         
  479 static int
  480 ffs_reallocblks_ufs1(ap)
  481         struct vop_reallocblks_args /* {
  482                 struct vnode *a_vp;
  483                 struct cluster_save *a_buflist;
  484         } */ *ap;
  485 {
  486         struct fs *fs;
  487         struct inode *ip;
  488         struct vnode *vp;
  489         struct buf *sbp, *ebp;
  490         ufs1_daddr_t *bap, *sbap, *ebap = 0;
  491         struct cluster_save *buflist;
  492         struct ufsmount *ump;
  493         ufs_lbn_t start_lbn, end_lbn;
  494         ufs1_daddr_t soff, newblk, blkno;
  495         ufs2_daddr_t pref;
  496         struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
  497         int i, len, start_lvl, end_lvl, ssize;
  498 
  499         vp = ap->a_vp;
  500         ip = VTOI(vp);
  501         fs = ip->i_fs;
  502         ump = ip->i_ump;
  503         if (fs->fs_contigsumsize <= 0)
  504                 return (ENOSPC);
  505         buflist = ap->a_buflist;
  506         len = buflist->bs_nchildren;
  507         start_lbn = buflist->bs_children[0]->b_lblkno;
  508         end_lbn = start_lbn + len - 1;
  509 #ifdef DIAGNOSTIC
  510         for (i = 0; i < len; i++)
  511                 if (!ffs_checkblk(ip,
  512                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  513                         panic("ffs_reallocblks: unallocated block 1");
  514         for (i = 1; i < len; i++)
  515                 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
  516                         panic("ffs_reallocblks: non-logical cluster");
  517         blkno = buflist->bs_children[0]->b_blkno;
  518         ssize = fsbtodb(fs, fs->fs_frag);
  519         for (i = 1; i < len - 1; i++)
  520                 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
  521                         panic("ffs_reallocblks: non-physical cluster %d", i);
  522 #endif
  523         /*
  524          * If the latest allocation is in a new cylinder group, assume that
  525          * the filesystem has decided to move and do not force it back to
  526          * the previous cylinder group.
  527          */
  528         if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
  529             dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
  530                 return (ENOSPC);
  531         if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
  532             ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
  533                 return (ENOSPC);
  534         /*
  535          * Get the starting offset and block map for the first block.
  536          */
  537         if (start_lvl == 0) {
  538                 sbap = &ip->i_din1->di_db[0];
  539                 soff = start_lbn;
  540         } else {
  541                 idp = &start_ap[start_lvl - 1];
  542                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
  543                         brelse(sbp);
  544                         return (ENOSPC);
  545                 }
  546                 sbap = (ufs1_daddr_t *)sbp->b_data;
  547                 soff = idp->in_off;
  548         }
  549         /*
  550          * If the block range spans two block maps, get the second map.
  551          */
  552         if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
  553                 ssize = len;
  554         } else {
  555 #ifdef DIAGNOSTIC
  556                 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
  557                         panic("ffs_reallocblk: start == end");
  558 #endif
  559                 ssize = len - (idp->in_off + 1);
  560                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
  561                         goto fail;
  562                 ebap = (ufs1_daddr_t *)ebp->b_data;
  563         }
  564         /*
  565          * Find the preferred location for the cluster.
  566          */
  567         UFS_LOCK(ump);
  568         pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
  569         /*
  570          * Search the block map looking for an allocation of the desired size.
  571          */
  572         if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
  573             len, ffs_clusteralloc)) == 0) {
  574                 UFS_UNLOCK(ump);
  575                 goto fail;
  576         }
  577         /*
  578          * We have found a new contiguous block.
  579          *
  580          * First we have to replace the old block pointers with the new
  581          * block pointers in the inode and indirect blocks associated
  582          * with the file.
  583          */
  584 #ifdef DEBUG
  585         if (prtrealloc)
  586                 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
  587                     (intmax_t)start_lbn, (intmax_t)end_lbn);
  588 #endif
  589         blkno = newblk;
  590         for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
  591                 if (i == ssize) {
  592                         bap = ebap;
  593                         soff = -i;
  594                 }
  595 #ifdef DIAGNOSTIC
  596                 if (!ffs_checkblk(ip,
  597                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  598                         panic("ffs_reallocblks: unallocated block 2");
  599                 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
  600                         panic("ffs_reallocblks: alloc mismatch");
  601 #endif
  602 #ifdef DEBUG
  603                 if (prtrealloc)
  604                         printf(" %d,", *bap);
  605 #endif
  606                 if (DOINGSOFTDEP(vp)) {
  607                         if (sbap == &ip->i_din1->di_db[0] && i < ssize)
  608                                 softdep_setup_allocdirect(ip, start_lbn + i,
  609                                     blkno, *bap, fs->fs_bsize, fs->fs_bsize,
  610                                     buflist->bs_children[i]);
  611                         else
  612                                 softdep_setup_allocindir_page(ip, start_lbn + i,
  613                                     i < ssize ? sbp : ebp, soff + i, blkno,
  614                                     *bap, buflist->bs_children[i]);
  615                 }
  616                 *bap++ = blkno;
  617         }
  618         /*
  619          * Next we must write out the modified inode and indirect blocks.
  620          * For strict correctness, the writes should be synchronous since
  621          * the old block values may have been written to disk. In practise
  622          * they are almost never written, but if we are concerned about
  623          * strict correctness, the `doasyncfree' flag should be set to zero.
  624          *
  625          * The test on `doasyncfree' should be changed to test a flag
  626          * that shows whether the associated buffers and inodes have
  627          * been written. The flag should be set when the cluster is
  628          * started and cleared whenever the buffer or inode is flushed.
  629          * We can then check below to see if it is set, and do the
  630          * synchronous write only when it has been cleared.
  631          */
  632         if (sbap != &ip->i_din1->di_db[0]) {
  633                 if (doasyncfree)
  634                         bdwrite(sbp);
  635                 else
  636                         bwrite(sbp);
  637         } else {
  638                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  639                 if (!doasyncfree)
  640                         ffs_update(vp, 1);
  641         }
  642         if (ssize < len) {
  643                 if (doasyncfree)
  644                         bdwrite(ebp);
  645                 else
  646                         bwrite(ebp);
  647         }
  648         /*
  649          * Last, free the old blocks and assign the new blocks to the buffers.
  650          */
  651 #ifdef DEBUG
  652         if (prtrealloc)
  653                 printf("\n\tnew:");
  654 #endif
  655         for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
  656                 if (!DOINGSOFTDEP(vp))
  657                         ffs_blkfree(ump, fs, ip->i_devvp,
  658                             dbtofsb(fs, buflist->bs_children[i]->b_blkno),
  659                             fs->fs_bsize, ip->i_number);
  660                 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
  661 #ifdef DIAGNOSTIC
  662                 if (!ffs_checkblk(ip,
  663                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  664                         panic("ffs_reallocblks: unallocated block 3");
  665 #endif
  666 #ifdef DEBUG
  667                 if (prtrealloc)
  668                         printf(" %d,", blkno);
  669 #endif
  670         }
  671 #ifdef DEBUG
  672         if (prtrealloc) {
  673                 prtrealloc--;
  674                 printf("\n");
  675         }
  676 #endif
  677         return (0);
  678 
  679 fail:
  680         if (ssize < len)
  681                 brelse(ebp);
  682         if (sbap != &ip->i_din1->di_db[0])
  683                 brelse(sbp);
  684         return (ENOSPC);
  685 }
  686 
  687 static int
  688 ffs_reallocblks_ufs2(ap)
  689         struct vop_reallocblks_args /* {
  690                 struct vnode *a_vp;
  691                 struct cluster_save *a_buflist;
  692         } */ *ap;
  693 {
  694         struct fs *fs;
  695         struct inode *ip;
  696         struct vnode *vp;
  697         struct buf *sbp, *ebp;
  698         ufs2_daddr_t *bap, *sbap, *ebap = 0;
  699         struct cluster_save *buflist;
  700         struct ufsmount *ump;
  701         ufs_lbn_t start_lbn, end_lbn;
  702         ufs2_daddr_t soff, newblk, blkno, pref;
  703         struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
  704         int i, len, start_lvl, end_lvl, ssize;
  705 
  706         vp = ap->a_vp;
  707         ip = VTOI(vp);
  708         fs = ip->i_fs;
  709         ump = ip->i_ump;
  710         if (fs->fs_contigsumsize <= 0)
  711                 return (ENOSPC);
  712         buflist = ap->a_buflist;
  713         len = buflist->bs_nchildren;
  714         start_lbn = buflist->bs_children[0]->b_lblkno;
  715         end_lbn = start_lbn + len - 1;
  716 #ifdef DIAGNOSTIC
  717         for (i = 0; i < len; i++)
  718                 if (!ffs_checkblk(ip,
  719                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  720                         panic("ffs_reallocblks: unallocated block 1");
  721         for (i = 1; i < len; i++)
  722                 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
  723                         panic("ffs_reallocblks: non-logical cluster");
  724         blkno = buflist->bs_children[0]->b_blkno;
  725         ssize = fsbtodb(fs, fs->fs_frag);
  726         for (i = 1; i < len - 1; i++)
  727                 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
  728                         panic("ffs_reallocblks: non-physical cluster %d", i);
  729 #endif
  730         /*
  731          * If the latest allocation is in a new cylinder group, assume that
  732          * the filesystem has decided to move and do not force it back to
  733          * the previous cylinder group.
  734          */
  735         if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
  736             dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
  737                 return (ENOSPC);
  738         if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
  739             ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
  740                 return (ENOSPC);
  741         /*
  742          * Get the starting offset and block map for the first block.
  743          */
  744         if (start_lvl == 0) {
  745                 sbap = &ip->i_din2->di_db[0];
  746                 soff = start_lbn;
  747         } else {
  748                 idp = &start_ap[start_lvl - 1];
  749                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
  750                         brelse(sbp);
  751                         return (ENOSPC);
  752                 }
  753                 sbap = (ufs2_daddr_t *)sbp->b_data;
  754                 soff = idp->in_off;
  755         }
  756         /*
  757          * If the block range spans two block maps, get the second map.
  758          */
  759         if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
  760                 ssize = len;
  761         } else {
  762 #ifdef DIAGNOSTIC
  763                 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
  764                         panic("ffs_reallocblk: start == end");
  765 #endif
  766                 ssize = len - (idp->in_off + 1);
  767                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
  768                         goto fail;
  769                 ebap = (ufs2_daddr_t *)ebp->b_data;
  770         }
  771         /*
  772          * Find the preferred location for the cluster.
  773          */
  774         UFS_LOCK(ump);
  775         pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
  776         /*
  777          * Search the block map looking for an allocation of the desired size.
  778          */
  779         if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
  780             len, ffs_clusteralloc)) == 0) {
  781                 UFS_UNLOCK(ump);
  782                 goto fail;
  783         }
  784         /*
  785          * We have found a new contiguous block.
  786          *
  787          * First we have to replace the old block pointers with the new
  788          * block pointers in the inode and indirect blocks associated
  789          * with the file.
  790          */
  791 #ifdef DEBUG
  792         if (prtrealloc)
  793                 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
  794                     (intmax_t)start_lbn, (intmax_t)end_lbn);
  795 #endif
  796         blkno = newblk;
  797         for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
  798                 if (i == ssize) {
  799                         bap = ebap;
  800                         soff = -i;
  801                 }
  802 #ifdef DIAGNOSTIC
  803                 if (!ffs_checkblk(ip,
  804                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  805                         panic("ffs_reallocblks: unallocated block 2");
  806                 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
  807                         panic("ffs_reallocblks: alloc mismatch");
  808 #endif
  809 #ifdef DEBUG
  810                 if (prtrealloc)
  811                         printf(" %jd,", (intmax_t)*bap);
  812 #endif
  813                 if (DOINGSOFTDEP(vp)) {
  814                         if (sbap == &ip->i_din2->di_db[0] && i < ssize)
  815                                 softdep_setup_allocdirect(ip, start_lbn + i,
  816                                     blkno, *bap, fs->fs_bsize, fs->fs_bsize,
  817                                     buflist->bs_children[i]);
  818                         else
  819                                 softdep_setup_allocindir_page(ip, start_lbn + i,
  820                                     i < ssize ? sbp : ebp, soff + i, blkno,
  821                                     *bap, buflist->bs_children[i]);
  822                 }
  823                 *bap++ = blkno;
  824         }
  825         /*
  826          * Next we must write out the modified inode and indirect blocks.
  827          * For strict correctness, the writes should be synchronous since
  828          * the old block values may have been written to disk. In practise
  829          * they are almost never written, but if we are concerned about
  830          * strict correctness, the `doasyncfree' flag should be set to zero.
  831          *
  832          * The test on `doasyncfree' should be changed to test a flag
  833          * that shows whether the associated buffers and inodes have
  834          * been written. The flag should be set when the cluster is
  835          * started and cleared whenever the buffer or inode is flushed.
  836          * We can then check below to see if it is set, and do the
  837          * synchronous write only when it has been cleared.
  838          */
  839         if (sbap != &ip->i_din2->di_db[0]) {
  840                 if (doasyncfree)
  841                         bdwrite(sbp);
  842                 else
  843                         bwrite(sbp);
  844         } else {
  845                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  846                 if (!doasyncfree)
  847                         ffs_update(vp, 1);
  848         }
  849         if (ssize < len) {
  850                 if (doasyncfree)
  851                         bdwrite(ebp);
  852                 else
  853                         bwrite(ebp);
  854         }
  855         /*
  856          * Last, free the old blocks and assign the new blocks to the buffers.
  857          */
  858 #ifdef DEBUG
  859         if (prtrealloc)
  860                 printf("\n\tnew:");
  861 #endif
  862         for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
  863                 if (!DOINGSOFTDEP(vp))
  864                         ffs_blkfree(ump, fs, ip->i_devvp,
  865                             dbtofsb(fs, buflist->bs_children[i]->b_blkno),
  866                             fs->fs_bsize, ip->i_number);
  867                 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
  868 #ifdef DIAGNOSTIC
  869                 if (!ffs_checkblk(ip,
  870                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  871                         panic("ffs_reallocblks: unallocated block 3");
  872 #endif
  873 #ifdef DEBUG
  874                 if (prtrealloc)
  875                         printf(" %jd,", (intmax_t)blkno);
  876 #endif
  877         }
  878 #ifdef DEBUG
  879         if (prtrealloc) {
  880                 prtrealloc--;
  881                 printf("\n");
  882         }
  883 #endif
  884         return (0);
  885 
  886 fail:
  887         if (ssize < len)
  888                 brelse(ebp);
  889         if (sbap != &ip->i_din2->di_db[0])
  890                 brelse(sbp);
  891         return (ENOSPC);
  892 }
  893 
  894 /*
  895  * Allocate an inode in the filesystem.
  896  *
  897  * If allocating a directory, use ffs_dirpref to select the inode.
  898  * If allocating in a directory, the following hierarchy is followed:
  899  *   1) allocate the preferred inode.
  900  *   2) allocate an inode in the same cylinder group.
  901  *   3) quadradically rehash into other cylinder groups, until an
  902  *      available inode is located.
  903  * If no inode preference is given the following hierarchy is used
  904  * to allocate an inode:
  905  *   1) allocate an inode in cylinder group 0.
  906  *   2) quadradically rehash into other cylinder groups, until an
  907  *      available inode is located.
  908  */
  909 int
  910 ffs_valloc(pvp, mode, cred, vpp)
  911         struct vnode *pvp;
  912         int mode;
  913         struct ucred *cred;
  914         struct vnode **vpp;
  915 {
  916         struct inode *pip;
  917         struct fs *fs;
  918         struct inode *ip;
  919         struct timespec ts;
  920         struct ufsmount *ump;
  921         ino_t ino, ipref;
  922         int cg, error;
  923         static struct timeval lastfail;
  924         static int curfail;
  925 
  926         *vpp = NULL;
  927         pip = VTOI(pvp);
  928         fs = pip->i_fs;
  929         ump = pip->i_ump;
  930 
  931         UFS_LOCK(ump);
  932         if (fs->fs_cstotal.cs_nifree == 0)
  933                 goto noinodes;
  934 
  935         if ((mode & IFMT) == IFDIR)
  936                 ipref = ffs_dirpref(pip);
  937         else
  938                 ipref = pip->i_number;
  939         if (ipref >= fs->fs_ncg * fs->fs_ipg)
  940                 ipref = 0;
  941         cg = ino_to_cg(fs, ipref);
  942         /*
  943          * Track number of dirs created one after another
  944          * in a same cg without intervening by files.
  945          */
  946         if ((mode & IFMT) == IFDIR) {
  947                 if (fs->fs_contigdirs[cg] < 255)
  948                         fs->fs_contigdirs[cg]++;
  949         } else {
  950                 if (fs->fs_contigdirs[cg] > 0)
  951                         fs->fs_contigdirs[cg]--;
  952         }
  953         ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode,
  954                                         (allocfcn_t *)ffs_nodealloccg);
  955         if (ino == 0)
  956                 goto noinodes;
  957         error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
  958         if (error) {
  959                 ffs_vfree(pvp, ino, mode);
  960                 return (error);
  961         }
  962         ip = VTOI(*vpp);
  963         if (ip->i_mode) {
  964                 printf("mode = 0%o, inum = %lu, fs = %s\n",
  965                     ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
  966                 panic("ffs_valloc: dup alloc");
  967         }
  968         if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
  969                 printf("free inode %s/%lu had %ld blocks\n",
  970                     fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
  971                 DIP_SET(ip, i_blocks, 0);
  972         }
  973         ip->i_flags = 0;
  974         DIP_SET(ip, i_flags, 0);
  975         /*
  976          * Set up a new generation number for this inode.
  977          */
  978         if (ip->i_gen == 0 || ++ip->i_gen == 0)
  979                 ip->i_gen = arc4random() / 2 + 1;
  980         DIP_SET(ip, i_gen, ip->i_gen);
  981         if (fs->fs_magic == FS_UFS2_MAGIC) {
  982                 vfs_timestamp(&ts);
  983                 ip->i_din2->di_birthtime = ts.tv_sec;
  984                 ip->i_din2->di_birthnsec = ts.tv_nsec;
  985         }
  986         ip->i_flag = 0;
  987         vnode_destroy_vobject(*vpp);
  988         (*vpp)->v_type = VNON;
  989         if (fs->fs_magic == FS_UFS2_MAGIC)
  990                 (*vpp)->v_op = &ffs_vnodeops2;
  991         else
  992                 (*vpp)->v_op = &ffs_vnodeops1;
  993         return (0);
  994 noinodes:
  995         UFS_UNLOCK(ump);
  996         if (ppsratecheck(&lastfail, &curfail, 1)) {
  997                 ffs_fserr(fs, pip->i_number, "out of inodes");
  998                 uprintf("\n%s: create/symlink failed, no inodes free\n",
  999                     fs->fs_fsmnt);
 1000         }
 1001         return (ENOSPC);
 1002 }
 1003 
 1004 /*
 1005  * Find a cylinder group to place a directory.
 1006  *
 1007  * The policy implemented by this algorithm is to allocate a
 1008  * directory inode in the same cylinder group as its parent
 1009  * directory, but also to reserve space for its files inodes
 1010  * and data. Restrict the number of directories which may be
 1011  * allocated one after another in the same cylinder group
 1012  * without intervening allocation of files.
 1013  *
 1014  * If we allocate a first level directory then force allocation
 1015  * in another cylinder group.
 1016  */
 1017 static ino_t
 1018 ffs_dirpref(pip)
 1019         struct inode *pip;
 1020 {
 1021         struct fs *fs;
 1022         int cg, prefcg, dirsize, cgsize;
 1023         int avgifree, avgbfree, avgndir, curdirsize;
 1024         int minifree, minbfree, maxndir;
 1025         int mincg, minndir;
 1026         int maxcontigdirs;
 1027 
 1028         mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED);
 1029         fs = pip->i_fs;
 1030 
 1031         avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
 1032         avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
 1033         avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
 1034 
 1035         /*
 1036          * Force allocation in another cg if creating a first level dir.
 1037          */
 1038         ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
 1039         if (ITOV(pip)->v_vflag & VV_ROOT) {
 1040                 prefcg = arc4random() % fs->fs_ncg;
 1041                 mincg = prefcg;
 1042                 minndir = fs->fs_ipg;
 1043                 for (cg = prefcg; cg < fs->fs_ncg; cg++)
 1044                         if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
 1045                             fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
 1046                             fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1047                                 mincg = cg;
 1048                                 minndir = fs->fs_cs(fs, cg).cs_ndir;
 1049                         }
 1050                 for (cg = 0; cg < prefcg; cg++)
 1051                         if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
 1052                             fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
 1053                             fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1054                                 mincg = cg;
 1055                                 minndir = fs->fs_cs(fs, cg).cs_ndir;
 1056                         }
 1057                 return ((ino_t)(fs->fs_ipg * mincg));
 1058         }
 1059 
 1060         /*
 1061          * Count various limits which used for
 1062          * optimal allocation of a directory inode.
 1063          */
 1064         maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
 1065         minifree = avgifree - avgifree / 4;
 1066         if (minifree < 1)
 1067                 minifree = 1;
 1068         minbfree = avgbfree - avgbfree / 4;
 1069         if (minbfree < 1)
 1070                 minbfree = 1;
 1071         cgsize = fs->fs_fsize * fs->fs_fpg;
 1072         dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
 1073         curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
 1074         if (dirsize < curdirsize)
 1075                 dirsize = curdirsize;
 1076         if (dirsize <= 0)
 1077                 maxcontigdirs = 0;              /* dirsize overflowed */
 1078         else
 1079                 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
 1080         if (fs->fs_avgfpdir > 0)
 1081                 maxcontigdirs = min(maxcontigdirs,
 1082                                     fs->fs_ipg / fs->fs_avgfpdir);
 1083         if (maxcontigdirs == 0)
 1084                 maxcontigdirs = 1;
 1085 
 1086         /*
 1087          * Limit number of dirs in one cg and reserve space for 
 1088          * regular files, but only if we have no deficit in
 1089          * inodes or space.
 1090          */
 1091         prefcg = ino_to_cg(fs, pip->i_number);
 1092         for (cg = prefcg; cg < fs->fs_ncg; cg++)
 1093                 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
 1094                     fs->fs_cs(fs, cg).cs_nifree >= minifree &&
 1095                     fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
 1096                         if (fs->fs_contigdirs[cg] < maxcontigdirs)
 1097                                 return ((ino_t)(fs->fs_ipg * cg));
 1098                 }
 1099         for (cg = 0; cg < prefcg; cg++)
 1100                 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
 1101                     fs->fs_cs(fs, cg).cs_nifree >= minifree &&
 1102                     fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
 1103                         if (fs->fs_contigdirs[cg] < maxcontigdirs)
 1104                                 return ((ino_t)(fs->fs_ipg * cg));
 1105                 }
 1106         /*
 1107          * This is a backstop when we have deficit in space.
 1108          */
 1109         for (cg = prefcg; cg < fs->fs_ncg; cg++)
 1110                 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
 1111                         return ((ino_t)(fs->fs_ipg * cg));
 1112         for (cg = 0; cg < prefcg; cg++)
 1113                 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
 1114                         break;
 1115         return ((ino_t)(fs->fs_ipg * cg));
 1116 }
 1117 
 1118 /*
 1119  * Select the desired position for the next block in a file.  The file is
 1120  * logically divided into sections. The first section is composed of the
 1121  * direct blocks. Each additional section contains fs_maxbpg blocks.
 1122  *
 1123  * If no blocks have been allocated in the first section, the policy is to
 1124  * request a block in the same cylinder group as the inode that describes
 1125  * the file. If no blocks have been allocated in any other section, the
 1126  * policy is to place the section in a cylinder group with a greater than
 1127  * average number of free blocks.  An appropriate cylinder group is found
 1128  * by using a rotor that sweeps the cylinder groups. When a new group of
 1129  * blocks is needed, the sweep begins in the cylinder group following the
 1130  * cylinder group from which the previous allocation was made. The sweep
 1131  * continues until a cylinder group with greater than the average number
 1132  * of free blocks is found. If the allocation is for the first block in an
 1133  * indirect block, the information on the previous allocation is unavailable;
 1134  * here a best guess is made based upon the logical block number being
 1135  * allocated.
 1136  *
 1137  * If a section is already partially allocated, the policy is to
 1138  * contiguously allocate fs_maxcontig blocks. The end of one of these
 1139  * contiguous blocks and the beginning of the next is laid out
 1140  * contiguously if possible.
 1141  */
 1142 ufs2_daddr_t
 1143 ffs_blkpref_ufs1(ip, lbn, indx, bap)
 1144         struct inode *ip;
 1145         ufs_lbn_t lbn;
 1146         int indx;
 1147         ufs1_daddr_t *bap;
 1148 {
 1149         struct fs *fs;
 1150         int cg;
 1151         int avgbfree, startcg;
 1152 
 1153         mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
 1154         fs = ip->i_fs;
 1155         if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
 1156                 if (lbn < NDADDR + NINDIR(fs)) {
 1157                         cg = ino_to_cg(fs, ip->i_number);
 1158                         return (cgbase(fs, cg) + fs->fs_frag);
 1159                 }
 1160                 /*
 1161                  * Find a cylinder with greater than average number of
 1162                  * unused data blocks.
 1163                  */
 1164                 if (indx == 0 || bap[indx - 1] == 0)
 1165                         startcg =
 1166                             ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
 1167                 else
 1168                         startcg = dtog(fs, bap[indx - 1]) + 1;
 1169                 startcg %= fs->fs_ncg;
 1170                 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
 1171                 for (cg = startcg; cg < fs->fs_ncg; cg++)
 1172                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1173                                 fs->fs_cgrotor = cg;
 1174                                 return (cgbase(fs, cg) + fs->fs_frag);
 1175                         }
 1176                 for (cg = 0; cg <= startcg; cg++)
 1177                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1178                                 fs->fs_cgrotor = cg;
 1179                                 return (cgbase(fs, cg) + fs->fs_frag);
 1180                         }
 1181                 return (0);
 1182         }
 1183         /*
 1184          * We just always try to lay things out contiguously.
 1185          */
 1186         return (bap[indx - 1] + fs->fs_frag);
 1187 }
 1188 
 1189 /*
 1190  * Same as above, but for UFS2
 1191  */
 1192 ufs2_daddr_t
 1193 ffs_blkpref_ufs2(ip, lbn, indx, bap)
 1194         struct inode *ip;
 1195         ufs_lbn_t lbn;
 1196         int indx;
 1197         ufs2_daddr_t *bap;
 1198 {
 1199         struct fs *fs;
 1200         int cg;
 1201         int avgbfree, startcg;
 1202 
 1203         mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
 1204         fs = ip->i_fs;
 1205         if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
 1206                 if (lbn < NDADDR + NINDIR(fs)) {
 1207                         cg = ino_to_cg(fs, ip->i_number);
 1208                         return (cgbase(fs, cg) + fs->fs_frag);
 1209                 }
 1210                 /*
 1211                  * Find a cylinder with greater than average number of
 1212                  * unused data blocks.
 1213                  */
 1214                 if (indx == 0 || bap[indx - 1] == 0)
 1215                         startcg =
 1216                             ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
 1217                 else
 1218                         startcg = dtog(fs, bap[indx - 1]) + 1;
 1219                 startcg %= fs->fs_ncg;
 1220                 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
 1221                 for (cg = startcg; cg < fs->fs_ncg; cg++)
 1222                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1223                                 fs->fs_cgrotor = cg;
 1224                                 return (cgbase(fs, cg) + fs->fs_frag);
 1225                         }
 1226                 for (cg = 0; cg <= startcg; cg++)
 1227                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1228                                 fs->fs_cgrotor = cg;
 1229                                 return (cgbase(fs, cg) + fs->fs_frag);
 1230                         }
 1231                 return (0);
 1232         }
 1233         /*
 1234          * We just always try to lay things out contiguously.
 1235          */
 1236         return (bap[indx - 1] + fs->fs_frag);
 1237 }
 1238 
 1239 /*
 1240  * Implement the cylinder overflow algorithm.
 1241  *
 1242  * The policy implemented by this algorithm is:
 1243  *   1) allocate the block in its requested cylinder group.
 1244  *   2) quadradically rehash on the cylinder group number.
 1245  *   3) brute force search for a free block.
 1246  *
 1247  * Must be called with the UFS lock held.  Will release the lock on success
 1248  * and return with it held on failure.
 1249  */
 1250 /*VARARGS5*/
 1251 static ufs2_daddr_t
 1252 ffs_hashalloc(ip, cg, pref, size, allocator)
 1253         struct inode *ip;
 1254         int cg;
 1255         ufs2_daddr_t pref;
 1256         int size;       /* size for data blocks, mode for inodes */
 1257         allocfcn_t *allocator;
 1258 {
 1259         struct fs *fs;
 1260         ufs2_daddr_t result;
 1261         int i, icg = cg;
 1262 
 1263         mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
 1264 #ifdef DIAGNOSTIC
 1265         if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
 1266                 panic("ffs_hashalloc: allocation on suspended filesystem");
 1267 #endif
 1268         fs = ip->i_fs;
 1269         /*
 1270          * 1: preferred cylinder group
 1271          */
 1272         result = (*allocator)(ip, cg, pref, size);
 1273         if (result)
 1274                 return (result);
 1275         /*
 1276          * 2: quadratic rehash
 1277          */
 1278         for (i = 1; i < fs->fs_ncg; i *= 2) {
 1279                 cg += i;
 1280                 if (cg >= fs->fs_ncg)
 1281                         cg -= fs->fs_ncg;
 1282                 result = (*allocator)(ip, cg, 0, size);
 1283                 if (result)
 1284                         return (result);
 1285         }
 1286         /*
 1287          * 3: brute force search
 1288          * Note that we start at i == 2, since 0 was checked initially,
 1289          * and 1 is always checked in the quadratic rehash.
 1290          */
 1291         cg = (icg + 2) % fs->fs_ncg;
 1292         for (i = 2; i < fs->fs_ncg; i++) {
 1293                 result = (*allocator)(ip, cg, 0, size);
 1294                 if (result)
 1295                         return (result);
 1296                 cg++;
 1297                 if (cg == fs->fs_ncg)
 1298                         cg = 0;
 1299         }
 1300         return (0);
 1301 }
 1302 
 1303 /*
 1304  * Determine whether a fragment can be extended.
 1305  *
 1306  * Check to see if the necessary fragments are available, and
 1307  * if they are, allocate them.
 1308  */
 1309 static ufs2_daddr_t
 1310 ffs_fragextend(ip, cg, bprev, osize, nsize)
 1311         struct inode *ip;
 1312         int cg;
 1313         ufs2_daddr_t bprev;
 1314         int osize, nsize;
 1315 {
 1316         struct fs *fs;
 1317         struct cg *cgp;
 1318         struct buf *bp;
 1319         struct ufsmount *ump;
 1320         int nffree;
 1321         long bno;
 1322         int frags, bbase;
 1323         int i, error;
 1324         u_int8_t *blksfree;
 1325 
 1326         ump = ip->i_ump;
 1327         fs = ip->i_fs;
 1328         if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
 1329                 return (0);
 1330         frags = numfrags(fs, nsize);
 1331         bbase = fragnum(fs, bprev);
 1332         if (bbase > fragnum(fs, (bprev + frags - 1))) {
 1333                 /* cannot extend across a block boundary */
 1334                 return (0);
 1335         }
 1336         UFS_UNLOCK(ump);
 1337         error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
 1338                 (int)fs->fs_cgsize, NOCRED, &bp);
 1339         if (error)
 1340                 goto fail;
 1341         cgp = (struct cg *)bp->b_data;
 1342         if (!cg_chkmagic(cgp))
 1343                 goto fail;
 1344         bp->b_xflags |= BX_BKGRDWRITE;
 1345         cgp->cg_old_time = cgp->cg_time = time_second;
 1346         bno = dtogd(fs, bprev);
 1347         blksfree = cg_blksfree(cgp);
 1348         for (i = numfrags(fs, osize); i < frags; i++)
 1349                 if (isclr(blksfree, bno + i))
 1350                         goto fail;
 1351         /*
 1352          * the current fragment can be extended
 1353          * deduct the count on fragment being extended into
 1354          * increase the count on the remaining fragment (if any)
 1355          * allocate the extended piece
 1356          */
 1357         for (i = frags; i < fs->fs_frag - bbase; i++)
 1358                 if (isclr(blksfree, bno + i))
 1359                         break;
 1360         cgp->cg_frsum[i - numfrags(fs, osize)]--;
 1361         if (i != frags)
 1362                 cgp->cg_frsum[i - frags]++;
 1363         for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
 1364                 clrbit(blksfree, bno + i);
 1365                 cgp->cg_cs.cs_nffree--;
 1366                 nffree++;
 1367         }
 1368         UFS_LOCK(ump);
 1369         fs->fs_cstotal.cs_nffree -= nffree;
 1370         fs->fs_cs(fs, cg).cs_nffree -= nffree;
 1371         fs->fs_fmod = 1;
 1372         ACTIVECLEAR(fs, cg);
 1373         UFS_UNLOCK(ump);
 1374         if (DOINGSOFTDEP(ITOV(ip)))
 1375                 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev);
 1376         bdwrite(bp);
 1377         return (bprev);
 1378 
 1379 fail:
 1380         brelse(bp);
 1381         UFS_LOCK(ump);
 1382         return (0);
 1383 
 1384 }
 1385 
 1386 /*
 1387  * Determine whether a block can be allocated.
 1388  *
 1389  * Check to see if a block of the appropriate size is available,
 1390  * and if it is, allocate it.
 1391  */
 1392 static ufs2_daddr_t
 1393 ffs_alloccg(ip, cg, bpref, size)
 1394         struct inode *ip;
 1395         int cg;
 1396         ufs2_daddr_t bpref;
 1397         int size;
 1398 {
 1399         struct fs *fs;
 1400         struct cg *cgp;
 1401         struct buf *bp;
 1402         struct ufsmount *ump;
 1403         ufs1_daddr_t bno;
 1404         ufs2_daddr_t blkno;
 1405         int i, allocsiz, error, frags;
 1406         u_int8_t *blksfree;
 1407 
 1408         ump = ip->i_ump;
 1409         fs = ip->i_fs;
 1410         if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
 1411                 return (0);
 1412         UFS_UNLOCK(ump);
 1413         error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
 1414                 (int)fs->fs_cgsize, NOCRED, &bp);
 1415         if (error)
 1416                 goto fail;
 1417         cgp = (struct cg *)bp->b_data;
 1418         if (!cg_chkmagic(cgp) ||
 1419             (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
 1420                 goto fail;
 1421         bp->b_xflags |= BX_BKGRDWRITE;
 1422         cgp->cg_old_time = cgp->cg_time = time_second;
 1423         if (size == fs->fs_bsize) {
 1424                 UFS_LOCK(ump);
 1425                 blkno = ffs_alloccgblk(ip, bp, bpref);
 1426                 ACTIVECLEAR(fs, cg);
 1427                 UFS_UNLOCK(ump);
 1428                 bdwrite(bp);
 1429                 return (blkno);
 1430         }
 1431         /*
 1432          * check to see if any fragments are already available
 1433          * allocsiz is the size which will be allocated, hacking
 1434          * it down to a smaller size if necessary
 1435          */
 1436         blksfree = cg_blksfree(cgp);
 1437         frags = numfrags(fs, size);
 1438         for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
 1439                 if (cgp->cg_frsum[allocsiz] != 0)
 1440                         break;
 1441         if (allocsiz == fs->fs_frag) {
 1442                 /*
 1443                  * no fragments were available, so a block will be
 1444                  * allocated, and hacked up
 1445                  */
 1446                 if (cgp->cg_cs.cs_nbfree == 0)
 1447                         goto fail;
 1448                 UFS_LOCK(ump);
 1449                 blkno = ffs_alloccgblk(ip, bp, bpref);
 1450                 bno = dtogd(fs, blkno);
 1451                 for (i = frags; i < fs->fs_frag; i++)
 1452                         setbit(blksfree, bno + i);
 1453                 i = fs->fs_frag - frags;
 1454                 cgp->cg_cs.cs_nffree += i;
 1455                 fs->fs_cstotal.cs_nffree += i;
 1456                 fs->fs_cs(fs, cg).cs_nffree += i;
 1457                 fs->fs_fmod = 1;
 1458                 cgp->cg_frsum[i]++;
 1459                 ACTIVECLEAR(fs, cg);
 1460                 UFS_UNLOCK(ump);
 1461                 bdwrite(bp);
 1462                 return (blkno);
 1463         }
 1464         bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
 1465         if (bno < 0)
 1466                 goto fail;
 1467         for (i = 0; i < frags; i++)
 1468                 clrbit(blksfree, bno + i);
 1469         cgp->cg_cs.cs_nffree -= frags;
 1470         cgp->cg_frsum[allocsiz]--;
 1471         if (frags != allocsiz)
 1472                 cgp->cg_frsum[allocsiz - frags]++;
 1473         UFS_LOCK(ump);
 1474         fs->fs_cstotal.cs_nffree -= frags;
 1475         fs->fs_cs(fs, cg).cs_nffree -= frags;
 1476         fs->fs_fmod = 1;
 1477         blkno = cgbase(fs, cg) + bno;
 1478         ACTIVECLEAR(fs, cg);
 1479         UFS_UNLOCK(ump);
 1480         if (DOINGSOFTDEP(ITOV(ip)))
 1481                 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno);
 1482         bdwrite(bp);
 1483         return (blkno);
 1484 
 1485 fail:
 1486         brelse(bp);
 1487         UFS_LOCK(ump);
 1488         return (0);
 1489 }
 1490 
 1491 /*
 1492  * Allocate a block in a cylinder group.
 1493  *
 1494  * This algorithm implements the following policy:
 1495  *   1) allocate the requested block.
 1496  *   2) allocate a rotationally optimal block in the same cylinder.
 1497  *   3) allocate the next available block on the block rotor for the
 1498  *      specified cylinder group.
 1499  * Note that this routine only allocates fs_bsize blocks; these
 1500  * blocks may be fragmented by the routine that allocates them.
 1501  */
 1502 static ufs2_daddr_t
 1503 ffs_alloccgblk(ip, bp, bpref)
 1504         struct inode *ip;
 1505         struct buf *bp;
 1506         ufs2_daddr_t bpref;
 1507 {
 1508         struct fs *fs;
 1509         struct cg *cgp;
 1510         struct ufsmount *ump;
 1511         ufs1_daddr_t bno;
 1512         ufs2_daddr_t blkno;
 1513         u_int8_t *blksfree;
 1514 
 1515         fs = ip->i_fs;
 1516         ump = ip->i_ump;
 1517         mtx_assert(UFS_MTX(ump), MA_OWNED);
 1518         cgp = (struct cg *)bp->b_data;
 1519         blksfree = cg_blksfree(cgp);
 1520         if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
 1521                 bpref = cgp->cg_rotor;
 1522         } else {
 1523                 bpref = blknum(fs, bpref);
 1524                 bno = dtogd(fs, bpref);
 1525                 /*
 1526                  * if the requested block is available, use it
 1527                  */
 1528                 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
 1529                         goto gotit;
 1530         }
 1531         /*
 1532          * Take the next available block in this cylinder group.
 1533          */
 1534         bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
 1535         if (bno < 0)
 1536                 return (0);
 1537         cgp->cg_rotor = bno;
 1538 gotit:
 1539         blkno = fragstoblks(fs, bno);
 1540         ffs_clrblock(fs, blksfree, (long)blkno);
 1541         ffs_clusteracct(ump, fs, cgp, blkno, -1);
 1542         cgp->cg_cs.cs_nbfree--;
 1543         fs->fs_cstotal.cs_nbfree--;
 1544         fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
 1545         fs->fs_fmod = 1;
 1546         blkno = cgbase(fs, cgp->cg_cgx) + bno;
 1547         /* XXX Fixme. */
 1548         UFS_UNLOCK(ump);
 1549         if (DOINGSOFTDEP(ITOV(ip)))
 1550                 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno);
 1551         UFS_LOCK(ump);
 1552         return (blkno);
 1553 }
 1554 
 1555 /*
 1556  * Determine whether a cluster can be allocated.
 1557  *
 1558  * We do not currently check for optimal rotational layout if there
 1559  * are multiple choices in the same cylinder group. Instead we just
 1560  * take the first one that we find following bpref.
 1561  */
 1562 static ufs2_daddr_t
 1563 ffs_clusteralloc(ip, cg, bpref, len)
 1564         struct inode *ip;
 1565         int cg;
 1566         ufs2_daddr_t bpref;
 1567         int len;
 1568 {
 1569         struct fs *fs;
 1570         struct cg *cgp;
 1571         struct buf *bp;
 1572         struct ufsmount *ump;
 1573         int i, run, bit, map, got;
 1574         ufs2_daddr_t bno;
 1575         u_char *mapp;
 1576         int32_t *lp;
 1577         u_int8_t *blksfree;
 1578 
 1579         fs = ip->i_fs;
 1580         ump = ip->i_ump;
 1581         if (fs->fs_maxcluster[cg] < len)
 1582                 return (0);
 1583         UFS_UNLOCK(ump);
 1584         if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
 1585             NOCRED, &bp))
 1586                 goto fail_lock;
 1587         cgp = (struct cg *)bp->b_data;
 1588         if (!cg_chkmagic(cgp))
 1589                 goto fail_lock;
 1590         bp->b_xflags |= BX_BKGRDWRITE;
 1591         /*
 1592          * Check to see if a cluster of the needed size (or bigger) is
 1593          * available in this cylinder group.
 1594          */
 1595         lp = &cg_clustersum(cgp)[len];
 1596         for (i = len; i <= fs->fs_contigsumsize; i++)
 1597                 if (*lp++ > 0)
 1598                         break;
 1599         if (i > fs->fs_contigsumsize) {
 1600                 /*
 1601                  * This is the first time looking for a cluster in this
 1602                  * cylinder group. Update the cluster summary information
 1603                  * to reflect the true maximum sized cluster so that
 1604                  * future cluster allocation requests can avoid reading
 1605                  * the cylinder group map only to find no clusters.
 1606                  */
 1607                 lp = &cg_clustersum(cgp)[len - 1];
 1608                 for (i = len - 1; i > 0; i--)
 1609                         if (*lp-- > 0)
 1610                                 break;
 1611                 UFS_LOCK(ump);
 1612                 fs->fs_maxcluster[cg] = i;
 1613                 goto fail;
 1614         }
 1615         /*
 1616          * Search the cluster map to find a big enough cluster.
 1617          * We take the first one that we find, even if it is larger
 1618          * than we need as we prefer to get one close to the previous
 1619          * block allocation. We do not search before the current
 1620          * preference point as we do not want to allocate a block
 1621          * that is allocated before the previous one (as we will
 1622          * then have to wait for another pass of the elevator
 1623          * algorithm before it will be read). We prefer to fail and
 1624          * be recalled to try an allocation in the next cylinder group.
 1625          */
 1626         if (dtog(fs, bpref) != cg)
 1627                 bpref = 0;
 1628         else
 1629                 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
 1630         mapp = &cg_clustersfree(cgp)[bpref / NBBY];
 1631         map = *mapp++;
 1632         bit = 1 << (bpref % NBBY);
 1633         for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
 1634                 if ((map & bit) == 0) {
 1635                         run = 0;
 1636                 } else {
 1637                         run++;
 1638                         if (run == len)
 1639                                 break;
 1640                 }
 1641                 if ((got & (NBBY - 1)) != (NBBY - 1)) {
 1642                         bit <<= 1;
 1643                 } else {
 1644                         map = *mapp++;
 1645                         bit = 1;
 1646                 }
 1647         }
 1648         if (got >= cgp->cg_nclusterblks)
 1649                 goto fail_lock;
 1650         /*
 1651          * Allocate the cluster that we have found.
 1652          */
 1653         blksfree = cg_blksfree(cgp);
 1654         for (i = 1; i <= len; i++)
 1655                 if (!ffs_isblock(fs, blksfree, got - run + i))
 1656                         panic("ffs_clusteralloc: map mismatch");
 1657         bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
 1658         if (dtog(fs, bno) != cg)
 1659                 panic("ffs_clusteralloc: allocated out of group");
 1660         len = blkstofrags(fs, len);
 1661         UFS_LOCK(ump);
 1662         for (i = 0; i < len; i += fs->fs_frag)
 1663                 if (ffs_alloccgblk(ip, bp, bno + i) != bno + i)
 1664                         panic("ffs_clusteralloc: lost block");
 1665         ACTIVECLEAR(fs, cg);
 1666         UFS_UNLOCK(ump);
 1667         bdwrite(bp);
 1668         return (bno);
 1669 
 1670 fail_lock:
 1671         UFS_LOCK(ump);
 1672 fail:
 1673         brelse(bp);
 1674         return (0);
 1675 }
 1676 
 1677 /*
 1678  * Determine whether an inode can be allocated.
 1679  *
 1680  * Check to see if an inode is available, and if it is,
 1681  * allocate it using the following policy:
 1682  *   1) allocate the requested inode.
 1683  *   2) allocate the next available inode after the requested
 1684  *      inode in the specified cylinder group.
 1685  */
 1686 static ufs2_daddr_t
 1687 ffs_nodealloccg(ip, cg, ipref, mode)
 1688         struct inode *ip;
 1689         int cg;
 1690         ufs2_daddr_t ipref;
 1691         int mode;
 1692 {
 1693         struct fs *fs;
 1694         struct cg *cgp;
 1695         struct buf *bp, *ibp;
 1696         struct ufsmount *ump;
 1697         u_int8_t *inosused;
 1698         struct ufs2_dinode *dp2;
 1699         int error, start, len, loc, map, i;
 1700 
 1701         fs = ip->i_fs;
 1702         ump = ip->i_ump;
 1703         if (fs->fs_cs(fs, cg).cs_nifree == 0)
 1704                 return (0);
 1705         UFS_UNLOCK(ump);
 1706         error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
 1707                 (int)fs->fs_cgsize, NOCRED, &bp);
 1708         if (error) {
 1709                 brelse(bp);
 1710                 UFS_LOCK(ump);
 1711                 return (0);
 1712         }
 1713         cgp = (struct cg *)bp->b_data;
 1714         if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
 1715                 brelse(bp);
 1716                 UFS_LOCK(ump);
 1717                 return (0);
 1718         }
 1719         bp->b_xflags |= BX_BKGRDWRITE;
 1720         cgp->cg_old_time = cgp->cg_time = time_second;
 1721         inosused = cg_inosused(cgp);
 1722         if (ipref) {
 1723                 ipref %= fs->fs_ipg;
 1724                 if (isclr(inosused, ipref))
 1725                         goto gotit;
 1726         }
 1727         start = cgp->cg_irotor / NBBY;
 1728         len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
 1729         loc = skpc(0xff, len, &inosused[start]);
 1730         if (loc == 0) {
 1731                 len = start + 1;
 1732                 start = 0;
 1733                 loc = skpc(0xff, len, &inosused[0]);
 1734                 if (loc == 0) {
 1735                         printf("cg = %d, irotor = %ld, fs = %s\n",
 1736                             cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
 1737                         panic("ffs_nodealloccg: map corrupted");
 1738                         /* NOTREACHED */
 1739                 }
 1740         }
 1741         i = start + len - loc;
 1742         map = inosused[i];
 1743         ipref = i * NBBY;
 1744         for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
 1745                 if ((map & i) == 0) {
 1746                         cgp->cg_irotor = ipref;
 1747                         goto gotit;
 1748                 }
 1749         }
 1750         printf("fs = %s\n", fs->fs_fsmnt);
 1751         panic("ffs_nodealloccg: block not in map");
 1752         /* NOTREACHED */
 1753 gotit:
 1754         /*
 1755          * Check to see if we need to initialize more inodes.
 1756          */
 1757         ibp = NULL;
 1758         if (fs->fs_magic == FS_UFS2_MAGIC &&
 1759             ipref + INOPB(fs) > cgp->cg_initediblk &&
 1760             cgp->cg_initediblk < cgp->cg_niblk) {
 1761                 ibp = getblk(ip->i_devvp, fsbtodb(fs,
 1762                     ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)),
 1763                     (int)fs->fs_bsize, 0, 0, 0);
 1764                 bzero(ibp->b_data, (int)fs->fs_bsize);
 1765                 dp2 = (struct ufs2_dinode *)(ibp->b_data);
 1766                 for (i = 0; i < INOPB(fs); i++) {
 1767                         dp2->di_gen = arc4random() / 2 + 1;
 1768                         dp2++;
 1769                 }
 1770                 cgp->cg_initediblk += INOPB(fs);
 1771         }
 1772         UFS_LOCK(ump);
 1773         ACTIVECLEAR(fs, cg);
 1774         setbit(inosused, ipref);
 1775         cgp->cg_cs.cs_nifree--;
 1776         fs->fs_cstotal.cs_nifree--;
 1777         fs->fs_cs(fs, cg).cs_nifree--;
 1778         fs->fs_fmod = 1;
 1779         if ((mode & IFMT) == IFDIR) {
 1780                 cgp->cg_cs.cs_ndir++;
 1781                 fs->fs_cstotal.cs_ndir++;
 1782                 fs->fs_cs(fs, cg).cs_ndir++;
 1783         }
 1784         UFS_UNLOCK(ump);
 1785         if (DOINGSOFTDEP(ITOV(ip)))
 1786                 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
 1787         bdwrite(bp);
 1788         if (ibp != NULL)
 1789                 bawrite(ibp);
 1790         return (cg * fs->fs_ipg + ipref);
 1791 }
 1792 
 1793 /*
 1794  * check if a block is free
 1795  */
 1796 static int
 1797 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
 1798 {
 1799 
 1800         switch ((int)fs->fs_frag) {
 1801         case 8:
 1802                 return (cp[h] == 0);
 1803         case 4:
 1804                 return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0);
 1805         case 2:
 1806                 return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0);
 1807         case 1:
 1808                 return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0);
 1809         default:
 1810                 panic("ffs_isfreeblock");
 1811         }
 1812         return (0);
 1813 }
 1814 
 1815 /*
 1816  * Free a block or fragment.
 1817  *
 1818  * The specified block or fragment is placed back in the
 1819  * free map. If a fragment is deallocated, a possible
 1820  * block reassembly is checked.
 1821  */
 1822 void
 1823 ffs_blkfree(ump, fs, devvp, bno, size, inum)
 1824         struct ufsmount *ump;
 1825         struct fs *fs;
 1826         struct vnode *devvp;
 1827         ufs2_daddr_t bno;
 1828         long size;
 1829         ino_t inum;
 1830 {
 1831         struct cg *cgp;
 1832         struct buf *bp;
 1833         ufs1_daddr_t fragno, cgbno;
 1834         ufs2_daddr_t cgblkno;
 1835         int i, cg, blk, frags, bbase;
 1836         u_int8_t *blksfree;
 1837         struct cdev *dev;
 1838 
 1839         cg = dtog(fs, bno);
 1840         if (devvp->v_type != VCHR) {
 1841                 /* devvp is a snapshot */
 1842                 dev = VTOI(devvp)->i_devvp->v_rdev;
 1843                 cgblkno = fragstoblks(fs, cgtod(fs, cg));
 1844         } else {
 1845                 /* devvp is a normal disk device */
 1846                 dev = devvp->v_rdev;
 1847                 cgblkno = fsbtodb(fs, cgtod(fs, cg));
 1848                 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree");
 1849                 if ((devvp->v_vflag & VV_COPYONWRITE) &&
 1850                     ffs_snapblkfree(fs, devvp, bno, size, inum))
 1851                         return;
 1852         }
 1853 #ifdef DIAGNOSTIC
 1854         if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
 1855             fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
 1856                 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
 1857                     devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
 1858                     size, fs->fs_fsmnt);
 1859                 panic("ffs_blkfree: bad size");
 1860         }
 1861 #endif
 1862         if ((u_int)bno >= fs->fs_size) {
 1863                 printf("bad block %jd, ino %lu\n", (intmax_t)bno,
 1864                     (u_long)inum);
 1865                 ffs_fserr(fs, inum, "bad block");
 1866                 return;
 1867         }
 1868         if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) {
 1869                 brelse(bp);
 1870                 return;
 1871         }
 1872         cgp = (struct cg *)bp->b_data;
 1873         if (!cg_chkmagic(cgp)) {
 1874                 brelse(bp);
 1875                 return;
 1876         }
 1877         bp->b_xflags |= BX_BKGRDWRITE;
 1878         cgp->cg_old_time = cgp->cg_time = time_second;
 1879         cgbno = dtogd(fs, bno);
 1880         blksfree = cg_blksfree(cgp);
 1881         UFS_LOCK(ump);
 1882         if (size == fs->fs_bsize) {
 1883                 fragno = fragstoblks(fs, cgbno);
 1884                 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
 1885                         if (devvp->v_type != VCHR) {
 1886                                 UFS_UNLOCK(ump);
 1887                                 /* devvp is a snapshot */
 1888                                 brelse(bp);
 1889                                 return;
 1890                         }
 1891                         printf("dev = %s, block = %jd, fs = %s\n",
 1892                             devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
 1893                         panic("ffs_blkfree: freeing free block");
 1894                 }
 1895                 ffs_setblock(fs, blksfree, fragno);
 1896                 ffs_clusteracct(ump, fs, cgp, fragno, 1);
 1897                 cgp->cg_cs.cs_nbfree++;
 1898                 fs->fs_cstotal.cs_nbfree++;
 1899                 fs->fs_cs(fs, cg).cs_nbfree++;
 1900         } else {
 1901                 bbase = cgbno - fragnum(fs, cgbno);
 1902                 /*
 1903                  * decrement the counts associated with the old frags
 1904                  */
 1905                 blk = blkmap(fs, blksfree, bbase);
 1906                 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
 1907                 /*
 1908                  * deallocate the fragment
 1909                  */
 1910                 frags = numfrags(fs, size);
 1911                 for (i = 0; i < frags; i++) {
 1912                         if (isset(blksfree, cgbno + i)) {
 1913                                 printf("dev = %s, block = %jd, fs = %s\n",
 1914                                     devtoname(dev), (intmax_t)(bno + i),
 1915                                     fs->fs_fsmnt);
 1916                                 panic("ffs_blkfree: freeing free frag");
 1917                         }
 1918                         setbit(blksfree, cgbno + i);
 1919                 }
 1920                 cgp->cg_cs.cs_nffree += i;
 1921                 fs->fs_cstotal.cs_nffree += i;
 1922                 fs->fs_cs(fs, cg).cs_nffree += i;
 1923                 /*
 1924                  * add back in counts associated with the new frags
 1925                  */
 1926                 blk = blkmap(fs, blksfree, bbase);
 1927                 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
 1928                 /*
 1929                  * if a complete block has been reassembled, account for it
 1930                  */
 1931                 fragno = fragstoblks(fs, bbase);
 1932                 if (ffs_isblock(fs, blksfree, fragno)) {
 1933                         cgp->cg_cs.cs_nffree -= fs->fs_frag;
 1934                         fs->fs_cstotal.cs_nffree -= fs->fs_frag;
 1935                         fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
 1936                         ffs_clusteracct(ump, fs, cgp, fragno, 1);
 1937                         cgp->cg_cs.cs_nbfree++;
 1938                         fs->fs_cstotal.cs_nbfree++;
 1939                         fs->fs_cs(fs, cg).cs_nbfree++;
 1940                 }
 1941         }
 1942         fs->fs_fmod = 1;
 1943         ACTIVECLEAR(fs, cg);
 1944         UFS_UNLOCK(ump);
 1945         bdwrite(bp);
 1946 }
 1947 
 1948 #ifdef DIAGNOSTIC
 1949 /*
 1950  * Verify allocation of a block or fragment. Returns true if block or
 1951  * fragment is allocated, false if it is free.
 1952  */
 1953 static int
 1954 ffs_checkblk(ip, bno, size)
 1955         struct inode *ip;
 1956         ufs2_daddr_t bno;
 1957         long size;
 1958 {
 1959         struct fs *fs;
 1960         struct cg *cgp;
 1961         struct buf *bp;
 1962         ufs1_daddr_t cgbno;
 1963         int i, error, frags, free;
 1964         u_int8_t *blksfree;
 1965 
 1966         fs = ip->i_fs;
 1967         if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
 1968                 printf("bsize = %ld, size = %ld, fs = %s\n",
 1969                     (long)fs->fs_bsize, size, fs->fs_fsmnt);
 1970                 panic("ffs_checkblk: bad size");
 1971         }
 1972         if ((u_int)bno >= fs->fs_size)
 1973                 panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
 1974         error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
 1975                 (int)fs->fs_cgsize, NOCRED, &bp);
 1976         if (error)
 1977                 panic("ffs_checkblk: cg bread failed");
 1978         cgp = (struct cg *)bp->b_data;
 1979         if (!cg_chkmagic(cgp))
 1980                 panic("ffs_checkblk: cg magic mismatch");
 1981         bp->b_xflags |= BX_BKGRDWRITE;
 1982         blksfree = cg_blksfree(cgp);
 1983         cgbno = dtogd(fs, bno);
 1984         if (size == fs->fs_bsize) {
 1985                 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
 1986         } else {
 1987                 frags = numfrags(fs, size);
 1988                 for (free = 0, i = 0; i < frags; i++)
 1989                         if (isset(blksfree, cgbno + i))
 1990                                 free++;
 1991                 if (free != 0 && free != frags)
 1992                         panic("ffs_checkblk: partially free fragment");
 1993         }
 1994         brelse(bp);
 1995         return (!free);
 1996 }
 1997 #endif /* DIAGNOSTIC */
 1998 
 1999 /*
 2000  * Free an inode.
 2001  */
 2002 int
 2003 ffs_vfree(pvp, ino, mode)
 2004         struct vnode *pvp;
 2005         ino_t ino;
 2006         int mode;
 2007 {
 2008         struct inode *ip;
 2009 
 2010         if (DOINGSOFTDEP(pvp)) {
 2011                 softdep_freefile(pvp, ino, mode);
 2012                 return (0);
 2013         }
 2014         ip = VTOI(pvp);
 2015         return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode));
 2016 }
 2017 
 2018 /*
 2019  * Do the actual free operation.
 2020  * The specified inode is placed back in the free map.
 2021  */
 2022 int
 2023 ffs_freefile(ump, fs, devvp, ino, mode)
 2024         struct ufsmount *ump;
 2025         struct fs *fs;
 2026         struct vnode *devvp;
 2027         ino_t ino;
 2028         int mode;
 2029 {
 2030         struct cg *cgp;
 2031         struct buf *bp;
 2032         ufs2_daddr_t cgbno;
 2033         int error, cg;
 2034         u_int8_t *inosused;
 2035         struct cdev *dev;
 2036 
 2037         cg = ino_to_cg(fs, ino);
 2038         if (devvp->v_type != VCHR) {
 2039                 /* devvp is a snapshot */
 2040                 dev = VTOI(devvp)->i_devvp->v_rdev;
 2041                 cgbno = fragstoblks(fs, cgtod(fs, cg));
 2042         } else {
 2043                 /* devvp is a normal disk device */
 2044                 dev = devvp->v_rdev;
 2045                 cgbno = fsbtodb(fs, cgtod(fs, cg));
 2046         }
 2047         if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
 2048                 panic("ffs_freefile: range: dev = %s, ino = %lu, fs = %s",
 2049                     devtoname(dev), (u_long)ino, fs->fs_fsmnt);
 2050         if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
 2051                 brelse(bp);
 2052                 return (error);
 2053         }
 2054         cgp = (struct cg *)bp->b_data;
 2055         if (!cg_chkmagic(cgp)) {
 2056                 brelse(bp);
 2057                 return (0);
 2058         }
 2059         bp->b_xflags |= BX_BKGRDWRITE;
 2060         cgp->cg_old_time = cgp->cg_time = time_second;
 2061         inosused = cg_inosused(cgp);
 2062         ino %= fs->fs_ipg;
 2063         if (isclr(inosused, ino)) {
 2064                 printf("dev = %s, ino = %lu, fs = %s\n", devtoname(dev),
 2065                     (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt);
 2066                 if (fs->fs_ronly == 0)
 2067                         panic("ffs_freefile: freeing free inode");
 2068         }
 2069         clrbit(inosused, ino);
 2070         if (ino < cgp->cg_irotor)
 2071                 cgp->cg_irotor = ino;
 2072         cgp->cg_cs.cs_nifree++;
 2073         UFS_LOCK(ump);
 2074         fs->fs_cstotal.cs_nifree++;
 2075         fs->fs_cs(fs, cg).cs_nifree++;
 2076         if ((mode & IFMT) == IFDIR) {
 2077                 cgp->cg_cs.cs_ndir--;
 2078                 fs->fs_cstotal.cs_ndir--;
 2079                 fs->fs_cs(fs, cg).cs_ndir--;
 2080         }
 2081         fs->fs_fmod = 1;
 2082         ACTIVECLEAR(fs, cg);
 2083         UFS_UNLOCK(ump);
 2084         bdwrite(bp);
 2085         return (0);
 2086 }
 2087 
 2088 /*
 2089  * Check to see if a file is free.
 2090  */
 2091 int
 2092 ffs_checkfreefile(fs, devvp, ino)
 2093         struct fs *fs;
 2094         struct vnode *devvp;
 2095         ino_t ino;
 2096 {
 2097         struct cg *cgp;
 2098         struct buf *bp;
 2099         ufs2_daddr_t cgbno;
 2100         int ret, cg;
 2101         u_int8_t *inosused;
 2102 
 2103         cg = ino_to_cg(fs, ino);
 2104         if (devvp->v_type != VCHR) {
 2105                 /* devvp is a snapshot */
 2106                 cgbno = fragstoblks(fs, cgtod(fs, cg));
 2107         } else {
 2108                 /* devvp is a normal disk device */
 2109                 cgbno = fsbtodb(fs, cgtod(fs, cg));
 2110         }
 2111         if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
 2112                 return (1);
 2113         if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
 2114                 brelse(bp);
 2115                 return (1);
 2116         }
 2117         cgp = (struct cg *)bp->b_data;
 2118         if (!cg_chkmagic(cgp)) {
 2119                 brelse(bp);
 2120                 return (1);
 2121         }
 2122         inosused = cg_inosused(cgp);
 2123         ino %= fs->fs_ipg;
 2124         ret = isclr(inosused, ino);
 2125         brelse(bp);
 2126         return (ret);
 2127 }
 2128 
 2129 /*
 2130  * Find a block of the specified size in the specified cylinder group.
 2131  *
 2132  * It is a panic if a request is made to find a block if none are
 2133  * available.
 2134  */
 2135 static ufs1_daddr_t
 2136 ffs_mapsearch(fs, cgp, bpref, allocsiz)
 2137         struct fs *fs;
 2138         struct cg *cgp;
 2139         ufs2_daddr_t bpref;
 2140         int allocsiz;
 2141 {
 2142         ufs1_daddr_t bno;
 2143         int start, len, loc, i;
 2144         int blk, field, subfield, pos;
 2145         u_int8_t *blksfree;
 2146 
 2147         /*
 2148          * find the fragment by searching through the free block
 2149          * map for an appropriate bit pattern
 2150          */
 2151         if (bpref)
 2152                 start = dtogd(fs, bpref) / NBBY;
 2153         else
 2154                 start = cgp->cg_frotor / NBBY;
 2155         blksfree = cg_blksfree(cgp);
 2156         len = howmany(fs->fs_fpg, NBBY) - start;
 2157         loc = scanc((u_int)len, (u_char *)&blksfree[start],
 2158                 fragtbl[fs->fs_frag],
 2159                 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
 2160         if (loc == 0) {
 2161                 len = start + 1;
 2162                 start = 0;
 2163                 loc = scanc((u_int)len, (u_char *)&blksfree[0],
 2164                         fragtbl[fs->fs_frag],
 2165                         (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
 2166                 if (loc == 0) {
 2167                         printf("start = %d, len = %d, fs = %s\n",
 2168                             start, len, fs->fs_fsmnt);
 2169                         panic("ffs_alloccg: map corrupted");
 2170                         /* NOTREACHED */
 2171                 }
 2172         }
 2173         bno = (start + len - loc) * NBBY;
 2174         cgp->cg_frotor = bno;
 2175         /*
 2176          * found the byte in the map
 2177          * sift through the bits to find the selected frag
 2178          */
 2179         for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
 2180                 blk = blkmap(fs, blksfree, bno);
 2181                 blk <<= 1;
 2182                 field = around[allocsiz];
 2183                 subfield = inside[allocsiz];
 2184                 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
 2185                         if ((blk & field) == subfield)
 2186                                 return (bno + pos);
 2187                         field <<= 1;
 2188                         subfield <<= 1;
 2189                 }
 2190         }
 2191         printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
 2192         panic("ffs_alloccg: block not in map");
 2193         return (-1);
 2194 }
 2195 
 2196 /*
 2197  * Update the cluster map because of an allocation or free.
 2198  *
 2199  * Cnt == 1 means free; cnt == -1 means allocating.
 2200  */
 2201 void
 2202 ffs_clusteracct(ump, fs, cgp, blkno, cnt)
 2203         struct ufsmount *ump;
 2204         struct fs *fs;
 2205         struct cg *cgp;
 2206         ufs1_daddr_t blkno;
 2207         int cnt;
 2208 {
 2209         int32_t *sump;
 2210         int32_t *lp;
 2211         u_char *freemapp, *mapp;
 2212         int i, start, end, forw, back, map, bit;
 2213 
 2214         mtx_assert(UFS_MTX(ump), MA_OWNED);
 2215 
 2216         if (fs->fs_contigsumsize <= 0)
 2217                 return;
 2218         freemapp = cg_clustersfree(cgp);
 2219         sump = cg_clustersum(cgp);
 2220         /*
 2221          * Allocate or clear the actual block.
 2222          */
 2223         if (cnt > 0)
 2224                 setbit(freemapp, blkno);
 2225         else
 2226                 clrbit(freemapp, blkno);
 2227         /*
 2228          * Find the size of the cluster going forward.
 2229          */
 2230         start = blkno + 1;
 2231         end = start + fs->fs_contigsumsize;
 2232         if (end >= cgp->cg_nclusterblks)
 2233                 end = cgp->cg_nclusterblks;
 2234         mapp = &freemapp[start / NBBY];
 2235         map = *mapp++;
 2236         bit = 1 << (start % NBBY);
 2237         for (i = start; i < end; i++) {
 2238                 if ((map & bit) == 0)
 2239                         break;
 2240                 if ((i & (NBBY - 1)) != (NBBY - 1)) {
 2241                         bit <<= 1;
 2242                 } else {
 2243                         map = *mapp++;
 2244                         bit = 1;
 2245                 }
 2246         }
 2247         forw = i - start;
 2248         /*
 2249          * Find the size of the cluster going backward.
 2250          */
 2251         start = blkno - 1;
 2252         end = start - fs->fs_contigsumsize;
 2253         if (end < 0)
 2254                 end = -1;
 2255         mapp = &freemapp[start / NBBY];
 2256         map = *mapp--;
 2257         bit = 1 << (start % NBBY);
 2258         for (i = start; i > end; i--) {
 2259                 if ((map & bit) == 0)
 2260                         break;
 2261                 if ((i & (NBBY - 1)) != 0) {
 2262                         bit >>= 1;
 2263                 } else {
 2264                         map = *mapp--;
 2265                         bit = 1 << (NBBY - 1);
 2266                 }
 2267         }
 2268         back = start - i;
 2269         /*
 2270          * Account for old cluster and the possibly new forward and
 2271          * back clusters.
 2272          */
 2273         i = back + forw + 1;
 2274         if (i > fs->fs_contigsumsize)
 2275                 i = fs->fs_contigsumsize;
 2276         sump[i] += cnt;
 2277         if (back > 0)
 2278                 sump[back] -= cnt;
 2279         if (forw > 0)
 2280                 sump[forw] -= cnt;
 2281         /*
 2282          * Update cluster summary information.
 2283          */
 2284         lp = &sump[fs->fs_contigsumsize];
 2285         for (i = fs->fs_contigsumsize; i > 0; i--)
 2286                 if (*lp-- > 0)
 2287                         break;
 2288         fs->fs_maxcluster[cgp->cg_cgx] = i;
 2289 }
 2290 
 2291 /*
 2292  * Fserr prints the name of a filesystem with an error diagnostic.
 2293  *
 2294  * The form of the error message is:
 2295  *      fs: error message
 2296  */
 2297 static void
 2298 ffs_fserr(fs, inum, cp)
 2299         struct fs *fs;
 2300         ino_t inum;
 2301         char *cp;
 2302 {
 2303         struct thread *td = curthread;  /* XXX */
 2304         struct proc *p = td->td_proc;
 2305 
 2306         log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n",
 2307             p->p_pid, p->p_comm, td->td_ucred->cr_uid, inum, fs->fs_fsmnt, cp);
 2308 }
 2309 
 2310 /*
 2311  * This function provides the capability for the fsck program to
 2312  * update an active filesystem. Eleven operations are provided:
 2313  *
 2314  * adjrefcnt(inode, amt) - adjusts the reference count on the
 2315  *      specified inode by the specified amount. Under normal
 2316  *      operation the count should always go down. Decrementing
 2317  *      the count to zero will cause the inode to be freed.
 2318  * adjblkcnt(inode, amt) - adjust the number of blocks used to
 2319  *      by the specifed amount.
 2320  * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
 2321  *      adjust the superblock summary.
 2322  * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
 2323  *      are marked as free. Inodes should never have to be marked
 2324  *      as in use.
 2325  * freefiles(inode, count) - file inodes [inode..inode + count - 1]
 2326  *      are marked as free. Inodes should never have to be marked
 2327  *      as in use.
 2328  * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
 2329  *      are marked as free. Blocks should never have to be marked
 2330  *      as in use.
 2331  * setflags(flags, set/clear) - the fs_flags field has the specified
 2332  *      flags set (second parameter +1) or cleared (second parameter -1).
 2333  */
 2334 
 2335 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
 2336 
 2337 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
 2338         0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
 2339 
 2340 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
 2341         sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
 2342 
 2343 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR,
 2344         sysctl_ffs_fsck, "Adjust number of directories");
 2345 
 2346 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR,
 2347         sysctl_ffs_fsck, "Adjust number of free blocks");
 2348 
 2349 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR,
 2350         sysctl_ffs_fsck, "Adjust number of free inodes");
 2351 
 2352 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR,
 2353         sysctl_ffs_fsck, "Adjust number of free frags");
 2354 
 2355 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR,
 2356         sysctl_ffs_fsck, "Adjust number of free clusters");
 2357 
 2358 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
 2359         sysctl_ffs_fsck, "Free Range of Directory Inodes");
 2360 
 2361 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
 2362         sysctl_ffs_fsck, "Free Range of File Inodes");
 2363 
 2364 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
 2365         sysctl_ffs_fsck, "Free Range of Blocks");
 2366 
 2367 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
 2368         sysctl_ffs_fsck, "Change Filesystem Flags");
 2369 
 2370 #ifdef DEBUG
 2371 static int fsckcmds = 0;
 2372 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
 2373 #endif /* DEBUG */
 2374 
 2375 static int
 2376 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
 2377 {
 2378         struct fsck_cmd cmd;
 2379         struct ufsmount *ump;
 2380         struct vnode *vp;
 2381         struct inode *ip;
 2382         struct mount *mp;
 2383         struct fs *fs;
 2384         ufs2_daddr_t blkno;
 2385         long blkcnt, blksize;
 2386         struct file *fp;
 2387         int filetype, error;
 2388 
 2389         if (req->newlen > sizeof cmd)
 2390                 return (EBADRPC);
 2391         if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
 2392                 return (error);
 2393         if (cmd.version != FFS_CMD_VERSION)
 2394                 return (ERPCMISMATCH);
 2395         if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0)
 2396                 return (error);
 2397         vn_start_write(fp->f_data, &mp, V_WAIT);
 2398         if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
 2399                 vn_finished_write(mp);
 2400                 fdrop(fp, curthread);
 2401                 return (EINVAL);
 2402         }
 2403         if (mp->mnt_flag & MNT_RDONLY) {
 2404                 vn_finished_write(mp);
 2405                 fdrop(fp, curthread);
 2406                 return (EROFS);
 2407         }
 2408         ump = VFSTOUFS(mp);
 2409         fs = ump->um_fs;
 2410         filetype = IFREG;
 2411 
 2412         switch (oidp->oid_number) {
 2413 
 2414         case FFS_SET_FLAGS:
 2415 #ifdef DEBUG
 2416                 if (fsckcmds)
 2417                         printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
 2418                             cmd.size > 0 ? "set" : "clear");
 2419 #endif /* DEBUG */
 2420                 if (cmd.size > 0)
 2421                         fs->fs_flags |= (long)cmd.value;
 2422                 else
 2423                         fs->fs_flags &= ~(long)cmd.value;
 2424                 break;
 2425 
 2426         case FFS_ADJ_REFCNT:
 2427 #ifdef DEBUG
 2428                 if (fsckcmds) {
 2429                         printf("%s: adjust inode %jd count by %jd\n",
 2430                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
 2431                             (intmax_t)cmd.size);
 2432                 }
 2433 #endif /* DEBUG */
 2434                 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
 2435                         break;
 2436                 ip = VTOI(vp);
 2437                 ip->i_nlink += cmd.size;
 2438                 DIP_SET(ip, i_nlink, ip->i_nlink);
 2439                 ip->i_effnlink += cmd.size;
 2440                 ip->i_flag |= IN_CHANGE;
 2441                 if (DOINGSOFTDEP(vp))
 2442                         softdep_change_linkcnt(ip);
 2443                 vput(vp);
 2444                 break;
 2445 
 2446         case FFS_ADJ_BLKCNT:
 2447 #ifdef DEBUG
 2448                 if (fsckcmds) {
 2449                         printf("%s: adjust inode %jd block count by %jd\n",
 2450                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
 2451                             (intmax_t)cmd.size);
 2452                 }
 2453 #endif /* DEBUG */
 2454                 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
 2455                         break;
 2456                 ip = VTOI(vp);
 2457                 if (ip->i_flag & IN_SPACECOUNTED) {
 2458                         UFS_LOCK(ump);
 2459                         fs->fs_pendingblocks += cmd.size;
 2460                         UFS_UNLOCK(ump);
 2461                 }
 2462                 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
 2463                 ip->i_flag |= IN_CHANGE;
 2464                 vput(vp);
 2465                 break;
 2466 
 2467         case FFS_DIR_FREE:
 2468                 filetype = IFDIR;
 2469                 /* fall through */
 2470 
 2471         case FFS_FILE_FREE:
 2472 #ifdef DEBUG
 2473                 if (fsckcmds) {
 2474                         if (cmd.size == 1)
 2475                                 printf("%s: free %s inode %d\n",
 2476                                     mp->mnt_stat.f_mntonname,
 2477                                     filetype == IFDIR ? "directory" : "file",
 2478                                     (ino_t)cmd.value);
 2479                         else
 2480                                 printf("%s: free %s inodes %d-%d\n",
 2481                                     mp->mnt_stat.f_mntonname,
 2482                                     filetype == IFDIR ? "directory" : "file",
 2483                                     (ino_t)cmd.value,
 2484                                     (ino_t)(cmd.value + cmd.size - 1));
 2485                 }
 2486 #endif /* DEBUG */
 2487                 while (cmd.size > 0) {
 2488                         if ((error = ffs_freefile(ump, fs, ump->um_devvp,
 2489                             cmd.value, filetype)))
 2490                                 break;
 2491                         cmd.size -= 1;
 2492                         cmd.value += 1;
 2493                 }
 2494                 break;
 2495 
 2496         case FFS_BLK_FREE:
 2497 #ifdef DEBUG
 2498                 if (fsckcmds) {
 2499                         if (cmd.size == 1)
 2500                                 printf("%s: free block %jd\n",
 2501                                     mp->mnt_stat.f_mntonname,
 2502                                     (intmax_t)cmd.value);
 2503                         else
 2504                                 printf("%s: free blocks %jd-%jd\n",
 2505                                     mp->mnt_stat.f_mntonname, 
 2506                                     (intmax_t)cmd.value,
 2507                                     (intmax_t)cmd.value + cmd.size - 1);
 2508                 }
 2509 #endif /* DEBUG */
 2510                 blkno = cmd.value;
 2511                 blkcnt = cmd.size;
 2512                 blksize = fs->fs_frag - (blkno % fs->fs_frag);
 2513                 while (blkcnt > 0) {
 2514                         if (blksize > blkcnt)
 2515                                 blksize = blkcnt;
 2516                         ffs_blkfree(ump, fs, ump->um_devvp, blkno,
 2517                             blksize * fs->fs_fsize, ROOTINO);
 2518                         blkno += blksize;
 2519                         blkcnt -= blksize;
 2520                         blksize = fs->fs_frag;
 2521                 }
 2522                 break;
 2523 
 2524         /*
 2525          * Adjust superblock summaries.  fsck(8) is expected to
 2526          * submit deltas when necessary.
 2527          */
 2528         case FFS_ADJ_NDIR:
 2529 #ifdef DEBUG
 2530                 if (fsckcmds) {
 2531                         printf("%s: adjust number of directories by %jd\n",
 2532                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2533                 }
 2534 #endif /* DEBUG */
 2535                 fs->fs_cstotal.cs_ndir += cmd.value;
 2536                 break;
 2537         case FFS_ADJ_NBFREE:
 2538 #ifdef DEBUG
 2539                 if (fsckcmds) {
 2540                         printf("%s: adjust number of free blocks by %+jd\n",
 2541                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2542                 }
 2543 #endif /* DEBUG */
 2544                 fs->fs_cstotal.cs_nbfree += cmd.value;
 2545                 break;
 2546         case FFS_ADJ_NIFREE:
 2547 #ifdef DEBUG
 2548                 if (fsckcmds) {
 2549                         printf("%s: adjust number of free inodes by %+jd\n",
 2550                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2551                 }
 2552 #endif /* DEBUG */
 2553                 fs->fs_cstotal.cs_nifree += cmd.value;
 2554                 break;
 2555         case FFS_ADJ_NFFREE:
 2556 #ifdef DEBUG
 2557                 if (fsckcmds) {
 2558                         printf("%s: adjust number of free frags by %+jd\n",
 2559                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2560                 }
 2561 #endif /* DEBUG */
 2562                 fs->fs_cstotal.cs_nffree += cmd.value;
 2563                 break;
 2564         case FFS_ADJ_NUMCLUSTERS:
 2565 #ifdef DEBUG
 2566                 if (fsckcmds) {
 2567                         printf("%s: adjust number of free clusters by %+jd\n",
 2568                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2569                 }
 2570 #endif /* DEBUG */
 2571                 fs->fs_cstotal.cs_numclusters += cmd.value;
 2572                 break;
 2573 
 2574         default:
 2575 #ifdef DEBUG
 2576                 if (fsckcmds) {
 2577                         printf("Invalid request %d from fsck\n",
 2578                             oidp->oid_number);
 2579                 }
 2580 #endif /* DEBUG */
 2581                 error = EINVAL;
 2582                 break;
 2583 
 2584         }
 2585         fdrop(fp, curthread);
 2586         vn_finished_write(mp);
 2587         return (error);
 2588 }

Cache object: 8fcaef01ff6a4e01c4b483392e91cab0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.