The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/ufs/ffs/ffs_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2002, 2003 Networks Associates Technology, Inc.
    3  * All rights reserved.
    4  *
    5  * This software was developed for the FreeBSD Project by Marshall
    6  * Kirk McKusick and Network Associates Laboratories, the Security
    7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
    8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
    9  * research program
   10  *
   11  * Copyright (c) 1982, 1986, 1989, 1993
   12  *      The Regents of the University of California.  All rights reserved.
   13  *
   14  * Redistribution and use in source and binary forms, with or without
   15  * modification, are permitted provided that the following conditions
   16  * are met:
   17  * 1. Redistributions of source code must retain the above copyright
   18  *    notice, this list of conditions and the following disclaimer.
   19  * 2. Redistributions in binary form must reproduce the above copyright
   20  *    notice, this list of conditions and the following disclaimer in the
   21  *    documentation and/or other materials provided with the distribution.
   22  * 3. All advertising materials mentioning features or use of this software
   23  *    must display the following acknowledgement:
   24  *      This product includes software developed by the University of
   25  *      California, Berkeley and its contributors.
   26  * 4. Neither the name of the University nor the names of its contributors
   27  *    may be used to endorse or promote products derived from this software
   28  *    without specific prior written permission.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   40  * SUCH DAMAGE.
   41  *
   42  *      @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95
   43  */
   44 
   45 #include <sys/cdefs.h>
   46 __FBSDID("$FreeBSD: releng/5.2/sys/ufs/ffs/ffs_vnops.c 129737 2004-05-25 23:07:55Z des $");
   47 
   48 #include <sys/param.h>
   49 #include <sys/bio.h>
   50 #include <sys/systm.h>
   51 #include <sys/buf.h>
   52 #include <sys/conf.h>
   53 #include <sys/extattr.h>
   54 #include <sys/kernel.h>
   55 #include <sys/limits.h>
   56 #include <sys/malloc.h>
   57 #include <sys/mount.h>
   58 #include <sys/proc.h>
   59 #include <sys/resourcevar.h>
   60 #include <sys/signalvar.h>
   61 #include <sys/stat.h>
   62 #include <sys/vmmeter.h>
   63 #include <sys/vnode.h>
   64 
   65 #include <vm/vm.h>
   66 #include <vm/vm_extern.h>
   67 #include <vm/vm_object.h>
   68 #include <vm/vm_page.h>
   69 #include <vm/vm_pager.h>
   70 #include <vm/vnode_pager.h>
   71 
   72 #include <ufs/ufs/extattr.h>
   73 #include <ufs/ufs/quota.h>
   74 #include <ufs/ufs/inode.h>
   75 #include <ufs/ufs/ufs_extern.h>
   76 #include <ufs/ufs/ufsmount.h>
   77 
   78 #include <ufs/ffs/fs.h>
   79 #include <ufs/ffs/ffs_extern.h>
   80 #include "opt_directio.h"
   81 
   82 #ifdef DIRECTIO
   83 extern int      ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone);
   84 #endif
   85 static int      ffs_fsync(struct vop_fsync_args *);
   86 static int      ffs_getpages(struct vop_getpages_args *);
   87 static int      ffs_read(struct vop_read_args *);
   88 static int      ffs_write(struct vop_write_args *);
   89 static int      ffs_extread(struct vnode *vp, struct uio *uio, int ioflag);
   90 static int      ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag,
   91                     struct ucred *cred);
   92 static int      ffsext_strategy(struct vop_strategy_args *);
   93 static int      ffs_closeextattr(struct vop_closeextattr_args *);
   94 static int      ffs_deleteextattr(struct vop_deleteextattr_args *);
   95 static int      ffs_getextattr(struct vop_getextattr_args *);
   96 static int      ffs_listextattr(struct vop_listextattr_args *);
   97 static int      ffs_openextattr(struct vop_openextattr_args *);
   98 static int      ffs_setextattr(struct vop_setextattr_args *);
   99 
  100 
  101 /* Global vfs data structures for ufs. */
  102 vop_t **ffs_vnodeop_p;
  103 static struct vnodeopv_entry_desc ffs_vnodeop_entries[] = {
  104         { &vop_default_desc,            (vop_t *) ufs_vnoperate },
  105         { &vop_fsync_desc,              (vop_t *) ffs_fsync },
  106         { &vop_getpages_desc,           (vop_t *) ffs_getpages },
  107         { &vop_read_desc,               (vop_t *) ffs_read },
  108         { &vop_reallocblks_desc,        (vop_t *) ffs_reallocblks },
  109         { &vop_write_desc,              (vop_t *) ffs_write },
  110         { &vop_closeextattr_desc,       (vop_t *) ffs_closeextattr },
  111         { &vop_deleteextattr_desc,      (vop_t *) ffs_deleteextattr },
  112         { &vop_getextattr_desc,         (vop_t *) ffs_getextattr },
  113         { &vop_listextattr_desc,        (vop_t *) ffs_listextattr },
  114         { &vop_openextattr_desc,        (vop_t *) ffs_openextattr },
  115         { &vop_setextattr_desc,         (vop_t *) ffs_setextattr },
  116         { NULL, NULL }
  117 };
  118 static struct vnodeopv_desc ffs_vnodeop_opv_desc =
  119         { &ffs_vnodeop_p, ffs_vnodeop_entries };
  120 
  121 vop_t **ffs_specop_p;
  122 static struct vnodeopv_entry_desc ffs_specop_entries[] = {
  123         { &vop_default_desc,            (vop_t *) ufs_vnoperatespec },
  124         { &vop_fsync_desc,              (vop_t *) ffs_fsync },
  125         { &vop_reallocblks_desc,        (vop_t *) ffs_reallocblks },
  126         { &vop_strategy_desc,           (vop_t *) ffsext_strategy },
  127         { &vop_closeextattr_desc,       (vop_t *) ffs_closeextattr },
  128         { &vop_deleteextattr_desc,      (vop_t *) ffs_deleteextattr },
  129         { &vop_getextattr_desc,         (vop_t *) ffs_getextattr },
  130         { &vop_listextattr_desc,        (vop_t *) ffs_listextattr },
  131         { &vop_openextattr_desc,        (vop_t *) ffs_openextattr },
  132         { &vop_setextattr_desc,         (vop_t *) ffs_setextattr },
  133         { NULL, NULL }
  134 };
  135 static struct vnodeopv_desc ffs_specop_opv_desc =
  136         { &ffs_specop_p, ffs_specop_entries };
  137 
  138 vop_t **ffs_fifoop_p;
  139 static struct vnodeopv_entry_desc ffs_fifoop_entries[] = {
  140         { &vop_default_desc,            (vop_t *) ufs_vnoperatefifo },
  141         { &vop_fsync_desc,              (vop_t *) ffs_fsync },
  142         { &vop_reallocblks_desc,        (vop_t *) ffs_reallocblks },
  143         { &vop_strategy_desc,           (vop_t *) ffsext_strategy },
  144         { &vop_closeextattr_desc,       (vop_t *) ffs_closeextattr },
  145         { &vop_deleteextattr_desc,      (vop_t *) ffs_deleteextattr },
  146         { &vop_getextattr_desc,         (vop_t *) ffs_getextattr },
  147         { &vop_listextattr_desc,        (vop_t *) ffs_listextattr },
  148         { &vop_openextattr_desc,        (vop_t *) ffs_openextattr },
  149         { &vop_setextattr_desc,         (vop_t *) ffs_setextattr },
  150         { NULL, NULL }
  151 };
  152 static struct vnodeopv_desc ffs_fifoop_opv_desc =
  153         { &ffs_fifoop_p, ffs_fifoop_entries };
  154 
  155 VNODEOP_SET(ffs_vnodeop_opv_desc);
  156 VNODEOP_SET(ffs_specop_opv_desc);
  157 VNODEOP_SET(ffs_fifoop_opv_desc);
  158 
  159 /*
  160  * Synch an open file.
  161  */
  162 /* ARGSUSED */
  163 static int
  164 ffs_fsync(ap)
  165         struct vop_fsync_args /* {
  166                 struct vnode *a_vp;
  167                 struct ucred *a_cred;
  168                 int a_waitfor;
  169                 struct thread *a_td;
  170         } */ *ap;
  171 {
  172         struct vnode *vp = ap->a_vp;
  173         struct inode *ip = VTOI(vp);
  174         struct buf *bp;
  175         struct buf *nbp;
  176         int s, error, wait, passes, skipmeta;
  177         ufs_lbn_t lbn;
  178 
  179         wait = (ap->a_waitfor == MNT_WAIT);
  180         if (vn_isdisk(vp, NULL)) {
  181                 lbn = INT_MAX;
  182                 if (vp->v_rdev->si_mountpoint != NULL &&
  183                     (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP))
  184                         softdep_fsync_mountdev(vp);
  185         } else {
  186                 lbn = lblkno(ip->i_fs, (ip->i_size + ip->i_fs->fs_bsize - 1));
  187         }
  188 
  189         /*
  190          * Flush all dirty buffers associated with a vnode.
  191          */
  192         passes = NIADDR + 1;
  193         skipmeta = 0;
  194         if (wait)
  195                 skipmeta = 1;
  196         s = splbio();
  197         VI_LOCK(vp);
  198 loop:
  199         TAILQ_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs)
  200                 bp->b_vflags &= ~BV_SCANNED;
  201         for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
  202                 nbp = TAILQ_NEXT(bp, b_vnbufs);
  203                 /* 
  204                  * Reasons to skip this buffer: it has already been considered
  205                  * on this pass, this pass is the first time through on a
  206                  * synchronous flush request and the buffer being considered
  207                  * is metadata, the buffer has dependencies that will cause
  208                  * it to be redirtied and it has not already been deferred,
  209                  * or it is already being written.
  210                  */
  211                 if ((bp->b_vflags & BV_SCANNED) != 0)
  212                         continue;
  213                 bp->b_vflags |= BV_SCANNED;
  214                 if ((skipmeta == 1 && bp->b_lblkno < 0))
  215                         continue;
  216                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
  217                         continue;
  218                 if (!wait && LIST_FIRST(&bp->b_dep) != NULL &&
  219                     (bp->b_flags & B_DEFERRED) == 0 &&
  220                     buf_countdeps(bp, 0)) {
  221                         bp->b_flags |= B_DEFERRED;
  222                         BUF_UNLOCK(bp);
  223                         continue;
  224                 }
  225                 VI_UNLOCK(vp);
  226                 if ((bp->b_flags & B_DELWRI) == 0)
  227                         panic("ffs_fsync: not dirty");
  228                 if (vp != bp->b_vp)
  229                         panic("ffs_fsync: vp != vp->b_vp");
  230                 /*
  231                  * If this is a synchronous flush request, or it is not a
  232                  * file or device, start the write on this buffer immediatly.
  233                  */
  234                 if (wait || (vp->v_type != VREG && vp->v_type != VBLK)) {
  235 
  236                         /*
  237                          * On our final pass through, do all I/O synchronously
  238                          * so that we can find out if our flush is failing
  239                          * because of write errors.
  240                          */
  241                         if (passes > 0 || !wait) {
  242                                 if ((bp->b_flags & B_CLUSTEROK) && !wait) {
  243                                         (void) vfs_bio_awrite(bp);
  244                                 } else {
  245                                         bremfree(bp);
  246                                         splx(s);
  247                                         (void) bawrite(bp);
  248                                         s = splbio();
  249                                 }
  250                         } else {
  251                                 bremfree(bp);
  252                                 splx(s);
  253                                 if ((error = bwrite(bp)) != 0)
  254                                         return (error);
  255                                 s = splbio();
  256                         }
  257                 } else if ((vp->v_type == VREG) && (bp->b_lblkno >= lbn)) {
  258                         /* 
  259                          * If the buffer is for data that has been truncated
  260                          * off the file, then throw it away.
  261                          */
  262                         bremfree(bp);
  263                         bp->b_flags |= B_INVAL | B_NOCACHE;
  264                         splx(s);
  265                         brelse(bp);
  266                         s = splbio();
  267                 } else
  268                         vfs_bio_awrite(bp);
  269 
  270                 /*
  271                  * Since we may have slept during the I/O, we need 
  272                  * to start from a known point.
  273                  */
  274                 VI_LOCK(vp);
  275                 nbp = TAILQ_FIRST(&vp->v_dirtyblkhd);
  276         }
  277         /*
  278          * If we were asked to do this synchronously, then go back for
  279          * another pass, this time doing the metadata.
  280          */
  281         if (skipmeta) {
  282                 skipmeta = 0;
  283                 goto loop;
  284         }
  285 
  286         if (wait) {
  287                 while (vp->v_numoutput) {
  288                         vp->v_iflag |= VI_BWAIT;
  289                         msleep((caddr_t)&vp->v_numoutput, VI_MTX(vp),
  290                             PRIBIO + 4, "ffsfsn", 0);
  291                 }
  292                 VI_UNLOCK(vp);
  293 
  294                 /* 
  295                  * Ensure that any filesystem metatdata associated
  296                  * with the vnode has been written.
  297                  */
  298                 splx(s);
  299                 if ((error = softdep_sync_metadata(ap)) != 0)
  300                         return (error);
  301                 s = splbio();
  302 
  303                 VI_LOCK(vp);
  304                 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
  305                         /*
  306                          * Block devices associated with filesystems may
  307                          * have new I/O requests posted for them even if
  308                          * the vnode is locked, so no amount of trying will
  309                          * get them clean. Thus we give block devices a
  310                          * good effort, then just give up. For all other file
  311                          * types, go around and try again until it is clean.
  312                          */
  313                         if (passes > 0) {
  314                                 passes -= 1;
  315                                 goto loop;
  316                         }
  317 #ifdef DIAGNOSTIC
  318                         if (!vn_isdisk(vp, NULL))
  319                                 vprint("ffs_fsync: dirty", vp);
  320 #endif
  321                 }
  322         }
  323         VI_UNLOCK(vp);
  324         splx(s);
  325         return (UFS_UPDATE(vp, wait));
  326 }
  327 
  328 
  329 /*
  330  * Vnode op for reading.
  331  */
  332 /* ARGSUSED */
  333 static int
  334 ffs_read(ap)
  335         struct vop_read_args /* {
  336                 struct vnode *a_vp;
  337                 struct uio *a_uio;
  338                 int a_ioflag;
  339                 struct ucred *a_cred;
  340         } */ *ap;
  341 {
  342         struct vnode *vp;
  343         struct inode *ip;
  344         struct uio *uio;
  345         struct fs *fs;
  346         struct buf *bp;
  347         ufs_lbn_t lbn, nextlbn;
  348         off_t bytesinfile;
  349         long size, xfersize, blkoffset;
  350         int error, orig_resid;
  351         int seqcount;
  352         int ioflag;
  353         vm_object_t object;
  354 
  355         vp = ap->a_vp;
  356         uio = ap->a_uio;
  357         ioflag = ap->a_ioflag;
  358         if (ap->a_ioflag & IO_EXT)
  359 #ifdef notyet
  360                 return (ffs_extread(vp, uio, ioflag));
  361 #else
  362                 panic("ffs_read+IO_EXT");
  363 #endif
  364 #ifdef DIRECTIO
  365         if ((ioflag & IO_DIRECT) != 0) {
  366                 int workdone;
  367 
  368                 error = ffs_rawread(vp, uio, &workdone);
  369                 if (error != 0 || workdone != 0)
  370                         return error;
  371         }
  372 #endif
  373 
  374         GIANT_REQUIRED;
  375 
  376         seqcount = ap->a_ioflag >> 16;
  377         ip = VTOI(vp);
  378 
  379 #ifdef DIAGNOSTIC
  380         if (uio->uio_rw != UIO_READ)
  381                 panic("ffs_read: mode");
  382 
  383         if (vp->v_type == VLNK) {
  384                 if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen)
  385                         panic("ffs_read: short symlink");
  386         } else if (vp->v_type != VREG && vp->v_type != VDIR)
  387                 panic("ffs_read: type %d",  vp->v_type);
  388 #endif
  389         fs = ip->i_fs;
  390         if ((u_int64_t)uio->uio_offset > fs->fs_maxfilesize)
  391                 return (EFBIG);
  392 
  393         orig_resid = uio->uio_resid;
  394         if (orig_resid <= 0)
  395                 return (0);
  396 
  397         object = vp->v_object;
  398 
  399         bytesinfile = ip->i_size - uio->uio_offset;
  400         if (bytesinfile <= 0) {
  401                 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0)
  402                         ip->i_flag |= IN_ACCESS;
  403                 return 0;
  404         }
  405 
  406         if (object) {
  407                 vm_object_reference(object);
  408         }
  409 
  410         /*
  411          * Ok so we couldn't do it all in one vm trick...
  412          * so cycle around trying smaller bites..
  413          */
  414         for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
  415                 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0)
  416                         break;
  417 
  418                 lbn = lblkno(fs, uio->uio_offset);
  419                 nextlbn = lbn + 1;
  420 
  421                 /*
  422                  * size of buffer.  The buffer representing the
  423                  * end of the file is rounded up to the size of
  424                  * the block type ( fragment or full block, 
  425                  * depending ).
  426                  */
  427                 size = blksize(fs, ip, lbn);
  428                 blkoffset = blkoff(fs, uio->uio_offset);
  429                 
  430                 /*
  431                  * The amount we want to transfer in this iteration is
  432                  * one FS block less the amount of the data before
  433                  * our startpoint (duh!)
  434                  */
  435                 xfersize = fs->fs_bsize - blkoffset;
  436 
  437                 /*
  438                  * But if we actually want less than the block,
  439                  * or the file doesn't have a whole block more of data,
  440                  * then use the lesser number.
  441                  */
  442                 if (uio->uio_resid < xfersize)
  443                         xfersize = uio->uio_resid;
  444                 if (bytesinfile < xfersize)
  445                         xfersize = bytesinfile;
  446 
  447                 if (lblktosize(fs, nextlbn) >= ip->i_size) {
  448                         /*
  449                          * Don't do readahead if this is the end of the file.
  450                          */
  451                         error = bread(vp, lbn, size, NOCRED, &bp);
  452                 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
  453                         /* 
  454                          * Otherwise if we are allowed to cluster,
  455                          * grab as much as we can.
  456                          *
  457                          * XXX  This may not be a win if we are not
  458                          * doing sequential access.
  459                          */
  460                         error = cluster_read(vp, ip->i_size, lbn,
  461                                 size, NOCRED, uio->uio_resid, seqcount, &bp);
  462                 } else if (seqcount > 1) {
  463                         /*
  464                          * If we are NOT allowed to cluster, then
  465                          * if we appear to be acting sequentially,
  466                          * fire off a request for a readahead
  467                          * as well as a read. Note that the 4th and 5th
  468                          * arguments point to arrays of the size specified in
  469                          * the 6th argument.
  470                          */
  471                         int nextsize = blksize(fs, ip, nextlbn);
  472                         error = breadn(vp, lbn,
  473                             size, &nextlbn, &nextsize, 1, NOCRED, &bp);
  474                 } else {
  475                         /*
  476                          * Failing all of the above, just read what the 
  477                          * user asked for. Interestingly, the same as
  478                          * the first option above.
  479                          */
  480                         error = bread(vp, lbn, size, NOCRED, &bp);
  481                 }
  482                 if (error) {
  483                         brelse(bp);
  484                         bp = NULL;
  485                         break;
  486                 }
  487 
  488                 /*
  489                  * If IO_DIRECT then set B_DIRECT for the buffer.  This
  490                  * will cause us to attempt to release the buffer later on
  491                  * and will cause the buffer cache to attempt to free the
  492                  * underlying pages.
  493                  */
  494                 if (ioflag & IO_DIRECT)
  495                         bp->b_flags |= B_DIRECT;
  496 
  497                 /*
  498                  * We should only get non-zero b_resid when an I/O error
  499                  * has occurred, which should cause us to break above.
  500                  * However, if the short read did not cause an error,
  501                  * then we want to ensure that we do not uiomove bad
  502                  * or uninitialized data.
  503                  */
  504                 size -= bp->b_resid;
  505                 if (size < xfersize) {
  506                         if (size == 0)
  507                                 break;
  508                         xfersize = size;
  509                 }
  510 
  511                 {
  512                         /*
  513                          * otherwise use the general form
  514                          */
  515                         error =
  516                                 uiomove((char *)bp->b_data + blkoffset,
  517                                         (int)xfersize, uio);
  518                 }
  519 
  520                 if (error)
  521                         break;
  522 
  523                 if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
  524                    (LIST_FIRST(&bp->b_dep) == NULL)) {
  525                         /*
  526                          * If there are no dependencies, and it's VMIO,
  527                          * then we don't need the buf, mark it available
  528                          * for freeing. The VM has the data.
  529                          */
  530                         bp->b_flags |= B_RELBUF;
  531                         brelse(bp);
  532                 } else {
  533                         /*
  534                          * Otherwise let whoever
  535                          * made the request take care of
  536                          * freeing it. We just queue
  537                          * it onto another list.
  538                          */
  539                         bqrelse(bp);
  540                 }
  541         }
  542 
  543         /* 
  544          * This can only happen in the case of an error
  545          * because the loop above resets bp to NULL on each iteration
  546          * and on normal completion has not set a new value into it.
  547          * so it must have come from a 'break' statement
  548          */
  549         if (bp != NULL) {
  550                 if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
  551                    (LIST_FIRST(&bp->b_dep) == NULL)) {
  552                         bp->b_flags |= B_RELBUF;
  553                         brelse(bp);
  554                 } else {
  555                         bqrelse(bp);
  556                 }
  557         }
  558 
  559         if (object) {
  560                 VM_OBJECT_LOCK(object);
  561                 vm_object_vndeallocate(object);
  562         }
  563         if ((error == 0 || uio->uio_resid != orig_resid) &&
  564             (vp->v_mount->mnt_flag & MNT_NOATIME) == 0)
  565                 ip->i_flag |= IN_ACCESS;
  566         return (error);
  567 }
  568 
  569 /*
  570  * Vnode op for writing.
  571  */
  572 static int
  573 ffs_write(ap)
  574         struct vop_write_args /* {
  575                 struct vnode *a_vp;
  576                 struct uio *a_uio;
  577                 int a_ioflag;
  578                 struct ucred *a_cred;
  579         } */ *ap;
  580 {
  581         struct vnode *vp;
  582         struct uio *uio;
  583         struct inode *ip;
  584         struct fs *fs;
  585         struct buf *bp;
  586         struct thread *td;
  587         ufs_lbn_t lbn;
  588         off_t osize;
  589         int seqcount;
  590         int blkoffset, error, extended, flags, ioflag, resid, size, xfersize;
  591         vm_object_t object;
  592 
  593         vp = ap->a_vp;
  594         uio = ap->a_uio;
  595         ioflag = ap->a_ioflag;
  596         if (ap->a_ioflag & IO_EXT)
  597 #ifdef notyet
  598                 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred));
  599 #else
  600                 panic("ffs_read+IO_EXT");
  601 #endif
  602 
  603         GIANT_REQUIRED;
  604 
  605         extended = 0;
  606         seqcount = ap->a_ioflag >> 16;
  607         ip = VTOI(vp);
  608 
  609         object = vp->v_object;
  610         if (object) {
  611                 vm_object_reference(object);
  612         }
  613 
  614 #ifdef DIAGNOSTIC
  615         if (uio->uio_rw != UIO_WRITE)
  616                 panic("ffswrite: mode");
  617 #endif
  618 
  619         switch (vp->v_type) {
  620         case VREG:
  621                 if (ioflag & IO_APPEND)
  622                         uio->uio_offset = ip->i_size;
  623                 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) {
  624                         if (object) {
  625                                 VM_OBJECT_LOCK(object);
  626                                 vm_object_vndeallocate(object);
  627                         }
  628                         return (EPERM);
  629                 }
  630                 /* FALLTHROUGH */
  631         case VLNK:
  632                 break;
  633         case VDIR:
  634                 panic("ffswrite: dir write");
  635                 break;
  636         default:
  637                 panic("ffswrite: type %p %d (%d,%d)", vp, (int)vp->v_type,
  638                         (int)uio->uio_offset,
  639                         (int)uio->uio_resid
  640                 );
  641         }
  642 
  643         fs = ip->i_fs;
  644         if (uio->uio_offset < 0 ||
  645             (u_int64_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) {
  646                 if (object) {
  647                         VM_OBJECT_LOCK(object);
  648                         vm_object_vndeallocate(object);
  649                 }
  650                 return (EFBIG);
  651         }
  652         /*
  653          * Maybe this should be above the vnode op call, but so long as
  654          * file servers have no limits, I don't think it matters.
  655          */
  656         td = uio->uio_td;
  657         if (vp->v_type == VREG && td &&
  658             uio->uio_offset + uio->uio_resid >
  659             td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
  660                 PROC_LOCK(td->td_proc);
  661                 psignal(td->td_proc, SIGXFSZ);
  662                 PROC_UNLOCK(td->td_proc);
  663                 if (object) {
  664                         VM_OBJECT_LOCK(object);
  665                         vm_object_vndeallocate(object);
  666                 }
  667                 return (EFBIG);
  668         }
  669 
  670         resid = uio->uio_resid;
  671         osize = ip->i_size;
  672         if (seqcount > BA_SEQMAX)
  673                 flags = BA_SEQMAX << BA_SEQSHIFT;
  674         else
  675                 flags = seqcount << BA_SEQSHIFT;
  676         if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
  677                 flags |= IO_SYNC;
  678 
  679         for (error = 0; uio->uio_resid > 0;) {
  680                 lbn = lblkno(fs, uio->uio_offset);
  681                 blkoffset = blkoff(fs, uio->uio_offset);
  682                 xfersize = fs->fs_bsize - blkoffset;
  683                 if (uio->uio_resid < xfersize)
  684                         xfersize = uio->uio_resid;
  685 
  686                 if (uio->uio_offset + xfersize > ip->i_size)
  687                         vnode_pager_setsize(vp, uio->uio_offset + xfersize);
  688 
  689                 /*      
  690                  * We must perform a read-before-write if the transfer size
  691                  * does not cover the entire buffer.
  692                  */
  693                 if (fs->fs_bsize > xfersize)
  694                         flags |= BA_CLRBUF;
  695                 else
  696                         flags &= ~BA_CLRBUF;
  697 /* XXX is uio->uio_offset the right thing here? */
  698                 error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
  699                     ap->a_cred, flags, &bp);
  700                 if (error != 0)
  701                         break;
  702                 /*
  703                  * If the buffer is not valid we have to clear out any
  704                  * garbage data from the pages instantiated for the buffer.
  705                  * If we do not, a failed uiomove() during a write can leave
  706                  * the prior contents of the pages exposed to a userland
  707                  * mmap().  XXX deal with uiomove() errors a better way.
  708                  */
  709                 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
  710                         vfs_bio_clrbuf(bp);
  711                 if (ioflag & IO_DIRECT)
  712                         bp->b_flags |= B_DIRECT;
  713                 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL))
  714                         bp->b_flags |= B_NOCACHE;
  715 
  716                 if (uio->uio_offset + xfersize > ip->i_size) {
  717                         ip->i_size = uio->uio_offset + xfersize;
  718                         DIP(ip, i_size) = ip->i_size;
  719                         extended = 1;
  720                 }
  721 
  722                 size = blksize(fs, ip, lbn) - bp->b_resid;
  723                 if (size < xfersize)
  724                         xfersize = size;
  725 
  726                 error =
  727                     uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
  728                 if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
  729                    (LIST_FIRST(&bp->b_dep) == NULL)) {
  730                         bp->b_flags |= B_RELBUF;
  731                 }
  732 
  733                 /*
  734                  * If IO_SYNC each buffer is written synchronously.  Otherwise
  735                  * if we have a severe page deficiency write the buffer 
  736                  * asynchronously.  Otherwise try to cluster, and if that
  737                  * doesn't do it then either do an async write (if O_DIRECT),
  738                  * or a delayed write (if not).
  739                  */
  740                 if (ioflag & IO_SYNC) {
  741                         (void)bwrite(bp);
  742                 } else if (vm_page_count_severe() ||
  743                             buf_dirty_count_severe() ||
  744                             (ioflag & IO_ASYNC)) {
  745                         bp->b_flags |= B_CLUSTEROK;
  746                         bawrite(bp);
  747                 } else if (xfersize + blkoffset == fs->fs_bsize) {
  748                         if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
  749                                 bp->b_flags |= B_CLUSTEROK;
  750                                 cluster_write(bp, ip->i_size, seqcount);
  751                         } else {
  752                                 bawrite(bp);
  753                         }
  754                 } else if (ioflag & IO_DIRECT) {
  755                         bp->b_flags |= B_CLUSTEROK;
  756                         bawrite(bp);
  757                 } else {
  758                         bp->b_flags |= B_CLUSTEROK;
  759                         bdwrite(bp);
  760                 }
  761                 if (error || xfersize == 0)
  762                         break;
  763                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  764         }
  765         /*
  766          * If we successfully wrote any data, and we are not the superuser
  767          * we clear the setuid and setgid bits as a precaution against
  768          * tampering.
  769          */
  770         if (resid > uio->uio_resid && ap->a_cred && 
  771             suser_cred(ap->a_cred, PRISON_ROOT)) {
  772                 ip->i_mode &= ~(ISUID | ISGID);
  773                 DIP(ip, i_mode) = ip->i_mode;
  774         }
  775         if (resid > uio->uio_resid)
  776                 VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));
  777         if (error) {
  778                 if (ioflag & IO_UNIT) {
  779                         (void)UFS_TRUNCATE(vp, osize,
  780                             IO_NORMAL | (ioflag & IO_SYNC),
  781                             ap->a_cred, uio->uio_td);
  782                         uio->uio_offset -= resid - uio->uio_resid;
  783                         uio->uio_resid = resid;
  784                 }
  785         } else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
  786                 error = UFS_UPDATE(vp, 1);
  787 
  788         if (object) {
  789                 VM_OBJECT_LOCK(object);
  790                 vm_object_vndeallocate(object);
  791         }
  792 
  793         return (error);
  794 }
  795 
  796 /*
  797  * get page routine
  798  */
  799 static int
  800 ffs_getpages(ap)
  801         struct vop_getpages_args *ap;
  802 {
  803         off_t foff, physoffset;
  804         int i, size, bsize;
  805         struct vnode *dp, *vp;
  806         vm_object_t obj;
  807         vm_pindex_t pindex;
  808         vm_page_t mreq;
  809         int bbackwards, bforwards;
  810         int pbackwards, pforwards;
  811         int firstpage;
  812         ufs2_daddr_t reqblkno, reqlblkno;
  813         int poff;
  814         int pcount;
  815         int rtval;
  816         int pagesperblock;
  817 
  818         GIANT_REQUIRED;
  819 
  820         pcount = round_page(ap->a_count) / PAGE_SIZE;
  821         mreq = ap->a_m[ap->a_reqpage];
  822 
  823         /*
  824          * if ANY DEV_BSIZE blocks are valid on a large filesystem block,
  825          * then the entire page is valid.  Since the page may be mapped,
  826          * user programs might reference data beyond the actual end of file
  827          * occuring within the page.  We have to zero that data.
  828          */
  829         VM_OBJECT_LOCK(mreq->object);
  830         if (mreq->valid) {
  831                 if (mreq->valid != VM_PAGE_BITS_ALL)
  832                         vm_page_zero_invalid(mreq, TRUE);
  833                 vm_page_lock_queues();
  834                 for (i = 0; i < pcount; i++) {
  835                         if (i != ap->a_reqpage) {
  836                                 vm_page_free(ap->a_m[i]);
  837                         }
  838                 }
  839                 vm_page_unlock_queues();
  840                 VM_OBJECT_UNLOCK(mreq->object);
  841                 return VM_PAGER_OK;
  842         }
  843         VM_OBJECT_UNLOCK(mreq->object);
  844         vp = ap->a_vp;
  845         obj = vp->v_object;
  846         bsize = vp->v_mount->mnt_stat.f_iosize;
  847         pindex = mreq->pindex;
  848         foff = IDX_TO_OFF(pindex) /* + ap->a_offset should be zero */;
  849 
  850         if (bsize < PAGE_SIZE)
  851                 return vnode_pager_generic_getpages(ap->a_vp, ap->a_m,
  852                                                     ap->a_count,
  853                                                     ap->a_reqpage);
  854 
  855         /*
  856          * foff is the file offset of the required page
  857          * reqlblkno is the logical block that contains the page
  858          * poff is the index of the page into the logical block
  859          */
  860         reqlblkno = foff / bsize;
  861         poff = (foff % bsize) / PAGE_SIZE;
  862 
  863         dp = VTOI(vp)->i_devvp;
  864         if (ufs_bmaparray(vp, reqlblkno, &reqblkno, 0, &bforwards, &bbackwards)
  865             || (reqblkno == -1)) {
  866                 VM_OBJECT_LOCK(obj);
  867                 vm_page_lock_queues();
  868                 for(i = 0; i < pcount; i++) {
  869                         if (i != ap->a_reqpage)
  870                                 vm_page_free(ap->a_m[i]);
  871                 }
  872                 vm_page_unlock_queues();
  873                 if (reqblkno == -1) {
  874                         if ((mreq->flags & PG_ZERO) == 0)
  875                                 pmap_zero_page(mreq);
  876                         vm_page_undirty(mreq);
  877                         mreq->valid = VM_PAGE_BITS_ALL;
  878                         VM_OBJECT_UNLOCK(obj);
  879                         return VM_PAGER_OK;
  880                 } else {
  881                         VM_OBJECT_UNLOCK(obj);
  882                         return VM_PAGER_ERROR;
  883                 }
  884         }
  885 
  886         physoffset = (off_t)reqblkno * DEV_BSIZE + poff * PAGE_SIZE;
  887         pagesperblock = bsize / PAGE_SIZE;
  888         /*
  889          * find the first page that is contiguous...
  890          * note that pbackwards is the number of pages that are contiguous
  891          * backwards.
  892          */
  893         firstpage = 0;
  894         if (ap->a_count) {
  895                 pbackwards = poff + bbackwards * pagesperblock;
  896                 if (ap->a_reqpage > pbackwards) {
  897                         firstpage = ap->a_reqpage - pbackwards;
  898                         VM_OBJECT_LOCK(obj);
  899                         vm_page_lock_queues();
  900                         for(i=0;i<firstpage;i++)
  901                                 vm_page_free(ap->a_m[i]);
  902                         vm_page_unlock_queues();
  903                         VM_OBJECT_UNLOCK(obj);
  904                 }
  905 
  906         /*
  907          * pforwards is the number of pages that are contiguous
  908          * after the current page.
  909          */
  910                 pforwards = (pagesperblock - (poff + 1)) +
  911                         bforwards * pagesperblock;
  912                 if (pforwards < (pcount - (ap->a_reqpage + 1))) {
  913                         VM_OBJECT_LOCK(obj);
  914                         vm_page_lock_queues();
  915                         for( i = ap->a_reqpage + pforwards + 1; i < pcount; i++)
  916                                 vm_page_free(ap->a_m[i]);
  917                         vm_page_unlock_queues();
  918                         VM_OBJECT_UNLOCK(obj);
  919                         pcount = ap->a_reqpage + pforwards + 1;
  920                 }
  921 
  922         /*
  923          * number of pages for I/O corrected for the non-contig pages at
  924          * the beginning of the array.
  925          */
  926                 pcount -= firstpage;
  927         }
  928 
  929         /*
  930          * calculate the size of the transfer
  931          */
  932 
  933         size = pcount * PAGE_SIZE;
  934 
  935         if ((IDX_TO_OFF(ap->a_m[firstpage]->pindex) + size) >
  936                 obj->un_pager.vnp.vnp_size)
  937                 size = obj->un_pager.vnp.vnp_size -
  938                         IDX_TO_OFF(ap->a_m[firstpage]->pindex);
  939 
  940         physoffset -= foff;
  941         rtval = VOP_GETPAGES(dp, &ap->a_m[firstpage], size,
  942                 (ap->a_reqpage - firstpage), physoffset);
  943 
  944         return (rtval);
  945 }
  946 
  947 /*
  948  * Extended attribute area reading.
  949  */
  950 static int
  951 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag)
  952 {
  953         struct inode *ip;
  954         struct ufs2_dinode *dp;
  955         struct fs *fs;
  956         struct buf *bp;
  957         ufs_lbn_t lbn, nextlbn;
  958         off_t bytesinfile;
  959         long size, xfersize, blkoffset;
  960         int error, orig_resid;
  961 
  962         GIANT_REQUIRED;
  963 
  964         ip = VTOI(vp);
  965         fs = ip->i_fs;
  966         dp = ip->i_din2;
  967 
  968 #ifdef DIAGNOSTIC
  969         if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC)
  970                 panic("ffs_extread: mode");
  971 
  972 #endif
  973         orig_resid = uio->uio_resid;
  974         if (orig_resid <= 0)
  975                 return (0);
  976 
  977         bytesinfile = dp->di_extsize - uio->uio_offset;
  978         if (bytesinfile <= 0) {
  979                 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0)
  980                         ip->i_flag |= IN_ACCESS;
  981                 return 0;
  982         }
  983 
  984         for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
  985                 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0)
  986                         break;
  987 
  988                 lbn = lblkno(fs, uio->uio_offset);
  989                 nextlbn = lbn + 1;
  990 
  991                 /*
  992                  * size of buffer.  The buffer representing the
  993                  * end of the file is rounded up to the size of
  994                  * the block type ( fragment or full block, 
  995                  * depending ).
  996                  */
  997                 size = sblksize(fs, dp->di_extsize, lbn);
  998                 blkoffset = blkoff(fs, uio->uio_offset);
  999                 
 1000                 /*
 1001                  * The amount we want to transfer in this iteration is
 1002                  * one FS block less the amount of the data before
 1003                  * our startpoint (duh!)
 1004                  */
 1005                 xfersize = fs->fs_bsize - blkoffset;
 1006 
 1007                 /*
 1008                  * But if we actually want less than the block,
 1009                  * or the file doesn't have a whole block more of data,
 1010                  * then use the lesser number.
 1011                  */
 1012                 if (uio->uio_resid < xfersize)
 1013                         xfersize = uio->uio_resid;
 1014                 if (bytesinfile < xfersize)
 1015                         xfersize = bytesinfile;
 1016 
 1017                 if (lblktosize(fs, nextlbn) >= dp->di_extsize) {
 1018                         /*
 1019                          * Don't do readahead if this is the end of the info.
 1020                          */
 1021                         error = bread(vp, -1 - lbn, size, NOCRED, &bp);
 1022                 } else {
 1023                         /*
 1024                          * If we have a second block, then
 1025                          * fire off a request for a readahead
 1026                          * as well as a read. Note that the 4th and 5th
 1027                          * arguments point to arrays of the size specified in
 1028                          * the 6th argument.
 1029                          */
 1030                         int nextsize = sblksize(fs, dp->di_extsize, nextlbn);
 1031 
 1032                         nextlbn = -1 - nextlbn;
 1033                         error = breadn(vp, -1 - lbn,
 1034                             size, &nextlbn, &nextsize, 1, NOCRED, &bp);
 1035                 }
 1036                 if (error) {
 1037                         brelse(bp);
 1038                         bp = NULL;
 1039                         break;
 1040                 }
 1041 
 1042                 /*
 1043                  * If IO_DIRECT then set B_DIRECT for the buffer.  This
 1044                  * will cause us to attempt to release the buffer later on
 1045                  * and will cause the buffer cache to attempt to free the
 1046                  * underlying pages.
 1047                  */
 1048                 if (ioflag & IO_DIRECT)
 1049                         bp->b_flags |= B_DIRECT;
 1050 
 1051                 /*
 1052                  * We should only get non-zero b_resid when an I/O error
 1053                  * has occurred, which should cause us to break above.
 1054                  * However, if the short read did not cause an error,
 1055                  * then we want to ensure that we do not uiomove bad
 1056                  * or uninitialized data.
 1057                  */
 1058                 size -= bp->b_resid;
 1059                 if (size < xfersize) {
 1060                         if (size == 0)
 1061                                 break;
 1062                         xfersize = size;
 1063                 }
 1064 
 1065                 error = uiomove((char *)bp->b_data + blkoffset,
 1066                                         (int)xfersize, uio);
 1067                 if (error)
 1068                         break;
 1069 
 1070                 if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
 1071                    (LIST_FIRST(&bp->b_dep) == NULL)) {
 1072                         /*
 1073                          * If there are no dependencies, and it's VMIO,
 1074                          * then we don't need the buf, mark it available
 1075                          * for freeing. The VM has the data.
 1076                          */
 1077                         bp->b_flags |= B_RELBUF;
 1078                         brelse(bp);
 1079                 } else {
 1080                         /*
 1081                          * Otherwise let whoever
 1082                          * made the request take care of
 1083                          * freeing it. We just queue
 1084                          * it onto another list.
 1085                          */
 1086                         bqrelse(bp);
 1087                 }
 1088         }
 1089 
 1090         /* 
 1091          * This can only happen in the case of an error
 1092          * because the loop above resets bp to NULL on each iteration
 1093          * and on normal completion has not set a new value into it.
 1094          * so it must have come from a 'break' statement
 1095          */
 1096         if (bp != NULL) {
 1097                 if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
 1098                    (LIST_FIRST(&bp->b_dep) == NULL)) {
 1099                         bp->b_flags |= B_RELBUF;
 1100                         brelse(bp);
 1101                 } else {
 1102                         bqrelse(bp);
 1103                 }
 1104         }
 1105 
 1106         if ((error == 0 || uio->uio_resid != orig_resid) &&
 1107             (vp->v_mount->mnt_flag & MNT_NOATIME) == 0)
 1108                 ip->i_flag |= IN_ACCESS;
 1109         return (error);
 1110 }
 1111 
 1112 /*
 1113  * Extended attribute area writing.
 1114  */
 1115 static int
 1116 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred)
 1117 {
 1118         struct inode *ip;
 1119         struct ufs2_dinode *dp;
 1120         struct fs *fs;
 1121         struct buf *bp;
 1122         ufs_lbn_t lbn;
 1123         off_t osize;
 1124         int blkoffset, error, flags, resid, size, xfersize;
 1125 
 1126         GIANT_REQUIRED;
 1127 
 1128         ip = VTOI(vp);
 1129         fs = ip->i_fs;
 1130         dp = ip->i_din2;
 1131 
 1132 #ifdef DIAGNOSTIC
 1133         if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC)
 1134                 panic("ext_write: mode");
 1135 #endif
 1136 
 1137         if (ioflag & IO_APPEND)
 1138                 uio->uio_offset = dp->di_extsize;
 1139 
 1140         if (uio->uio_offset < 0 ||
 1141             (u_int64_t)uio->uio_offset + uio->uio_resid > NXADDR * fs->fs_bsize)
 1142                 return (EFBIG);
 1143 
 1144         resid = uio->uio_resid;
 1145         osize = dp->di_extsize;
 1146         flags = IO_EXT;
 1147         if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
 1148                 flags |= IO_SYNC;
 1149 
 1150         for (error = 0; uio->uio_resid > 0;) {
 1151                 lbn = lblkno(fs, uio->uio_offset);
 1152                 blkoffset = blkoff(fs, uio->uio_offset);
 1153                 xfersize = fs->fs_bsize - blkoffset;
 1154                 if (uio->uio_resid < xfersize)
 1155                         xfersize = uio->uio_resid;
 1156 
 1157                 /*      
 1158                  * We must perform a read-before-write if the transfer size
 1159                  * does not cover the entire buffer.
 1160                  */
 1161                 if (fs->fs_bsize > xfersize)
 1162                         flags |= BA_CLRBUF;
 1163                 else
 1164                         flags &= ~BA_CLRBUF;
 1165                 error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
 1166                     ucred, flags, &bp);
 1167                 if (error != 0)
 1168                         break;
 1169                 /*
 1170                  * If the buffer is not valid we have to clear out any
 1171                  * garbage data from the pages instantiated for the buffer.
 1172                  * If we do not, a failed uiomove() during a write can leave
 1173                  * the prior contents of the pages exposed to a userland
 1174                  * mmap().  XXX deal with uiomove() errors a better way.
 1175                  */
 1176                 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
 1177                         vfs_bio_clrbuf(bp);
 1178                 if (ioflag & IO_DIRECT)
 1179                         bp->b_flags |= B_DIRECT;
 1180 
 1181                 if (uio->uio_offset + xfersize > dp->di_extsize)
 1182                         dp->di_extsize = uio->uio_offset + xfersize;
 1183 
 1184                 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid;
 1185                 if (size < xfersize)
 1186                         xfersize = size;
 1187 
 1188                 error =
 1189                     uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
 1190                 if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
 1191                    (LIST_FIRST(&bp->b_dep) == NULL)) {
 1192                         bp->b_flags |= B_RELBUF;
 1193                 }
 1194 
 1195                 /*
 1196                  * If IO_SYNC each buffer is written synchronously.  Otherwise
 1197                  * if we have a severe page deficiency write the buffer 
 1198                  * asynchronously.  Otherwise try to cluster, and if that
 1199                  * doesn't do it then either do an async write (if O_DIRECT),
 1200                  * or a delayed write (if not).
 1201                  */
 1202                 if (ioflag & IO_SYNC) {
 1203                         (void)bwrite(bp);
 1204                 } else if (vm_page_count_severe() ||
 1205                             buf_dirty_count_severe() ||
 1206                             xfersize + blkoffset == fs->fs_bsize ||
 1207                             (ioflag & (IO_ASYNC | IO_DIRECT)))
 1208                         bawrite(bp);
 1209                 else
 1210                         bdwrite(bp);
 1211                 if (error || xfersize == 0)
 1212                         break;
 1213                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
 1214         }
 1215         /*
 1216          * If we successfully wrote any data, and we are not the superuser
 1217          * we clear the setuid and setgid bits as a precaution against
 1218          * tampering.
 1219          */
 1220         if (resid > uio->uio_resid && ucred && 
 1221             suser_cred(ucred, PRISON_ROOT)) {
 1222                 ip->i_mode &= ~(ISUID | ISGID);
 1223                 dp->di_mode = ip->i_mode;
 1224         }
 1225         if (error) {
 1226                 if (ioflag & IO_UNIT) {
 1227                         (void)UFS_TRUNCATE(vp, osize,
 1228                             IO_EXT | (ioflag&IO_SYNC), ucred, uio->uio_td);
 1229                         uio->uio_offset -= resid - uio->uio_resid;
 1230                         uio->uio_resid = resid;
 1231                 }
 1232         } else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
 1233                 error = UFS_UPDATE(vp, 1);
 1234         return (error);
 1235 }
 1236 
 1237 
 1238 /*
 1239  * Vnode operating to retrieve a named extended attribute.
 1240  *
 1241  * Locate a particular EA (nspace:name) in the area (ptr:length), and return
 1242  * the length of the EA, and possibly the pointer to the entry and to the data.
 1243  */
 1244 static int
 1245 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, u_char **eap, u_char **eac)
 1246 {
 1247         u_char *p, *pe, *pn, *p0;
 1248         int eapad1, eapad2, ealength, ealen, nlen;
 1249         uint32_t ul;
 1250 
 1251         pe = ptr + length;
 1252         nlen = strlen(name);
 1253 
 1254         for (p = ptr; p < pe; p = pn) {
 1255                 p0 = p;
 1256                 bcopy(p, &ul, sizeof(ul));
 1257                 pn = p + ul;
 1258                 /* make sure this entry is complete */
 1259                 if (pn > pe)
 1260                         break;
 1261                 p += sizeof(uint32_t);
 1262                 if (*p != nspace)
 1263                         continue;
 1264                 p++;
 1265                 eapad2 = *p++;
 1266                 if (*p != nlen)
 1267                         continue;
 1268                 p++;
 1269                 if (bcmp(p, name, nlen))
 1270                         continue;
 1271                 ealength = sizeof(uint32_t) + 3 + nlen;
 1272                 eapad1 = 8 - (ealength % 8);
 1273                 if (eapad1 == 8)
 1274                         eapad1 = 0;
 1275                 ealength += eapad1;
 1276                 ealen = ul - ealength - eapad2;
 1277                 p += nlen + eapad1;
 1278                 if (eap != NULL)
 1279                         *eap = p0;
 1280                 if (eac != NULL)
 1281                         *eac = p;
 1282                 return (ealen);
 1283         }
 1284         return(-1);
 1285 }
 1286 
 1287 static int
 1288 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra)
 1289 {
 1290         struct inode *ip;
 1291         struct ufs2_dinode *dp;
 1292         struct uio luio;
 1293         struct iovec liovec;
 1294         int easize, error;
 1295         u_char *eae;
 1296 
 1297         ip = VTOI(vp);
 1298         dp = ip->i_din2;
 1299         easize = dp->di_extsize;
 1300 
 1301         eae = malloc(easize + extra, M_TEMP, M_WAITOK);
 1302 
 1303         liovec.iov_base = eae;
 1304         liovec.iov_len = easize;
 1305         luio.uio_iov = &liovec;
 1306         luio.uio_iovcnt = 1;
 1307         luio.uio_offset = 0;
 1308         luio.uio_resid = easize;
 1309         luio.uio_segflg = UIO_SYSSPACE;
 1310         luio.uio_rw = UIO_READ;
 1311         luio.uio_td = td;
 1312 
 1313         error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC);
 1314         if (error) {
 1315                 free(eae, M_TEMP);
 1316                 return(error);
 1317         }
 1318         *p = eae;
 1319         return (0);
 1320 }
 1321 
 1322 static int
 1323 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td)
 1324 {
 1325         struct inode *ip;
 1326         struct ufs2_dinode *dp;
 1327         int error;
 1328 
 1329         ip = VTOI(vp);
 1330 
 1331         if (ip->i_ea_area != NULL)
 1332                 return (EBUSY);
 1333         dp = ip->i_din2;
 1334         error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0);
 1335         if (error)
 1336                 return (error);
 1337         ip->i_ea_len = dp->di_extsize;
 1338         ip->i_ea_error = 0;
 1339         return (0);
 1340 }
 1341 
 1342 /*
 1343  * Vnode extattr transaction commit/abort
 1344  */
 1345 static int
 1346 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td)
 1347 {
 1348         struct inode *ip;
 1349         struct uio luio;
 1350         struct iovec liovec;
 1351         int error;
 1352         struct ufs2_dinode *dp;
 1353 
 1354         ip = VTOI(vp);
 1355         if (ip->i_ea_area == NULL)
 1356                 return (EINVAL);
 1357         dp = ip->i_din2;
 1358         error = ip->i_ea_error;
 1359         if (commit && error == 0) {
 1360                 if (cred == NOCRED)
 1361                         cred =  vp->v_mount->mnt_cred;
 1362                 liovec.iov_base = ip->i_ea_area;
 1363                 liovec.iov_len = ip->i_ea_len;
 1364                 luio.uio_iov = &liovec;
 1365                 luio.uio_iovcnt = 1;
 1366                 luio.uio_offset = 0;
 1367                 luio.uio_resid = ip->i_ea_len;
 1368                 luio.uio_segflg = UIO_SYSSPACE;
 1369                 luio.uio_rw = UIO_WRITE;
 1370                 luio.uio_td = td;
 1371                 /* XXX: I'm not happy about truncating to zero size */
 1372                 if (ip->i_ea_len < dp->di_extsize)
 1373                         error = ffs_truncate(vp, 0, IO_EXT, cred, td);
 1374                 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred);
 1375         }
 1376         free(ip->i_ea_area, M_TEMP);
 1377         ip->i_ea_area = NULL;
 1378         ip->i_ea_len = 0;
 1379         ip->i_ea_error = 0;
 1380         return (error);
 1381 }
 1382 
 1383 /*
 1384  * Vnode extattr strategy routine for special devices and fifos.
 1385  *
 1386  * We need to check for a read or write of the external attributes.
 1387  * Otherwise we just fall through and do the usual thing.
 1388  */
 1389 static int
 1390 ffsext_strategy(struct vop_strategy_args *ap)
 1391 /*
 1392 struct vop_strategy_args {
 1393         struct vnodeop_desc *a_desc;
 1394         struct vnode *a_vp;
 1395         struct buf *a_bp;
 1396 };
 1397 */
 1398 {
 1399         struct vnode *vp;
 1400         daddr_t lbn;
 1401 
 1402         KASSERT(ap->a_vp == ap->a_bp->b_vp, ("%s(%p != %p)",
 1403             __func__, ap->a_vp, ap->a_bp->b_vp));
 1404         vp = ap->a_vp;
 1405         lbn = ap->a_bp->b_lblkno;
 1406         if (VTOI(vp)->i_fs->fs_magic == FS_UFS2_MAGIC &&
 1407             lbn < 0 && lbn >= -NXADDR)
 1408                 return (ufs_vnoperate((struct vop_generic_args *)ap));
 1409         if (vp->v_type == VFIFO)
 1410                 return (ufs_vnoperatefifo((struct vop_generic_args *)ap));
 1411         return (ufs_vnoperatespec((struct vop_generic_args *)ap));
 1412 }
 1413 
 1414 /*
 1415  * Vnode extattr transaction commit/abort
 1416  */
 1417 static int
 1418 ffs_openextattr(struct vop_openextattr_args *ap)
 1419 /*
 1420 struct vop_openextattr_args {
 1421         struct vnodeop_desc *a_desc;
 1422         struct vnode *a_vp;
 1423         IN struct ucred *a_cred;
 1424         IN struct thread *a_td;
 1425 };
 1426 */
 1427 {
 1428         struct inode *ip;
 1429         struct fs *fs;
 1430 
 1431         ip = VTOI(ap->a_vp);
 1432         fs = ip->i_fs;
 1433         if (fs->fs_magic == FS_UFS1_MAGIC)
 1434                 return (ufs_vnoperate((struct vop_generic_args *)ap));
 1435 
 1436         if (ap->a_vp->v_type == VCHR)
 1437                 return (EOPNOTSUPP);
 1438 
 1439         return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td));
 1440 }
 1441 
 1442 
 1443 /*
 1444  * Vnode extattr transaction commit/abort
 1445  */
 1446 static int
 1447 ffs_closeextattr(struct vop_closeextattr_args *ap)
 1448 /*
 1449 struct vop_closeextattr_args {
 1450         struct vnodeop_desc *a_desc;
 1451         struct vnode *a_vp;
 1452         int a_commit;
 1453         IN struct ucred *a_cred;
 1454         IN struct thread *a_td;
 1455 };
 1456 */
 1457 {
 1458         struct inode *ip;
 1459         struct fs *fs;
 1460 
 1461         ip = VTOI(ap->a_vp);
 1462         fs = ip->i_fs;
 1463         if (fs->fs_magic == FS_UFS1_MAGIC)
 1464                 return (ufs_vnoperate((struct vop_generic_args *)ap));
 1465 
 1466         if (ap->a_vp->v_type == VCHR)
 1467                 return (EOPNOTSUPP);
 1468 
 1469         return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td));
 1470 }
 1471 
 1472 /*
 1473  * Vnode operation to remove a named attribute.
 1474  */
 1475 static int
 1476 ffs_deleteextattr(struct vop_deleteextattr_args *ap)
 1477 /*
 1478 vop_deleteextattr {
 1479         IN struct vnode *a_vp;
 1480         IN int a_attrnamespace;
 1481         IN const char *a_name;
 1482         IN struct ucred *a_cred;
 1483         IN struct thread *a_td;
 1484 };
 1485 */
 1486 {
 1487         struct inode *ip;
 1488         struct fs *fs;
 1489         uint32_t ealength, ul;
 1490         int ealen, olen, eapad1, eapad2, error, i, easize;
 1491         u_char *eae, *p;
 1492         int stand_alone;
 1493 
 1494         ip = VTOI(ap->a_vp);
 1495         fs = ip->i_fs;
 1496 
 1497         if (fs->fs_magic == FS_UFS1_MAGIC)
 1498                 return (ufs_vnoperate((struct vop_generic_args *)ap));
 1499 
 1500         if (ap->a_vp->v_type == VCHR)
 1501                 return (EOPNOTSUPP);
 1502 
 1503         if (strlen(ap->a_name) == 0)
 1504                 return (EINVAL);
 1505 
 1506         error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
 1507             ap->a_cred, ap->a_td, IWRITE);
 1508         if (error) {
 1509                 if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
 1510                         ip->i_ea_error = error;
 1511                 return (error);
 1512         }
 1513 
 1514         if (ip->i_ea_area == NULL) {
 1515                 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
 1516                 if (error)
 1517                         return (error);
 1518                 stand_alone = 1;
 1519         } else {
 1520                 stand_alone = 0;
 1521         }
 1522 
 1523         ealength = eapad1 = ealen = eapad2 = 0;
 1524 
 1525         eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK);
 1526         bcopy(ip->i_ea_area, eae, ip->i_ea_len);
 1527         easize = ip->i_ea_len;
 1528 
 1529         olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
 1530             &p, NULL);
 1531         if (olen == -1) {
 1532                 /* delete but nonexistent */
 1533                 free(eae, M_TEMP);
 1534                 if (stand_alone)
 1535                         ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
 1536                 return(ENOATTR);
 1537         }
 1538         bcopy(p, &ul, sizeof ul);
 1539         i = p - eae + ul;
 1540         if (ul != ealength) {
 1541                 bcopy(p + ul, p + ealength, easize - i);
 1542                 easize += (ealength - ul);
 1543         }
 1544         if (easize > NXADDR * fs->fs_bsize) {
 1545                 free(eae, M_TEMP);
 1546                 if (stand_alone)
 1547                         ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
 1548                 else if (ip->i_ea_error == 0)
 1549                         ip->i_ea_error = ENOSPC;
 1550                 return(ENOSPC);
 1551         }
 1552         p = ip->i_ea_area;
 1553         ip->i_ea_area = eae;
 1554         ip->i_ea_len = easize;
 1555         free(p, M_TEMP);
 1556         if (stand_alone)
 1557                 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
 1558         return(error);
 1559 }
 1560 
 1561 /*
 1562  * Vnode operation to retrieve a named extended attribute.
 1563  */
 1564 static int
 1565 ffs_getextattr(struct vop_getextattr_args *ap)
 1566 /*
 1567 vop_getextattr {
 1568         IN struct vnode *a_vp;
 1569         IN int a_attrnamespace;
 1570         IN const char *a_name;
 1571         INOUT struct uio *a_uio;
 1572         OUT size_t *a_size;
 1573         IN struct ucred *a_cred;
 1574         IN struct thread *a_td;
 1575 };
 1576 */
 1577 {
 1578         struct inode *ip;
 1579         struct fs *fs;
 1580         u_char *eae, *p;
 1581         unsigned easize;
 1582         int error, ealen, stand_alone;
 1583 
 1584         ip = VTOI(ap->a_vp);
 1585         fs = ip->i_fs;
 1586 
 1587         if (fs->fs_magic == FS_UFS1_MAGIC)
 1588                 return (ufs_vnoperate((struct vop_generic_args *)ap));
 1589 
 1590         if (ap->a_vp->v_type == VCHR)
 1591                 return (EOPNOTSUPP);
 1592 
 1593         error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
 1594             ap->a_cred, ap->a_td, IREAD);
 1595         if (error)
 1596                 return (error);
 1597 
 1598         if (ip->i_ea_area == NULL) {
 1599                 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
 1600                 if (error)
 1601                         return (error);
 1602                 stand_alone = 1;
 1603         } else {
 1604                 stand_alone = 0;
 1605         }
 1606         eae = ip->i_ea_area;
 1607         easize = ip->i_ea_len;
 1608 
 1609         ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
 1610             NULL, &p);
 1611         if (ealen >= 0) {
 1612                 error = 0;
 1613                 if (ap->a_size != NULL)
 1614                         *ap->a_size = ealen;
 1615                 else if (ap->a_uio != NULL)
 1616                         error = uiomove(p, ealen, ap->a_uio);
 1617         } else
 1618                 error = ENOATTR;
 1619         if (stand_alone)
 1620                 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
 1621         return(error);
 1622 }
 1623 
 1624 /*
 1625  * Vnode operation to retrieve extended attributes on a vnode.
 1626  */
 1627 static int
 1628 ffs_listextattr(struct vop_listextattr_args *ap)
 1629 /*
 1630 vop_listextattr {
 1631         IN struct vnode *a_vp;
 1632         IN int a_attrnamespace;
 1633         INOUT struct uio *a_uio;
 1634         OUT size_t *a_size;
 1635         IN struct ucred *a_cred;
 1636         IN struct thread *a_td;
 1637 };
 1638 */
 1639 {
 1640         struct inode *ip;
 1641         struct fs *fs;
 1642         u_char *eae, *p, *pe, *pn;
 1643         unsigned easize;
 1644         uint32_t ul;
 1645         int error, ealen, stand_alone;
 1646 
 1647         ip = VTOI(ap->a_vp);
 1648         fs = ip->i_fs;
 1649 
 1650         if (fs->fs_magic == FS_UFS1_MAGIC)
 1651                 return (ufs_vnoperate((struct vop_generic_args *)ap));
 1652 
 1653         if (ap->a_vp->v_type == VCHR)
 1654                 return (EOPNOTSUPP);
 1655 
 1656         error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
 1657             ap->a_cred, ap->a_td, IREAD);
 1658         if (error)
 1659                 return (error);
 1660 
 1661         if (ip->i_ea_area == NULL) {
 1662                 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
 1663                 if (error)
 1664                         return (error);
 1665                 stand_alone = 1;
 1666         } else {
 1667                 stand_alone = 0;
 1668         }
 1669         eae = ip->i_ea_area;
 1670         easize = ip->i_ea_len;
 1671 
 1672         error = 0;
 1673         if (ap->a_size != NULL)
 1674                 *ap->a_size = 0;
 1675         pe = eae + easize;
 1676         for(p = eae; error == 0 && p < pe; p = pn) {
 1677                 bcopy(p, &ul, sizeof(ul));
 1678                 pn = p + ul;
 1679                 if (pn > pe)
 1680                         break;
 1681                 p += sizeof(ul);
 1682                 if (*p++ != ap->a_attrnamespace)
 1683                         continue;
 1684                 p++;    /* pad2 */
 1685                 ealen = *p;
 1686                 if (ap->a_size != NULL) {
 1687                         *ap->a_size += ealen + 1;
 1688                 } else if (ap->a_uio != NULL) {
 1689                         error = uiomove(p, ealen + 1, ap->a_uio);
 1690                 }
 1691         }
 1692         if (stand_alone)
 1693                 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
 1694         return(error);
 1695 }
 1696 
 1697 /*
 1698  * Vnode operation to set a named attribute.
 1699  */
 1700 static int
 1701 ffs_setextattr(struct vop_setextattr_args *ap)
 1702 /*
 1703 vop_setextattr {
 1704         IN struct vnode *a_vp;
 1705         IN int a_attrnamespace;
 1706         IN const char *a_name;
 1707         INOUT struct uio *a_uio;
 1708         IN struct ucred *a_cred;
 1709         IN struct thread *a_td;
 1710 };
 1711 */
 1712 {
 1713         struct inode *ip;
 1714         struct fs *fs;
 1715         uint32_t ealength, ul;
 1716         int ealen, olen, eapad1, eapad2, error, i, easize;
 1717         u_char *eae, *p;
 1718         int stand_alone;
 1719 
 1720         ip = VTOI(ap->a_vp);
 1721         fs = ip->i_fs;
 1722 
 1723         if (fs->fs_magic == FS_UFS1_MAGIC)
 1724                 return (ufs_vnoperate((struct vop_generic_args *)ap));
 1725 
 1726         if (ap->a_vp->v_type == VCHR)
 1727                 return (EOPNOTSUPP);
 1728 
 1729         if (strlen(ap->a_name) == 0)
 1730                 return (EINVAL);
 1731 
 1732         /* XXX Now unsupported API to delete EAs using NULL uio. */
 1733         if (ap->a_uio == NULL)
 1734                 return (EOPNOTSUPP);
 1735 
 1736         error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
 1737             ap->a_cred, ap->a_td, IWRITE);
 1738         if (error) {
 1739                 if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
 1740                         ip->i_ea_error = error;
 1741                 return (error);
 1742         }
 1743 
 1744         if (ip->i_ea_area == NULL) {
 1745                 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
 1746                 if (error)
 1747                         return (error);
 1748                 stand_alone = 1;
 1749         } else {
 1750                 stand_alone = 0;
 1751         }
 1752 
 1753         ealen = ap->a_uio->uio_resid;
 1754         ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name);
 1755         eapad1 = 8 - (ealength % 8);
 1756         if (eapad1 == 8)
 1757                 eapad1 = 0;
 1758         eapad2 = 8 - (ealen % 8);
 1759         if (eapad2 == 8)
 1760                 eapad2 = 0;
 1761         ealength += eapad1 + ealen + eapad2;
 1762 
 1763         eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK);
 1764         bcopy(ip->i_ea_area, eae, ip->i_ea_len);
 1765         easize = ip->i_ea_len;
 1766 
 1767         olen = ffs_findextattr(eae, easize,
 1768             ap->a_attrnamespace, ap->a_name, &p, NULL);
 1769         if (olen == -1) {
 1770                 /* new, append at end */
 1771                 p = eae + easize;
 1772                 easize += ealength;
 1773         } else {
 1774                 bcopy(p, &ul, sizeof ul);
 1775                 i = p - eae + ul;
 1776                 if (ul != ealength) {
 1777                         bcopy(p + ul, p + ealength, easize - i);
 1778                         easize += (ealength - ul);
 1779                 }
 1780         }
 1781         if (easize > NXADDR * fs->fs_bsize) {
 1782                 free(eae, M_TEMP);
 1783                 if (stand_alone)
 1784                         ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
 1785                 else if (ip->i_ea_error == 0)
 1786                         ip->i_ea_error = ENOSPC;
 1787                 return(ENOSPC);
 1788         }
 1789         bcopy(&ealength, p, sizeof(ealength));
 1790         p += sizeof(ealength);
 1791         *p++ = ap->a_attrnamespace;
 1792         *p++ = eapad2;
 1793         *p++ = strlen(ap->a_name);
 1794         strcpy(p, ap->a_name);
 1795         p += strlen(ap->a_name);
 1796         bzero(p, eapad1);
 1797         p += eapad1;
 1798         error = uiomove(p, ealen, ap->a_uio);
 1799         if (error) {
 1800                 free(eae, M_TEMP);
 1801                 if (stand_alone)
 1802                         ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
 1803                 else if (ip->i_ea_error == 0)
 1804                         ip->i_ea_error = error;
 1805                 return(error);
 1806         }
 1807         p += ealen;
 1808         bzero(p, eapad2);
 1809 
 1810         p = ip->i_ea_area;
 1811         ip->i_ea_area = eae;
 1812         ip->i_ea_len = easize;
 1813         free(p, M_TEMP);
 1814         if (stand_alone)
 1815                 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
 1816         return(error);
 1817 }

Cache object: 24b77d6828f7faa202520f8f43437eb8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.