The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/ufs/ffs/ffs_alloc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002 Networks Associates Technology, Inc.
    3  * All rights reserved.
    4  *
    5  * This software was developed for the FreeBSD Project by Marshall
    6  * Kirk McKusick and Network Associates Laboratories, the Security
    7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
    8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
    9  * research program
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  * Copyright (c) 1982, 1986, 1989, 1993
   33  *      The Regents of the University of California.  All rights reserved.
   34  *
   35  * Redistribution and use in source and binary forms, with or without
   36  * modification, are permitted provided that the following conditions
   37  * are met:
   38  * 1. Redistributions of source code must retain the above copyright
   39  *    notice, this list of conditions and the following disclaimer.
   40  * 2. Redistributions in binary form must reproduce the above copyright
   41  *    notice, this list of conditions and the following disclaimer in the
   42  *    documentation and/or other materials provided with the distribution.
   43  * 4. Neither the name of the University nor the names of its contributors
   44  *    may be used to endorse or promote products derived from this software
   45  *    without specific prior written permission.
   46  *
   47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   57  * SUCH DAMAGE.
   58  *
   59  *      @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95
   60  */
   61 
   62 #include <sys/cdefs.h>
   63 __FBSDID("$FreeBSD$");
   64 
   65 #include "opt_quota.h"
   66 
   67 #include <sys/param.h>
   68 #include <sys/systm.h>
   69 #include <sys/bio.h>
   70 #include <sys/buf.h>
   71 #include <sys/conf.h>
   72 #include <sys/file.h>
   73 #include <sys/filedesc.h>
   74 #include <sys/priv.h>
   75 #include <sys/proc.h>
   76 #include <sys/vnode.h>
   77 #include <sys/mount.h>
   78 #include <sys/kernel.h>
   79 #include <sys/sysctl.h>
   80 #include <sys/syslog.h>
   81 
   82 #include <ufs/ufs/extattr.h>
   83 #include <ufs/ufs/quota.h>
   84 #include <ufs/ufs/inode.h>
   85 #include <ufs/ufs/ufs_extern.h>
   86 #include <ufs/ufs/ufsmount.h>
   87 
   88 #include <ufs/ffs/fs.h>
   89 #include <ufs/ffs/ffs_extern.h>
   90 
   91 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, int cg, ufs2_daddr_t bpref,
   92                                   int size);
   93 
   94 static ufs2_daddr_t ffs_alloccg(struct inode *, int, ufs2_daddr_t, int);
   95 static ufs2_daddr_t
   96               ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t);
   97 #ifdef INVARIANTS
   98 static int      ffs_checkblk(struct inode *, ufs2_daddr_t, long);
   99 #endif
  100 static ufs2_daddr_t ffs_clusteralloc(struct inode *, int, ufs2_daddr_t, int);
  101 static void     ffs_clusteracct(struct ufsmount *, struct fs *, struct cg *,
  102                     ufs1_daddr_t, int);
  103 static ino_t    ffs_dirpref(struct inode *);
  104 static ufs2_daddr_t ffs_fragextend(struct inode *, int, ufs2_daddr_t, int, int);
  105 static void     ffs_fserr(struct fs *, ino_t, char *);
  106 static ufs2_daddr_t     ffs_hashalloc
  107                 (struct inode *, int, ufs2_daddr_t, int, allocfcn_t *);
  108 static ufs2_daddr_t ffs_nodealloccg(struct inode *, int, ufs2_daddr_t, int);
  109 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
  110 static int      ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
  111 static int      ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
  112 
  113 /*
  114  * Allocate a block in the filesystem.
  115  *
  116  * The size of the requested block is given, which must be some
  117  * multiple of fs_fsize and <= fs_bsize.
  118  * A preference may be optionally specified. If a preference is given
  119  * the following hierarchy is used to allocate a block:
  120  *   1) allocate the requested block.
  121  *   2) allocate a rotationally optimal block in the same cylinder.
  122  *   3) allocate a block in the same cylinder group.
  123  *   4) quadradically rehash into other cylinder groups, until an
  124  *      available block is located.
  125  * If no block preference is given the following hierarchy is used
  126  * to allocate a block:
  127  *   1) allocate a block in the cylinder group that contains the
  128  *      inode for the file.
  129  *   2) quadradically rehash into other cylinder groups, until an
  130  *      available block is located.
  131  */
  132 int
  133 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
  134         struct inode *ip;
  135         ufs2_daddr_t lbn, bpref;
  136         int size;
  137         struct ucred *cred;
  138         ufs2_daddr_t *bnp;
  139 {
  140         struct fs *fs;
  141         struct ufsmount *ump;
  142         ufs2_daddr_t bno;
  143         int cg, reclaimed;
  144         static struct timeval lastfail;
  145         static int curfail;
  146         int64_t delta;
  147 #ifdef QUOTA
  148         int error;
  149 #endif
  150 
  151         *bnp = 0;
  152         fs = ip->i_fs;
  153         ump = ip->i_ump;
  154         mtx_assert(UFS_MTX(ump), MA_OWNED);
  155 #ifdef INVARIANTS
  156         if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
  157                 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
  158                     devtoname(ip->i_dev), (long)fs->fs_bsize, size,
  159                     fs->fs_fsmnt);
  160                 panic("ffs_alloc: bad size");
  161         }
  162         if (cred == NOCRED)
  163                 panic("ffs_alloc: missing credential");
  164 #endif /* INVARIANTS */
  165         reclaimed = 0;
  166 retry:
  167 #ifdef QUOTA
  168         UFS_UNLOCK(ump);
  169         error = chkdq(ip, btodb(size), cred, 0);
  170         if (error)
  171                 return (error);
  172         UFS_LOCK(ump);
  173 #endif
  174         if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
  175                 goto nospace;
  176         if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
  177             freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
  178                 goto nospace;
  179         if (bpref >= fs->fs_size)
  180                 bpref = 0;
  181         if (bpref == 0)
  182                 cg = ino_to_cg(fs, ip->i_number);
  183         else
  184                 cg = dtog(fs, bpref);
  185         bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
  186         if (bno > 0) {
  187                 delta = btodb(size);
  188                 if (ip->i_flag & IN_SPACECOUNTED) {
  189                         UFS_LOCK(ump);
  190                         fs->fs_pendingblocks += delta;
  191                         UFS_UNLOCK(ump);
  192                 }
  193                 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
  194                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  195                 *bnp = bno;
  196                 return (0);
  197         }
  198 nospace:
  199 #ifdef QUOTA
  200         UFS_UNLOCK(ump);
  201         /*
  202          * Restore user's disk quota because allocation failed.
  203          */
  204         (void) chkdq(ip, -btodb(size), cred, FORCE);
  205         UFS_LOCK(ump);
  206 #endif
  207         if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
  208                 reclaimed = 1;
  209                 softdep_request_cleanup(fs, ITOV(ip));
  210                 goto retry;
  211         }
  212         UFS_UNLOCK(ump);
  213         if (ppsratecheck(&lastfail, &curfail, 1)) {
  214                 ffs_fserr(fs, ip->i_number, "filesystem full");
  215                 uprintf("\n%s: write failed, filesystem is full\n",
  216                     fs->fs_fsmnt);
  217         }
  218         return (ENOSPC);
  219 }
  220 
  221 /*
  222  * Reallocate a fragment to a bigger size
  223  *
  224  * The number and size of the old block is given, and a preference
  225  * and new size is also specified. The allocator attempts to extend
  226  * the original block. Failing that, the regular block allocator is
  227  * invoked to get an appropriate block.
  228  */
  229 int
  230 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, cred, bpp)
  231         struct inode *ip;
  232         ufs2_daddr_t lbprev;
  233         ufs2_daddr_t bprev;
  234         ufs2_daddr_t bpref;
  235         int osize, nsize;
  236         struct ucred *cred;
  237         struct buf **bpp;
  238 {
  239         struct vnode *vp;
  240         struct fs *fs;
  241         struct buf *bp;
  242         struct ufsmount *ump;
  243         int cg, request, error, reclaimed;
  244         ufs2_daddr_t bno;
  245         static struct timeval lastfail;
  246         static int curfail;
  247         int64_t delta;
  248 
  249         *bpp = 0;
  250         vp = ITOV(ip);
  251         fs = ip->i_fs;
  252         bp = NULL;
  253         ump = ip->i_ump;
  254         mtx_assert(UFS_MTX(ump), MA_OWNED);
  255 #ifdef INVARIANTS
  256         if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
  257                 panic("ffs_realloccg: allocation on suspended filesystem");
  258         if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
  259             (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
  260                 printf(
  261                 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
  262                     devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
  263                     nsize, fs->fs_fsmnt);
  264                 panic("ffs_realloccg: bad size");
  265         }
  266         if (cred == NOCRED)
  267                 panic("ffs_realloccg: missing credential");
  268 #endif /* INVARIANTS */
  269         reclaimed = 0;
  270 retry:
  271         if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
  272             freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0) {
  273                 goto nospace;
  274         }
  275         if (bprev == 0) {
  276                 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
  277                     devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev,
  278                     fs->fs_fsmnt);
  279                 panic("ffs_realloccg: bad bprev");
  280         }
  281         UFS_UNLOCK(ump);
  282         /*
  283          * Allocate the extra space in the buffer.
  284          */
  285         error = bread(vp, lbprev, osize, NOCRED, &bp);
  286         if (error) {
  287                 brelse(bp);
  288                 return (error);
  289         }
  290 
  291         if (bp->b_blkno == bp->b_lblkno) {
  292                 if (lbprev >= NDADDR)
  293                         panic("ffs_realloccg: lbprev out of range");
  294                 bp->b_blkno = fsbtodb(fs, bprev);
  295         }
  296 
  297 #ifdef QUOTA
  298         error = chkdq(ip, btodb(nsize - osize), cred, 0);
  299         if (error) {
  300                 brelse(bp);
  301                 return (error);
  302         }
  303 #endif
  304         /*
  305          * Check for extension in the existing location.
  306          */
  307         cg = dtog(fs, bprev);
  308         UFS_LOCK(ump);
  309         bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
  310         if (bno) {
  311                 if (bp->b_blkno != fsbtodb(fs, bno))
  312                         panic("ffs_realloccg: bad blockno");
  313                 delta = btodb(nsize - osize);
  314                 if (ip->i_flag & IN_SPACECOUNTED) {
  315                         UFS_LOCK(ump);
  316                         fs->fs_pendingblocks += delta;
  317                         UFS_UNLOCK(ump);
  318                 }
  319                 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
  320                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  321                 allocbuf(bp, nsize);
  322                 bp->b_flags |= B_DONE;
  323                 if ((bp->b_flags & (B_MALLOC | B_VMIO)) != B_VMIO)
  324                         bzero((char *)bp->b_data + osize, nsize - osize);
  325                 else
  326                         vfs_bio_clrbuf(bp);
  327                 *bpp = bp;
  328                 return (0);
  329         }
  330         /*
  331          * Allocate a new disk location.
  332          */
  333         if (bpref >= fs->fs_size)
  334                 bpref = 0;
  335         switch ((int)fs->fs_optim) {
  336         case FS_OPTSPACE:
  337                 /*
  338                  * Allocate an exact sized fragment. Although this makes
  339                  * best use of space, we will waste time relocating it if
  340                  * the file continues to grow. If the fragmentation is
  341                  * less than half of the minimum free reserve, we choose
  342                  * to begin optimizing for time.
  343                  */
  344                 request = nsize;
  345                 if (fs->fs_minfree <= 5 ||
  346                     fs->fs_cstotal.cs_nffree >
  347                     (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
  348                         break;
  349                 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
  350                         fs->fs_fsmnt);
  351                 fs->fs_optim = FS_OPTTIME;
  352                 break;
  353         case FS_OPTTIME:
  354                 /*
  355                  * At this point we have discovered a file that is trying to
  356                  * grow a small fragment to a larger fragment. To save time,
  357                  * we allocate a full sized block, then free the unused portion.
  358                  * If the file continues to grow, the `ffs_fragextend' call
  359                  * above will be able to grow it in place without further
  360                  * copying. If aberrant programs cause disk fragmentation to
  361                  * grow within 2% of the free reserve, we choose to begin
  362                  * optimizing for space.
  363                  */
  364                 request = fs->fs_bsize;
  365                 if (fs->fs_cstotal.cs_nffree <
  366                     (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
  367                         break;
  368                 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
  369                         fs->fs_fsmnt);
  370                 fs->fs_optim = FS_OPTSPACE;
  371                 break;
  372         default:
  373                 printf("dev = %s, optim = %ld, fs = %s\n",
  374                     devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
  375                 panic("ffs_realloccg: bad optim");
  376                 /* NOTREACHED */
  377         }
  378         bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
  379         if (bno > 0) {
  380                 bp->b_blkno = fsbtodb(fs, bno);
  381                 if (!DOINGSOFTDEP(vp))
  382                         ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize,
  383                             ip->i_number);
  384                 if (nsize < request)
  385                         ffs_blkfree(ump, fs, ip->i_devvp,
  386                             bno + numfrags(fs, nsize),
  387                             (long)(request - nsize), ip->i_number);
  388                 delta = btodb(nsize - osize);
  389                 if (ip->i_flag & IN_SPACECOUNTED) {
  390                         UFS_LOCK(ump);
  391                         fs->fs_pendingblocks += delta;
  392                         UFS_UNLOCK(ump);
  393                 }
  394                 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
  395                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  396                 allocbuf(bp, nsize);
  397                 bp->b_flags |= B_DONE;
  398                 if ((bp->b_flags & (B_MALLOC | B_VMIO)) != B_VMIO)
  399                         bzero((char *)bp->b_data + osize, nsize - osize);
  400                 else
  401                         vfs_bio_clrbuf(bp);
  402                 *bpp = bp;
  403                 return (0);
  404         }
  405 #ifdef QUOTA
  406         UFS_UNLOCK(ump);
  407         /*
  408          * Restore user's disk quota because allocation failed.
  409          */
  410         (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
  411         UFS_LOCK(ump);
  412 #endif
  413 nospace:
  414         /*
  415          * no space available
  416          */
  417         if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
  418                 reclaimed = 1;
  419                 softdep_request_cleanup(fs, vp);
  420                 UFS_UNLOCK(ump);
  421                 if (bp)
  422                         brelse(bp);
  423                 UFS_LOCK(ump);
  424                 goto retry;
  425         }
  426         UFS_UNLOCK(ump);
  427         if (bp)
  428                 brelse(bp);
  429         if (ppsratecheck(&lastfail, &curfail, 1)) {
  430                 ffs_fserr(fs, ip->i_number, "filesystem full");
  431                 uprintf("\n%s: write failed, filesystem is full\n",
  432                     fs->fs_fsmnt);
  433         }
  434         return (ENOSPC);
  435 }
  436 
  437 /*
  438  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
  439  *
  440  * The vnode and an array of buffer pointers for a range of sequential
  441  * logical blocks to be made contiguous is given. The allocator attempts
  442  * to find a range of sequential blocks starting as close as possible
  443  * from the end of the allocation for the logical block immediately
  444  * preceding the current range. If successful, the physical block numbers
  445  * in the buffer pointers and in the inode are changed to reflect the new
  446  * allocation. If unsuccessful, the allocation is left unchanged. The
  447  * success in doing the reallocation is returned. Note that the error
  448  * return is not reflected back to the user. Rather the previous block
  449  * allocation will be used.
  450  */
  451 
  452 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
  453 
  454 static int doasyncfree = 1;
  455 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
  456 
  457 static int doreallocblks = 1;
  458 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
  459 
  460 #ifdef DEBUG
  461 static volatile int prtrealloc = 0;
  462 #endif
  463 
  464 int
  465 ffs_reallocblks(ap)
  466         struct vop_reallocblks_args /* {
  467                 struct vnode *a_vp;
  468                 struct cluster_save *a_buflist;
  469         } */ *ap;
  470 {
  471 
  472         if (doreallocblks == 0)
  473                 return (ENOSPC);
  474         if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1)
  475                 return (ffs_reallocblks_ufs1(ap));
  476         return (ffs_reallocblks_ufs2(ap));
  477 }
  478         
  479 static int
  480 ffs_reallocblks_ufs1(ap)
  481         struct vop_reallocblks_args /* {
  482                 struct vnode *a_vp;
  483                 struct cluster_save *a_buflist;
  484         } */ *ap;
  485 {
  486         struct fs *fs;
  487         struct inode *ip;
  488         struct vnode *vp;
  489         struct buf *sbp, *ebp;
  490         ufs1_daddr_t *bap, *sbap, *ebap = 0;
  491         struct cluster_save *buflist;
  492         struct ufsmount *ump;
  493         ufs_lbn_t start_lbn, end_lbn;
  494         ufs1_daddr_t soff, newblk, blkno;
  495         ufs2_daddr_t pref;
  496         struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
  497         int i, len, start_lvl, end_lvl, ssize;
  498 
  499         vp = ap->a_vp;
  500         ip = VTOI(vp);
  501         fs = ip->i_fs;
  502         ump = ip->i_ump;
  503         if (fs->fs_contigsumsize <= 0)
  504                 return (ENOSPC);
  505         buflist = ap->a_buflist;
  506         len = buflist->bs_nchildren;
  507         start_lbn = buflist->bs_children[0]->b_lblkno;
  508         end_lbn = start_lbn + len - 1;
  509 #ifdef INVARIANTS
  510         for (i = 0; i < len; i++)
  511                 if (!ffs_checkblk(ip,
  512                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  513                         panic("ffs_reallocblks: unallocated block 1");
  514         for (i = 1; i < len; i++)
  515                 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
  516                         panic("ffs_reallocblks: non-logical cluster");
  517         blkno = buflist->bs_children[0]->b_blkno;
  518         ssize = fsbtodb(fs, fs->fs_frag);
  519         for (i = 1; i < len - 1; i++)
  520                 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
  521                         panic("ffs_reallocblks: non-physical cluster %d", i);
  522 #endif
  523         /*
  524          * If the latest allocation is in a new cylinder group, assume that
  525          * the filesystem has decided to move and do not force it back to
  526          * the previous cylinder group.
  527          */
  528         if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
  529             dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
  530                 return (ENOSPC);
  531         if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
  532             ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
  533                 return (ENOSPC);
  534         /*
  535          * Get the starting offset and block map for the first block.
  536          */
  537         if (start_lvl == 0) {
  538                 sbap = &ip->i_din1->di_db[0];
  539                 soff = start_lbn;
  540         } else {
  541                 idp = &start_ap[start_lvl - 1];
  542                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
  543                         brelse(sbp);
  544                         return (ENOSPC);
  545                 }
  546                 sbap = (ufs1_daddr_t *)sbp->b_data;
  547                 soff = idp->in_off;
  548         }
  549         /*
  550          * If the block range spans two block maps, get the second map.
  551          */
  552         if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
  553                 ssize = len;
  554         } else {
  555 #ifdef INVARIANTS
  556                 if (start_lvl > 0 &&
  557                     start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
  558                         panic("ffs_reallocblk: start == end");
  559 #endif
  560                 ssize = len - (idp->in_off + 1);
  561                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
  562                         goto fail;
  563                 ebap = (ufs1_daddr_t *)ebp->b_data;
  564         }
  565         /*
  566          * Find the preferred location for the cluster.
  567          */
  568         UFS_LOCK(ump);
  569         pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
  570         /*
  571          * Search the block map looking for an allocation of the desired size.
  572          */
  573         if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
  574             len, ffs_clusteralloc)) == 0) {
  575                 UFS_UNLOCK(ump);
  576                 goto fail;
  577         }
  578         /*
  579          * We have found a new contiguous block.
  580          *
  581          * First we have to replace the old block pointers with the new
  582          * block pointers in the inode and indirect blocks associated
  583          * with the file.
  584          */
  585 #ifdef DEBUG
  586         if (prtrealloc)
  587                 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
  588                     (intmax_t)start_lbn, (intmax_t)end_lbn);
  589 #endif
  590         blkno = newblk;
  591         for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
  592                 if (i == ssize) {
  593                         bap = ebap;
  594                         soff = -i;
  595                 }
  596 #ifdef INVARIANTS
  597                 if (!ffs_checkblk(ip,
  598                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  599                         panic("ffs_reallocblks: unallocated block 2");
  600                 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
  601                         panic("ffs_reallocblks: alloc mismatch");
  602 #endif
  603 #ifdef DEBUG
  604                 if (prtrealloc)
  605                         printf(" %d,", *bap);
  606 #endif
  607                 if (DOINGSOFTDEP(vp)) {
  608                         if (sbap == &ip->i_din1->di_db[0] && i < ssize)
  609                                 softdep_setup_allocdirect(ip, start_lbn + i,
  610                                     blkno, *bap, fs->fs_bsize, fs->fs_bsize,
  611                                     buflist->bs_children[i]);
  612                         else
  613                                 softdep_setup_allocindir_page(ip, start_lbn + i,
  614                                     i < ssize ? sbp : ebp, soff + i, blkno,
  615                                     *bap, buflist->bs_children[i]);
  616                 }
  617                 *bap++ = blkno;
  618         }
  619         /*
  620          * Next we must write out the modified inode and indirect blocks.
  621          * For strict correctness, the writes should be synchronous since
  622          * the old block values may have been written to disk. In practise
  623          * they are almost never written, but if we are concerned about
  624          * strict correctness, the `doasyncfree' flag should be set to zero.
  625          *
  626          * The test on `doasyncfree' should be changed to test a flag
  627          * that shows whether the associated buffers and inodes have
  628          * been written. The flag should be set when the cluster is
  629          * started and cleared whenever the buffer or inode is flushed.
  630          * We can then check below to see if it is set, and do the
  631          * synchronous write only when it has been cleared.
  632          */
  633         if (sbap != &ip->i_din1->di_db[0]) {
  634                 if (doasyncfree)
  635                         bdwrite(sbp);
  636                 else
  637                         bwrite(sbp);
  638         } else {
  639                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  640                 if (!doasyncfree)
  641                         ffs_update(vp, 1);
  642         }
  643         if (ssize < len) {
  644                 if (doasyncfree)
  645                         bdwrite(ebp);
  646                 else
  647                         bwrite(ebp);
  648         }
  649         /*
  650          * Last, free the old blocks and assign the new blocks to the buffers.
  651          */
  652 #ifdef DEBUG
  653         if (prtrealloc)
  654                 printf("\n\tnew:");
  655 #endif
  656         for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
  657                 if (!DOINGSOFTDEP(vp))
  658                         ffs_blkfree(ump, fs, ip->i_devvp,
  659                             dbtofsb(fs, buflist->bs_children[i]->b_blkno),
  660                             fs->fs_bsize, ip->i_number);
  661                 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
  662 #ifdef INVARIANTS
  663                 if (!ffs_checkblk(ip,
  664                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  665                         panic("ffs_reallocblks: unallocated block 3");
  666 #endif
  667 #ifdef DEBUG
  668                 if (prtrealloc)
  669                         printf(" %d,", blkno);
  670 #endif
  671         }
  672 #ifdef DEBUG
  673         if (prtrealloc) {
  674                 prtrealloc--;
  675                 printf("\n");
  676         }
  677 #endif
  678         return (0);
  679 
  680 fail:
  681         if (ssize < len)
  682                 brelse(ebp);
  683         if (sbap != &ip->i_din1->di_db[0])
  684                 brelse(sbp);
  685         return (ENOSPC);
  686 }
  687 
  688 static int
  689 ffs_reallocblks_ufs2(ap)
  690         struct vop_reallocblks_args /* {
  691                 struct vnode *a_vp;
  692                 struct cluster_save *a_buflist;
  693         } */ *ap;
  694 {
  695         struct fs *fs;
  696         struct inode *ip;
  697         struct vnode *vp;
  698         struct buf *sbp, *ebp;
  699         ufs2_daddr_t *bap, *sbap, *ebap = 0;
  700         struct cluster_save *buflist;
  701         struct ufsmount *ump;
  702         ufs_lbn_t start_lbn, end_lbn;
  703         ufs2_daddr_t soff, newblk, blkno, pref;
  704         struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
  705         int i, len, start_lvl, end_lvl, ssize;
  706 
  707         vp = ap->a_vp;
  708         ip = VTOI(vp);
  709         fs = ip->i_fs;
  710         ump = ip->i_ump;
  711         if (fs->fs_contigsumsize <= 0)
  712                 return (ENOSPC);
  713         buflist = ap->a_buflist;
  714         len = buflist->bs_nchildren;
  715         start_lbn = buflist->bs_children[0]->b_lblkno;
  716         end_lbn = start_lbn + len - 1;
  717 #ifdef INVARIANTS
  718         for (i = 0; i < len; i++)
  719                 if (!ffs_checkblk(ip,
  720                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  721                         panic("ffs_reallocblks: unallocated block 1");
  722         for (i = 1; i < len; i++)
  723                 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
  724                         panic("ffs_reallocblks: non-logical cluster");
  725         blkno = buflist->bs_children[0]->b_blkno;
  726         ssize = fsbtodb(fs, fs->fs_frag);
  727         for (i = 1; i < len - 1; i++)
  728                 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
  729                         panic("ffs_reallocblks: non-physical cluster %d", i);
  730 #endif
  731         /*
  732          * If the latest allocation is in a new cylinder group, assume that
  733          * the filesystem has decided to move and do not force it back to
  734          * the previous cylinder group.
  735          */
  736         if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
  737             dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
  738                 return (ENOSPC);
  739         if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
  740             ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
  741                 return (ENOSPC);
  742         /*
  743          * Get the starting offset and block map for the first block.
  744          */
  745         if (start_lvl == 0) {
  746                 sbap = &ip->i_din2->di_db[0];
  747                 soff = start_lbn;
  748         } else {
  749                 idp = &start_ap[start_lvl - 1];
  750                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
  751                         brelse(sbp);
  752                         return (ENOSPC);
  753                 }
  754                 sbap = (ufs2_daddr_t *)sbp->b_data;
  755                 soff = idp->in_off;
  756         }
  757         /*
  758          * If the block range spans two block maps, get the second map.
  759          */
  760         if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
  761                 ssize = len;
  762         } else {
  763 #ifdef INVARIANTS
  764                 if (start_lvl > 0 &&
  765                     start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
  766                         panic("ffs_reallocblk: start == end");
  767 #endif
  768                 ssize = len - (idp->in_off + 1);
  769                 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
  770                         goto fail;
  771                 ebap = (ufs2_daddr_t *)ebp->b_data;
  772         }
  773         /*
  774          * Find the preferred location for the cluster.
  775          */
  776         UFS_LOCK(ump);
  777         pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
  778         /*
  779          * Search the block map looking for an allocation of the desired size.
  780          */
  781         if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
  782             len, ffs_clusteralloc)) == 0) {
  783                 UFS_UNLOCK(ump);
  784                 goto fail;
  785         }
  786         /*
  787          * We have found a new contiguous block.
  788          *
  789          * First we have to replace the old block pointers with the new
  790          * block pointers in the inode and indirect blocks associated
  791          * with the file.
  792          */
  793 #ifdef DEBUG
  794         if (prtrealloc)
  795                 printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
  796                     (intmax_t)start_lbn, (intmax_t)end_lbn);
  797 #endif
  798         blkno = newblk;
  799         for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
  800                 if (i == ssize) {
  801                         bap = ebap;
  802                         soff = -i;
  803                 }
  804 #ifdef INVARIANTS
  805                 if (!ffs_checkblk(ip,
  806                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  807                         panic("ffs_reallocblks: unallocated block 2");
  808                 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
  809                         panic("ffs_reallocblks: alloc mismatch");
  810 #endif
  811 #ifdef DEBUG
  812                 if (prtrealloc)
  813                         printf(" %jd,", (intmax_t)*bap);
  814 #endif
  815                 if (DOINGSOFTDEP(vp)) {
  816                         if (sbap == &ip->i_din2->di_db[0] && i < ssize)
  817                                 softdep_setup_allocdirect(ip, start_lbn + i,
  818                                     blkno, *bap, fs->fs_bsize, fs->fs_bsize,
  819                                     buflist->bs_children[i]);
  820                         else
  821                                 softdep_setup_allocindir_page(ip, start_lbn + i,
  822                                     i < ssize ? sbp : ebp, soff + i, blkno,
  823                                     *bap, buflist->bs_children[i]);
  824                 }
  825                 *bap++ = blkno;
  826         }
  827         /*
  828          * Next we must write out the modified inode and indirect blocks.
  829          * For strict correctness, the writes should be synchronous since
  830          * the old block values may have been written to disk. In practise
  831          * they are almost never written, but if we are concerned about
  832          * strict correctness, the `doasyncfree' flag should be set to zero.
  833          *
  834          * The test on `doasyncfree' should be changed to test a flag
  835          * that shows whether the associated buffers and inodes have
  836          * been written. The flag should be set when the cluster is
  837          * started and cleared whenever the buffer or inode is flushed.
  838          * We can then check below to see if it is set, and do the
  839          * synchronous write only when it has been cleared.
  840          */
  841         if (sbap != &ip->i_din2->di_db[0]) {
  842                 if (doasyncfree)
  843                         bdwrite(sbp);
  844                 else
  845                         bwrite(sbp);
  846         } else {
  847                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  848                 if (!doasyncfree)
  849                         ffs_update(vp, 1);
  850         }
  851         if (ssize < len) {
  852                 if (doasyncfree)
  853                         bdwrite(ebp);
  854                 else
  855                         bwrite(ebp);
  856         }
  857         /*
  858          * Last, free the old blocks and assign the new blocks to the buffers.
  859          */
  860 #ifdef DEBUG
  861         if (prtrealloc)
  862                 printf("\n\tnew:");
  863 #endif
  864         for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
  865                 if (!DOINGSOFTDEP(vp))
  866                         ffs_blkfree(ump, fs, ip->i_devvp,
  867                             dbtofsb(fs, buflist->bs_children[i]->b_blkno),
  868                             fs->fs_bsize, ip->i_number);
  869                 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
  870 #ifdef INVARIANTS
  871                 if (!ffs_checkblk(ip,
  872                    dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
  873                         panic("ffs_reallocblks: unallocated block 3");
  874 #endif
  875 #ifdef DEBUG
  876                 if (prtrealloc)
  877                         printf(" %jd,", (intmax_t)blkno);
  878 #endif
  879         }
  880 #ifdef DEBUG
  881         if (prtrealloc) {
  882                 prtrealloc--;
  883                 printf("\n");
  884         }
  885 #endif
  886         return (0);
  887 
  888 fail:
  889         if (ssize < len)
  890                 brelse(ebp);
  891         if (sbap != &ip->i_din2->di_db[0])
  892                 brelse(sbp);
  893         return (ENOSPC);
  894 }
  895 
  896 /*
  897  * Allocate an inode in the filesystem.
  898  *
  899  * If allocating a directory, use ffs_dirpref to select the inode.
  900  * If allocating in a directory, the following hierarchy is followed:
  901  *   1) allocate the preferred inode.
  902  *   2) allocate an inode in the same cylinder group.
  903  *   3) quadradically rehash into other cylinder groups, until an
  904  *      available inode is located.
  905  * If no inode preference is given the following hierarchy is used
  906  * to allocate an inode:
  907  *   1) allocate an inode in cylinder group 0.
  908  *   2) quadradically rehash into other cylinder groups, until an
  909  *      available inode is located.
  910  */
  911 int
  912 ffs_valloc(pvp, mode, cred, vpp)
  913         struct vnode *pvp;
  914         int mode;
  915         struct ucred *cred;
  916         struct vnode **vpp;
  917 {
  918         struct inode *pip;
  919         struct fs *fs;
  920         struct inode *ip;
  921         struct timespec ts;
  922         struct ufsmount *ump;
  923         ino_t ino, ipref;
  924         int cg, error;
  925         static struct timeval lastfail;
  926         static int curfail;
  927 
  928         *vpp = NULL;
  929         pip = VTOI(pvp);
  930         fs = pip->i_fs;
  931         ump = pip->i_ump;
  932 
  933         UFS_LOCK(ump);
  934         if (fs->fs_cstotal.cs_nifree == 0)
  935                 goto noinodes;
  936 
  937         if ((mode & IFMT) == IFDIR)
  938                 ipref = ffs_dirpref(pip);
  939         else
  940                 ipref = pip->i_number;
  941         if (ipref >= fs->fs_ncg * fs->fs_ipg)
  942                 ipref = 0;
  943         cg = ino_to_cg(fs, ipref);
  944         /*
  945          * Track number of dirs created one after another
  946          * in a same cg without intervening by files.
  947          */
  948         if ((mode & IFMT) == IFDIR) {
  949                 if (fs->fs_contigdirs[cg] < 255)
  950                         fs->fs_contigdirs[cg]++;
  951         } else {
  952                 if (fs->fs_contigdirs[cg] > 0)
  953                         fs->fs_contigdirs[cg]--;
  954         }
  955         ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode,
  956                                         (allocfcn_t *)ffs_nodealloccg);
  957         if (ino == 0)
  958                 goto noinodes;
  959         error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
  960         if (error) {
  961                 ffs_vfree(pvp, ino, mode);
  962                 return (error);
  963         }
  964         ip = VTOI(*vpp);
  965         if (ip->i_mode) {
  966                 printf("mode = 0%o, inum = %lu, fs = %s\n",
  967                     ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
  968                 panic("ffs_valloc: dup alloc");
  969         }
  970         if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
  971                 printf("free inode %s/%lu had %ld blocks\n",
  972                     fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
  973                 DIP_SET(ip, i_blocks, 0);
  974         }
  975         ip->i_flags = 0;
  976         DIP_SET(ip, i_flags, 0);
  977         /*
  978          * Set up a new generation number for this inode.
  979          */
  980         if (ip->i_gen == 0 || ++ip->i_gen == 0)
  981                 ip->i_gen = arc4random() / 2 + 1;
  982         DIP_SET(ip, i_gen, ip->i_gen);
  983         if (fs->fs_magic == FS_UFS2_MAGIC) {
  984                 vfs_timestamp(&ts);
  985                 ip->i_din2->di_birthtime = ts.tv_sec;
  986                 ip->i_din2->di_birthnsec = ts.tv_nsec;
  987         }
  988         ip->i_flag = 0;
  989         vnode_destroy_vobject(*vpp);
  990         (*vpp)->v_type = VNON;
  991         if (fs->fs_magic == FS_UFS2_MAGIC)
  992                 (*vpp)->v_op = &ffs_vnodeops2;
  993         else
  994                 (*vpp)->v_op = &ffs_vnodeops1;
  995         return (0);
  996 noinodes:
  997         UFS_UNLOCK(ump);
  998         if (ppsratecheck(&lastfail, &curfail, 1)) {
  999                 ffs_fserr(fs, pip->i_number, "out of inodes");
 1000                 uprintf("\n%s: create/symlink failed, no inodes free\n",
 1001                     fs->fs_fsmnt);
 1002         }
 1003         return (ENOSPC);
 1004 }
 1005 
 1006 /*
 1007  * Find a cylinder group to place a directory.
 1008  *
 1009  * The policy implemented by this algorithm is to allocate a
 1010  * directory inode in the same cylinder group as its parent
 1011  * directory, but also to reserve space for its files inodes
 1012  * and data. Restrict the number of directories which may be
 1013  * allocated one after another in the same cylinder group
 1014  * without intervening allocation of files.
 1015  *
 1016  * If we allocate a first level directory then force allocation
 1017  * in another cylinder group.
 1018  */
 1019 static ino_t
 1020 ffs_dirpref(pip)
 1021         struct inode *pip;
 1022 {
 1023         struct fs *fs;
 1024         int cg, prefcg, dirsize, cgsize;
 1025         int avgifree, avgbfree, avgndir, curdirsize;
 1026         int minifree, minbfree, maxndir;
 1027         int mincg, minndir;
 1028         int maxcontigdirs;
 1029 
 1030         mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED);
 1031         fs = pip->i_fs;
 1032 
 1033         avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
 1034         avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
 1035         avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
 1036 
 1037         /*
 1038          * Force allocation in another cg if creating a first level dir.
 1039          */
 1040         ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
 1041         if (ITOV(pip)->v_vflag & VV_ROOT) {
 1042                 prefcg = arc4random() % fs->fs_ncg;
 1043                 mincg = prefcg;
 1044                 minndir = fs->fs_ipg;
 1045                 for (cg = prefcg; cg < fs->fs_ncg; cg++)
 1046                         if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
 1047                             fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
 1048                             fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1049                                 mincg = cg;
 1050                                 minndir = fs->fs_cs(fs, cg).cs_ndir;
 1051                         }
 1052                 for (cg = 0; cg < prefcg; cg++)
 1053                         if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
 1054                             fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
 1055                             fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1056                                 mincg = cg;
 1057                                 minndir = fs->fs_cs(fs, cg).cs_ndir;
 1058                         }
 1059                 return ((ino_t)(fs->fs_ipg * mincg));
 1060         }
 1061 
 1062         /*
 1063          * Count various limits which used for
 1064          * optimal allocation of a directory inode.
 1065          */
 1066         maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
 1067         minifree = avgifree - avgifree / 4;
 1068         if (minifree < 1)
 1069                 minifree = 1;
 1070         minbfree = avgbfree - avgbfree / 4;
 1071         if (minbfree < 1)
 1072                 minbfree = 1;
 1073         cgsize = fs->fs_fsize * fs->fs_fpg;
 1074         dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
 1075         curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
 1076         if (dirsize < curdirsize)
 1077                 dirsize = curdirsize;
 1078         if (dirsize <= 0)
 1079                 maxcontigdirs = 0;              /* dirsize overflowed */
 1080         else
 1081                 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
 1082         if (fs->fs_avgfpdir > 0)
 1083                 maxcontigdirs = min(maxcontigdirs,
 1084                                     fs->fs_ipg / fs->fs_avgfpdir);
 1085         if (maxcontigdirs == 0)
 1086                 maxcontigdirs = 1;
 1087 
 1088         /*
 1089          * Limit number of dirs in one cg and reserve space for 
 1090          * regular files, but only if we have no deficit in
 1091          * inodes or space.
 1092          */
 1093         prefcg = ino_to_cg(fs, pip->i_number);
 1094         for (cg = prefcg; cg < fs->fs_ncg; cg++)
 1095                 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
 1096                     fs->fs_cs(fs, cg).cs_nifree >= minifree &&
 1097                     fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
 1098                         if (fs->fs_contigdirs[cg] < maxcontigdirs)
 1099                                 return ((ino_t)(fs->fs_ipg * cg));
 1100                 }
 1101         for (cg = 0; cg < prefcg; cg++)
 1102                 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
 1103                     fs->fs_cs(fs, cg).cs_nifree >= minifree &&
 1104                     fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
 1105                         if (fs->fs_contigdirs[cg] < maxcontigdirs)
 1106                                 return ((ino_t)(fs->fs_ipg * cg));
 1107                 }
 1108         /*
 1109          * This is a backstop when we have deficit in space.
 1110          */
 1111         for (cg = prefcg; cg < fs->fs_ncg; cg++)
 1112                 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
 1113                         return ((ino_t)(fs->fs_ipg * cg));
 1114         for (cg = 0; cg < prefcg; cg++)
 1115                 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
 1116                         break;
 1117         return ((ino_t)(fs->fs_ipg * cg));
 1118 }
 1119 
 1120 /*
 1121  * Select the desired position for the next block in a file.  The file is
 1122  * logically divided into sections. The first section is composed of the
 1123  * direct blocks. Each additional section contains fs_maxbpg blocks.
 1124  *
 1125  * If no blocks have been allocated in the first section, the policy is to
 1126  * request a block in the same cylinder group as the inode that describes
 1127  * the file. If no blocks have been allocated in any other section, the
 1128  * policy is to place the section in a cylinder group with a greater than
 1129  * average number of free blocks.  An appropriate cylinder group is found
 1130  * by using a rotor that sweeps the cylinder groups. When a new group of
 1131  * blocks is needed, the sweep begins in the cylinder group following the
 1132  * cylinder group from which the previous allocation was made. The sweep
 1133  * continues until a cylinder group with greater than the average number
 1134  * of free blocks is found. If the allocation is for the first block in an
 1135  * indirect block, the information on the previous allocation is unavailable;
 1136  * here a best guess is made based upon the logical block number being
 1137  * allocated.
 1138  *
 1139  * If a section is already partially allocated, the policy is to
 1140  * contiguously allocate fs_maxcontig blocks. The end of one of these
 1141  * contiguous blocks and the beginning of the next is laid out
 1142  * contiguously if possible.
 1143  */
 1144 ufs2_daddr_t
 1145 ffs_blkpref_ufs1(ip, lbn, indx, bap)
 1146         struct inode *ip;
 1147         ufs_lbn_t lbn;
 1148         int indx;
 1149         ufs1_daddr_t *bap;
 1150 {
 1151         struct fs *fs;
 1152         int cg;
 1153         int avgbfree, startcg;
 1154 
 1155         mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
 1156         fs = ip->i_fs;
 1157         if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
 1158                 if (lbn < NDADDR + NINDIR(fs)) {
 1159                         cg = ino_to_cg(fs, ip->i_number);
 1160                         return (cgbase(fs, cg) + fs->fs_frag);
 1161                 }
 1162                 /*
 1163                  * Find a cylinder with greater than average number of
 1164                  * unused data blocks.
 1165                  */
 1166                 if (indx == 0 || bap[indx - 1] == 0)
 1167                         startcg =
 1168                             ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
 1169                 else
 1170                         startcg = dtog(fs, bap[indx - 1]) + 1;
 1171                 startcg %= fs->fs_ncg;
 1172                 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
 1173                 for (cg = startcg; cg < fs->fs_ncg; cg++)
 1174                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1175                                 fs->fs_cgrotor = cg;
 1176                                 return (cgbase(fs, cg) + fs->fs_frag);
 1177                         }
 1178                 for (cg = 0; cg <= startcg; cg++)
 1179                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1180                                 fs->fs_cgrotor = cg;
 1181                                 return (cgbase(fs, cg) + fs->fs_frag);
 1182                         }
 1183                 return (0);
 1184         }
 1185         /*
 1186          * We just always try to lay things out contiguously.
 1187          */
 1188         return (bap[indx - 1] + fs->fs_frag);
 1189 }
 1190 
 1191 /*
 1192  * Same as above, but for UFS2
 1193  */
 1194 ufs2_daddr_t
 1195 ffs_blkpref_ufs2(ip, lbn, indx, bap)
 1196         struct inode *ip;
 1197         ufs_lbn_t lbn;
 1198         int indx;
 1199         ufs2_daddr_t *bap;
 1200 {
 1201         struct fs *fs;
 1202         int cg;
 1203         int avgbfree, startcg;
 1204 
 1205         mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
 1206         fs = ip->i_fs;
 1207         if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
 1208                 if (lbn < NDADDR + NINDIR(fs)) {
 1209                         cg = ino_to_cg(fs, ip->i_number);
 1210                         return (cgbase(fs, cg) + fs->fs_frag);
 1211                 }
 1212                 /*
 1213                  * Find a cylinder with greater than average number of
 1214                  * unused data blocks.
 1215                  */
 1216                 if (indx == 0 || bap[indx - 1] == 0)
 1217                         startcg =
 1218                             ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
 1219                 else
 1220                         startcg = dtog(fs, bap[indx - 1]) + 1;
 1221                 startcg %= fs->fs_ncg;
 1222                 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
 1223                 for (cg = startcg; cg < fs->fs_ncg; cg++)
 1224                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1225                                 fs->fs_cgrotor = cg;
 1226                                 return (cgbase(fs, cg) + fs->fs_frag);
 1227                         }
 1228                 for (cg = 0; cg <= startcg; cg++)
 1229                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
 1230                                 fs->fs_cgrotor = cg;
 1231                                 return (cgbase(fs, cg) + fs->fs_frag);
 1232                         }
 1233                 return (0);
 1234         }
 1235         /*
 1236          * We just always try to lay things out contiguously.
 1237          */
 1238         return (bap[indx - 1] + fs->fs_frag);
 1239 }
 1240 
 1241 /*
 1242  * Implement the cylinder overflow algorithm.
 1243  *
 1244  * The policy implemented by this algorithm is:
 1245  *   1) allocate the block in its requested cylinder group.
 1246  *   2) quadradically rehash on the cylinder group number.
 1247  *   3) brute force search for a free block.
 1248  *
 1249  * Must be called with the UFS lock held.  Will release the lock on success
 1250  * and return with it held on failure.
 1251  */
 1252 /*VARARGS5*/
 1253 static ufs2_daddr_t
 1254 ffs_hashalloc(ip, cg, pref, size, allocator)
 1255         struct inode *ip;
 1256         int cg;
 1257         ufs2_daddr_t pref;
 1258         int size;       /* size for data blocks, mode for inodes */
 1259         allocfcn_t *allocator;
 1260 {
 1261         struct fs *fs;
 1262         ufs2_daddr_t result;
 1263         int i, icg = cg;
 1264 
 1265         mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
 1266 #ifdef INVARIANTS
 1267         if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
 1268                 panic("ffs_hashalloc: allocation on suspended filesystem");
 1269 #endif
 1270         fs = ip->i_fs;
 1271         /*
 1272          * 1: preferred cylinder group
 1273          */
 1274         result = (*allocator)(ip, cg, pref, size);
 1275         if (result)
 1276                 return (result);
 1277         /*
 1278          * 2: quadratic rehash
 1279          */
 1280         for (i = 1; i < fs->fs_ncg; i *= 2) {
 1281                 cg += i;
 1282                 if (cg >= fs->fs_ncg)
 1283                         cg -= fs->fs_ncg;
 1284                 result = (*allocator)(ip, cg, 0, size);
 1285                 if (result)
 1286                         return (result);
 1287         }
 1288         /*
 1289          * 3: brute force search
 1290          * Note that we start at i == 2, since 0 was checked initially,
 1291          * and 1 is always checked in the quadratic rehash.
 1292          */
 1293         cg = (icg + 2) % fs->fs_ncg;
 1294         for (i = 2; i < fs->fs_ncg; i++) {
 1295                 result = (*allocator)(ip, cg, 0, size);
 1296                 if (result)
 1297                         return (result);
 1298                 cg++;
 1299                 if (cg == fs->fs_ncg)
 1300                         cg = 0;
 1301         }
 1302         return (0);
 1303 }
 1304 
 1305 /*
 1306  * Determine whether a fragment can be extended.
 1307  *
 1308  * Check to see if the necessary fragments are available, and
 1309  * if they are, allocate them.
 1310  */
 1311 static ufs2_daddr_t
 1312 ffs_fragextend(ip, cg, bprev, osize, nsize)
 1313         struct inode *ip;
 1314         int cg;
 1315         ufs2_daddr_t bprev;
 1316         int osize, nsize;
 1317 {
 1318         struct fs *fs;
 1319         struct cg *cgp;
 1320         struct buf *bp;
 1321         struct ufsmount *ump;
 1322         int nffree;
 1323         long bno;
 1324         int frags, bbase;
 1325         int i, error;
 1326         u_int8_t *blksfree;
 1327 
 1328         ump = ip->i_ump;
 1329         fs = ip->i_fs;
 1330         if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
 1331                 return (0);
 1332         frags = numfrags(fs, nsize);
 1333         bbase = fragnum(fs, bprev);
 1334         if (bbase > fragnum(fs, (bprev + frags - 1))) {
 1335                 /* cannot extend across a block boundary */
 1336                 return (0);
 1337         }
 1338         UFS_UNLOCK(ump);
 1339         error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
 1340                 (int)fs->fs_cgsize, NOCRED, &bp);
 1341         if (error)
 1342                 goto fail;
 1343         cgp = (struct cg *)bp->b_data;
 1344         if (!cg_chkmagic(cgp))
 1345                 goto fail;
 1346         bp->b_xflags |= BX_BKGRDWRITE;
 1347         cgp->cg_old_time = cgp->cg_time = time_second;
 1348         bno = dtogd(fs, bprev);
 1349         blksfree = cg_blksfree(cgp);
 1350         for (i = numfrags(fs, osize); i < frags; i++)
 1351                 if (isclr(blksfree, bno + i))
 1352                         goto fail;
 1353         /*
 1354          * the current fragment can be extended
 1355          * deduct the count on fragment being extended into
 1356          * increase the count on the remaining fragment (if any)
 1357          * allocate the extended piece
 1358          */
 1359         for (i = frags; i < fs->fs_frag - bbase; i++)
 1360                 if (isclr(blksfree, bno + i))
 1361                         break;
 1362         cgp->cg_frsum[i - numfrags(fs, osize)]--;
 1363         if (i != frags)
 1364                 cgp->cg_frsum[i - frags]++;
 1365         for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
 1366                 clrbit(blksfree, bno + i);
 1367                 cgp->cg_cs.cs_nffree--;
 1368                 nffree++;
 1369         }
 1370         UFS_LOCK(ump);
 1371         fs->fs_cstotal.cs_nffree -= nffree;
 1372         fs->fs_cs(fs, cg).cs_nffree -= nffree;
 1373         fs->fs_fmod = 1;
 1374         ACTIVECLEAR(fs, cg);
 1375         UFS_UNLOCK(ump);
 1376         if (DOINGSOFTDEP(ITOV(ip)))
 1377                 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev);
 1378         bdwrite(bp);
 1379         return (bprev);
 1380 
 1381 fail:
 1382         brelse(bp);
 1383         UFS_LOCK(ump);
 1384         return (0);
 1385 
 1386 }
 1387 
 1388 /*
 1389  * Determine whether a block can be allocated.
 1390  *
 1391  * Check to see if a block of the appropriate size is available,
 1392  * and if it is, allocate it.
 1393  */
 1394 static ufs2_daddr_t
 1395 ffs_alloccg(ip, cg, bpref, size)
 1396         struct inode *ip;
 1397         int cg;
 1398         ufs2_daddr_t bpref;
 1399         int size;
 1400 {
 1401         struct fs *fs;
 1402         struct cg *cgp;
 1403         struct buf *bp;
 1404         struct ufsmount *ump;
 1405         ufs1_daddr_t bno;
 1406         ufs2_daddr_t blkno;
 1407         int i, allocsiz, error, frags;
 1408         u_int8_t *blksfree;
 1409 
 1410         ump = ip->i_ump;
 1411         fs = ip->i_fs;
 1412         if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
 1413                 return (0);
 1414         UFS_UNLOCK(ump);
 1415         error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
 1416                 (int)fs->fs_cgsize, NOCRED, &bp);
 1417         if (error)
 1418                 goto fail;
 1419         cgp = (struct cg *)bp->b_data;
 1420         if (!cg_chkmagic(cgp) ||
 1421             (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
 1422                 goto fail;
 1423         bp->b_xflags |= BX_BKGRDWRITE;
 1424         cgp->cg_old_time = cgp->cg_time = time_second;
 1425         if (size == fs->fs_bsize) {
 1426                 UFS_LOCK(ump);
 1427                 blkno = ffs_alloccgblk(ip, bp, bpref);
 1428                 ACTIVECLEAR(fs, cg);
 1429                 UFS_UNLOCK(ump);
 1430                 bdwrite(bp);
 1431                 return (blkno);
 1432         }
 1433         /*
 1434          * check to see if any fragments are already available
 1435          * allocsiz is the size which will be allocated, hacking
 1436          * it down to a smaller size if necessary
 1437          */
 1438         blksfree = cg_blksfree(cgp);
 1439         frags = numfrags(fs, size);
 1440         for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
 1441                 if (cgp->cg_frsum[allocsiz] != 0)
 1442                         break;
 1443         if (allocsiz == fs->fs_frag) {
 1444                 /*
 1445                  * no fragments were available, so a block will be
 1446                  * allocated, and hacked up
 1447                  */
 1448                 if (cgp->cg_cs.cs_nbfree == 0)
 1449                         goto fail;
 1450                 UFS_LOCK(ump);
 1451                 blkno = ffs_alloccgblk(ip, bp, bpref);
 1452                 bno = dtogd(fs, blkno);
 1453                 for (i = frags; i < fs->fs_frag; i++)
 1454                         setbit(blksfree, bno + i);
 1455                 i = fs->fs_frag - frags;
 1456                 cgp->cg_cs.cs_nffree += i;
 1457                 fs->fs_cstotal.cs_nffree += i;
 1458                 fs->fs_cs(fs, cg).cs_nffree += i;
 1459                 fs->fs_fmod = 1;
 1460                 cgp->cg_frsum[i]++;
 1461                 ACTIVECLEAR(fs, cg);
 1462                 UFS_UNLOCK(ump);
 1463                 bdwrite(bp);
 1464                 return (blkno);
 1465         }
 1466         bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
 1467         if (bno < 0)
 1468                 goto fail;
 1469         for (i = 0; i < frags; i++)
 1470                 clrbit(blksfree, bno + i);
 1471         cgp->cg_cs.cs_nffree -= frags;
 1472         cgp->cg_frsum[allocsiz]--;
 1473         if (frags != allocsiz)
 1474                 cgp->cg_frsum[allocsiz - frags]++;
 1475         UFS_LOCK(ump);
 1476         fs->fs_cstotal.cs_nffree -= frags;
 1477         fs->fs_cs(fs, cg).cs_nffree -= frags;
 1478         fs->fs_fmod = 1;
 1479         blkno = cgbase(fs, cg) + bno;
 1480         ACTIVECLEAR(fs, cg);
 1481         UFS_UNLOCK(ump);
 1482         if (DOINGSOFTDEP(ITOV(ip)))
 1483                 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno);
 1484         bdwrite(bp);
 1485         return (blkno);
 1486 
 1487 fail:
 1488         brelse(bp);
 1489         UFS_LOCK(ump);
 1490         return (0);
 1491 }
 1492 
 1493 /*
 1494  * Allocate a block in a cylinder group.
 1495  *
 1496  * This algorithm implements the following policy:
 1497  *   1) allocate the requested block.
 1498  *   2) allocate a rotationally optimal block in the same cylinder.
 1499  *   3) allocate the next available block on the block rotor for the
 1500  *      specified cylinder group.
 1501  * Note that this routine only allocates fs_bsize blocks; these
 1502  * blocks may be fragmented by the routine that allocates them.
 1503  */
 1504 static ufs2_daddr_t
 1505 ffs_alloccgblk(ip, bp, bpref)
 1506         struct inode *ip;
 1507         struct buf *bp;
 1508         ufs2_daddr_t bpref;
 1509 {
 1510         struct fs *fs;
 1511         struct cg *cgp;
 1512         struct ufsmount *ump;
 1513         ufs1_daddr_t bno;
 1514         ufs2_daddr_t blkno;
 1515         u_int8_t *blksfree;
 1516 
 1517         fs = ip->i_fs;
 1518         ump = ip->i_ump;
 1519         mtx_assert(UFS_MTX(ump), MA_OWNED);
 1520         cgp = (struct cg *)bp->b_data;
 1521         blksfree = cg_blksfree(cgp);
 1522         if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
 1523                 bpref = cgp->cg_rotor;
 1524         } else {
 1525                 bpref = blknum(fs, bpref);
 1526                 bno = dtogd(fs, bpref);
 1527                 /*
 1528                  * if the requested block is available, use it
 1529                  */
 1530                 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
 1531                         goto gotit;
 1532         }
 1533         /*
 1534          * Take the next available block in this cylinder group.
 1535          */
 1536         bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
 1537         if (bno < 0)
 1538                 return (0);
 1539         cgp->cg_rotor = bno;
 1540 gotit:
 1541         blkno = fragstoblks(fs, bno);
 1542         ffs_clrblock(fs, blksfree, (long)blkno);
 1543         ffs_clusteracct(ump, fs, cgp, blkno, -1);
 1544         cgp->cg_cs.cs_nbfree--;
 1545         fs->fs_cstotal.cs_nbfree--;
 1546         fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
 1547         fs->fs_fmod = 1;
 1548         blkno = cgbase(fs, cgp->cg_cgx) + bno;
 1549         /* XXX Fixme. */
 1550         UFS_UNLOCK(ump);
 1551         if (DOINGSOFTDEP(ITOV(ip)))
 1552                 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno);
 1553         UFS_LOCK(ump);
 1554         return (blkno);
 1555 }
 1556 
 1557 /*
 1558  * Determine whether a cluster can be allocated.
 1559  *
 1560  * We do not currently check for optimal rotational layout if there
 1561  * are multiple choices in the same cylinder group. Instead we just
 1562  * take the first one that we find following bpref.
 1563  */
 1564 static ufs2_daddr_t
 1565 ffs_clusteralloc(ip, cg, bpref, len)
 1566         struct inode *ip;
 1567         int cg;
 1568         ufs2_daddr_t bpref;
 1569         int len;
 1570 {
 1571         struct fs *fs;
 1572         struct cg *cgp;
 1573         struct buf *bp;
 1574         struct ufsmount *ump;
 1575         int i, run, bit, map, got;
 1576         ufs2_daddr_t bno;
 1577         u_char *mapp;
 1578         int32_t *lp;
 1579         u_int8_t *blksfree;
 1580 
 1581         fs = ip->i_fs;
 1582         ump = ip->i_ump;
 1583         if (fs->fs_maxcluster[cg] < len)
 1584                 return (0);
 1585         UFS_UNLOCK(ump);
 1586         if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
 1587             NOCRED, &bp))
 1588                 goto fail_lock;
 1589         cgp = (struct cg *)bp->b_data;
 1590         if (!cg_chkmagic(cgp))
 1591                 goto fail_lock;
 1592         bp->b_xflags |= BX_BKGRDWRITE;
 1593         /*
 1594          * Check to see if a cluster of the needed size (or bigger) is
 1595          * available in this cylinder group.
 1596          */
 1597         lp = &cg_clustersum(cgp)[len];
 1598         for (i = len; i <= fs->fs_contigsumsize; i++)
 1599                 if (*lp++ > 0)
 1600                         break;
 1601         if (i > fs->fs_contigsumsize) {
 1602                 /*
 1603                  * This is the first time looking for a cluster in this
 1604                  * cylinder group. Update the cluster summary information
 1605                  * to reflect the true maximum sized cluster so that
 1606                  * future cluster allocation requests can avoid reading
 1607                  * the cylinder group map only to find no clusters.
 1608                  */
 1609                 lp = &cg_clustersum(cgp)[len - 1];
 1610                 for (i = len - 1; i > 0; i--)
 1611                         if (*lp-- > 0)
 1612                                 break;
 1613                 UFS_LOCK(ump);
 1614                 fs->fs_maxcluster[cg] = i;
 1615                 goto fail;
 1616         }
 1617         /*
 1618          * Search the cluster map to find a big enough cluster.
 1619          * We take the first one that we find, even if it is larger
 1620          * than we need as we prefer to get one close to the previous
 1621          * block allocation. We do not search before the current
 1622          * preference point as we do not want to allocate a block
 1623          * that is allocated before the previous one (as we will
 1624          * then have to wait for another pass of the elevator
 1625          * algorithm before it will be read). We prefer to fail and
 1626          * be recalled to try an allocation in the next cylinder group.
 1627          */
 1628         if (dtog(fs, bpref) != cg)
 1629                 bpref = 0;
 1630         else
 1631                 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
 1632         mapp = &cg_clustersfree(cgp)[bpref / NBBY];
 1633         map = *mapp++;
 1634         bit = 1 << (bpref % NBBY);
 1635         for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
 1636                 if ((map & bit) == 0) {
 1637                         run = 0;
 1638                 } else {
 1639                         run++;
 1640                         if (run == len)
 1641                                 break;
 1642                 }
 1643                 if ((got & (NBBY - 1)) != (NBBY - 1)) {
 1644                         bit <<= 1;
 1645                 } else {
 1646                         map = *mapp++;
 1647                         bit = 1;
 1648                 }
 1649         }
 1650         if (got >= cgp->cg_nclusterblks)
 1651                 goto fail_lock;
 1652         /*
 1653          * Allocate the cluster that we have found.
 1654          */
 1655         blksfree = cg_blksfree(cgp);
 1656         for (i = 1; i <= len; i++)
 1657                 if (!ffs_isblock(fs, blksfree, got - run + i))
 1658                         panic("ffs_clusteralloc: map mismatch");
 1659         bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
 1660         if (dtog(fs, bno) != cg)
 1661                 panic("ffs_clusteralloc: allocated out of group");
 1662         len = blkstofrags(fs, len);
 1663         UFS_LOCK(ump);
 1664         for (i = 0; i < len; i += fs->fs_frag)
 1665                 if (ffs_alloccgblk(ip, bp, bno + i) != bno + i)
 1666                         panic("ffs_clusteralloc: lost block");
 1667         ACTIVECLEAR(fs, cg);
 1668         UFS_UNLOCK(ump);
 1669         bdwrite(bp);
 1670         return (bno);
 1671 
 1672 fail_lock:
 1673         UFS_LOCK(ump);
 1674 fail:
 1675         brelse(bp);
 1676         return (0);
 1677 }
 1678 
 1679 /*
 1680  * Determine whether an inode can be allocated.
 1681  *
 1682  * Check to see if an inode is available, and if it is,
 1683  * allocate it using the following policy:
 1684  *   1) allocate the requested inode.
 1685  *   2) allocate the next available inode after the requested
 1686  *      inode in the specified cylinder group.
 1687  */
 1688 static ufs2_daddr_t
 1689 ffs_nodealloccg(ip, cg, ipref, mode)
 1690         struct inode *ip;
 1691         int cg;
 1692         ufs2_daddr_t ipref;
 1693         int mode;
 1694 {
 1695         struct fs *fs;
 1696         struct cg *cgp;
 1697         struct buf *bp, *ibp;
 1698         struct ufsmount *ump;
 1699         u_int8_t *inosused;
 1700         struct ufs2_dinode *dp2;
 1701         int error, start, len, loc, map, i;
 1702 
 1703         fs = ip->i_fs;
 1704         ump = ip->i_ump;
 1705         if (fs->fs_cs(fs, cg).cs_nifree == 0)
 1706                 return (0);
 1707         UFS_UNLOCK(ump);
 1708         error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
 1709                 (int)fs->fs_cgsize, NOCRED, &bp);
 1710         if (error) {
 1711                 brelse(bp);
 1712                 UFS_LOCK(ump);
 1713                 return (0);
 1714         }
 1715         cgp = (struct cg *)bp->b_data;
 1716         if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
 1717                 brelse(bp);
 1718                 UFS_LOCK(ump);
 1719                 return (0);
 1720         }
 1721         bp->b_xflags |= BX_BKGRDWRITE;
 1722         cgp->cg_old_time = cgp->cg_time = time_second;
 1723         inosused = cg_inosused(cgp);
 1724         if (ipref) {
 1725                 ipref %= fs->fs_ipg;
 1726                 if (isclr(inosused, ipref))
 1727                         goto gotit;
 1728         }
 1729         start = cgp->cg_irotor / NBBY;
 1730         len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
 1731         loc = skpc(0xff, len, &inosused[start]);
 1732         if (loc == 0) {
 1733                 len = start + 1;
 1734                 start = 0;
 1735                 loc = skpc(0xff, len, &inosused[0]);
 1736                 if (loc == 0) {
 1737                         printf("cg = %d, irotor = %ld, fs = %s\n",
 1738                             cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
 1739                         panic("ffs_nodealloccg: map corrupted");
 1740                         /* NOTREACHED */
 1741                 }
 1742         }
 1743         i = start + len - loc;
 1744         map = inosused[i];
 1745         ipref = i * NBBY;
 1746         for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
 1747                 if ((map & i) == 0) {
 1748                         cgp->cg_irotor = ipref;
 1749                         goto gotit;
 1750                 }
 1751         }
 1752         printf("fs = %s\n", fs->fs_fsmnt);
 1753         panic("ffs_nodealloccg: block not in map");
 1754         /* NOTREACHED */
 1755 gotit:
 1756         /*
 1757          * Check to see if we need to initialize more inodes.
 1758          */
 1759         ibp = NULL;
 1760         if (fs->fs_magic == FS_UFS2_MAGIC &&
 1761             ipref + INOPB(fs) > cgp->cg_initediblk &&
 1762             cgp->cg_initediblk < cgp->cg_niblk) {
 1763                 ibp = getblk(ip->i_devvp, fsbtodb(fs,
 1764                     ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)),
 1765                     (int)fs->fs_bsize, 0, 0, 0);
 1766                 bzero(ibp->b_data, (int)fs->fs_bsize);
 1767                 dp2 = (struct ufs2_dinode *)(ibp->b_data);
 1768                 for (i = 0; i < INOPB(fs); i++) {
 1769                         dp2->di_gen = arc4random() / 2 + 1;
 1770                         dp2++;
 1771                 }
 1772                 cgp->cg_initediblk += INOPB(fs);
 1773         }
 1774         UFS_LOCK(ump);
 1775         ACTIVECLEAR(fs, cg);
 1776         setbit(inosused, ipref);
 1777         cgp->cg_cs.cs_nifree--;
 1778         fs->fs_cstotal.cs_nifree--;
 1779         fs->fs_cs(fs, cg).cs_nifree--;
 1780         fs->fs_fmod = 1;
 1781         if ((mode & IFMT) == IFDIR) {
 1782                 cgp->cg_cs.cs_ndir++;
 1783                 fs->fs_cstotal.cs_ndir++;
 1784                 fs->fs_cs(fs, cg).cs_ndir++;
 1785         }
 1786         UFS_UNLOCK(ump);
 1787         if (DOINGSOFTDEP(ITOV(ip)))
 1788                 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
 1789         bdwrite(bp);
 1790         if (ibp != NULL)
 1791                 bawrite(ibp);
 1792         return (cg * fs->fs_ipg + ipref);
 1793 }
 1794 
 1795 /*
 1796  * check if a block is free
 1797  */
 1798 static int
 1799 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
 1800 {
 1801 
 1802         switch ((int)fs->fs_frag) {
 1803         case 8:
 1804                 return (cp[h] == 0);
 1805         case 4:
 1806                 return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0);
 1807         case 2:
 1808                 return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0);
 1809         case 1:
 1810                 return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0);
 1811         default:
 1812                 panic("ffs_isfreeblock");
 1813         }
 1814         return (0);
 1815 }
 1816 
 1817 /*
 1818  * Free a block or fragment.
 1819  *
 1820  * The specified block or fragment is placed back in the
 1821  * free map. If a fragment is deallocated, a possible
 1822  * block reassembly is checked.
 1823  */
 1824 void
 1825 ffs_blkfree(ump, fs, devvp, bno, size, inum)
 1826         struct ufsmount *ump;
 1827         struct fs *fs;
 1828         struct vnode *devvp;
 1829         ufs2_daddr_t bno;
 1830         long size;
 1831         ino_t inum;
 1832 {
 1833         struct cg *cgp;
 1834         struct buf *bp;
 1835         ufs1_daddr_t fragno, cgbno;
 1836         ufs2_daddr_t cgblkno;
 1837         int i, cg, blk, frags, bbase;
 1838         u_int8_t *blksfree;
 1839         struct cdev *dev;
 1840 
 1841         cg = dtog(fs, bno);
 1842         if (devvp->v_type != VCHR) {
 1843                 /* devvp is a snapshot */
 1844                 dev = VTOI(devvp)->i_devvp->v_rdev;
 1845                 cgblkno = fragstoblks(fs, cgtod(fs, cg));
 1846         } else {
 1847                 /* devvp is a normal disk device */
 1848                 dev = devvp->v_rdev;
 1849                 cgblkno = fsbtodb(fs, cgtod(fs, cg));
 1850                 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree");
 1851                 if ((devvp->v_vflag & VV_COPYONWRITE) &&
 1852                     ffs_snapblkfree(fs, devvp, bno, size, inum))
 1853                         return;
 1854         }
 1855 #ifdef INVARIANTS
 1856         if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
 1857             fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
 1858                 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
 1859                     devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
 1860                     size, fs->fs_fsmnt);
 1861                 panic("ffs_blkfree: bad size");
 1862         }
 1863 #endif
 1864         if ((u_int)bno >= fs->fs_size) {
 1865                 printf("bad block %jd, ino %lu\n", (intmax_t)bno,
 1866                     (u_long)inum);
 1867                 ffs_fserr(fs, inum, "bad block");
 1868                 return;
 1869         }
 1870         if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) {
 1871                 brelse(bp);
 1872                 return;
 1873         }
 1874         cgp = (struct cg *)bp->b_data;
 1875         if (!cg_chkmagic(cgp)) {
 1876                 brelse(bp);
 1877                 return;
 1878         }
 1879         bp->b_xflags |= BX_BKGRDWRITE;
 1880         cgp->cg_old_time = cgp->cg_time = time_second;
 1881         cgbno = dtogd(fs, bno);
 1882         blksfree = cg_blksfree(cgp);
 1883         UFS_LOCK(ump);
 1884         if (size == fs->fs_bsize) {
 1885                 fragno = fragstoblks(fs, cgbno);
 1886                 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
 1887                         if (devvp->v_type != VCHR) {
 1888                                 UFS_UNLOCK(ump);
 1889                                 /* devvp is a snapshot */
 1890                                 brelse(bp);
 1891                                 return;
 1892                         }
 1893                         printf("dev = %s, block = %jd, fs = %s\n",
 1894                             devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
 1895                         panic("ffs_blkfree: freeing free block");
 1896                 }
 1897                 ffs_setblock(fs, blksfree, fragno);
 1898                 ffs_clusteracct(ump, fs, cgp, fragno, 1);
 1899                 cgp->cg_cs.cs_nbfree++;
 1900                 fs->fs_cstotal.cs_nbfree++;
 1901                 fs->fs_cs(fs, cg).cs_nbfree++;
 1902         } else {
 1903                 bbase = cgbno - fragnum(fs, cgbno);
 1904                 /*
 1905                  * decrement the counts associated with the old frags
 1906                  */
 1907                 blk = blkmap(fs, blksfree, bbase);
 1908                 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
 1909                 /*
 1910                  * deallocate the fragment
 1911                  */
 1912                 frags = numfrags(fs, size);
 1913                 for (i = 0; i < frags; i++) {
 1914                         if (isset(blksfree, cgbno + i)) {
 1915                                 printf("dev = %s, block = %jd, fs = %s\n",
 1916                                     devtoname(dev), (intmax_t)(bno + i),
 1917                                     fs->fs_fsmnt);
 1918                                 panic("ffs_blkfree: freeing free frag");
 1919                         }
 1920                         setbit(blksfree, cgbno + i);
 1921                 }
 1922                 cgp->cg_cs.cs_nffree += i;
 1923                 fs->fs_cstotal.cs_nffree += i;
 1924                 fs->fs_cs(fs, cg).cs_nffree += i;
 1925                 /*
 1926                  * add back in counts associated with the new frags
 1927                  */
 1928                 blk = blkmap(fs, blksfree, bbase);
 1929                 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
 1930                 /*
 1931                  * if a complete block has been reassembled, account for it
 1932                  */
 1933                 fragno = fragstoblks(fs, bbase);
 1934                 if (ffs_isblock(fs, blksfree, fragno)) {
 1935                         cgp->cg_cs.cs_nffree -= fs->fs_frag;
 1936                         fs->fs_cstotal.cs_nffree -= fs->fs_frag;
 1937                         fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
 1938                         ffs_clusteracct(ump, fs, cgp, fragno, 1);
 1939                         cgp->cg_cs.cs_nbfree++;
 1940                         fs->fs_cstotal.cs_nbfree++;
 1941                         fs->fs_cs(fs, cg).cs_nbfree++;
 1942                 }
 1943         }
 1944         fs->fs_fmod = 1;
 1945         ACTIVECLEAR(fs, cg);
 1946         UFS_UNLOCK(ump);
 1947         bdwrite(bp);
 1948 }
 1949 
 1950 #ifdef INVARIANTS
 1951 /*
 1952  * Verify allocation of a block or fragment. Returns true if block or
 1953  * fragment is allocated, false if it is free.
 1954  */
 1955 static int
 1956 ffs_checkblk(ip, bno, size)
 1957         struct inode *ip;
 1958         ufs2_daddr_t bno;
 1959         long size;
 1960 {
 1961         struct fs *fs;
 1962         struct cg *cgp;
 1963         struct buf *bp;
 1964         ufs1_daddr_t cgbno;
 1965         int i, error, frags, free;
 1966         u_int8_t *blksfree;
 1967 
 1968         fs = ip->i_fs;
 1969         if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
 1970                 printf("bsize = %ld, size = %ld, fs = %s\n",
 1971                     (long)fs->fs_bsize, size, fs->fs_fsmnt);
 1972                 panic("ffs_checkblk: bad size");
 1973         }
 1974         if ((u_int)bno >= fs->fs_size)
 1975                 panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
 1976         error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
 1977                 (int)fs->fs_cgsize, NOCRED, &bp);
 1978         if (error)
 1979                 panic("ffs_checkblk: cg bread failed");
 1980         cgp = (struct cg *)bp->b_data;
 1981         if (!cg_chkmagic(cgp))
 1982                 panic("ffs_checkblk: cg magic mismatch");
 1983         bp->b_xflags |= BX_BKGRDWRITE;
 1984         blksfree = cg_blksfree(cgp);
 1985         cgbno = dtogd(fs, bno);
 1986         if (size == fs->fs_bsize) {
 1987                 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
 1988         } else {
 1989                 frags = numfrags(fs, size);
 1990                 for (free = 0, i = 0; i < frags; i++)
 1991                         if (isset(blksfree, cgbno + i))
 1992                                 free++;
 1993                 if (free != 0 && free != frags)
 1994                         panic("ffs_checkblk: partially free fragment");
 1995         }
 1996         brelse(bp);
 1997         return (!free);
 1998 }
 1999 #endif /* INVARIANTS */
 2000 
 2001 /*
 2002  * Free an inode.
 2003  */
 2004 int
 2005 ffs_vfree(pvp, ino, mode)
 2006         struct vnode *pvp;
 2007         ino_t ino;
 2008         int mode;
 2009 {
 2010         struct inode *ip;
 2011 
 2012         if (DOINGSOFTDEP(pvp)) {
 2013                 softdep_freefile(pvp, ino, mode);
 2014                 return (0);
 2015         }
 2016         ip = VTOI(pvp);
 2017         return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode));
 2018 }
 2019 
 2020 /*
 2021  * Do the actual free operation.
 2022  * The specified inode is placed back in the free map.
 2023  */
 2024 int
 2025 ffs_freefile(ump, fs, devvp, ino, mode)
 2026         struct ufsmount *ump;
 2027         struct fs *fs;
 2028         struct vnode *devvp;
 2029         ino_t ino;
 2030         int mode;
 2031 {
 2032         struct cg *cgp;
 2033         struct buf *bp;
 2034         ufs2_daddr_t cgbno;
 2035         int error, cg;
 2036         u_int8_t *inosused;
 2037         struct cdev *dev;
 2038 
 2039         cg = ino_to_cg(fs, ino);
 2040         if (devvp->v_type != VCHR) {
 2041                 /* devvp is a snapshot */
 2042                 dev = VTOI(devvp)->i_devvp->v_rdev;
 2043                 cgbno = fragstoblks(fs, cgtod(fs, cg));
 2044         } else {
 2045                 /* devvp is a normal disk device */
 2046                 dev = devvp->v_rdev;
 2047                 cgbno = fsbtodb(fs, cgtod(fs, cg));
 2048         }
 2049         if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
 2050                 panic("ffs_freefile: range: dev = %s, ino = %lu, fs = %s",
 2051                     devtoname(dev), (u_long)ino, fs->fs_fsmnt);
 2052         if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
 2053                 brelse(bp);
 2054                 return (error);
 2055         }
 2056         cgp = (struct cg *)bp->b_data;
 2057         if (!cg_chkmagic(cgp)) {
 2058                 brelse(bp);
 2059                 return (0);
 2060         }
 2061         bp->b_xflags |= BX_BKGRDWRITE;
 2062         cgp->cg_old_time = cgp->cg_time = time_second;
 2063         inosused = cg_inosused(cgp);
 2064         ino %= fs->fs_ipg;
 2065         if (isclr(inosused, ino)) {
 2066                 printf("dev = %s, ino = %lu, fs = %s\n", devtoname(dev),
 2067                     (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt);
 2068                 if (fs->fs_ronly == 0)
 2069                         panic("ffs_freefile: freeing free inode");
 2070         }
 2071         clrbit(inosused, ino);
 2072         if (ino < cgp->cg_irotor)
 2073                 cgp->cg_irotor = ino;
 2074         cgp->cg_cs.cs_nifree++;
 2075         UFS_LOCK(ump);
 2076         fs->fs_cstotal.cs_nifree++;
 2077         fs->fs_cs(fs, cg).cs_nifree++;
 2078         if ((mode & IFMT) == IFDIR) {
 2079                 cgp->cg_cs.cs_ndir--;
 2080                 fs->fs_cstotal.cs_ndir--;
 2081                 fs->fs_cs(fs, cg).cs_ndir--;
 2082         }
 2083         fs->fs_fmod = 1;
 2084         ACTIVECLEAR(fs, cg);
 2085         UFS_UNLOCK(ump);
 2086         bdwrite(bp);
 2087         return (0);
 2088 }
 2089 
 2090 /*
 2091  * Check to see if a file is free.
 2092  */
 2093 int
 2094 ffs_checkfreefile(fs, devvp, ino)
 2095         struct fs *fs;
 2096         struct vnode *devvp;
 2097         ino_t ino;
 2098 {
 2099         struct cg *cgp;
 2100         struct buf *bp;
 2101         ufs2_daddr_t cgbno;
 2102         int ret, cg;
 2103         u_int8_t *inosused;
 2104 
 2105         cg = ino_to_cg(fs, ino);
 2106         if (devvp->v_type != VCHR) {
 2107                 /* devvp is a snapshot */
 2108                 cgbno = fragstoblks(fs, cgtod(fs, cg));
 2109         } else {
 2110                 /* devvp is a normal disk device */
 2111                 cgbno = fsbtodb(fs, cgtod(fs, cg));
 2112         }
 2113         if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
 2114                 return (1);
 2115         if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
 2116                 brelse(bp);
 2117                 return (1);
 2118         }
 2119         cgp = (struct cg *)bp->b_data;
 2120         if (!cg_chkmagic(cgp)) {
 2121                 brelse(bp);
 2122                 return (1);
 2123         }
 2124         inosused = cg_inosused(cgp);
 2125         ino %= fs->fs_ipg;
 2126         ret = isclr(inosused, ino);
 2127         brelse(bp);
 2128         return (ret);
 2129 }
 2130 
 2131 /*
 2132  * Find a block of the specified size in the specified cylinder group.
 2133  *
 2134  * It is a panic if a request is made to find a block if none are
 2135  * available.
 2136  */
 2137 static ufs1_daddr_t
 2138 ffs_mapsearch(fs, cgp, bpref, allocsiz)
 2139         struct fs *fs;
 2140         struct cg *cgp;
 2141         ufs2_daddr_t bpref;
 2142         int allocsiz;
 2143 {
 2144         ufs1_daddr_t bno;
 2145         int start, len, loc, i;
 2146         int blk, field, subfield, pos;
 2147         u_int8_t *blksfree;
 2148 
 2149         /*
 2150          * find the fragment by searching through the free block
 2151          * map for an appropriate bit pattern
 2152          */
 2153         if (bpref)
 2154                 start = dtogd(fs, bpref) / NBBY;
 2155         else
 2156                 start = cgp->cg_frotor / NBBY;
 2157         blksfree = cg_blksfree(cgp);
 2158         len = howmany(fs->fs_fpg, NBBY) - start;
 2159         loc = scanc((u_int)len, (u_char *)&blksfree[start],
 2160                 fragtbl[fs->fs_frag],
 2161                 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
 2162         if (loc == 0) {
 2163                 len = start + 1;
 2164                 start = 0;
 2165                 loc = scanc((u_int)len, (u_char *)&blksfree[0],
 2166                         fragtbl[fs->fs_frag],
 2167                         (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
 2168                 if (loc == 0) {
 2169                         printf("start = %d, len = %d, fs = %s\n",
 2170                             start, len, fs->fs_fsmnt);
 2171                         panic("ffs_alloccg: map corrupted");
 2172                         /* NOTREACHED */
 2173                 }
 2174         }
 2175         bno = (start + len - loc) * NBBY;
 2176         cgp->cg_frotor = bno;
 2177         /*
 2178          * found the byte in the map
 2179          * sift through the bits to find the selected frag
 2180          */
 2181         for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
 2182                 blk = blkmap(fs, blksfree, bno);
 2183                 blk <<= 1;
 2184                 field = around[allocsiz];
 2185                 subfield = inside[allocsiz];
 2186                 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
 2187                         if ((blk & field) == subfield)
 2188                                 return (bno + pos);
 2189                         field <<= 1;
 2190                         subfield <<= 1;
 2191                 }
 2192         }
 2193         printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
 2194         panic("ffs_alloccg: block not in map");
 2195         return (-1);
 2196 }
 2197 
 2198 /*
 2199  * Update the cluster map because of an allocation or free.
 2200  *
 2201  * Cnt == 1 means free; cnt == -1 means allocating.
 2202  */
 2203 void
 2204 ffs_clusteracct(ump, fs, cgp, blkno, cnt)
 2205         struct ufsmount *ump;
 2206         struct fs *fs;
 2207         struct cg *cgp;
 2208         ufs1_daddr_t blkno;
 2209         int cnt;
 2210 {
 2211         int32_t *sump;
 2212         int32_t *lp;
 2213         u_char *freemapp, *mapp;
 2214         int i, start, end, forw, back, map, bit;
 2215 
 2216         mtx_assert(UFS_MTX(ump), MA_OWNED);
 2217 
 2218         if (fs->fs_contigsumsize <= 0)
 2219                 return;
 2220         freemapp = cg_clustersfree(cgp);
 2221         sump = cg_clustersum(cgp);
 2222         /*
 2223          * Allocate or clear the actual block.
 2224          */
 2225         if (cnt > 0)
 2226                 setbit(freemapp, blkno);
 2227         else
 2228                 clrbit(freemapp, blkno);
 2229         /*
 2230          * Find the size of the cluster going forward.
 2231          */
 2232         start = blkno + 1;
 2233         end = start + fs->fs_contigsumsize;
 2234         if (end >= cgp->cg_nclusterblks)
 2235                 end = cgp->cg_nclusterblks;
 2236         mapp = &freemapp[start / NBBY];
 2237         map = *mapp++;
 2238         bit = 1 << (start % NBBY);
 2239         for (i = start; i < end; i++) {
 2240                 if ((map & bit) == 0)
 2241                         break;
 2242                 if ((i & (NBBY - 1)) != (NBBY - 1)) {
 2243                         bit <<= 1;
 2244                 } else {
 2245                         map = *mapp++;
 2246                         bit = 1;
 2247                 }
 2248         }
 2249         forw = i - start;
 2250         /*
 2251          * Find the size of the cluster going backward.
 2252          */
 2253         start = blkno - 1;
 2254         end = start - fs->fs_contigsumsize;
 2255         if (end < 0)
 2256                 end = -1;
 2257         mapp = &freemapp[start / NBBY];
 2258         map = *mapp--;
 2259         bit = 1 << (start % NBBY);
 2260         for (i = start; i > end; i--) {
 2261                 if ((map & bit) == 0)
 2262                         break;
 2263                 if ((i & (NBBY - 1)) != 0) {
 2264                         bit >>= 1;
 2265                 } else {
 2266                         map = *mapp--;
 2267                         bit = 1 << (NBBY - 1);
 2268                 }
 2269         }
 2270         back = start - i;
 2271         /*
 2272          * Account for old cluster and the possibly new forward and
 2273          * back clusters.
 2274          */
 2275         i = back + forw + 1;
 2276         if (i > fs->fs_contigsumsize)
 2277                 i = fs->fs_contigsumsize;
 2278         sump[i] += cnt;
 2279         if (back > 0)
 2280                 sump[back] -= cnt;
 2281         if (forw > 0)
 2282                 sump[forw] -= cnt;
 2283         /*
 2284          * Update cluster summary information.
 2285          */
 2286         lp = &sump[fs->fs_contigsumsize];
 2287         for (i = fs->fs_contigsumsize; i > 0; i--)
 2288                 if (*lp-- > 0)
 2289                         break;
 2290         fs->fs_maxcluster[cgp->cg_cgx] = i;
 2291 }
 2292 
 2293 /*
 2294  * Fserr prints the name of a filesystem with an error diagnostic.
 2295  *
 2296  * The form of the error message is:
 2297  *      fs: error message
 2298  */
 2299 static void
 2300 ffs_fserr(fs, inum, cp)
 2301         struct fs *fs;
 2302         ino_t inum;
 2303         char *cp;
 2304 {
 2305         struct thread *td = curthread;  /* XXX */
 2306         struct proc *p = td->td_proc;
 2307 
 2308         log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n",
 2309             p->p_pid, p->p_comm, td->td_ucred->cr_uid, inum, fs->fs_fsmnt, cp);
 2310 }
 2311 
 2312 /*
 2313  * This function provides the capability for the fsck program to
 2314  * update an active filesystem. Eleven operations are provided:
 2315  *
 2316  * adjrefcnt(inode, amt) - adjusts the reference count on the
 2317  *      specified inode by the specified amount. Under normal
 2318  *      operation the count should always go down. Decrementing
 2319  *      the count to zero will cause the inode to be freed.
 2320  * adjblkcnt(inode, amt) - adjust the number of blocks used to
 2321  *      by the specifed amount.
 2322  * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
 2323  *      adjust the superblock summary.
 2324  * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
 2325  *      are marked as free. Inodes should never have to be marked
 2326  *      as in use.
 2327  * freefiles(inode, count) - file inodes [inode..inode + count - 1]
 2328  *      are marked as free. Inodes should never have to be marked
 2329  *      as in use.
 2330  * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
 2331  *      are marked as free. Blocks should never have to be marked
 2332  *      as in use.
 2333  * setflags(flags, set/clear) - the fs_flags field has the specified
 2334  *      flags set (second parameter +1) or cleared (second parameter -1).
 2335  */
 2336 
 2337 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
 2338 
 2339 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
 2340         0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
 2341 
 2342 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
 2343         sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
 2344 
 2345 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR,
 2346         sysctl_ffs_fsck, "Adjust number of directories");
 2347 
 2348 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR,
 2349         sysctl_ffs_fsck, "Adjust number of free blocks");
 2350 
 2351 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR,
 2352         sysctl_ffs_fsck, "Adjust number of free inodes");
 2353 
 2354 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR,
 2355         sysctl_ffs_fsck, "Adjust number of free frags");
 2356 
 2357 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR,
 2358         sysctl_ffs_fsck, "Adjust number of free clusters");
 2359 
 2360 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
 2361         sysctl_ffs_fsck, "Free Range of Directory Inodes");
 2362 
 2363 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
 2364         sysctl_ffs_fsck, "Free Range of File Inodes");
 2365 
 2366 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
 2367         sysctl_ffs_fsck, "Free Range of Blocks");
 2368 
 2369 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
 2370         sysctl_ffs_fsck, "Change Filesystem Flags");
 2371 
 2372 #ifdef DEBUG
 2373 static int fsckcmds = 0;
 2374 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
 2375 #endif /* DEBUG */
 2376 
 2377 static int
 2378 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
 2379 {
 2380         struct fsck_cmd cmd;
 2381         struct ufsmount *ump;
 2382         struct vnode *vp;
 2383         struct inode *ip;
 2384         struct mount *mp;
 2385         struct fs *fs;
 2386         ufs2_daddr_t blkno;
 2387         long blkcnt, blksize;
 2388         struct file *fp;
 2389         int filetype, error;
 2390 
 2391         if (req->newlen > sizeof cmd)
 2392                 return (EBADRPC);
 2393         if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
 2394                 return (error);
 2395         if (cmd.version != FFS_CMD_VERSION)
 2396                 return (ERPCMISMATCH);
 2397         if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0)
 2398                 return (error);
 2399         vn_start_write(fp->f_data, &mp, V_WAIT);
 2400         if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
 2401                 vn_finished_write(mp);
 2402                 fdrop(fp, curthread);
 2403                 return (EINVAL);
 2404         }
 2405         if (mp->mnt_flag & MNT_RDONLY) {
 2406                 vn_finished_write(mp);
 2407                 fdrop(fp, curthread);
 2408                 return (EROFS);
 2409         }
 2410         ump = VFSTOUFS(mp);
 2411         fs = ump->um_fs;
 2412         filetype = IFREG;
 2413 
 2414         switch (oidp->oid_number) {
 2415 
 2416         case FFS_SET_FLAGS:
 2417 #ifdef DEBUG
 2418                 if (fsckcmds)
 2419                         printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
 2420                             cmd.size > 0 ? "set" : "clear");
 2421 #endif /* DEBUG */
 2422                 if (cmd.size > 0)
 2423                         fs->fs_flags |= (long)cmd.value;
 2424                 else
 2425                         fs->fs_flags &= ~(long)cmd.value;
 2426                 break;
 2427 
 2428         case FFS_ADJ_REFCNT:
 2429 #ifdef DEBUG
 2430                 if (fsckcmds) {
 2431                         printf("%s: adjust inode %jd count by %jd\n",
 2432                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
 2433                             (intmax_t)cmd.size);
 2434                 }
 2435 #endif /* DEBUG */
 2436                 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
 2437                         break;
 2438                 ip = VTOI(vp);
 2439                 ip->i_nlink += cmd.size;
 2440                 DIP_SET(ip, i_nlink, ip->i_nlink);
 2441                 ip->i_effnlink += cmd.size;
 2442                 ip->i_flag |= IN_CHANGE;
 2443                 if (DOINGSOFTDEP(vp))
 2444                         softdep_change_linkcnt(ip);
 2445                 vput(vp);
 2446                 break;
 2447 
 2448         case FFS_ADJ_BLKCNT:
 2449 #ifdef DEBUG
 2450                 if (fsckcmds) {
 2451                         printf("%s: adjust inode %jd block count by %jd\n",
 2452                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
 2453                             (intmax_t)cmd.size);
 2454                 }
 2455 #endif /* DEBUG */
 2456                 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
 2457                         break;
 2458                 ip = VTOI(vp);
 2459                 if (ip->i_flag & IN_SPACECOUNTED) {
 2460                         UFS_LOCK(ump);
 2461                         fs->fs_pendingblocks += cmd.size;
 2462                         UFS_UNLOCK(ump);
 2463                 }
 2464                 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
 2465                 ip->i_flag |= IN_CHANGE;
 2466                 vput(vp);
 2467                 break;
 2468 
 2469         case FFS_DIR_FREE:
 2470                 filetype = IFDIR;
 2471                 /* fall through */
 2472 
 2473         case FFS_FILE_FREE:
 2474 #ifdef DEBUG
 2475                 if (fsckcmds) {
 2476                         if (cmd.size == 1)
 2477                                 printf("%s: free %s inode %d\n",
 2478                                     mp->mnt_stat.f_mntonname,
 2479                                     filetype == IFDIR ? "directory" : "file",
 2480                                     (ino_t)cmd.value);
 2481                         else
 2482                                 printf("%s: free %s inodes %d-%d\n",
 2483                                     mp->mnt_stat.f_mntonname,
 2484                                     filetype == IFDIR ? "directory" : "file",
 2485                                     (ino_t)cmd.value,
 2486                                     (ino_t)(cmd.value + cmd.size - 1));
 2487                 }
 2488 #endif /* DEBUG */
 2489                 while (cmd.size > 0) {
 2490                         if ((error = ffs_freefile(ump, fs, ump->um_devvp,
 2491                             cmd.value, filetype)))
 2492                                 break;
 2493                         cmd.size -= 1;
 2494                         cmd.value += 1;
 2495                 }
 2496                 break;
 2497 
 2498         case FFS_BLK_FREE:
 2499 #ifdef DEBUG
 2500                 if (fsckcmds) {
 2501                         if (cmd.size == 1)
 2502                                 printf("%s: free block %jd\n",
 2503                                     mp->mnt_stat.f_mntonname,
 2504                                     (intmax_t)cmd.value);
 2505                         else
 2506                                 printf("%s: free blocks %jd-%jd\n",
 2507                                     mp->mnt_stat.f_mntonname, 
 2508                                     (intmax_t)cmd.value,
 2509                                     (intmax_t)cmd.value + cmd.size - 1);
 2510                 }
 2511 #endif /* DEBUG */
 2512                 blkno = cmd.value;
 2513                 blkcnt = cmd.size;
 2514                 blksize = fs->fs_frag - (blkno % fs->fs_frag);
 2515                 while (blkcnt > 0) {
 2516                         if (blksize > blkcnt)
 2517                                 blksize = blkcnt;
 2518                         ffs_blkfree(ump, fs, ump->um_devvp, blkno,
 2519                             blksize * fs->fs_fsize, ROOTINO);
 2520                         blkno += blksize;
 2521                         blkcnt -= blksize;
 2522                         blksize = fs->fs_frag;
 2523                 }
 2524                 break;
 2525 
 2526         /*
 2527          * Adjust superblock summaries.  fsck(8) is expected to
 2528          * submit deltas when necessary.
 2529          */
 2530         case FFS_ADJ_NDIR:
 2531 #ifdef DEBUG
 2532                 if (fsckcmds) {
 2533                         printf("%s: adjust number of directories by %jd\n",
 2534                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2535                 }
 2536 #endif /* DEBUG */
 2537                 fs->fs_cstotal.cs_ndir += cmd.value;
 2538                 break;
 2539         case FFS_ADJ_NBFREE:
 2540 #ifdef DEBUG
 2541                 if (fsckcmds) {
 2542                         printf("%s: adjust number of free blocks by %+jd\n",
 2543                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2544                 }
 2545 #endif /* DEBUG */
 2546                 fs->fs_cstotal.cs_nbfree += cmd.value;
 2547                 break;
 2548         case FFS_ADJ_NIFREE:
 2549 #ifdef DEBUG
 2550                 if (fsckcmds) {
 2551                         printf("%s: adjust number of free inodes by %+jd\n",
 2552                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2553                 }
 2554 #endif /* DEBUG */
 2555                 fs->fs_cstotal.cs_nifree += cmd.value;
 2556                 break;
 2557         case FFS_ADJ_NFFREE:
 2558 #ifdef DEBUG
 2559                 if (fsckcmds) {
 2560                         printf("%s: adjust number of free frags by %+jd\n",
 2561                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2562                 }
 2563 #endif /* DEBUG */
 2564                 fs->fs_cstotal.cs_nffree += cmd.value;
 2565                 break;
 2566         case FFS_ADJ_NUMCLUSTERS:
 2567 #ifdef DEBUG
 2568                 if (fsckcmds) {
 2569                         printf("%s: adjust number of free clusters by %+jd\n",
 2570                             mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
 2571                 }
 2572 #endif /* DEBUG */
 2573                 fs->fs_cstotal.cs_numclusters += cmd.value;
 2574                 break;
 2575 
 2576         default:
 2577 #ifdef DEBUG
 2578                 if (fsckcmds) {
 2579                         printf("Invalid request %d from fsck\n",
 2580                             oidp->oid_number);
 2581                 }
 2582 #endif /* DEBUG */
 2583                 error = EINVAL;
 2584                 break;
 2585 
 2586         }
 2587         fdrop(fp, curthread);
 2588         vn_finished_write(mp);
 2589         return (error);
 2590 }

Cache object: dde9a262c15b9ebf70599e51e979dad7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.