1 /*-
2 * Copyright (c) 2002 Networks Associates Technology, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Marshall
6 * Kirk McKusick and Network Associates Laboratories, the Security
7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9 * research program
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * Copyright (c) 1982, 1986, 1989, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 4. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95
60 */
61
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
64
65 #include "opt_quota.h"
66
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/bio.h>
70 #include <sys/buf.h>
71 #include <sys/conf.h>
72 #include <sys/file.h>
73 #include <sys/filedesc.h>
74 #include <sys/priv.h>
75 #include <sys/proc.h>
76 #include <sys/vnode.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/sysctl.h>
80 #include <sys/syslog.h>
81
82 #include <ufs/ufs/extattr.h>
83 #include <ufs/ufs/quota.h>
84 #include <ufs/ufs/inode.h>
85 #include <ufs/ufs/ufs_extern.h>
86 #include <ufs/ufs/ufsmount.h>
87
88 #include <ufs/ffs/fs.h>
89 #include <ufs/ffs/ffs_extern.h>
90
91 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, int cg, ufs2_daddr_t bpref,
92 int size);
93
94 static ufs2_daddr_t ffs_alloccg(struct inode *, int, ufs2_daddr_t, int);
95 static ufs2_daddr_t
96 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t);
97 #ifdef DIAGNOSTIC
98 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long);
99 #endif
100 static ufs2_daddr_t ffs_clusteralloc(struct inode *, int, ufs2_daddr_t, int);
101 static void ffs_clusteracct(struct ufsmount *, struct fs *, struct cg *,
102 ufs1_daddr_t, int);
103 static ino_t ffs_dirpref(struct inode *);
104 static ufs2_daddr_t ffs_fragextend(struct inode *, int, ufs2_daddr_t, int, int);
105 static void ffs_fserr(struct fs *, ino_t, char *);
106 static ufs2_daddr_t ffs_hashalloc
107 (struct inode *, int, ufs2_daddr_t, int, allocfcn_t *);
108 static ufs2_daddr_t ffs_nodealloccg(struct inode *, int, ufs2_daddr_t, int);
109 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
110 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
111 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
112
113 /*
114 * Allocate a block in the filesystem.
115 *
116 * The size of the requested block is given, which must be some
117 * multiple of fs_fsize and <= fs_bsize.
118 * A preference may be optionally specified. If a preference is given
119 * the following hierarchy is used to allocate a block:
120 * 1) allocate the requested block.
121 * 2) allocate a rotationally optimal block in the same cylinder.
122 * 3) allocate a block in the same cylinder group.
123 * 4) quadradically rehash into other cylinder groups, until an
124 * available block is located.
125 * If no block preference is given the following hierarchy is used
126 * to allocate a block:
127 * 1) allocate a block in the cylinder group that contains the
128 * inode for the file.
129 * 2) quadradically rehash into other cylinder groups, until an
130 * available block is located.
131 */
132 int
133 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
134 struct inode *ip;
135 ufs2_daddr_t lbn, bpref;
136 int size;
137 struct ucred *cred;
138 ufs2_daddr_t *bnp;
139 {
140 struct fs *fs;
141 struct ufsmount *ump;
142 ufs2_daddr_t bno;
143 int cg, reclaimed;
144 static struct timeval lastfail;
145 static int curfail;
146 int64_t delta;
147 #ifdef QUOTA
148 int error;
149 #endif
150
151 *bnp = 0;
152 fs = ip->i_fs;
153 ump = ip->i_ump;
154 mtx_assert(UFS_MTX(ump), MA_OWNED);
155 #ifdef DIAGNOSTIC
156 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
157 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
158 devtoname(ip->i_dev), (long)fs->fs_bsize, size,
159 fs->fs_fsmnt);
160 panic("ffs_alloc: bad size");
161 }
162 if (cred == NOCRED)
163 panic("ffs_alloc: missing credential");
164 #endif /* DIAGNOSTIC */
165 reclaimed = 0;
166 retry:
167 #ifdef QUOTA
168 UFS_UNLOCK(ump);
169 error = chkdq(ip, btodb(size), cred, 0);
170 if (error)
171 return (error);
172 UFS_LOCK(ump);
173 #endif
174 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
175 goto nospace;
176 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
177 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
178 goto nospace;
179 if (bpref >= fs->fs_size)
180 bpref = 0;
181 if (bpref == 0)
182 cg = ino_to_cg(fs, ip->i_number);
183 else
184 cg = dtog(fs, bpref);
185 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
186 if (bno > 0) {
187 delta = btodb(size);
188 if (ip->i_flag & IN_SPACECOUNTED) {
189 UFS_LOCK(ump);
190 fs->fs_pendingblocks += delta;
191 UFS_UNLOCK(ump);
192 }
193 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
194 ip->i_flag |= IN_CHANGE | IN_UPDATE;
195 *bnp = bno;
196 return (0);
197 }
198 nospace:
199 #ifdef QUOTA
200 UFS_UNLOCK(ump);
201 /*
202 * Restore user's disk quota because allocation failed.
203 */
204 (void) chkdq(ip, -btodb(size), cred, FORCE);
205 UFS_LOCK(ump);
206 #endif
207 if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
208 reclaimed = 1;
209 softdep_request_cleanup(fs, ITOV(ip));
210 goto retry;
211 }
212 UFS_UNLOCK(ump);
213 if (ppsratecheck(&lastfail, &curfail, 1)) {
214 ffs_fserr(fs, ip->i_number, "filesystem full");
215 uprintf("\n%s: write failed, filesystem is full\n",
216 fs->fs_fsmnt);
217 }
218 return (ENOSPC);
219 }
220
221 /*
222 * Reallocate a fragment to a bigger size
223 *
224 * The number and size of the old block is given, and a preference
225 * and new size is also specified. The allocator attempts to extend
226 * the original block. Failing that, the regular block allocator is
227 * invoked to get an appropriate block.
228 */
229 int
230 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, cred, bpp)
231 struct inode *ip;
232 ufs2_daddr_t lbprev;
233 ufs2_daddr_t bprev;
234 ufs2_daddr_t bpref;
235 int osize, nsize;
236 struct ucred *cred;
237 struct buf **bpp;
238 {
239 struct vnode *vp;
240 struct fs *fs;
241 struct buf *bp;
242 struct ufsmount *ump;
243 int cg, request, error, reclaimed;
244 ufs2_daddr_t bno;
245 static struct timeval lastfail;
246 static int curfail;
247 int64_t delta;
248
249 *bpp = 0;
250 vp = ITOV(ip);
251 fs = ip->i_fs;
252 bp = NULL;
253 ump = ip->i_ump;
254 mtx_assert(UFS_MTX(ump), MA_OWNED);
255 #ifdef DIAGNOSTIC
256 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
257 panic("ffs_realloccg: allocation on suspended filesystem");
258 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
259 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
260 printf(
261 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
262 devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
263 nsize, fs->fs_fsmnt);
264 panic("ffs_realloccg: bad size");
265 }
266 if (cred == NOCRED)
267 panic("ffs_realloccg: missing credential");
268 #endif /* DIAGNOSTIC */
269 reclaimed = 0;
270 retry:
271 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
272 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) {
273 goto nospace;
274 }
275 if (bprev == 0) {
276 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
277 devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev,
278 fs->fs_fsmnt);
279 panic("ffs_realloccg: bad bprev");
280 }
281 UFS_UNLOCK(ump);
282 /*
283 * Allocate the extra space in the buffer.
284 */
285 error = bread(vp, lbprev, osize, NOCRED, &bp);
286 if (error) {
287 brelse(bp);
288 return (error);
289 }
290
291 if (bp->b_blkno == bp->b_lblkno) {
292 if (lbprev >= NDADDR)
293 panic("ffs_realloccg: lbprev out of range");
294 bp->b_blkno = fsbtodb(fs, bprev);
295 }
296
297 #ifdef QUOTA
298 error = chkdq(ip, btodb(nsize - osize), cred, 0);
299 if (error) {
300 brelse(bp);
301 return (error);
302 }
303 #endif
304 /*
305 * Check for extension in the existing location.
306 */
307 cg = dtog(fs, bprev);
308 UFS_LOCK(ump);
309 bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
310 if (bno) {
311 if (bp->b_blkno != fsbtodb(fs, bno))
312 panic("ffs_realloccg: bad blockno");
313 delta = btodb(nsize - osize);
314 if (ip->i_flag & IN_SPACECOUNTED) {
315 UFS_LOCK(ump);
316 fs->fs_pendingblocks += delta;
317 UFS_UNLOCK(ump);
318 }
319 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
320 ip->i_flag |= IN_CHANGE | IN_UPDATE;
321 allocbuf(bp, nsize);
322 bp->b_flags |= B_DONE;
323 if ((bp->b_flags & (B_MALLOC | B_VMIO)) != B_VMIO)
324 bzero((char *)bp->b_data + osize, nsize - osize);
325 else
326 vfs_bio_clrbuf(bp);
327 *bpp = bp;
328 return (0);
329 }
330 /*
331 * Allocate a new disk location.
332 */
333 if (bpref >= fs->fs_size)
334 bpref = 0;
335 switch ((int)fs->fs_optim) {
336 case FS_OPTSPACE:
337 /*
338 * Allocate an exact sized fragment. Although this makes
339 * best use of space, we will waste time relocating it if
340 * the file continues to grow. If the fragmentation is
341 * less than half of the minimum free reserve, we choose
342 * to begin optimizing for time.
343 */
344 request = nsize;
345 if (fs->fs_minfree <= 5 ||
346 fs->fs_cstotal.cs_nffree >
347 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
348 break;
349 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
350 fs->fs_fsmnt);
351 fs->fs_optim = FS_OPTTIME;
352 break;
353 case FS_OPTTIME:
354 /*
355 * At this point we have discovered a file that is trying to
356 * grow a small fragment to a larger fragment. To save time,
357 * we allocate a full sized block, then free the unused portion.
358 * If the file continues to grow, the `ffs_fragextend' call
359 * above will be able to grow it in place without further
360 * copying. If aberrant programs cause disk fragmentation to
361 * grow within 2% of the free reserve, we choose to begin
362 * optimizing for space.
363 */
364 request = fs->fs_bsize;
365 if (fs->fs_cstotal.cs_nffree <
366 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
367 break;
368 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
369 fs->fs_fsmnt);
370 fs->fs_optim = FS_OPTSPACE;
371 break;
372 default:
373 printf("dev = %s, optim = %ld, fs = %s\n",
374 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
375 panic("ffs_realloccg: bad optim");
376 /* NOTREACHED */
377 }
378 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
379 if (bno > 0) {
380 bp->b_blkno = fsbtodb(fs, bno);
381 if (!DOINGSOFTDEP(vp))
382 ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize,
383 ip->i_number);
384 if (nsize < request)
385 ffs_blkfree(ump, fs, ip->i_devvp,
386 bno + numfrags(fs, nsize),
387 (long)(request - nsize), ip->i_number);
388 delta = btodb(nsize - osize);
389 if (ip->i_flag & IN_SPACECOUNTED) {
390 UFS_LOCK(ump);
391 fs->fs_pendingblocks += delta;
392 UFS_UNLOCK(ump);
393 }
394 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
395 ip->i_flag |= IN_CHANGE | IN_UPDATE;
396 allocbuf(bp, nsize);
397 bp->b_flags |= B_DONE;
398 if ((bp->b_flags & (B_MALLOC | B_VMIO)) != B_VMIO)
399 bzero((char *)bp->b_data + osize, nsize - osize);
400 else
401 vfs_bio_clrbuf(bp);
402 *bpp = bp;
403 return (0);
404 }
405 #ifdef QUOTA
406 UFS_UNLOCK(ump);
407 /*
408 * Restore user's disk quota because allocation failed.
409 */
410 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
411 UFS_LOCK(ump);
412 #endif
413 nospace:
414 /*
415 * no space available
416 */
417 if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
418 reclaimed = 1;
419 softdep_request_cleanup(fs, vp);
420 UFS_UNLOCK(ump);
421 if (bp)
422 brelse(bp);
423 UFS_LOCK(ump);
424 goto retry;
425 }
426 UFS_UNLOCK(ump);
427 if (bp)
428 brelse(bp);
429 if (ppsratecheck(&lastfail, &curfail, 1)) {
430 ffs_fserr(fs, ip->i_number, "filesystem full");
431 uprintf("\n%s: write failed, filesystem is full\n",
432 fs->fs_fsmnt);
433 }
434 return (ENOSPC);
435 }
436
437 /*
438 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
439 *
440 * The vnode and an array of buffer pointers for a range of sequential
441 * logical blocks to be made contiguous is given. The allocator attempts
442 * to find a range of sequential blocks starting as close as possible
443 * from the end of the allocation for the logical block immediately
444 * preceding the current range. If successful, the physical block numbers
445 * in the buffer pointers and in the inode are changed to reflect the new
446 * allocation. If unsuccessful, the allocation is left unchanged. The
447 * success in doing the reallocation is returned. Note that the error
448 * return is not reflected back to the user. Rather the previous block
449 * allocation will be used.
450 */
451
452 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
453
454 static int doasyncfree = 1;
455 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
456
457 static int doreallocblks = 1;
458 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
459
460 #ifdef DEBUG
461 static volatile int prtrealloc = 0;
462 #endif
463
464 int
465 ffs_reallocblks(ap)
466 struct vop_reallocblks_args /* {
467 struct vnode *a_vp;
468 struct cluster_save *a_buflist;
469 } */ *ap;
470 {
471
472 if (doreallocblks == 0)
473 return (ENOSPC);
474 if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1)
475 return (ffs_reallocblks_ufs1(ap));
476 return (ffs_reallocblks_ufs2(ap));
477 }
478
479 static int
480 ffs_reallocblks_ufs1(ap)
481 struct vop_reallocblks_args /* {
482 struct vnode *a_vp;
483 struct cluster_save *a_buflist;
484 } */ *ap;
485 {
486 struct fs *fs;
487 struct inode *ip;
488 struct vnode *vp;
489 struct buf *sbp, *ebp;
490 ufs1_daddr_t *bap, *sbap, *ebap = 0;
491 struct cluster_save *buflist;
492 struct ufsmount *ump;
493 ufs_lbn_t start_lbn, end_lbn;
494 ufs1_daddr_t soff, newblk, blkno;
495 ufs2_daddr_t pref;
496 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
497 int i, len, start_lvl, end_lvl, ssize;
498
499 vp = ap->a_vp;
500 ip = VTOI(vp);
501 fs = ip->i_fs;
502 ump = ip->i_ump;
503 if (fs->fs_contigsumsize <= 0)
504 return (ENOSPC);
505 buflist = ap->a_buflist;
506 len = buflist->bs_nchildren;
507 start_lbn = buflist->bs_children[0]->b_lblkno;
508 end_lbn = start_lbn + len - 1;
509 #ifdef DIAGNOSTIC
510 for (i = 0; i < len; i++)
511 if (!ffs_checkblk(ip,
512 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
513 panic("ffs_reallocblks: unallocated block 1");
514 for (i = 1; i < len; i++)
515 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
516 panic("ffs_reallocblks: non-logical cluster");
517 blkno = buflist->bs_children[0]->b_blkno;
518 ssize = fsbtodb(fs, fs->fs_frag);
519 for (i = 1; i < len - 1; i++)
520 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
521 panic("ffs_reallocblks: non-physical cluster %d", i);
522 #endif
523 /*
524 * If the latest allocation is in a new cylinder group, assume that
525 * the filesystem has decided to move and do not force it back to
526 * the previous cylinder group.
527 */
528 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
529 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
530 return (ENOSPC);
531 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
532 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
533 return (ENOSPC);
534 /*
535 * Get the starting offset and block map for the first block.
536 */
537 if (start_lvl == 0) {
538 sbap = &ip->i_din1->di_db[0];
539 soff = start_lbn;
540 } else {
541 idp = &start_ap[start_lvl - 1];
542 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
543 brelse(sbp);
544 return (ENOSPC);
545 }
546 sbap = (ufs1_daddr_t *)sbp->b_data;
547 soff = idp->in_off;
548 }
549 /*
550 * If the block range spans two block maps, get the second map.
551 */
552 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
553 ssize = len;
554 } else {
555 #ifdef DIAGNOSTIC
556 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
557 panic("ffs_reallocblk: start == end");
558 #endif
559 ssize = len - (idp->in_off + 1);
560 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
561 goto fail;
562 ebap = (ufs1_daddr_t *)ebp->b_data;
563 }
564 /*
565 * Find the preferred location for the cluster.
566 */
567 UFS_LOCK(ump);
568 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
569 /*
570 * Search the block map looking for an allocation of the desired size.
571 */
572 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
573 len, ffs_clusteralloc)) == 0) {
574 UFS_UNLOCK(ump);
575 goto fail;
576 }
577 /*
578 * We have found a new contiguous block.
579 *
580 * First we have to replace the old block pointers with the new
581 * block pointers in the inode and indirect blocks associated
582 * with the file.
583 */
584 #ifdef DEBUG
585 if (prtrealloc)
586 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
587 (intmax_t)start_lbn, (intmax_t)end_lbn);
588 #endif
589 blkno = newblk;
590 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
591 if (i == ssize) {
592 bap = ebap;
593 soff = -i;
594 }
595 #ifdef DIAGNOSTIC
596 if (!ffs_checkblk(ip,
597 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
598 panic("ffs_reallocblks: unallocated block 2");
599 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
600 panic("ffs_reallocblks: alloc mismatch");
601 #endif
602 #ifdef DEBUG
603 if (prtrealloc)
604 printf(" %d,", *bap);
605 #endif
606 if (DOINGSOFTDEP(vp)) {
607 if (sbap == &ip->i_din1->di_db[0] && i < ssize)
608 softdep_setup_allocdirect(ip, start_lbn + i,
609 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
610 buflist->bs_children[i]);
611 else
612 softdep_setup_allocindir_page(ip, start_lbn + i,
613 i < ssize ? sbp : ebp, soff + i, blkno,
614 *bap, buflist->bs_children[i]);
615 }
616 *bap++ = blkno;
617 }
618 /*
619 * Next we must write out the modified inode and indirect blocks.
620 * For strict correctness, the writes should be synchronous since
621 * the old block values may have been written to disk. In practise
622 * they are almost never written, but if we are concerned about
623 * strict correctness, the `doasyncfree' flag should be set to zero.
624 *
625 * The test on `doasyncfree' should be changed to test a flag
626 * that shows whether the associated buffers and inodes have
627 * been written. The flag should be set when the cluster is
628 * started and cleared whenever the buffer or inode is flushed.
629 * We can then check below to see if it is set, and do the
630 * synchronous write only when it has been cleared.
631 */
632 if (sbap != &ip->i_din1->di_db[0]) {
633 if (doasyncfree)
634 bdwrite(sbp);
635 else
636 bwrite(sbp);
637 } else {
638 ip->i_flag |= IN_CHANGE | IN_UPDATE;
639 if (!doasyncfree)
640 ffs_update(vp, 1);
641 }
642 if (ssize < len) {
643 if (doasyncfree)
644 bdwrite(ebp);
645 else
646 bwrite(ebp);
647 }
648 /*
649 * Last, free the old blocks and assign the new blocks to the buffers.
650 */
651 #ifdef DEBUG
652 if (prtrealloc)
653 printf("\n\tnew:");
654 #endif
655 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
656 if (!DOINGSOFTDEP(vp))
657 ffs_blkfree(ump, fs, ip->i_devvp,
658 dbtofsb(fs, buflist->bs_children[i]->b_blkno),
659 fs->fs_bsize, ip->i_number);
660 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
661 #ifdef DIAGNOSTIC
662 if (!ffs_checkblk(ip,
663 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
664 panic("ffs_reallocblks: unallocated block 3");
665 #endif
666 #ifdef DEBUG
667 if (prtrealloc)
668 printf(" %d,", blkno);
669 #endif
670 }
671 #ifdef DEBUG
672 if (prtrealloc) {
673 prtrealloc--;
674 printf("\n");
675 }
676 #endif
677 return (0);
678
679 fail:
680 if (ssize < len)
681 brelse(ebp);
682 if (sbap != &ip->i_din1->di_db[0])
683 brelse(sbp);
684 return (ENOSPC);
685 }
686
687 static int
688 ffs_reallocblks_ufs2(ap)
689 struct vop_reallocblks_args /* {
690 struct vnode *a_vp;
691 struct cluster_save *a_buflist;
692 } */ *ap;
693 {
694 struct fs *fs;
695 struct inode *ip;
696 struct vnode *vp;
697 struct buf *sbp, *ebp;
698 ufs2_daddr_t *bap, *sbap, *ebap = 0;
699 struct cluster_save *buflist;
700 struct ufsmount *ump;
701 ufs_lbn_t start_lbn, end_lbn;
702 ufs2_daddr_t soff, newblk, blkno, pref;
703 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
704 int i, len, start_lvl, end_lvl, ssize;
705
706 vp = ap->a_vp;
707 ip = VTOI(vp);
708 fs = ip->i_fs;
709 ump = ip->i_ump;
710 if (fs->fs_contigsumsize <= 0)
711 return (ENOSPC);
712 buflist = ap->a_buflist;
713 len = buflist->bs_nchildren;
714 start_lbn = buflist->bs_children[0]->b_lblkno;
715 end_lbn = start_lbn + len - 1;
716 #ifdef DIAGNOSTIC
717 for (i = 0; i < len; i++)
718 if (!ffs_checkblk(ip,
719 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
720 panic("ffs_reallocblks: unallocated block 1");
721 for (i = 1; i < len; i++)
722 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
723 panic("ffs_reallocblks: non-logical cluster");
724 blkno = buflist->bs_children[0]->b_blkno;
725 ssize = fsbtodb(fs, fs->fs_frag);
726 for (i = 1; i < len - 1; i++)
727 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
728 panic("ffs_reallocblks: non-physical cluster %d", i);
729 #endif
730 /*
731 * If the latest allocation is in a new cylinder group, assume that
732 * the filesystem has decided to move and do not force it back to
733 * the previous cylinder group.
734 */
735 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
736 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
737 return (ENOSPC);
738 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
739 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
740 return (ENOSPC);
741 /*
742 * Get the starting offset and block map for the first block.
743 */
744 if (start_lvl == 0) {
745 sbap = &ip->i_din2->di_db[0];
746 soff = start_lbn;
747 } else {
748 idp = &start_ap[start_lvl - 1];
749 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
750 brelse(sbp);
751 return (ENOSPC);
752 }
753 sbap = (ufs2_daddr_t *)sbp->b_data;
754 soff = idp->in_off;
755 }
756 /*
757 * If the block range spans two block maps, get the second map.
758 */
759 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
760 ssize = len;
761 } else {
762 #ifdef DIAGNOSTIC
763 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
764 panic("ffs_reallocblk: start == end");
765 #endif
766 ssize = len - (idp->in_off + 1);
767 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
768 goto fail;
769 ebap = (ufs2_daddr_t *)ebp->b_data;
770 }
771 /*
772 * Find the preferred location for the cluster.
773 */
774 UFS_LOCK(ump);
775 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
776 /*
777 * Search the block map looking for an allocation of the desired size.
778 */
779 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
780 len, ffs_clusteralloc)) == 0) {
781 UFS_UNLOCK(ump);
782 goto fail;
783 }
784 /*
785 * We have found a new contiguous block.
786 *
787 * First we have to replace the old block pointers with the new
788 * block pointers in the inode and indirect blocks associated
789 * with the file.
790 */
791 #ifdef DEBUG
792 if (prtrealloc)
793 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
794 (intmax_t)start_lbn, (intmax_t)end_lbn);
795 #endif
796 blkno = newblk;
797 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
798 if (i == ssize) {
799 bap = ebap;
800 soff = -i;
801 }
802 #ifdef DIAGNOSTIC
803 if (!ffs_checkblk(ip,
804 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
805 panic("ffs_reallocblks: unallocated block 2");
806 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
807 panic("ffs_reallocblks: alloc mismatch");
808 #endif
809 #ifdef DEBUG
810 if (prtrealloc)
811 printf(" %jd,", (intmax_t)*bap);
812 #endif
813 if (DOINGSOFTDEP(vp)) {
814 if (sbap == &ip->i_din2->di_db[0] && i < ssize)
815 softdep_setup_allocdirect(ip, start_lbn + i,
816 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
817 buflist->bs_children[i]);
818 else
819 softdep_setup_allocindir_page(ip, start_lbn + i,
820 i < ssize ? sbp : ebp, soff + i, blkno,
821 *bap, buflist->bs_children[i]);
822 }
823 *bap++ = blkno;
824 }
825 /*
826 * Next we must write out the modified inode and indirect blocks.
827 * For strict correctness, the writes should be synchronous since
828 * the old block values may have been written to disk. In practise
829 * they are almost never written, but if we are concerned about
830 * strict correctness, the `doasyncfree' flag should be set to zero.
831 *
832 * The test on `doasyncfree' should be changed to test a flag
833 * that shows whether the associated buffers and inodes have
834 * been written. The flag should be set when the cluster is
835 * started and cleared whenever the buffer or inode is flushed.
836 * We can then check below to see if it is set, and do the
837 * synchronous write only when it has been cleared.
838 */
839 if (sbap != &ip->i_din2->di_db[0]) {
840 if (doasyncfree)
841 bdwrite(sbp);
842 else
843 bwrite(sbp);
844 } else {
845 ip->i_flag |= IN_CHANGE | IN_UPDATE;
846 if (!doasyncfree)
847 ffs_update(vp, 1);
848 }
849 if (ssize < len) {
850 if (doasyncfree)
851 bdwrite(ebp);
852 else
853 bwrite(ebp);
854 }
855 /*
856 * Last, free the old blocks and assign the new blocks to the buffers.
857 */
858 #ifdef DEBUG
859 if (prtrealloc)
860 printf("\n\tnew:");
861 #endif
862 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
863 if (!DOINGSOFTDEP(vp))
864 ffs_blkfree(ump, fs, ip->i_devvp,
865 dbtofsb(fs, buflist->bs_children[i]->b_blkno),
866 fs->fs_bsize, ip->i_number);
867 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
868 #ifdef DIAGNOSTIC
869 if (!ffs_checkblk(ip,
870 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
871 panic("ffs_reallocblks: unallocated block 3");
872 #endif
873 #ifdef DEBUG
874 if (prtrealloc)
875 printf(" %jd,", (intmax_t)blkno);
876 #endif
877 }
878 #ifdef DEBUG
879 if (prtrealloc) {
880 prtrealloc--;
881 printf("\n");
882 }
883 #endif
884 return (0);
885
886 fail:
887 if (ssize < len)
888 brelse(ebp);
889 if (sbap != &ip->i_din2->di_db[0])
890 brelse(sbp);
891 return (ENOSPC);
892 }
893
894 /*
895 * Allocate an inode in the filesystem.
896 *
897 * If allocating a directory, use ffs_dirpref to select the inode.
898 * If allocating in a directory, the following hierarchy is followed:
899 * 1) allocate the preferred inode.
900 * 2) allocate an inode in the same cylinder group.
901 * 3) quadradically rehash into other cylinder groups, until an
902 * available inode is located.
903 * If no inode preference is given the following hierarchy is used
904 * to allocate an inode:
905 * 1) allocate an inode in cylinder group 0.
906 * 2) quadradically rehash into other cylinder groups, until an
907 * available inode is located.
908 */
909 int
910 ffs_valloc(pvp, mode, cred, vpp)
911 struct vnode *pvp;
912 int mode;
913 struct ucred *cred;
914 struct vnode **vpp;
915 {
916 struct inode *pip;
917 struct fs *fs;
918 struct inode *ip;
919 struct timespec ts;
920 struct ufsmount *ump;
921 ino_t ino, ipref;
922 int cg, error;
923 static struct timeval lastfail;
924 static int curfail;
925
926 *vpp = NULL;
927 pip = VTOI(pvp);
928 fs = pip->i_fs;
929 ump = pip->i_ump;
930
931 UFS_LOCK(ump);
932 if (fs->fs_cstotal.cs_nifree == 0)
933 goto noinodes;
934
935 if ((mode & IFMT) == IFDIR)
936 ipref = ffs_dirpref(pip);
937 else
938 ipref = pip->i_number;
939 if (ipref >= fs->fs_ncg * fs->fs_ipg)
940 ipref = 0;
941 cg = ino_to_cg(fs, ipref);
942 /*
943 * Track number of dirs created one after another
944 * in a same cg without intervening by files.
945 */
946 if ((mode & IFMT) == IFDIR) {
947 if (fs->fs_contigdirs[cg] < 255)
948 fs->fs_contigdirs[cg]++;
949 } else {
950 if (fs->fs_contigdirs[cg] > 0)
951 fs->fs_contigdirs[cg]--;
952 }
953 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode,
954 (allocfcn_t *)ffs_nodealloccg);
955 if (ino == 0)
956 goto noinodes;
957 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
958 if (error) {
959 ffs_vfree(pvp, ino, mode);
960 return (error);
961 }
962 ip = VTOI(*vpp);
963 if (ip->i_mode) {
964 printf("mode = 0%o, inum = %lu, fs = %s\n",
965 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
966 panic("ffs_valloc: dup alloc");
967 }
968 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */
969 printf("free inode %s/%lu had %ld blocks\n",
970 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
971 DIP_SET(ip, i_blocks, 0);
972 }
973 ip->i_flags = 0;
974 DIP_SET(ip, i_flags, 0);
975 /*
976 * Set up a new generation number for this inode.
977 */
978 if (ip->i_gen == 0 || ++ip->i_gen == 0)
979 ip->i_gen = arc4random() / 2 + 1;
980 DIP_SET(ip, i_gen, ip->i_gen);
981 if (fs->fs_magic == FS_UFS2_MAGIC) {
982 vfs_timestamp(&ts);
983 ip->i_din2->di_birthtime = ts.tv_sec;
984 ip->i_din2->di_birthnsec = ts.tv_nsec;
985 }
986 ip->i_flag = 0;
987 vnode_destroy_vobject(*vpp);
988 (*vpp)->v_type = VNON;
989 if (fs->fs_magic == FS_UFS2_MAGIC)
990 (*vpp)->v_op = &ffs_vnodeops2;
991 else
992 (*vpp)->v_op = &ffs_vnodeops1;
993 return (0);
994 noinodes:
995 UFS_UNLOCK(ump);
996 if (ppsratecheck(&lastfail, &curfail, 1)) {
997 ffs_fserr(fs, pip->i_number, "out of inodes");
998 uprintf("\n%s: create/symlink failed, no inodes free\n",
999 fs->fs_fsmnt);
1000 }
1001 return (ENOSPC);
1002 }
1003
1004 /*
1005 * Find a cylinder group to place a directory.
1006 *
1007 * The policy implemented by this algorithm is to allocate a
1008 * directory inode in the same cylinder group as its parent
1009 * directory, but also to reserve space for its files inodes
1010 * and data. Restrict the number of directories which may be
1011 * allocated one after another in the same cylinder group
1012 * without intervening allocation of files.
1013 *
1014 * If we allocate a first level directory then force allocation
1015 * in another cylinder group.
1016 */
1017 static ino_t
1018 ffs_dirpref(pip)
1019 struct inode *pip;
1020 {
1021 struct fs *fs;
1022 int cg, prefcg, dirsize, cgsize;
1023 int avgifree, avgbfree, avgndir, curdirsize;
1024 int minifree, minbfree, maxndir;
1025 int mincg, minndir;
1026 int maxcontigdirs;
1027
1028 mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED);
1029 fs = pip->i_fs;
1030
1031 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
1032 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1033 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
1034
1035 /*
1036 * Force allocation in another cg if creating a first level dir.
1037 */
1038 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
1039 if (ITOV(pip)->v_vflag & VV_ROOT) {
1040 prefcg = arc4random() % fs->fs_ncg;
1041 mincg = prefcg;
1042 minndir = fs->fs_ipg;
1043 for (cg = prefcg; cg < fs->fs_ncg; cg++)
1044 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1045 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1046 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1047 mincg = cg;
1048 minndir = fs->fs_cs(fs, cg).cs_ndir;
1049 }
1050 for (cg = 0; cg < prefcg; cg++)
1051 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1052 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1053 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1054 mincg = cg;
1055 minndir = fs->fs_cs(fs, cg).cs_ndir;
1056 }
1057 return ((ino_t)(fs->fs_ipg * mincg));
1058 }
1059
1060 /*
1061 * Count various limits which used for
1062 * optimal allocation of a directory inode.
1063 */
1064 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
1065 minifree = avgifree - avgifree / 4;
1066 if (minifree < 1)
1067 minifree = 1;
1068 minbfree = avgbfree - avgbfree / 4;
1069 if (minbfree < 1)
1070 minbfree = 1;
1071 cgsize = fs->fs_fsize * fs->fs_fpg;
1072 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
1073 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
1074 if (dirsize < curdirsize)
1075 dirsize = curdirsize;
1076 if (dirsize <= 0)
1077 maxcontigdirs = 0; /* dirsize overflowed */
1078 else
1079 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
1080 if (fs->fs_avgfpdir > 0)
1081 maxcontigdirs = min(maxcontigdirs,
1082 fs->fs_ipg / fs->fs_avgfpdir);
1083 if (maxcontigdirs == 0)
1084 maxcontigdirs = 1;
1085
1086 /*
1087 * Limit number of dirs in one cg and reserve space for
1088 * regular files, but only if we have no deficit in
1089 * inodes or space.
1090 */
1091 prefcg = ino_to_cg(fs, pip->i_number);
1092 for (cg = prefcg; cg < fs->fs_ncg; cg++)
1093 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1094 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1095 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1096 if (fs->fs_contigdirs[cg] < maxcontigdirs)
1097 return ((ino_t)(fs->fs_ipg * cg));
1098 }
1099 for (cg = 0; cg < prefcg; cg++)
1100 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1101 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1102 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1103 if (fs->fs_contigdirs[cg] < maxcontigdirs)
1104 return ((ino_t)(fs->fs_ipg * cg));
1105 }
1106 /*
1107 * This is a backstop when we have deficit in space.
1108 */
1109 for (cg = prefcg; cg < fs->fs_ncg; cg++)
1110 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1111 return ((ino_t)(fs->fs_ipg * cg));
1112 for (cg = 0; cg < prefcg; cg++)
1113 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1114 break;
1115 return ((ino_t)(fs->fs_ipg * cg));
1116 }
1117
1118 /*
1119 * Select the desired position for the next block in a file. The file is
1120 * logically divided into sections. The first section is composed of the
1121 * direct blocks. Each additional section contains fs_maxbpg blocks.
1122 *
1123 * If no blocks have been allocated in the first section, the policy is to
1124 * request a block in the same cylinder group as the inode that describes
1125 * the file. If no blocks have been allocated in any other section, the
1126 * policy is to place the section in a cylinder group with a greater than
1127 * average number of free blocks. An appropriate cylinder group is found
1128 * by using a rotor that sweeps the cylinder groups. When a new group of
1129 * blocks is needed, the sweep begins in the cylinder group following the
1130 * cylinder group from which the previous allocation was made. The sweep
1131 * continues until a cylinder group with greater than the average number
1132 * of free blocks is found. If the allocation is for the first block in an
1133 * indirect block, the information on the previous allocation is unavailable;
1134 * here a best guess is made based upon the logical block number being
1135 * allocated.
1136 *
1137 * If a section is already partially allocated, the policy is to
1138 * contiguously allocate fs_maxcontig blocks. The end of one of these
1139 * contiguous blocks and the beginning of the next is laid out
1140 * contiguously if possible.
1141 */
1142 ufs2_daddr_t
1143 ffs_blkpref_ufs1(ip, lbn, indx, bap)
1144 struct inode *ip;
1145 ufs_lbn_t lbn;
1146 int indx;
1147 ufs1_daddr_t *bap;
1148 {
1149 struct fs *fs;
1150 int cg;
1151 int avgbfree, startcg;
1152
1153 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1154 fs = ip->i_fs;
1155 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1156 if (lbn < NDADDR + NINDIR(fs)) {
1157 cg = ino_to_cg(fs, ip->i_number);
1158 return (cgbase(fs, cg) + fs->fs_frag);
1159 }
1160 /*
1161 * Find a cylinder with greater than average number of
1162 * unused data blocks.
1163 */
1164 if (indx == 0 || bap[indx - 1] == 0)
1165 startcg =
1166 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1167 else
1168 startcg = dtog(fs, bap[indx - 1]) + 1;
1169 startcg %= fs->fs_ncg;
1170 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1171 for (cg = startcg; cg < fs->fs_ncg; cg++)
1172 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1173 fs->fs_cgrotor = cg;
1174 return (cgbase(fs, cg) + fs->fs_frag);
1175 }
1176 for (cg = 0; cg <= startcg; cg++)
1177 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1178 fs->fs_cgrotor = cg;
1179 return (cgbase(fs, cg) + fs->fs_frag);
1180 }
1181 return (0);
1182 }
1183 /*
1184 * We just always try to lay things out contiguously.
1185 */
1186 return (bap[indx - 1] + fs->fs_frag);
1187 }
1188
1189 /*
1190 * Same as above, but for UFS2
1191 */
1192 ufs2_daddr_t
1193 ffs_blkpref_ufs2(ip, lbn, indx, bap)
1194 struct inode *ip;
1195 ufs_lbn_t lbn;
1196 int indx;
1197 ufs2_daddr_t *bap;
1198 {
1199 struct fs *fs;
1200 int cg;
1201 int avgbfree, startcg;
1202
1203 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1204 fs = ip->i_fs;
1205 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1206 if (lbn < NDADDR + NINDIR(fs)) {
1207 cg = ino_to_cg(fs, ip->i_number);
1208 return (cgbase(fs, cg) + fs->fs_frag);
1209 }
1210 /*
1211 * Find a cylinder with greater than average number of
1212 * unused data blocks.
1213 */
1214 if (indx == 0 || bap[indx - 1] == 0)
1215 startcg =
1216 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1217 else
1218 startcg = dtog(fs, bap[indx - 1]) + 1;
1219 startcg %= fs->fs_ncg;
1220 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1221 for (cg = startcg; cg < fs->fs_ncg; cg++)
1222 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1223 fs->fs_cgrotor = cg;
1224 return (cgbase(fs, cg) + fs->fs_frag);
1225 }
1226 for (cg = 0; cg <= startcg; cg++)
1227 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1228 fs->fs_cgrotor = cg;
1229 return (cgbase(fs, cg) + fs->fs_frag);
1230 }
1231 return (0);
1232 }
1233 /*
1234 * We just always try to lay things out contiguously.
1235 */
1236 return (bap[indx - 1] + fs->fs_frag);
1237 }
1238
1239 /*
1240 * Implement the cylinder overflow algorithm.
1241 *
1242 * The policy implemented by this algorithm is:
1243 * 1) allocate the block in its requested cylinder group.
1244 * 2) quadradically rehash on the cylinder group number.
1245 * 3) brute force search for a free block.
1246 *
1247 * Must be called with the UFS lock held. Will release the lock on success
1248 * and return with it held on failure.
1249 */
1250 /*VARARGS5*/
1251 static ufs2_daddr_t
1252 ffs_hashalloc(ip, cg, pref, size, allocator)
1253 struct inode *ip;
1254 int cg;
1255 ufs2_daddr_t pref;
1256 int size; /* size for data blocks, mode for inodes */
1257 allocfcn_t *allocator;
1258 {
1259 struct fs *fs;
1260 ufs2_daddr_t result;
1261 int i, icg = cg;
1262
1263 mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1264 #ifdef DIAGNOSTIC
1265 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1266 panic("ffs_hashalloc: allocation on suspended filesystem");
1267 #endif
1268 fs = ip->i_fs;
1269 /*
1270 * 1: preferred cylinder group
1271 */
1272 result = (*allocator)(ip, cg, pref, size);
1273 if (result)
1274 return (result);
1275 /*
1276 * 2: quadratic rehash
1277 */
1278 for (i = 1; i < fs->fs_ncg; i *= 2) {
1279 cg += i;
1280 if (cg >= fs->fs_ncg)
1281 cg -= fs->fs_ncg;
1282 result = (*allocator)(ip, cg, 0, size);
1283 if (result)
1284 return (result);
1285 }
1286 /*
1287 * 3: brute force search
1288 * Note that we start at i == 2, since 0 was checked initially,
1289 * and 1 is always checked in the quadratic rehash.
1290 */
1291 cg = (icg + 2) % fs->fs_ncg;
1292 for (i = 2; i < fs->fs_ncg; i++) {
1293 result = (*allocator)(ip, cg, 0, size);
1294 if (result)
1295 return (result);
1296 cg++;
1297 if (cg == fs->fs_ncg)
1298 cg = 0;
1299 }
1300 return (0);
1301 }
1302
1303 /*
1304 * Determine whether a fragment can be extended.
1305 *
1306 * Check to see if the necessary fragments are available, and
1307 * if they are, allocate them.
1308 */
1309 static ufs2_daddr_t
1310 ffs_fragextend(ip, cg, bprev, osize, nsize)
1311 struct inode *ip;
1312 int cg;
1313 ufs2_daddr_t bprev;
1314 int osize, nsize;
1315 {
1316 struct fs *fs;
1317 struct cg *cgp;
1318 struct buf *bp;
1319 struct ufsmount *ump;
1320 int nffree;
1321 long bno;
1322 int frags, bbase;
1323 int i, error;
1324 u_int8_t *blksfree;
1325
1326 ump = ip->i_ump;
1327 fs = ip->i_fs;
1328 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1329 return (0);
1330 frags = numfrags(fs, nsize);
1331 bbase = fragnum(fs, bprev);
1332 if (bbase > fragnum(fs, (bprev + frags - 1))) {
1333 /* cannot extend across a block boundary */
1334 return (0);
1335 }
1336 UFS_UNLOCK(ump);
1337 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1338 (int)fs->fs_cgsize, NOCRED, &bp);
1339 if (error)
1340 goto fail;
1341 cgp = (struct cg *)bp->b_data;
1342 if (!cg_chkmagic(cgp))
1343 goto fail;
1344 bp->b_xflags |= BX_BKGRDWRITE;
1345 cgp->cg_old_time = cgp->cg_time = time_second;
1346 bno = dtogd(fs, bprev);
1347 blksfree = cg_blksfree(cgp);
1348 for (i = numfrags(fs, osize); i < frags; i++)
1349 if (isclr(blksfree, bno + i))
1350 goto fail;
1351 /*
1352 * the current fragment can be extended
1353 * deduct the count on fragment being extended into
1354 * increase the count on the remaining fragment (if any)
1355 * allocate the extended piece
1356 */
1357 for (i = frags; i < fs->fs_frag - bbase; i++)
1358 if (isclr(blksfree, bno + i))
1359 break;
1360 cgp->cg_frsum[i - numfrags(fs, osize)]--;
1361 if (i != frags)
1362 cgp->cg_frsum[i - frags]++;
1363 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
1364 clrbit(blksfree, bno + i);
1365 cgp->cg_cs.cs_nffree--;
1366 nffree++;
1367 }
1368 UFS_LOCK(ump);
1369 fs->fs_cstotal.cs_nffree -= nffree;
1370 fs->fs_cs(fs, cg).cs_nffree -= nffree;
1371 fs->fs_fmod = 1;
1372 ACTIVECLEAR(fs, cg);
1373 UFS_UNLOCK(ump);
1374 if (DOINGSOFTDEP(ITOV(ip)))
1375 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev);
1376 bdwrite(bp);
1377 return (bprev);
1378
1379 fail:
1380 brelse(bp);
1381 UFS_LOCK(ump);
1382 return (0);
1383
1384 }
1385
1386 /*
1387 * Determine whether a block can be allocated.
1388 *
1389 * Check to see if a block of the appropriate size is available,
1390 * and if it is, allocate it.
1391 */
1392 static ufs2_daddr_t
1393 ffs_alloccg(ip, cg, bpref, size)
1394 struct inode *ip;
1395 int cg;
1396 ufs2_daddr_t bpref;
1397 int size;
1398 {
1399 struct fs *fs;
1400 struct cg *cgp;
1401 struct buf *bp;
1402 struct ufsmount *ump;
1403 ufs1_daddr_t bno;
1404 ufs2_daddr_t blkno;
1405 int i, allocsiz, error, frags;
1406 u_int8_t *blksfree;
1407
1408 ump = ip->i_ump;
1409 fs = ip->i_fs;
1410 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1411 return (0);
1412 UFS_UNLOCK(ump);
1413 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1414 (int)fs->fs_cgsize, NOCRED, &bp);
1415 if (error)
1416 goto fail;
1417 cgp = (struct cg *)bp->b_data;
1418 if (!cg_chkmagic(cgp) ||
1419 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1420 goto fail;
1421 bp->b_xflags |= BX_BKGRDWRITE;
1422 cgp->cg_old_time = cgp->cg_time = time_second;
1423 if (size == fs->fs_bsize) {
1424 UFS_LOCK(ump);
1425 blkno = ffs_alloccgblk(ip, bp, bpref);
1426 ACTIVECLEAR(fs, cg);
1427 UFS_UNLOCK(ump);
1428 bdwrite(bp);
1429 return (blkno);
1430 }
1431 /*
1432 * check to see if any fragments are already available
1433 * allocsiz is the size which will be allocated, hacking
1434 * it down to a smaller size if necessary
1435 */
1436 blksfree = cg_blksfree(cgp);
1437 frags = numfrags(fs, size);
1438 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1439 if (cgp->cg_frsum[allocsiz] != 0)
1440 break;
1441 if (allocsiz == fs->fs_frag) {
1442 /*
1443 * no fragments were available, so a block will be
1444 * allocated, and hacked up
1445 */
1446 if (cgp->cg_cs.cs_nbfree == 0)
1447 goto fail;
1448 UFS_LOCK(ump);
1449 blkno = ffs_alloccgblk(ip, bp, bpref);
1450 bno = dtogd(fs, blkno);
1451 for (i = frags; i < fs->fs_frag; i++)
1452 setbit(blksfree, bno + i);
1453 i = fs->fs_frag - frags;
1454 cgp->cg_cs.cs_nffree += i;
1455 fs->fs_cstotal.cs_nffree += i;
1456 fs->fs_cs(fs, cg).cs_nffree += i;
1457 fs->fs_fmod = 1;
1458 cgp->cg_frsum[i]++;
1459 ACTIVECLEAR(fs, cg);
1460 UFS_UNLOCK(ump);
1461 bdwrite(bp);
1462 return (blkno);
1463 }
1464 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1465 if (bno < 0)
1466 goto fail;
1467 for (i = 0; i < frags; i++)
1468 clrbit(blksfree, bno + i);
1469 cgp->cg_cs.cs_nffree -= frags;
1470 cgp->cg_frsum[allocsiz]--;
1471 if (frags != allocsiz)
1472 cgp->cg_frsum[allocsiz - frags]++;
1473 UFS_LOCK(ump);
1474 fs->fs_cstotal.cs_nffree -= frags;
1475 fs->fs_cs(fs, cg).cs_nffree -= frags;
1476 fs->fs_fmod = 1;
1477 blkno = cgbase(fs, cg) + bno;
1478 ACTIVECLEAR(fs, cg);
1479 UFS_UNLOCK(ump);
1480 if (DOINGSOFTDEP(ITOV(ip)))
1481 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno);
1482 bdwrite(bp);
1483 return (blkno);
1484
1485 fail:
1486 brelse(bp);
1487 UFS_LOCK(ump);
1488 return (0);
1489 }
1490
1491 /*
1492 * Allocate a block in a cylinder group.
1493 *
1494 * This algorithm implements the following policy:
1495 * 1) allocate the requested block.
1496 * 2) allocate a rotationally optimal block in the same cylinder.
1497 * 3) allocate the next available block on the block rotor for the
1498 * specified cylinder group.
1499 * Note that this routine only allocates fs_bsize blocks; these
1500 * blocks may be fragmented by the routine that allocates them.
1501 */
1502 static ufs2_daddr_t
1503 ffs_alloccgblk(ip, bp, bpref)
1504 struct inode *ip;
1505 struct buf *bp;
1506 ufs2_daddr_t bpref;
1507 {
1508 struct fs *fs;
1509 struct cg *cgp;
1510 struct ufsmount *ump;
1511 ufs1_daddr_t bno;
1512 ufs2_daddr_t blkno;
1513 u_int8_t *blksfree;
1514
1515 fs = ip->i_fs;
1516 ump = ip->i_ump;
1517 mtx_assert(UFS_MTX(ump), MA_OWNED);
1518 cgp = (struct cg *)bp->b_data;
1519 blksfree = cg_blksfree(cgp);
1520 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1521 bpref = cgp->cg_rotor;
1522 } else {
1523 bpref = blknum(fs, bpref);
1524 bno = dtogd(fs, bpref);
1525 /*
1526 * if the requested block is available, use it
1527 */
1528 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1529 goto gotit;
1530 }
1531 /*
1532 * Take the next available block in this cylinder group.
1533 */
1534 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1535 if (bno < 0)
1536 return (0);
1537 cgp->cg_rotor = bno;
1538 gotit:
1539 blkno = fragstoblks(fs, bno);
1540 ffs_clrblock(fs, blksfree, (long)blkno);
1541 ffs_clusteracct(ump, fs, cgp, blkno, -1);
1542 cgp->cg_cs.cs_nbfree--;
1543 fs->fs_cstotal.cs_nbfree--;
1544 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1545 fs->fs_fmod = 1;
1546 blkno = cgbase(fs, cgp->cg_cgx) + bno;
1547 /* XXX Fixme. */
1548 UFS_UNLOCK(ump);
1549 if (DOINGSOFTDEP(ITOV(ip)))
1550 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno);
1551 UFS_LOCK(ump);
1552 return (blkno);
1553 }
1554
1555 /*
1556 * Determine whether a cluster can be allocated.
1557 *
1558 * We do not currently check for optimal rotational layout if there
1559 * are multiple choices in the same cylinder group. Instead we just
1560 * take the first one that we find following bpref.
1561 */
1562 static ufs2_daddr_t
1563 ffs_clusteralloc(ip, cg, bpref, len)
1564 struct inode *ip;
1565 int cg;
1566 ufs2_daddr_t bpref;
1567 int len;
1568 {
1569 struct fs *fs;
1570 struct cg *cgp;
1571 struct buf *bp;
1572 struct ufsmount *ump;
1573 int i, run, bit, map, got;
1574 ufs2_daddr_t bno;
1575 u_char *mapp;
1576 int32_t *lp;
1577 u_int8_t *blksfree;
1578
1579 fs = ip->i_fs;
1580 ump = ip->i_ump;
1581 if (fs->fs_maxcluster[cg] < len)
1582 return (0);
1583 UFS_UNLOCK(ump);
1584 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1585 NOCRED, &bp))
1586 goto fail_lock;
1587 cgp = (struct cg *)bp->b_data;
1588 if (!cg_chkmagic(cgp))
1589 goto fail_lock;
1590 bp->b_xflags |= BX_BKGRDWRITE;
1591 /*
1592 * Check to see if a cluster of the needed size (or bigger) is
1593 * available in this cylinder group.
1594 */
1595 lp = &cg_clustersum(cgp)[len];
1596 for (i = len; i <= fs->fs_contigsumsize; i++)
1597 if (*lp++ > 0)
1598 break;
1599 if (i > fs->fs_contigsumsize) {
1600 /*
1601 * This is the first time looking for a cluster in this
1602 * cylinder group. Update the cluster summary information
1603 * to reflect the true maximum sized cluster so that
1604 * future cluster allocation requests can avoid reading
1605 * the cylinder group map only to find no clusters.
1606 */
1607 lp = &cg_clustersum(cgp)[len - 1];
1608 for (i = len - 1; i > 0; i--)
1609 if (*lp-- > 0)
1610 break;
1611 UFS_LOCK(ump);
1612 fs->fs_maxcluster[cg] = i;
1613 goto fail;
1614 }
1615 /*
1616 * Search the cluster map to find a big enough cluster.
1617 * We take the first one that we find, even if it is larger
1618 * than we need as we prefer to get one close to the previous
1619 * block allocation. We do not search before the current
1620 * preference point as we do not want to allocate a block
1621 * that is allocated before the previous one (as we will
1622 * then have to wait for another pass of the elevator
1623 * algorithm before it will be read). We prefer to fail and
1624 * be recalled to try an allocation in the next cylinder group.
1625 */
1626 if (dtog(fs, bpref) != cg)
1627 bpref = 0;
1628 else
1629 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1630 mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1631 map = *mapp++;
1632 bit = 1 << (bpref % NBBY);
1633 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1634 if ((map & bit) == 0) {
1635 run = 0;
1636 } else {
1637 run++;
1638 if (run == len)
1639 break;
1640 }
1641 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1642 bit <<= 1;
1643 } else {
1644 map = *mapp++;
1645 bit = 1;
1646 }
1647 }
1648 if (got >= cgp->cg_nclusterblks)
1649 goto fail_lock;
1650 /*
1651 * Allocate the cluster that we have found.
1652 */
1653 blksfree = cg_blksfree(cgp);
1654 for (i = 1; i <= len; i++)
1655 if (!ffs_isblock(fs, blksfree, got - run + i))
1656 panic("ffs_clusteralloc: map mismatch");
1657 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
1658 if (dtog(fs, bno) != cg)
1659 panic("ffs_clusteralloc: allocated out of group");
1660 len = blkstofrags(fs, len);
1661 UFS_LOCK(ump);
1662 for (i = 0; i < len; i += fs->fs_frag)
1663 if (ffs_alloccgblk(ip, bp, bno + i) != bno + i)
1664 panic("ffs_clusteralloc: lost block");
1665 ACTIVECLEAR(fs, cg);
1666 UFS_UNLOCK(ump);
1667 bdwrite(bp);
1668 return (bno);
1669
1670 fail_lock:
1671 UFS_LOCK(ump);
1672 fail:
1673 brelse(bp);
1674 return (0);
1675 }
1676
1677 /*
1678 * Determine whether an inode can be allocated.
1679 *
1680 * Check to see if an inode is available, and if it is,
1681 * allocate it using the following policy:
1682 * 1) allocate the requested inode.
1683 * 2) allocate the next available inode after the requested
1684 * inode in the specified cylinder group.
1685 */
1686 static ufs2_daddr_t
1687 ffs_nodealloccg(ip, cg, ipref, mode)
1688 struct inode *ip;
1689 int cg;
1690 ufs2_daddr_t ipref;
1691 int mode;
1692 {
1693 struct fs *fs;
1694 struct cg *cgp;
1695 struct buf *bp, *ibp;
1696 struct ufsmount *ump;
1697 u_int8_t *inosused;
1698 struct ufs2_dinode *dp2;
1699 int error, start, len, loc, map, i;
1700
1701 fs = ip->i_fs;
1702 ump = ip->i_ump;
1703 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1704 return (0);
1705 UFS_UNLOCK(ump);
1706 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1707 (int)fs->fs_cgsize, NOCRED, &bp);
1708 if (error) {
1709 brelse(bp);
1710 UFS_LOCK(ump);
1711 return (0);
1712 }
1713 cgp = (struct cg *)bp->b_data;
1714 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1715 brelse(bp);
1716 UFS_LOCK(ump);
1717 return (0);
1718 }
1719 bp->b_xflags |= BX_BKGRDWRITE;
1720 cgp->cg_old_time = cgp->cg_time = time_second;
1721 inosused = cg_inosused(cgp);
1722 if (ipref) {
1723 ipref %= fs->fs_ipg;
1724 if (isclr(inosused, ipref))
1725 goto gotit;
1726 }
1727 start = cgp->cg_irotor / NBBY;
1728 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1729 loc = skpc(0xff, len, &inosused[start]);
1730 if (loc == 0) {
1731 len = start + 1;
1732 start = 0;
1733 loc = skpc(0xff, len, &inosused[0]);
1734 if (loc == 0) {
1735 printf("cg = %d, irotor = %ld, fs = %s\n",
1736 cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
1737 panic("ffs_nodealloccg: map corrupted");
1738 /* NOTREACHED */
1739 }
1740 }
1741 i = start + len - loc;
1742 map = inosused[i];
1743 ipref = i * NBBY;
1744 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1745 if ((map & i) == 0) {
1746 cgp->cg_irotor = ipref;
1747 goto gotit;
1748 }
1749 }
1750 printf("fs = %s\n", fs->fs_fsmnt);
1751 panic("ffs_nodealloccg: block not in map");
1752 /* NOTREACHED */
1753 gotit:
1754 /*
1755 * Check to see if we need to initialize more inodes.
1756 */
1757 ibp = NULL;
1758 if (fs->fs_magic == FS_UFS2_MAGIC &&
1759 ipref + INOPB(fs) > cgp->cg_initediblk &&
1760 cgp->cg_initediblk < cgp->cg_niblk) {
1761 ibp = getblk(ip->i_devvp, fsbtodb(fs,
1762 ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)),
1763 (int)fs->fs_bsize, 0, 0, 0);
1764 bzero(ibp->b_data, (int)fs->fs_bsize);
1765 dp2 = (struct ufs2_dinode *)(ibp->b_data);
1766 for (i = 0; i < INOPB(fs); i++) {
1767 dp2->di_gen = arc4random() / 2 + 1;
1768 dp2++;
1769 }
1770 cgp->cg_initediblk += INOPB(fs);
1771 }
1772 UFS_LOCK(ump);
1773 ACTIVECLEAR(fs, cg);
1774 setbit(inosused, ipref);
1775 cgp->cg_cs.cs_nifree--;
1776 fs->fs_cstotal.cs_nifree--;
1777 fs->fs_cs(fs, cg).cs_nifree--;
1778 fs->fs_fmod = 1;
1779 if ((mode & IFMT) == IFDIR) {
1780 cgp->cg_cs.cs_ndir++;
1781 fs->fs_cstotal.cs_ndir++;
1782 fs->fs_cs(fs, cg).cs_ndir++;
1783 }
1784 UFS_UNLOCK(ump);
1785 if (DOINGSOFTDEP(ITOV(ip)))
1786 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1787 bdwrite(bp);
1788 if (ibp != NULL)
1789 bawrite(ibp);
1790 return (cg * fs->fs_ipg + ipref);
1791 }
1792
1793 /*
1794 * check if a block is free
1795 */
1796 static int
1797 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
1798 {
1799
1800 switch ((int)fs->fs_frag) {
1801 case 8:
1802 return (cp[h] == 0);
1803 case 4:
1804 return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0);
1805 case 2:
1806 return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0);
1807 case 1:
1808 return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0);
1809 default:
1810 panic("ffs_isfreeblock");
1811 }
1812 return (0);
1813 }
1814
1815 /*
1816 * Free a block or fragment.
1817 *
1818 * The specified block or fragment is placed back in the
1819 * free map. If a fragment is deallocated, a possible
1820 * block reassembly is checked.
1821 */
1822 void
1823 ffs_blkfree(ump, fs, devvp, bno, size, inum)
1824 struct ufsmount *ump;
1825 struct fs *fs;
1826 struct vnode *devvp;
1827 ufs2_daddr_t bno;
1828 long size;
1829 ino_t inum;
1830 {
1831 struct cg *cgp;
1832 struct buf *bp;
1833 ufs1_daddr_t fragno, cgbno;
1834 ufs2_daddr_t cgblkno;
1835 int i, cg, blk, frags, bbase;
1836 u_int8_t *blksfree;
1837 struct cdev *dev;
1838
1839 cg = dtog(fs, bno);
1840 if (devvp->v_type != VCHR) {
1841 /* devvp is a snapshot */
1842 dev = VTOI(devvp)->i_devvp->v_rdev;
1843 cgblkno = fragstoblks(fs, cgtod(fs, cg));
1844 } else {
1845 /* devvp is a normal disk device */
1846 dev = devvp->v_rdev;
1847 cgblkno = fsbtodb(fs, cgtod(fs, cg));
1848 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree");
1849 if ((devvp->v_vflag & VV_COPYONWRITE) &&
1850 ffs_snapblkfree(fs, devvp, bno, size, inum))
1851 return;
1852 }
1853 #ifdef DIAGNOSTIC
1854 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1855 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1856 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
1857 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
1858 size, fs->fs_fsmnt);
1859 panic("ffs_blkfree: bad size");
1860 }
1861 #endif
1862 if ((u_int)bno >= fs->fs_size) {
1863 printf("bad block %jd, ino %lu\n", (intmax_t)bno,
1864 (u_long)inum);
1865 ffs_fserr(fs, inum, "bad block");
1866 return;
1867 }
1868 if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) {
1869 brelse(bp);
1870 return;
1871 }
1872 cgp = (struct cg *)bp->b_data;
1873 if (!cg_chkmagic(cgp)) {
1874 brelse(bp);
1875 return;
1876 }
1877 bp->b_xflags |= BX_BKGRDWRITE;
1878 cgp->cg_old_time = cgp->cg_time = time_second;
1879 cgbno = dtogd(fs, bno);
1880 blksfree = cg_blksfree(cgp);
1881 UFS_LOCK(ump);
1882 if (size == fs->fs_bsize) {
1883 fragno = fragstoblks(fs, cgbno);
1884 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1885 if (devvp->v_type != VCHR) {
1886 UFS_UNLOCK(ump);
1887 /* devvp is a snapshot */
1888 brelse(bp);
1889 return;
1890 }
1891 printf("dev = %s, block = %jd, fs = %s\n",
1892 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
1893 panic("ffs_blkfree: freeing free block");
1894 }
1895 ffs_setblock(fs, blksfree, fragno);
1896 ffs_clusteracct(ump, fs, cgp, fragno, 1);
1897 cgp->cg_cs.cs_nbfree++;
1898 fs->fs_cstotal.cs_nbfree++;
1899 fs->fs_cs(fs, cg).cs_nbfree++;
1900 } else {
1901 bbase = cgbno - fragnum(fs, cgbno);
1902 /*
1903 * decrement the counts associated with the old frags
1904 */
1905 blk = blkmap(fs, blksfree, bbase);
1906 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1907 /*
1908 * deallocate the fragment
1909 */
1910 frags = numfrags(fs, size);
1911 for (i = 0; i < frags; i++) {
1912 if (isset(blksfree, cgbno + i)) {
1913 printf("dev = %s, block = %jd, fs = %s\n",
1914 devtoname(dev), (intmax_t)(bno + i),
1915 fs->fs_fsmnt);
1916 panic("ffs_blkfree: freeing free frag");
1917 }
1918 setbit(blksfree, cgbno + i);
1919 }
1920 cgp->cg_cs.cs_nffree += i;
1921 fs->fs_cstotal.cs_nffree += i;
1922 fs->fs_cs(fs, cg).cs_nffree += i;
1923 /*
1924 * add back in counts associated with the new frags
1925 */
1926 blk = blkmap(fs, blksfree, bbase);
1927 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1928 /*
1929 * if a complete block has been reassembled, account for it
1930 */
1931 fragno = fragstoblks(fs, bbase);
1932 if (ffs_isblock(fs, blksfree, fragno)) {
1933 cgp->cg_cs.cs_nffree -= fs->fs_frag;
1934 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1935 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1936 ffs_clusteracct(ump, fs, cgp, fragno, 1);
1937 cgp->cg_cs.cs_nbfree++;
1938 fs->fs_cstotal.cs_nbfree++;
1939 fs->fs_cs(fs, cg).cs_nbfree++;
1940 }
1941 }
1942 fs->fs_fmod = 1;
1943 ACTIVECLEAR(fs, cg);
1944 UFS_UNLOCK(ump);
1945 bdwrite(bp);
1946 }
1947
1948 #ifdef DIAGNOSTIC
1949 /*
1950 * Verify allocation of a block or fragment. Returns true if block or
1951 * fragment is allocated, false if it is free.
1952 */
1953 static int
1954 ffs_checkblk(ip, bno, size)
1955 struct inode *ip;
1956 ufs2_daddr_t bno;
1957 long size;
1958 {
1959 struct fs *fs;
1960 struct cg *cgp;
1961 struct buf *bp;
1962 ufs1_daddr_t cgbno;
1963 int i, error, frags, free;
1964 u_int8_t *blksfree;
1965
1966 fs = ip->i_fs;
1967 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1968 printf("bsize = %ld, size = %ld, fs = %s\n",
1969 (long)fs->fs_bsize, size, fs->fs_fsmnt);
1970 panic("ffs_checkblk: bad size");
1971 }
1972 if ((u_int)bno >= fs->fs_size)
1973 panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
1974 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1975 (int)fs->fs_cgsize, NOCRED, &bp);
1976 if (error)
1977 panic("ffs_checkblk: cg bread failed");
1978 cgp = (struct cg *)bp->b_data;
1979 if (!cg_chkmagic(cgp))
1980 panic("ffs_checkblk: cg magic mismatch");
1981 bp->b_xflags |= BX_BKGRDWRITE;
1982 blksfree = cg_blksfree(cgp);
1983 cgbno = dtogd(fs, bno);
1984 if (size == fs->fs_bsize) {
1985 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
1986 } else {
1987 frags = numfrags(fs, size);
1988 for (free = 0, i = 0; i < frags; i++)
1989 if (isset(blksfree, cgbno + i))
1990 free++;
1991 if (free != 0 && free != frags)
1992 panic("ffs_checkblk: partially free fragment");
1993 }
1994 brelse(bp);
1995 return (!free);
1996 }
1997 #endif /* DIAGNOSTIC */
1998
1999 /*
2000 * Free an inode.
2001 */
2002 int
2003 ffs_vfree(pvp, ino, mode)
2004 struct vnode *pvp;
2005 ino_t ino;
2006 int mode;
2007 {
2008 struct inode *ip;
2009
2010 if (DOINGSOFTDEP(pvp)) {
2011 softdep_freefile(pvp, ino, mode);
2012 return (0);
2013 }
2014 ip = VTOI(pvp);
2015 return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode));
2016 }
2017
2018 /*
2019 * Do the actual free operation.
2020 * The specified inode is placed back in the free map.
2021 */
2022 int
2023 ffs_freefile(ump, fs, devvp, ino, mode)
2024 struct ufsmount *ump;
2025 struct fs *fs;
2026 struct vnode *devvp;
2027 ino_t ino;
2028 int mode;
2029 {
2030 struct cg *cgp;
2031 struct buf *bp;
2032 ufs2_daddr_t cgbno;
2033 int error, cg;
2034 u_int8_t *inosused;
2035 struct cdev *dev;
2036
2037 cg = ino_to_cg(fs, ino);
2038 if (devvp->v_type != VCHR) {
2039 /* devvp is a snapshot */
2040 dev = VTOI(devvp)->i_devvp->v_rdev;
2041 cgbno = fragstoblks(fs, cgtod(fs, cg));
2042 } else {
2043 /* devvp is a normal disk device */
2044 dev = devvp->v_rdev;
2045 cgbno = fsbtodb(fs, cgtod(fs, cg));
2046 }
2047 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2048 panic("ffs_freefile: range: dev = %s, ino = %lu, fs = %s",
2049 devtoname(dev), (u_long)ino, fs->fs_fsmnt);
2050 if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
2051 brelse(bp);
2052 return (error);
2053 }
2054 cgp = (struct cg *)bp->b_data;
2055 if (!cg_chkmagic(cgp)) {
2056 brelse(bp);
2057 return (0);
2058 }
2059 bp->b_xflags |= BX_BKGRDWRITE;
2060 cgp->cg_old_time = cgp->cg_time = time_second;
2061 inosused = cg_inosused(cgp);
2062 ino %= fs->fs_ipg;
2063 if (isclr(inosused, ino)) {
2064 printf("dev = %s, ino = %lu, fs = %s\n", devtoname(dev),
2065 (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt);
2066 if (fs->fs_ronly == 0)
2067 panic("ffs_freefile: freeing free inode");
2068 }
2069 clrbit(inosused, ino);
2070 if (ino < cgp->cg_irotor)
2071 cgp->cg_irotor = ino;
2072 cgp->cg_cs.cs_nifree++;
2073 UFS_LOCK(ump);
2074 fs->fs_cstotal.cs_nifree++;
2075 fs->fs_cs(fs, cg).cs_nifree++;
2076 if ((mode & IFMT) == IFDIR) {
2077 cgp->cg_cs.cs_ndir--;
2078 fs->fs_cstotal.cs_ndir--;
2079 fs->fs_cs(fs, cg).cs_ndir--;
2080 }
2081 fs->fs_fmod = 1;
2082 ACTIVECLEAR(fs, cg);
2083 UFS_UNLOCK(ump);
2084 bdwrite(bp);
2085 return (0);
2086 }
2087
2088 /*
2089 * Check to see if a file is free.
2090 */
2091 int
2092 ffs_checkfreefile(fs, devvp, ino)
2093 struct fs *fs;
2094 struct vnode *devvp;
2095 ino_t ino;
2096 {
2097 struct cg *cgp;
2098 struct buf *bp;
2099 ufs2_daddr_t cgbno;
2100 int ret, cg;
2101 u_int8_t *inosused;
2102
2103 cg = ino_to_cg(fs, ino);
2104 if (devvp->v_type != VCHR) {
2105 /* devvp is a snapshot */
2106 cgbno = fragstoblks(fs, cgtod(fs, cg));
2107 } else {
2108 /* devvp is a normal disk device */
2109 cgbno = fsbtodb(fs, cgtod(fs, cg));
2110 }
2111 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2112 return (1);
2113 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
2114 brelse(bp);
2115 return (1);
2116 }
2117 cgp = (struct cg *)bp->b_data;
2118 if (!cg_chkmagic(cgp)) {
2119 brelse(bp);
2120 return (1);
2121 }
2122 inosused = cg_inosused(cgp);
2123 ino %= fs->fs_ipg;
2124 ret = isclr(inosused, ino);
2125 brelse(bp);
2126 return (ret);
2127 }
2128
2129 /*
2130 * Find a block of the specified size in the specified cylinder group.
2131 *
2132 * It is a panic if a request is made to find a block if none are
2133 * available.
2134 */
2135 static ufs1_daddr_t
2136 ffs_mapsearch(fs, cgp, bpref, allocsiz)
2137 struct fs *fs;
2138 struct cg *cgp;
2139 ufs2_daddr_t bpref;
2140 int allocsiz;
2141 {
2142 ufs1_daddr_t bno;
2143 int start, len, loc, i;
2144 int blk, field, subfield, pos;
2145 u_int8_t *blksfree;
2146
2147 /*
2148 * find the fragment by searching through the free block
2149 * map for an appropriate bit pattern
2150 */
2151 if (bpref)
2152 start = dtogd(fs, bpref) / NBBY;
2153 else
2154 start = cgp->cg_frotor / NBBY;
2155 blksfree = cg_blksfree(cgp);
2156 len = howmany(fs->fs_fpg, NBBY) - start;
2157 loc = scanc((u_int)len, (u_char *)&blksfree[start],
2158 fragtbl[fs->fs_frag],
2159 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2160 if (loc == 0) {
2161 len = start + 1;
2162 start = 0;
2163 loc = scanc((u_int)len, (u_char *)&blksfree[0],
2164 fragtbl[fs->fs_frag],
2165 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2166 if (loc == 0) {
2167 printf("start = %d, len = %d, fs = %s\n",
2168 start, len, fs->fs_fsmnt);
2169 panic("ffs_alloccg: map corrupted");
2170 /* NOTREACHED */
2171 }
2172 }
2173 bno = (start + len - loc) * NBBY;
2174 cgp->cg_frotor = bno;
2175 /*
2176 * found the byte in the map
2177 * sift through the bits to find the selected frag
2178 */
2179 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2180 blk = blkmap(fs, blksfree, bno);
2181 blk <<= 1;
2182 field = around[allocsiz];
2183 subfield = inside[allocsiz];
2184 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2185 if ((blk & field) == subfield)
2186 return (bno + pos);
2187 field <<= 1;
2188 subfield <<= 1;
2189 }
2190 }
2191 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
2192 panic("ffs_alloccg: block not in map");
2193 return (-1);
2194 }
2195
2196 /*
2197 * Update the cluster map because of an allocation or free.
2198 *
2199 * Cnt == 1 means free; cnt == -1 means allocating.
2200 */
2201 void
2202 ffs_clusteracct(ump, fs, cgp, blkno, cnt)
2203 struct ufsmount *ump;
2204 struct fs *fs;
2205 struct cg *cgp;
2206 ufs1_daddr_t blkno;
2207 int cnt;
2208 {
2209 int32_t *sump;
2210 int32_t *lp;
2211 u_char *freemapp, *mapp;
2212 int i, start, end, forw, back, map, bit;
2213
2214 mtx_assert(UFS_MTX(ump), MA_OWNED);
2215
2216 if (fs->fs_contigsumsize <= 0)
2217 return;
2218 freemapp = cg_clustersfree(cgp);
2219 sump = cg_clustersum(cgp);
2220 /*
2221 * Allocate or clear the actual block.
2222 */
2223 if (cnt > 0)
2224 setbit(freemapp, blkno);
2225 else
2226 clrbit(freemapp, blkno);
2227 /*
2228 * Find the size of the cluster going forward.
2229 */
2230 start = blkno + 1;
2231 end = start + fs->fs_contigsumsize;
2232 if (end >= cgp->cg_nclusterblks)
2233 end = cgp->cg_nclusterblks;
2234 mapp = &freemapp[start / NBBY];
2235 map = *mapp++;
2236 bit = 1 << (start % NBBY);
2237 for (i = start; i < end; i++) {
2238 if ((map & bit) == 0)
2239 break;
2240 if ((i & (NBBY - 1)) != (NBBY - 1)) {
2241 bit <<= 1;
2242 } else {
2243 map = *mapp++;
2244 bit = 1;
2245 }
2246 }
2247 forw = i - start;
2248 /*
2249 * Find the size of the cluster going backward.
2250 */
2251 start = blkno - 1;
2252 end = start - fs->fs_contigsumsize;
2253 if (end < 0)
2254 end = -1;
2255 mapp = &freemapp[start / NBBY];
2256 map = *mapp--;
2257 bit = 1 << (start % NBBY);
2258 for (i = start; i > end; i--) {
2259 if ((map & bit) == 0)
2260 break;
2261 if ((i & (NBBY - 1)) != 0) {
2262 bit >>= 1;
2263 } else {
2264 map = *mapp--;
2265 bit = 1 << (NBBY - 1);
2266 }
2267 }
2268 back = start - i;
2269 /*
2270 * Account for old cluster and the possibly new forward and
2271 * back clusters.
2272 */
2273 i = back + forw + 1;
2274 if (i > fs->fs_contigsumsize)
2275 i = fs->fs_contigsumsize;
2276 sump[i] += cnt;
2277 if (back > 0)
2278 sump[back] -= cnt;
2279 if (forw > 0)
2280 sump[forw] -= cnt;
2281 /*
2282 * Update cluster summary information.
2283 */
2284 lp = &sump[fs->fs_contigsumsize];
2285 for (i = fs->fs_contigsumsize; i > 0; i--)
2286 if (*lp-- > 0)
2287 break;
2288 fs->fs_maxcluster[cgp->cg_cgx] = i;
2289 }
2290
2291 /*
2292 * Fserr prints the name of a filesystem with an error diagnostic.
2293 *
2294 * The form of the error message is:
2295 * fs: error message
2296 */
2297 static void
2298 ffs_fserr(fs, inum, cp)
2299 struct fs *fs;
2300 ino_t inum;
2301 char *cp;
2302 {
2303 struct thread *td = curthread; /* XXX */
2304 struct proc *p = td->td_proc;
2305
2306 log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n",
2307 p->p_pid, p->p_comm, td->td_ucred->cr_uid, inum, fs->fs_fsmnt, cp);
2308 }
2309
2310 /*
2311 * This function provides the capability for the fsck program to
2312 * update an active filesystem. Eleven operations are provided:
2313 *
2314 * adjrefcnt(inode, amt) - adjusts the reference count on the
2315 * specified inode by the specified amount. Under normal
2316 * operation the count should always go down. Decrementing
2317 * the count to zero will cause the inode to be freed.
2318 * adjblkcnt(inode, amt) - adjust the number of blocks used to
2319 * by the specifed amount.
2320 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
2321 * adjust the superblock summary.
2322 * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
2323 * are marked as free. Inodes should never have to be marked
2324 * as in use.
2325 * freefiles(inode, count) - file inodes [inode..inode + count - 1]
2326 * are marked as free. Inodes should never have to be marked
2327 * as in use.
2328 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
2329 * are marked as free. Blocks should never have to be marked
2330 * as in use.
2331 * setflags(flags, set/clear) - the fs_flags field has the specified
2332 * flags set (second parameter +1) or cleared (second parameter -1).
2333 */
2334
2335 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
2336
2337 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
2338 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
2339
2340 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
2341 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
2342
2343 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR,
2344 sysctl_ffs_fsck, "Adjust number of directories");
2345
2346 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR,
2347 sysctl_ffs_fsck, "Adjust number of free blocks");
2348
2349 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR,
2350 sysctl_ffs_fsck, "Adjust number of free inodes");
2351
2352 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR,
2353 sysctl_ffs_fsck, "Adjust number of free frags");
2354
2355 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR,
2356 sysctl_ffs_fsck, "Adjust number of free clusters");
2357
2358 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
2359 sysctl_ffs_fsck, "Free Range of Directory Inodes");
2360
2361 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
2362 sysctl_ffs_fsck, "Free Range of File Inodes");
2363
2364 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
2365 sysctl_ffs_fsck, "Free Range of Blocks");
2366
2367 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
2368 sysctl_ffs_fsck, "Change Filesystem Flags");
2369
2370 #ifdef DEBUG
2371 static int fsckcmds = 0;
2372 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
2373 #endif /* DEBUG */
2374
2375 static int
2376 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
2377 {
2378 struct fsck_cmd cmd;
2379 struct ufsmount *ump;
2380 struct vnode *vp;
2381 struct inode *ip;
2382 struct mount *mp;
2383 struct fs *fs;
2384 ufs2_daddr_t blkno;
2385 long blkcnt, blksize;
2386 struct file *fp;
2387 int filetype, error;
2388
2389 if (req->newlen > sizeof cmd)
2390 return (EBADRPC);
2391 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
2392 return (error);
2393 if (cmd.version != FFS_CMD_VERSION)
2394 return (ERPCMISMATCH);
2395 if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0)
2396 return (error);
2397 vn_start_write(fp->f_data, &mp, V_WAIT);
2398 if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
2399 vn_finished_write(mp);
2400 fdrop(fp, curthread);
2401 return (EINVAL);
2402 }
2403 if (mp->mnt_flag & MNT_RDONLY) {
2404 vn_finished_write(mp);
2405 fdrop(fp, curthread);
2406 return (EROFS);
2407 }
2408 ump = VFSTOUFS(mp);
2409 fs = ump->um_fs;
2410 filetype = IFREG;
2411
2412 switch (oidp->oid_number) {
2413
2414 case FFS_SET_FLAGS:
2415 #ifdef DEBUG
2416 if (fsckcmds)
2417 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
2418 cmd.size > 0 ? "set" : "clear");
2419 #endif /* DEBUG */
2420 if (cmd.size > 0)
2421 fs->fs_flags |= (long)cmd.value;
2422 else
2423 fs->fs_flags &= ~(long)cmd.value;
2424 break;
2425
2426 case FFS_ADJ_REFCNT:
2427 #ifdef DEBUG
2428 if (fsckcmds) {
2429 printf("%s: adjust inode %jd count by %jd\n",
2430 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2431 (intmax_t)cmd.size);
2432 }
2433 #endif /* DEBUG */
2434 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2435 break;
2436 ip = VTOI(vp);
2437 ip->i_nlink += cmd.size;
2438 DIP_SET(ip, i_nlink, ip->i_nlink);
2439 ip->i_effnlink += cmd.size;
2440 ip->i_flag |= IN_CHANGE;
2441 if (DOINGSOFTDEP(vp))
2442 softdep_change_linkcnt(ip);
2443 vput(vp);
2444 break;
2445
2446 case FFS_ADJ_BLKCNT:
2447 #ifdef DEBUG
2448 if (fsckcmds) {
2449 printf("%s: adjust inode %jd block count by %jd\n",
2450 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2451 (intmax_t)cmd.size);
2452 }
2453 #endif /* DEBUG */
2454 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2455 break;
2456 ip = VTOI(vp);
2457 if (ip->i_flag & IN_SPACECOUNTED) {
2458 UFS_LOCK(ump);
2459 fs->fs_pendingblocks += cmd.size;
2460 UFS_UNLOCK(ump);
2461 }
2462 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
2463 ip->i_flag |= IN_CHANGE;
2464 vput(vp);
2465 break;
2466
2467 case FFS_DIR_FREE:
2468 filetype = IFDIR;
2469 /* fall through */
2470
2471 case FFS_FILE_FREE:
2472 #ifdef DEBUG
2473 if (fsckcmds) {
2474 if (cmd.size == 1)
2475 printf("%s: free %s inode %d\n",
2476 mp->mnt_stat.f_mntonname,
2477 filetype == IFDIR ? "directory" : "file",
2478 (ino_t)cmd.value);
2479 else
2480 printf("%s: free %s inodes %d-%d\n",
2481 mp->mnt_stat.f_mntonname,
2482 filetype == IFDIR ? "directory" : "file",
2483 (ino_t)cmd.value,
2484 (ino_t)(cmd.value + cmd.size - 1));
2485 }
2486 #endif /* DEBUG */
2487 while (cmd.size > 0) {
2488 if ((error = ffs_freefile(ump, fs, ump->um_devvp,
2489 cmd.value, filetype)))
2490 break;
2491 cmd.size -= 1;
2492 cmd.value += 1;
2493 }
2494 break;
2495
2496 case FFS_BLK_FREE:
2497 #ifdef DEBUG
2498 if (fsckcmds) {
2499 if (cmd.size == 1)
2500 printf("%s: free block %jd\n",
2501 mp->mnt_stat.f_mntonname,
2502 (intmax_t)cmd.value);
2503 else
2504 printf("%s: free blocks %jd-%jd\n",
2505 mp->mnt_stat.f_mntonname,
2506 (intmax_t)cmd.value,
2507 (intmax_t)cmd.value + cmd.size - 1);
2508 }
2509 #endif /* DEBUG */
2510 blkno = cmd.value;
2511 blkcnt = cmd.size;
2512 blksize = fs->fs_frag - (blkno % fs->fs_frag);
2513 while (blkcnt > 0) {
2514 if (blksize > blkcnt)
2515 blksize = blkcnt;
2516 ffs_blkfree(ump, fs, ump->um_devvp, blkno,
2517 blksize * fs->fs_fsize, ROOTINO);
2518 blkno += blksize;
2519 blkcnt -= blksize;
2520 blksize = fs->fs_frag;
2521 }
2522 break;
2523
2524 /*
2525 * Adjust superblock summaries. fsck(8) is expected to
2526 * submit deltas when necessary.
2527 */
2528 case FFS_ADJ_NDIR:
2529 #ifdef DEBUG
2530 if (fsckcmds) {
2531 printf("%s: adjust number of directories by %jd\n",
2532 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2533 }
2534 #endif /* DEBUG */
2535 fs->fs_cstotal.cs_ndir += cmd.value;
2536 break;
2537 case FFS_ADJ_NBFREE:
2538 #ifdef DEBUG
2539 if (fsckcmds) {
2540 printf("%s: adjust number of free blocks by %+jd\n",
2541 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2542 }
2543 #endif /* DEBUG */
2544 fs->fs_cstotal.cs_nbfree += cmd.value;
2545 break;
2546 case FFS_ADJ_NIFREE:
2547 #ifdef DEBUG
2548 if (fsckcmds) {
2549 printf("%s: adjust number of free inodes by %+jd\n",
2550 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2551 }
2552 #endif /* DEBUG */
2553 fs->fs_cstotal.cs_nifree += cmd.value;
2554 break;
2555 case FFS_ADJ_NFFREE:
2556 #ifdef DEBUG
2557 if (fsckcmds) {
2558 printf("%s: adjust number of free frags by %+jd\n",
2559 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2560 }
2561 #endif /* DEBUG */
2562 fs->fs_cstotal.cs_nffree += cmd.value;
2563 break;
2564 case FFS_ADJ_NUMCLUSTERS:
2565 #ifdef DEBUG
2566 if (fsckcmds) {
2567 printf("%s: adjust number of free clusters by %+jd\n",
2568 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2569 }
2570 #endif /* DEBUG */
2571 fs->fs_cstotal.cs_numclusters += cmd.value;
2572 break;
2573
2574 default:
2575 #ifdef DEBUG
2576 if (fsckcmds) {
2577 printf("Invalid request %d from fsck\n",
2578 oidp->oid_number);
2579 }
2580 #endif /* DEBUG */
2581 error = EINVAL;
2582 break;
2583
2584 }
2585 fdrop(fp, curthread);
2586 vn_finished_write(mp);
2587 return (error);
2588 }
Cache object: 8fcaef01ff6a4e01c4b483392e91cab0
|