The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/ufs/ffs/ffs_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002, 2003 Networks Associates Technology, Inc.
    3  * All rights reserved.
    4  *
    5  * This software was developed for the FreeBSD Project by Marshall
    6  * Kirk McKusick and Network Associates Laboratories, the Security
    7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
    8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
    9  * research program
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  * Copyright (c) 1982, 1986, 1989, 1993
   33  *      The Regents of the University of California.  All rights reserved.
   34  *
   35  * Redistribution and use in source and binary forms, with or without
   36  * modification, are permitted provided that the following conditions
   37  * are met:
   38  * 1. Redistributions of source code must retain the above copyright
   39  *    notice, this list of conditions and the following disclaimer.
   40  * 2. Redistributions in binary form must reproduce the above copyright
   41  *    notice, this list of conditions and the following disclaimer in the
   42  *    documentation and/or other materials provided with the distribution.
   43  * 4. Neither the name of the University nor the names of its contributors
   44  *    may be used to endorse or promote products derived from this software
   45  *    without specific prior written permission.
   46  *
   47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   57  * SUCH DAMAGE.
   58  *
   59  *      from: @(#)ufs_readwrite.c       8.11 (Berkeley) 5/8/95
   60  * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ...
   61  *      @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95
   62  */
   63 
   64 #include <sys/cdefs.h>
   65 __FBSDID("$FreeBSD$");
   66 
   67 #include <sys/param.h>
   68 #include <sys/bio.h>
   69 #include <sys/systm.h>
   70 #include <sys/buf.h>
   71 #include <sys/conf.h>
   72 #include <sys/extattr.h>
   73 #include <sys/kernel.h>
   74 #include <sys/limits.h>
   75 #include <sys/malloc.h>
   76 #include <sys/mount.h>
   77 #include <sys/priv.h>
   78 #include <sys/proc.h>
   79 #include <sys/resourcevar.h>
   80 #include <sys/signalvar.h>
   81 #include <sys/stat.h>
   82 #include <sys/vmmeter.h>
   83 #include <sys/vnode.h>
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_extern.h>
   87 #include <vm/vm_object.h>
   88 #include <vm/vm_page.h>
   89 #include <vm/vm_pager.h>
   90 #include <vm/vnode_pager.h>
   91 
   92 #include <ufs/ufs/extattr.h>
   93 #include <ufs/ufs/quota.h>
   94 #include <ufs/ufs/inode.h>
   95 #include <ufs/ufs/ufs_extern.h>
   96 #include <ufs/ufs/ufsmount.h>
   97 
   98 #include <ufs/ffs/fs.h>
   99 #include <ufs/ffs/ffs_extern.h>
  100 #include "opt_directio.h"
  101 #include "opt_ffs.h"
  102 
  103 #ifdef DIRECTIO
  104 extern int      ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone);
  105 #endif
  106 static vop_fsync_t      ffs_fsync;
  107 static vop_lock1_t      ffs_lock;
  108 static vop_getpages_t   ffs_getpages;
  109 static vop_read_t       ffs_read;
  110 static vop_write_t      ffs_write;
  111 static int      ffs_extread(struct vnode *vp, struct uio *uio, int ioflag);
  112 static int      ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag,
  113                     struct ucred *cred);
  114 static vop_strategy_t   ffsext_strategy;
  115 static vop_closeextattr_t       ffs_closeextattr;
  116 static vop_deleteextattr_t      ffs_deleteextattr;
  117 static vop_getextattr_t ffs_getextattr;
  118 static vop_listextattr_t        ffs_listextattr;
  119 static vop_openextattr_t        ffs_openextattr;
  120 static vop_setextattr_t ffs_setextattr;
  121 static vop_vptofh_t     ffs_vptofh;
  122 
  123 
  124 /* Global vfs data structures for ufs. */
  125 struct vop_vector ffs_vnodeops1 = {
  126         .vop_default =          &ufs_vnodeops,
  127         .vop_fsync =            ffs_fsync,
  128         .vop_getpages =         ffs_getpages,
  129         .vop_lock1 =            ffs_lock,
  130         .vop_read =             ffs_read,
  131         .vop_reallocblks =      ffs_reallocblks,
  132         .vop_write =            ffs_write,
  133         .vop_vptofh =           ffs_vptofh,
  134 };
  135 
  136 struct vop_vector ffs_fifoops1 = {
  137         .vop_default =          &ufs_fifoops,
  138         .vop_fsync =            ffs_fsync,
  139         .vop_reallocblks =      ffs_reallocblks, /* XXX: really ??? */
  140         .vop_vptofh =           ffs_vptofh,
  141 };
  142 
  143 /* Global vfs data structures for ufs. */
  144 struct vop_vector ffs_vnodeops2 = {
  145         .vop_default =          &ufs_vnodeops,
  146         .vop_fsync =            ffs_fsync,
  147         .vop_getpages =         ffs_getpages,
  148         .vop_lock1 =            ffs_lock,
  149         .vop_read =             ffs_read,
  150         .vop_reallocblks =      ffs_reallocblks,
  151         .vop_write =            ffs_write,
  152         .vop_closeextattr =     ffs_closeextattr,
  153         .vop_deleteextattr =    ffs_deleteextattr,
  154         .vop_getextattr =       ffs_getextattr,
  155         .vop_listextattr =      ffs_listextattr,
  156         .vop_openextattr =      ffs_openextattr,
  157         .vop_setextattr =       ffs_setextattr,
  158         .vop_vptofh =           ffs_vptofh,
  159 };
  160 
  161 struct vop_vector ffs_fifoops2 = {
  162         .vop_default =          &ufs_fifoops,
  163         .vop_fsync =            ffs_fsync,
  164         .vop_lock1 =            ffs_lock,
  165         .vop_reallocblks =      ffs_reallocblks,
  166         .vop_strategy =         ffsext_strategy,
  167         .vop_closeextattr =     ffs_closeextattr,
  168         .vop_deleteextattr =    ffs_deleteextattr,
  169         .vop_getextattr =       ffs_getextattr,
  170         .vop_listextattr =      ffs_listextattr,
  171         .vop_openextattr =      ffs_openextattr,
  172         .vop_setextattr =       ffs_setextattr,
  173         .vop_vptofh =           ffs_vptofh,
  174 };
  175 
  176 /*
  177  * Synch an open file.
  178  */
  179 /* ARGSUSED */
  180 static int
  181 ffs_fsync(struct vop_fsync_args *ap)
  182 {
  183         int error;
  184 
  185         error = ffs_syncvnode(ap->a_vp, ap->a_waitfor);
  186         if (error)
  187                 return (error);
  188         if (ap->a_waitfor == MNT_WAIT &&
  189             (ap->a_vp->v_mount->mnt_flag & MNT_SOFTDEP))
  190                 error = softdep_fsync(ap->a_vp);
  191         return (error);
  192 }
  193 
  194 int
  195 ffs_syncvnode(struct vnode *vp, int waitfor)
  196 {
  197         struct inode *ip = VTOI(vp);
  198         struct buf *bp;
  199         struct buf *nbp;
  200         int s, error, wait, passes, skipmeta;
  201         ufs_lbn_t lbn;
  202 
  203         wait = (waitfor == MNT_WAIT);
  204         lbn = lblkno(ip->i_fs, (ip->i_size + ip->i_fs->fs_bsize - 1));
  205 
  206         /*
  207          * Flush all dirty buffers associated with a vnode.
  208          */
  209         passes = NIADDR + 1;
  210         skipmeta = 0;
  211         if (wait)
  212                 skipmeta = 1;
  213         s = splbio();
  214         VI_LOCK(vp);
  215 loop:
  216         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs)
  217                 bp->b_vflags &= ~BV_SCANNED;
  218         TAILQ_FOREACH_SAFE(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs, nbp) {
  219                 /* 
  220                  * Reasons to skip this buffer: it has already been considered
  221                  * on this pass, this pass is the first time through on a
  222                  * synchronous flush request and the buffer being considered
  223                  * is metadata, the buffer has dependencies that will cause
  224                  * it to be redirtied and it has not already been deferred,
  225                  * or it is already being written.
  226                  */
  227                 if ((bp->b_vflags & BV_SCANNED) != 0)
  228                         continue;
  229                 bp->b_vflags |= BV_SCANNED;
  230                 if ((skipmeta == 1 && bp->b_lblkno < 0))
  231                         continue;
  232                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
  233                         continue;
  234                 VI_UNLOCK(vp);
  235                 if (!wait && !LIST_EMPTY(&bp->b_dep) &&
  236                     (bp->b_flags & B_DEFERRED) == 0 &&
  237                     buf_countdeps(bp, 0)) {
  238                         bp->b_flags |= B_DEFERRED;
  239                         BUF_UNLOCK(bp);
  240                         VI_LOCK(vp);
  241                         continue;
  242                 }
  243                 if ((bp->b_flags & B_DELWRI) == 0)
  244                         panic("ffs_fsync: not dirty");
  245                 /*
  246                  * If this is a synchronous flush request, or it is not a
  247                  * file or device, start the write on this buffer immediatly.
  248                  */
  249                 if (wait || (vp->v_type != VREG && vp->v_type != VBLK)) {
  250 
  251                         /*
  252                          * On our final pass through, do all I/O synchronously
  253                          * so that we can find out if our flush is failing
  254                          * because of write errors.
  255                          */
  256                         if (passes > 0 || !wait) {
  257                                 if ((bp->b_flags & B_CLUSTEROK) && !wait) {
  258                                         (void) vfs_bio_awrite(bp);
  259                                 } else {
  260                                         bremfree(bp);
  261                                         splx(s);
  262                                         (void) bawrite(bp);
  263                                         s = splbio();
  264                                 }
  265                         } else {
  266                                 bremfree(bp);
  267                                 splx(s);
  268                                 if ((error = bwrite(bp)) != 0)
  269                                         return (error);
  270                                 s = splbio();
  271                         }
  272                 } else if ((vp->v_type == VREG) && (bp->b_lblkno >= lbn)) {
  273                         /* 
  274                          * If the buffer is for data that has been truncated
  275                          * off the file, then throw it away.
  276                          */
  277                         bremfree(bp);
  278                         bp->b_flags |= B_INVAL | B_NOCACHE;
  279                         splx(s);
  280                         brelse(bp);
  281                         s = splbio();
  282                 } else
  283                         vfs_bio_awrite(bp);
  284 
  285                 /*
  286                  * Since we may have slept during the I/O, we need 
  287                  * to start from a known point.
  288                  */
  289                 VI_LOCK(vp);
  290                 nbp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd);
  291         }
  292         /*
  293          * If we were asked to do this synchronously, then go back for
  294          * another pass, this time doing the metadata.
  295          */
  296         if (skipmeta) {
  297                 skipmeta = 0;
  298                 goto loop;
  299         }
  300 
  301         if (wait) {
  302                 bufobj_wwait(&vp->v_bufobj, 3, 0);
  303                 VI_UNLOCK(vp);
  304 
  305                 /* 
  306                  * Ensure that any filesystem metatdata associated
  307                  * with the vnode has been written.
  308                  */
  309                 splx(s);
  310                 if ((error = softdep_sync_metadata(vp)) != 0)
  311                         return (error);
  312                 s = splbio();
  313 
  314                 VI_LOCK(vp);
  315                 if (vp->v_bufobj.bo_dirty.bv_cnt > 0) {
  316                         /*
  317                          * Block devices associated with filesystems may
  318                          * have new I/O requests posted for them even if
  319                          * the vnode is locked, so no amount of trying will
  320                          * get them clean. Thus we give block devices a
  321                          * good effort, then just give up. For all other file
  322                          * types, go around and try again until it is clean.
  323                          */
  324                         if (passes > 0) {
  325                                 passes -= 1;
  326                                 goto loop;
  327                         }
  328 #ifdef DIAGNOSTIC
  329                         if (!vn_isdisk(vp, NULL))
  330                                 vprint("ffs_fsync: dirty", vp);
  331 #endif
  332                 }
  333         }
  334         VI_UNLOCK(vp);
  335         splx(s);
  336         return (ffs_update(vp, wait));
  337 }
  338 
  339 static int
  340 ffs_lock(ap)
  341         struct vop_lock1_args /* {
  342                 struct vnode *a_vp;
  343                 int a_flags;
  344                 struct thread *a_td;
  345                 char *file;
  346                 int line;
  347         } */ *ap;
  348 {
  349 #ifndef NO_FFS_SNAPSHOT
  350         struct vnode *vp;
  351         int flags;
  352         struct lock *lkp;
  353         int result;
  354         
  355         switch (ap->a_flags & LK_TYPE_MASK) {
  356         case LK_SHARED:
  357         case LK_UPGRADE:
  358         case LK_EXCLUSIVE:
  359                 vp = ap->a_vp;
  360                 flags = ap->a_flags;
  361                 for (;;) {
  362                         /*
  363                          * vnode interlock must be held to ensure that
  364                          * the possibly external lock isn't freed,
  365                          * e.g. when mutating from snapshot file vnode
  366                          * to regular file vnode.
  367                          */
  368                         if ((flags & LK_INTERLOCK) == 0) {
  369                                 VI_LOCK(vp);
  370                                 flags |= LK_INTERLOCK;
  371                         }
  372                         lkp = vp->v_vnlock;
  373                         result = _lockmgr(lkp, flags, VI_MTX(vp), ap->a_td, ap->a_file, ap->a_line);
  374                         if (lkp == vp->v_vnlock || result != 0)
  375                                 break;
  376                         /*
  377                          * Apparent success, except that the vnode
  378                          * mutated between snapshot file vnode and
  379                          * regular file vnode while this process
  380                          * slept.  The lock currently held is not the
  381                          * right lock.  Release it, and try to get the
  382                          * new lock.
  383                          */
  384                         (void) _lockmgr(lkp, LK_RELEASE, VI_MTX(vp), ap->a_td, ap->a_file, ap->a_line);
  385                         if ((flags & LK_TYPE_MASK) == LK_UPGRADE)
  386                                 flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE;
  387                         flags &= ~LK_INTERLOCK;
  388                 }
  389                 break;
  390         default:
  391                 result = VOP_LOCK1_APV(&ufs_vnodeops, ap);
  392         }
  393         return (result);
  394 #else
  395         return (VOP_LOCK1_APV(&ufs_vnodeops, ap));
  396 #endif
  397 }
  398 
  399 /*
  400  * Vnode op for reading.
  401  */
  402 /* ARGSUSED */
  403 static int
  404 ffs_read(ap)
  405         struct vop_read_args /* {
  406                 struct vnode *a_vp;
  407                 struct uio *a_uio;
  408                 int a_ioflag;
  409                 struct ucred *a_cred;
  410         } */ *ap;
  411 {
  412         struct vnode *vp;
  413         struct inode *ip;
  414         struct uio *uio;
  415         struct fs *fs;
  416         struct buf *bp;
  417         ufs_lbn_t lbn, nextlbn;
  418         off_t bytesinfile;
  419         long size, xfersize, blkoffset;
  420         int error, orig_resid;
  421         int seqcount;
  422         int ioflag;
  423 
  424         vp = ap->a_vp;
  425         uio = ap->a_uio;
  426         ioflag = ap->a_ioflag;
  427         if (ap->a_ioflag & IO_EXT)
  428 #ifdef notyet
  429                 return (ffs_extread(vp, uio, ioflag));
  430 #else
  431                 panic("ffs_read+IO_EXT");
  432 #endif
  433 #ifdef DIRECTIO
  434         if ((ioflag & IO_DIRECT) != 0) {
  435                 int workdone;
  436 
  437                 error = ffs_rawread(vp, uio, &workdone);
  438                 if (error != 0 || workdone != 0)
  439                         return error;
  440         }
  441 #endif
  442 
  443         seqcount = ap->a_ioflag >> IO_SEQSHIFT;
  444         ip = VTOI(vp);
  445 
  446 #ifdef DIAGNOSTIC
  447         if (uio->uio_rw != UIO_READ)
  448                 panic("ffs_read: mode");
  449 
  450         if (vp->v_type == VLNK) {
  451                 if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen)
  452                         panic("ffs_read: short symlink");
  453         } else if (vp->v_type != VREG && vp->v_type != VDIR)
  454                 panic("ffs_read: type %d",  vp->v_type);
  455 #endif
  456         orig_resid = uio->uio_resid;
  457         KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0"));
  458         if (orig_resid == 0)
  459                 return (0);
  460         KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0"));
  461         fs = ip->i_fs;
  462         if (uio->uio_offset < ip->i_size &&
  463             uio->uio_offset >= fs->fs_maxfilesize)
  464                 return (EOVERFLOW);
  465 
  466         for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
  467                 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0)
  468                         break;
  469                 lbn = lblkno(fs, uio->uio_offset);
  470                 nextlbn = lbn + 1;
  471 
  472                 /*
  473                  * size of buffer.  The buffer representing the
  474                  * end of the file is rounded up to the size of
  475                  * the block type ( fragment or full block, 
  476                  * depending ).
  477                  */
  478                 size = blksize(fs, ip, lbn);
  479                 blkoffset = blkoff(fs, uio->uio_offset);
  480                 
  481                 /*
  482                  * The amount we want to transfer in this iteration is
  483                  * one FS block less the amount of the data before
  484                  * our startpoint (duh!)
  485                  */
  486                 xfersize = fs->fs_bsize - blkoffset;
  487 
  488                 /*
  489                  * But if we actually want less than the block,
  490                  * or the file doesn't have a whole block more of data,
  491                  * then use the lesser number.
  492                  */
  493                 if (uio->uio_resid < xfersize)
  494                         xfersize = uio->uio_resid;
  495                 if (bytesinfile < xfersize)
  496                         xfersize = bytesinfile;
  497 
  498                 if (lblktosize(fs, nextlbn) >= ip->i_size) {
  499                         /*
  500                          * Don't do readahead if this is the end of the file.
  501                          */
  502                         error = bread(vp, lbn, size, NOCRED, &bp);
  503                 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
  504                         /* 
  505                          * Otherwise if we are allowed to cluster,
  506                          * grab as much as we can.
  507                          *
  508                          * XXX  This may not be a win if we are not
  509                          * doing sequential access.
  510                          */
  511                         error = cluster_read(vp, ip->i_size, lbn,
  512                                 size, NOCRED, blkoffset + uio->uio_resid, seqcount, &bp);
  513                 } else if (seqcount > 1) {
  514                         /*
  515                          * If we are NOT allowed to cluster, then
  516                          * if we appear to be acting sequentially,
  517                          * fire off a request for a readahead
  518                          * as well as a read. Note that the 4th and 5th
  519                          * arguments point to arrays of the size specified in
  520                          * the 6th argument.
  521                          */
  522                         int nextsize = blksize(fs, ip, nextlbn);
  523                         error = breadn(vp, lbn,
  524                             size, &nextlbn, &nextsize, 1, NOCRED, &bp);
  525                 } else {
  526                         /*
  527                          * Failing all of the above, just read what the 
  528                          * user asked for. Interestingly, the same as
  529                          * the first option above.
  530                          */
  531                         error = bread(vp, lbn, size, NOCRED, &bp);
  532                 }
  533                 if (error) {
  534                         brelse(bp);
  535                         bp = NULL;
  536                         break;
  537                 }
  538 
  539                 /*
  540                  * If IO_DIRECT then set B_DIRECT for the buffer.  This
  541                  * will cause us to attempt to release the buffer later on
  542                  * and will cause the buffer cache to attempt to free the
  543                  * underlying pages.
  544                  */
  545                 if (ioflag & IO_DIRECT)
  546                         bp->b_flags |= B_DIRECT;
  547 
  548                 /*
  549                  * We should only get non-zero b_resid when an I/O error
  550                  * has occurred, which should cause us to break above.
  551                  * However, if the short read did not cause an error,
  552                  * then we want to ensure that we do not uiomove bad
  553                  * or uninitialized data.
  554                  */
  555                 size -= bp->b_resid;
  556                 if (size < xfersize) {
  557                         if (size == 0)
  558                                 break;
  559                         xfersize = size;
  560                 }
  561 
  562                 error = uiomove((char *)bp->b_data + blkoffset,
  563                     (int)xfersize, uio);
  564                 if (error)
  565                         break;
  566 
  567                 if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
  568                    (LIST_EMPTY(&bp->b_dep))) {
  569                         /*
  570                          * If there are no dependencies, and it's VMIO,
  571                          * then we don't need the buf, mark it available
  572                          * for freeing. The VM has the data.
  573                          */
  574                         bp->b_flags |= B_RELBUF;
  575                         brelse(bp);
  576                 } else {
  577                         /*
  578                          * Otherwise let whoever
  579                          * made the request take care of
  580                          * freeing it. We just queue
  581                          * it onto another list.
  582                          */
  583                         bqrelse(bp);
  584                 }
  585         }
  586 
  587         /* 
  588          * This can only happen in the case of an error
  589          * because the loop above resets bp to NULL on each iteration
  590          * and on normal completion has not set a new value into it.
  591          * so it must have come from a 'break' statement
  592          */
  593         if (bp != NULL) {
  594                 if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
  595                    (LIST_EMPTY(&bp->b_dep))) {
  596                         bp->b_flags |= B_RELBUF;
  597                         brelse(bp);
  598                 } else {
  599                         bqrelse(bp);
  600                 }
  601         }
  602 
  603         if ((error == 0 || uio->uio_resid != orig_resid) &&
  604             (vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
  605                 VI_LOCK(vp);
  606                 ip->i_flag |= IN_ACCESS;
  607                 VI_UNLOCK(vp);
  608         }
  609         return (error);
  610 }
  611 
  612 /*
  613  * Vnode op for writing.
  614  */
  615 static int
  616 ffs_write(ap)
  617         struct vop_write_args /* {
  618                 struct vnode *a_vp;
  619                 struct uio *a_uio;
  620                 int a_ioflag;
  621                 struct ucred *a_cred;
  622         } */ *ap;
  623 {
  624         struct vnode *vp;
  625         struct uio *uio;
  626         struct inode *ip;
  627         struct fs *fs;
  628         struct buf *bp;
  629         struct thread *td;
  630         ufs_lbn_t lbn;
  631         off_t osize;
  632         int seqcount;
  633         int blkoffset, error, flags, ioflag, resid, size, xfersize;
  634 
  635         vp = ap->a_vp;
  636         uio = ap->a_uio;
  637         ioflag = ap->a_ioflag;
  638         if (ap->a_ioflag & IO_EXT)
  639 #ifdef notyet
  640                 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred));
  641 #else
  642                 panic("ffs_write+IO_EXT");
  643 #endif
  644 
  645         seqcount = ap->a_ioflag >> IO_SEQSHIFT;
  646         ip = VTOI(vp);
  647 
  648 #ifdef DIAGNOSTIC
  649         if (uio->uio_rw != UIO_WRITE)
  650                 panic("ffs_write: mode");
  651 #endif
  652 
  653         switch (vp->v_type) {
  654         case VREG:
  655                 if (ioflag & IO_APPEND)
  656                         uio->uio_offset = ip->i_size;
  657                 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size)
  658                         return (EPERM);
  659                 /* FALLTHROUGH */
  660         case VLNK:
  661                 break;
  662         case VDIR:
  663                 panic("ffs_write: dir write");
  664                 break;
  665         default:
  666                 panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type,
  667                         (int)uio->uio_offset,
  668                         (int)uio->uio_resid
  669                 );
  670         }
  671 
  672         KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0"));
  673         KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0"));
  674         fs = ip->i_fs;
  675         if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize)
  676                 return (EFBIG);
  677         /*
  678          * Maybe this should be above the vnode op call, but so long as
  679          * file servers have no limits, I don't think it matters.
  680          */
  681         td = uio->uio_td;
  682         if (vp->v_type == VREG && td != NULL) {
  683                 PROC_LOCK(td->td_proc);
  684                 if (uio->uio_offset + uio->uio_resid >
  685                     lim_cur(td->td_proc, RLIMIT_FSIZE)) {
  686                         psignal(td->td_proc, SIGXFSZ);
  687                         PROC_UNLOCK(td->td_proc);
  688                         return (EFBIG);
  689                 }
  690                 PROC_UNLOCK(td->td_proc);
  691         }
  692 
  693         resid = uio->uio_resid;
  694         osize = ip->i_size;
  695         if (seqcount > BA_SEQMAX)
  696                 flags = BA_SEQMAX << BA_SEQSHIFT;
  697         else
  698                 flags = seqcount << BA_SEQSHIFT;
  699         if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
  700                 flags |= IO_SYNC;
  701 
  702         for (error = 0; uio->uio_resid > 0;) {
  703                 lbn = lblkno(fs, uio->uio_offset);
  704                 blkoffset = blkoff(fs, uio->uio_offset);
  705                 xfersize = fs->fs_bsize - blkoffset;
  706                 if (uio->uio_resid < xfersize)
  707                         xfersize = uio->uio_resid;
  708                 if (uio->uio_offset + xfersize > ip->i_size)
  709                         vnode_pager_setsize(vp, uio->uio_offset + xfersize);
  710 
  711                 /*      
  712                  * We must perform a read-before-write if the transfer size
  713                  * does not cover the entire buffer.
  714                  */
  715                 if (fs->fs_bsize > xfersize)
  716                         flags |= BA_CLRBUF;
  717                 else
  718                         flags &= ~BA_CLRBUF;
  719 /* XXX is uio->uio_offset the right thing here? */
  720                 error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
  721                     ap->a_cred, flags, &bp);
  722                 if (error != 0)
  723                         break;
  724                 /*
  725                  * If the buffer is not valid we have to clear out any
  726                  * garbage data from the pages instantiated for the buffer.
  727                  * If we do not, a failed uiomove() during a write can leave
  728                  * the prior contents of the pages exposed to a userland
  729                  * mmap().  XXX deal with uiomove() errors a better way.
  730                  */
  731                 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
  732                         vfs_bio_clrbuf(bp);
  733                 if (ioflag & IO_DIRECT)
  734                         bp->b_flags |= B_DIRECT;
  735                 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL))
  736                         bp->b_flags |= B_NOCACHE;
  737 
  738                 if (uio->uio_offset + xfersize > ip->i_size) {
  739                         ip->i_size = uio->uio_offset + xfersize;
  740                         DIP_SET(ip, i_size, ip->i_size);
  741                 }
  742 
  743                 size = blksize(fs, ip, lbn) - bp->b_resid;
  744                 if (size < xfersize)
  745                         xfersize = size;
  746 
  747                 error =
  748                     uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
  749                 if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
  750                    (LIST_EMPTY(&bp->b_dep))) {
  751                         bp->b_flags |= B_RELBUF;
  752                 }
  753 
  754                 /*
  755                  * If IO_SYNC each buffer is written synchronously.  Otherwise
  756                  * if we have a severe page deficiency write the buffer 
  757                  * asynchronously.  Otherwise try to cluster, and if that
  758                  * doesn't do it then either do an async write (if O_DIRECT),
  759                  * or a delayed write (if not).
  760                  */
  761                 if (ioflag & IO_SYNC) {
  762                         (void)bwrite(bp);
  763                 } else if (vm_page_count_severe() ||
  764                             buf_dirty_count_severe() ||
  765                             (ioflag & IO_ASYNC)) {
  766                         bp->b_flags |= B_CLUSTEROK;
  767                         bawrite(bp);
  768                 } else if (xfersize + blkoffset == fs->fs_bsize) {
  769                         if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
  770                                 bp->b_flags |= B_CLUSTEROK;
  771                                 cluster_write(vp, bp, ip->i_size, seqcount);
  772                         } else {
  773                                 bawrite(bp);
  774                         }
  775                 } else if (ioflag & IO_DIRECT) {
  776                         bp->b_flags |= B_CLUSTEROK;
  777                         bawrite(bp);
  778                 } else {
  779                         bp->b_flags |= B_CLUSTEROK;
  780                         bdwrite(bp);
  781                 }
  782                 if (error || xfersize == 0)
  783                         break;
  784                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  785         }
  786         /*
  787          * If we successfully wrote any data, and we are not the superuser
  788          * we clear the setuid and setgid bits as a precaution against
  789          * tampering.
  790          */
  791         if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid &&
  792             ap->a_cred) {
  793                 if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID, 0)) {
  794                         ip->i_mode &= ~(ISUID | ISGID);
  795                         DIP_SET(ip, i_mode, ip->i_mode);
  796                 }
  797         }
  798         if (error) {
  799                 if (ioflag & IO_UNIT) {
  800                         (void)ffs_truncate(vp, osize,
  801                             IO_NORMAL | (ioflag & IO_SYNC),
  802                             ap->a_cred, uio->uio_td);
  803                         uio->uio_offset -= resid - uio->uio_resid;
  804                         uio->uio_resid = resid;
  805                 }
  806         } else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
  807                 error = ffs_update(vp, 1);
  808         return (error);
  809 }
  810 
  811 /*
  812  * get page routine
  813  */
  814 static int
  815 ffs_getpages(ap)
  816         struct vop_getpages_args *ap;
  817 {
  818         int i;
  819         vm_page_t mreq;
  820         int pcount;
  821 
  822         pcount = round_page(ap->a_count) / PAGE_SIZE;
  823         mreq = ap->a_m[ap->a_reqpage];
  824 
  825         /*
  826          * if ANY DEV_BSIZE blocks are valid on a large filesystem block,
  827          * then the entire page is valid.  Since the page may be mapped,
  828          * user programs might reference data beyond the actual end of file
  829          * occuring within the page.  We have to zero that data.
  830          */
  831         VM_OBJECT_LOCK(mreq->object);
  832         if (mreq->valid) {
  833                 if (mreq->valid != VM_PAGE_BITS_ALL)
  834                         vm_page_zero_invalid(mreq, TRUE);
  835                 vm_page_lock_queues();
  836                 for (i = 0; i < pcount; i++) {
  837                         if (i != ap->a_reqpage) {
  838                                 vm_page_free(ap->a_m[i]);
  839                         }
  840                 }
  841                 vm_page_unlock_queues();
  842                 VM_OBJECT_UNLOCK(mreq->object);
  843                 return VM_PAGER_OK;
  844         }
  845         VM_OBJECT_UNLOCK(mreq->object);
  846 
  847         return vnode_pager_generic_getpages(ap->a_vp, ap->a_m,
  848                                             ap->a_count,
  849                                             ap->a_reqpage);
  850 }
  851 
  852 
  853 /*
  854  * Extended attribute area reading.
  855  */
  856 static int
  857 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag)
  858 {
  859         struct inode *ip;
  860         struct ufs2_dinode *dp;
  861         struct fs *fs;
  862         struct buf *bp;
  863         ufs_lbn_t lbn, nextlbn;
  864         off_t bytesinfile;
  865         long size, xfersize, blkoffset;
  866         int error, orig_resid;
  867 
  868         ip = VTOI(vp);
  869         fs = ip->i_fs;
  870         dp = ip->i_din2;
  871 
  872 #ifdef DIAGNOSTIC
  873         if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC)
  874                 panic("ffs_extread: mode");
  875 
  876 #endif
  877         orig_resid = uio->uio_resid;
  878         KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0"));
  879         if (orig_resid == 0)
  880                 return (0);
  881         KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0"));
  882 
  883         for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
  884                 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0)
  885                         break;
  886                 lbn = lblkno(fs, uio->uio_offset);
  887                 nextlbn = lbn + 1;
  888 
  889                 /*
  890                  * size of buffer.  The buffer representing the
  891                  * end of the file is rounded up to the size of
  892                  * the block type ( fragment or full block, 
  893                  * depending ).
  894                  */
  895                 size = sblksize(fs, dp->di_extsize, lbn);
  896                 blkoffset = blkoff(fs, uio->uio_offset);
  897                 
  898                 /*
  899                  * The amount we want to transfer in this iteration is
  900                  * one FS block less the amount of the data before
  901                  * our startpoint (duh!)
  902                  */
  903                 xfersize = fs->fs_bsize - blkoffset;
  904 
  905                 /*
  906                  * But if we actually want less than the block,
  907                  * or the file doesn't have a whole block more of data,
  908                  * then use the lesser number.
  909                  */
  910                 if (uio->uio_resid < xfersize)
  911                         xfersize = uio->uio_resid;
  912                 if (bytesinfile < xfersize)
  913                         xfersize = bytesinfile;
  914 
  915                 if (lblktosize(fs, nextlbn) >= dp->di_extsize) {
  916                         /*
  917                          * Don't do readahead if this is the end of the info.
  918                          */
  919                         error = bread(vp, -1 - lbn, size, NOCRED, &bp);
  920                 } else {
  921                         /*
  922                          * If we have a second block, then
  923                          * fire off a request for a readahead
  924                          * as well as a read. Note that the 4th and 5th
  925                          * arguments point to arrays of the size specified in
  926                          * the 6th argument.
  927                          */
  928                         int nextsize = sblksize(fs, dp->di_extsize, nextlbn);
  929 
  930                         nextlbn = -1 - nextlbn;
  931                         error = breadn(vp, -1 - lbn,
  932                             size, &nextlbn, &nextsize, 1, NOCRED, &bp);
  933                 }
  934                 if (error) {
  935                         brelse(bp);
  936                         bp = NULL;
  937                         break;
  938                 }
  939 
  940                 /*
  941                  * If IO_DIRECT then set B_DIRECT for the buffer.  This
  942                  * will cause us to attempt to release the buffer later on
  943                  * and will cause the buffer cache to attempt to free the
  944                  * underlying pages.
  945                  */
  946                 if (ioflag & IO_DIRECT)
  947                         bp->b_flags |= B_DIRECT;
  948 
  949                 /*
  950                  * We should only get non-zero b_resid when an I/O error
  951                  * has occurred, which should cause us to break above.
  952                  * However, if the short read did not cause an error,
  953                  * then we want to ensure that we do not uiomove bad
  954                  * or uninitialized data.
  955                  */
  956                 size -= bp->b_resid;
  957                 if (size < xfersize) {
  958                         if (size == 0)
  959                                 break;
  960                         xfersize = size;
  961                 }
  962 
  963                 error = uiomove((char *)bp->b_data + blkoffset,
  964                                         (int)xfersize, uio);
  965                 if (error)
  966                         break;
  967 
  968                 if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
  969                    (LIST_EMPTY(&bp->b_dep))) {
  970                         /*
  971                          * If there are no dependencies, and it's VMIO,
  972                          * then we don't need the buf, mark it available
  973                          * for freeing. The VM has the data.
  974                          */
  975                         bp->b_flags |= B_RELBUF;
  976                         brelse(bp);
  977                 } else {
  978                         /*
  979                          * Otherwise let whoever
  980                          * made the request take care of
  981                          * freeing it. We just queue
  982                          * it onto another list.
  983                          */
  984                         bqrelse(bp);
  985                 }
  986         }
  987 
  988         /* 
  989          * This can only happen in the case of an error
  990          * because the loop above resets bp to NULL on each iteration
  991          * and on normal completion has not set a new value into it.
  992          * so it must have come from a 'break' statement
  993          */
  994         if (bp != NULL) {
  995                 if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
  996                    (LIST_EMPTY(&bp->b_dep))) {
  997                         bp->b_flags |= B_RELBUF;
  998                         brelse(bp);
  999                 } else {
 1000                         bqrelse(bp);
 1001                 }
 1002         }
 1003 
 1004         if ((error == 0 || uio->uio_resid != orig_resid) &&
 1005             (vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
 1006                 VI_LOCK(vp);
 1007                 ip->i_flag |= IN_ACCESS;
 1008                 VI_UNLOCK(vp);
 1009         }
 1010         return (error);
 1011 }
 1012 
 1013 /*
 1014  * Extended attribute area writing.
 1015  */
 1016 static int
 1017 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred)
 1018 {
 1019         struct inode *ip;
 1020         struct ufs2_dinode *dp;
 1021         struct fs *fs;
 1022         struct buf *bp;
 1023         ufs_lbn_t lbn;
 1024         off_t osize;
 1025         int blkoffset, error, flags, resid, size, xfersize;
 1026 
 1027         ip = VTOI(vp);
 1028         fs = ip->i_fs;
 1029         dp = ip->i_din2;
 1030 
 1031         KASSERT(!(ip->i_flag & IN_SPACECOUNTED), ("inode %u: inode is dead",
 1032             ip->i_number));
 1033 
 1034 #ifdef DIAGNOSTIC
 1035         if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC)
 1036                 panic("ffs_extwrite: mode");
 1037 #endif
 1038 
 1039         if (ioflag & IO_APPEND)
 1040                 uio->uio_offset = dp->di_extsize;
 1041         KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0"));
 1042         KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0"));
 1043         if ((uoff_t)uio->uio_offset + uio->uio_resid > NXADDR * fs->fs_bsize)
 1044                 return (EFBIG);
 1045 
 1046         resid = uio->uio_resid;
 1047         osize = dp->di_extsize;
 1048         flags = IO_EXT;
 1049         if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
 1050                 flags |= IO_SYNC;
 1051 
 1052         for (error = 0; uio->uio_resid > 0;) {
 1053                 lbn = lblkno(fs, uio->uio_offset);
 1054                 blkoffset = blkoff(fs, uio->uio_offset);
 1055                 xfersize = fs->fs_bsize - blkoffset;
 1056                 if (uio->uio_resid < xfersize)
 1057                         xfersize = uio->uio_resid;
 1058 
 1059                 /*      
 1060                  * We must perform a read-before-write if the transfer size
 1061                  * does not cover the entire buffer.
 1062                  */
 1063                 if (fs->fs_bsize > xfersize)
 1064                         flags |= BA_CLRBUF;
 1065                 else
 1066                         flags &= ~BA_CLRBUF;
 1067                 error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
 1068                     ucred, flags, &bp);
 1069                 if (error != 0)
 1070                         break;
 1071                 /*
 1072                  * If the buffer is not valid we have to clear out any
 1073                  * garbage data from the pages instantiated for the buffer.
 1074                  * If we do not, a failed uiomove() during a write can leave
 1075                  * the prior contents of the pages exposed to a userland
 1076                  * mmap().  XXX deal with uiomove() errors a better way.
 1077                  */
 1078                 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
 1079                         vfs_bio_clrbuf(bp);
 1080                 if (ioflag & IO_DIRECT)
 1081                         bp->b_flags |= B_DIRECT;
 1082 
 1083                 if (uio->uio_offset + xfersize > dp->di_extsize)
 1084                         dp->di_extsize = uio->uio_offset + xfersize;
 1085 
 1086                 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid;
 1087                 if (size < xfersize)
 1088                         xfersize = size;
 1089 
 1090                 error =
 1091                     uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
 1092                 if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
 1093                    (LIST_EMPTY(&bp->b_dep))) {
 1094                         bp->b_flags |= B_RELBUF;
 1095                 }
 1096 
 1097                 /*
 1098                  * If IO_SYNC each buffer is written synchronously.  Otherwise
 1099                  * if we have a severe page deficiency write the buffer 
 1100                  * asynchronously.  Otherwise try to cluster, and if that
 1101                  * doesn't do it then either do an async write (if O_DIRECT),
 1102                  * or a delayed write (if not).
 1103                  */
 1104                 if (ioflag & IO_SYNC) {
 1105                         (void)bwrite(bp);
 1106                 } else if (vm_page_count_severe() ||
 1107                             buf_dirty_count_severe() ||
 1108                             xfersize + blkoffset == fs->fs_bsize ||
 1109                             (ioflag & (IO_ASYNC | IO_DIRECT)))
 1110                         bawrite(bp);
 1111                 else
 1112                         bdwrite(bp);
 1113                 if (error || xfersize == 0)
 1114                         break;
 1115                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
 1116         }
 1117         /*
 1118          * If we successfully wrote any data, and we are not the superuser
 1119          * we clear the setuid and setgid bits as a precaution against
 1120          * tampering.
 1121          */
 1122         if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) {
 1123                 if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID, 0)) {
 1124                         ip->i_mode &= ~(ISUID | ISGID);
 1125                         dp->di_mode = ip->i_mode;
 1126                 }
 1127         }
 1128         if (error) {
 1129                 if (ioflag & IO_UNIT) {
 1130                         (void)ffs_truncate(vp, osize,
 1131                             IO_EXT | (ioflag&IO_SYNC), ucred, uio->uio_td);
 1132                         uio->uio_offset -= resid - uio->uio_resid;
 1133                         uio->uio_resid = resid;
 1134                 }
 1135         } else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
 1136                 error = ffs_update(vp, 1);
 1137         return (error);
 1138 }
 1139 
 1140 
 1141 /*
 1142  * Vnode operating to retrieve a named extended attribute.
 1143  *
 1144  * Locate a particular EA (nspace:name) in the area (ptr:length), and return
 1145  * the length of the EA, and possibly the pointer to the entry and to the data.
 1146  */
 1147 static int
 1148 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, u_char **eap, u_char **eac)
 1149 {
 1150         u_char *p, *pe, *pn, *p0;
 1151         int eapad1, eapad2, ealength, ealen, nlen;
 1152         uint32_t ul;
 1153 
 1154         pe = ptr + length;
 1155         nlen = strlen(name);
 1156 
 1157         for (p = ptr; p < pe; p = pn) {
 1158                 p0 = p;
 1159                 bcopy(p, &ul, sizeof(ul));
 1160                 pn = p + ul;
 1161                 /* make sure this entry is complete */
 1162                 if (pn > pe)
 1163                         break;
 1164                 p += sizeof(uint32_t);
 1165                 if (*p != nspace)
 1166                         continue;
 1167                 p++;
 1168                 eapad2 = *p++;
 1169                 if (*p != nlen)
 1170                         continue;
 1171                 p++;
 1172                 if (bcmp(p, name, nlen))
 1173                         continue;
 1174                 ealength = sizeof(uint32_t) + 3 + nlen;
 1175                 eapad1 = 8 - (ealength % 8);
 1176                 if (eapad1 == 8)
 1177                         eapad1 = 0;
 1178                 ealength += eapad1;
 1179                 ealen = ul - ealength - eapad2;
 1180                 p += nlen + eapad1;
 1181                 if (eap != NULL)
 1182                         *eap = p0;
 1183                 if (eac != NULL)
 1184                         *eac = p;
 1185                 return (ealen);
 1186         }
 1187         return(-1);
 1188 }
 1189 
 1190 static int
 1191 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra)
 1192 {
 1193         struct inode *ip;
 1194         struct ufs2_dinode *dp;
 1195         struct fs *fs;
 1196         struct uio luio;
 1197         struct iovec liovec;
 1198         int easize, error;
 1199         u_char *eae;
 1200 
 1201         ip = VTOI(vp);
 1202         fs = ip->i_fs;
 1203         dp = ip->i_din2;
 1204         easize = dp->di_extsize;
 1205         if ((uoff_t)easize + extra > NXADDR * fs->fs_bsize)
 1206                 return (EFBIG);
 1207 
 1208         eae = malloc(easize + extra, M_TEMP, M_WAITOK);
 1209 
 1210         liovec.iov_base = eae;
 1211         liovec.iov_len = easize;
 1212         luio.uio_iov = &liovec;
 1213         luio.uio_iovcnt = 1;
 1214         luio.uio_offset = 0;
 1215         luio.uio_resid = easize;
 1216         luio.uio_segflg = UIO_SYSSPACE;
 1217         luio.uio_rw = UIO_READ;
 1218         luio.uio_td = td;
 1219 
 1220         error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC);
 1221         if (error) {
 1222                 free(eae, M_TEMP);
 1223                 return(error);
 1224         }
 1225         *p = eae;
 1226         return (0);
 1227 }
 1228 
 1229 static int
 1230 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td)
 1231 {
 1232         struct inode *ip;
 1233         struct ufs2_dinode *dp;
 1234         int error;
 1235 
 1236         ip = VTOI(vp);
 1237 
 1238         if (ip->i_ea_area != NULL)
 1239                 return (EBUSY);
 1240         dp = ip->i_din2;
 1241         error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0);
 1242         if (error)
 1243                 return (error);
 1244         ip->i_ea_len = dp->di_extsize;
 1245         ip->i_ea_error = 0;
 1246         return (0);
 1247 }
 1248 
 1249 /*
 1250  * Vnode extattr transaction commit/abort
 1251  */
 1252 static int
 1253 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td)
 1254 {
 1255         struct inode *ip;
 1256         struct uio luio;
 1257         struct iovec liovec;
 1258         int error;
 1259         struct ufs2_dinode *dp;
 1260 
 1261         ip = VTOI(vp);
 1262         if (ip->i_ea_area == NULL)
 1263                 return (EINVAL);
 1264         dp = ip->i_din2;
 1265         error = ip->i_ea_error;
 1266         if (commit && error == 0) {
 1267                 if (cred == NOCRED)
 1268                         cred =  vp->v_mount->mnt_cred;
 1269                 liovec.iov_base = ip->i_ea_area;
 1270                 liovec.iov_len = ip->i_ea_len;
 1271                 luio.uio_iov = &liovec;
 1272                 luio.uio_iovcnt = 1;
 1273                 luio.uio_offset = 0;
 1274                 luio.uio_resid = ip->i_ea_len;
 1275                 luio.uio_segflg = UIO_SYSSPACE;
 1276                 luio.uio_rw = UIO_WRITE;
 1277                 luio.uio_td = td;
 1278                 /* XXX: I'm not happy about truncating to zero size */
 1279                 if (ip->i_ea_len < dp->di_extsize)
 1280                         error = ffs_truncate(vp, 0, IO_EXT, cred, td);
 1281                 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred);
 1282         }
 1283         free(ip->i_ea_area, M_TEMP);
 1284         ip->i_ea_area = NULL;
 1285         ip->i_ea_len = 0;
 1286         ip->i_ea_error = 0;
 1287         return (error);
 1288 }
 1289 
 1290 /*
 1291  * Vnode extattr strategy routine for fifos.
 1292  *
 1293  * We need to check for a read or write of the external attributes.
 1294  * Otherwise we just fall through and do the usual thing.
 1295  */
 1296 static int
 1297 ffsext_strategy(struct vop_strategy_args *ap)
 1298 /*
 1299 struct vop_strategy_args {
 1300         struct vnodeop_desc *a_desc;
 1301         struct vnode *a_vp;
 1302         struct buf *a_bp;
 1303 };
 1304 */
 1305 {
 1306         struct vnode *vp;
 1307         daddr_t lbn;
 1308 
 1309         vp = ap->a_vp;
 1310         lbn = ap->a_bp->b_lblkno;
 1311         if (VTOI(vp)->i_fs->fs_magic == FS_UFS2_MAGIC &&
 1312             lbn < 0 && lbn >= -NXADDR)
 1313                 return (VOP_STRATEGY_APV(&ufs_vnodeops, ap));
 1314         if (vp->v_type == VFIFO)
 1315                 return (VOP_STRATEGY_APV(&ufs_fifoops, ap));
 1316         panic("spec nodes went here");
 1317 }
 1318 
 1319 /*
 1320  * Vnode extattr transaction commit/abort
 1321  */
 1322 static int
 1323 ffs_openextattr(struct vop_openextattr_args *ap)
 1324 /*
 1325 struct vop_openextattr_args {
 1326         struct vnodeop_desc *a_desc;
 1327         struct vnode *a_vp;
 1328         IN struct ucred *a_cred;
 1329         IN struct thread *a_td;
 1330 };
 1331 */
 1332 {
 1333         struct inode *ip;
 1334         struct fs *fs;
 1335 
 1336         ip = VTOI(ap->a_vp);
 1337         fs = ip->i_fs;
 1338 
 1339         if (ap->a_vp->v_type == VCHR)
 1340                 return (EOPNOTSUPP);
 1341 
 1342         return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td));
 1343 }
 1344 
 1345 
 1346 /*
 1347  * Vnode extattr transaction commit/abort
 1348  */
 1349 static int
 1350 ffs_closeextattr(struct vop_closeextattr_args *ap)
 1351 /*
 1352 struct vop_closeextattr_args {
 1353         struct vnodeop_desc *a_desc;
 1354         struct vnode *a_vp;
 1355         int a_commit;
 1356         IN struct ucred *a_cred;
 1357         IN struct thread *a_td;
 1358 };
 1359 */
 1360 {
 1361         struct inode *ip;
 1362         struct fs *fs;
 1363 
 1364         ip = VTOI(ap->a_vp);
 1365         fs = ip->i_fs;
 1366 
 1367         if (ap->a_vp->v_type == VCHR)
 1368                 return (EOPNOTSUPP);
 1369 
 1370         if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY))
 1371                 return (EROFS);
 1372 
 1373         return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td));
 1374 }
 1375 
 1376 /*
 1377  * Vnode operation to remove a named attribute.
 1378  */
 1379 static int
 1380 ffs_deleteextattr(struct vop_deleteextattr_args *ap)
 1381 /*
 1382 vop_deleteextattr {
 1383         IN struct vnode *a_vp;
 1384         IN int a_attrnamespace;
 1385         IN const char *a_name;
 1386         IN struct ucred *a_cred;
 1387         IN struct thread *a_td;
 1388 };
 1389 */
 1390 {
 1391         struct inode *ip;
 1392         struct fs *fs;
 1393         uint32_t ealength, ul;
 1394         int ealen, olen, eapad1, eapad2, error, i, easize;
 1395         u_char *eae, *p;
 1396         int stand_alone;
 1397 
 1398         ip = VTOI(ap->a_vp);
 1399         fs = ip->i_fs;
 1400 
 1401         if (ap->a_vp->v_type == VCHR)
 1402                 return (EOPNOTSUPP);
 1403 
 1404         if (strlen(ap->a_name) == 0)
 1405                 return (EINVAL);
 1406 
 1407         if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
 1408                 return (EROFS);
 1409 
 1410         error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
 1411             ap->a_cred, ap->a_td, IWRITE);
 1412         if (error) {
 1413                 if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
 1414                         ip->i_ea_error = error;
 1415                 return (error);
 1416         }
 1417 
 1418         if (ip->i_ea_area == NULL) {
 1419                 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
 1420                 if (error)
 1421                         return (error);
 1422                 stand_alone = 1;
 1423         } else {
 1424                 stand_alone = 0;
 1425         }
 1426 
 1427         ealength = eapad1 = ealen = eapad2 = 0;
 1428 
 1429         eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK);
 1430         bcopy(ip->i_ea_area, eae, ip->i_ea_len);
 1431         easize = ip->i_ea_len;
 1432 
 1433         olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
 1434             &p, NULL);
 1435         if (olen == -1) {
 1436                 /* delete but nonexistent */
 1437                 free(eae, M_TEMP);
 1438                 if (stand_alone)
 1439                         ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
 1440                 return(ENOATTR);
 1441         }
 1442         bcopy(p, &ul, sizeof ul);
 1443         i = p - eae + ul;
 1444         if (ul != ealength) {
 1445                 bcopy(p + ul, p + ealength, easize - i);
 1446                 easize += (ealength - ul);
 1447         }
 1448         if (easize > NXADDR * fs->fs_bsize) {
 1449                 free(eae, M_TEMP);
 1450                 if (stand_alone)
 1451                         ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
 1452                 else if (ip->i_ea_error == 0)
 1453                         ip->i_ea_error = ENOSPC;
 1454                 return(ENOSPC);
 1455         }
 1456         p = ip->i_ea_area;
 1457         ip->i_ea_area = eae;
 1458         ip->i_ea_len = easize;
 1459         free(p, M_TEMP);
 1460         if (stand_alone)
 1461                 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
 1462         return(error);
 1463 }
 1464 
 1465 /*
 1466  * Vnode operation to retrieve a named extended attribute.
 1467  */
 1468 static int
 1469 ffs_getextattr(struct vop_getextattr_args *ap)
 1470 /*
 1471 vop_getextattr {
 1472         IN struct vnode *a_vp;
 1473         IN int a_attrnamespace;
 1474         IN const char *a_name;
 1475         INOUT struct uio *a_uio;
 1476         OUT size_t *a_size;
 1477         IN struct ucred *a_cred;
 1478         IN struct thread *a_td;
 1479 };
 1480 */
 1481 {
 1482         struct inode *ip;
 1483         struct fs *fs;
 1484         u_char *eae, *p;
 1485         unsigned easize;
 1486         int error, ealen, stand_alone;
 1487 
 1488         ip = VTOI(ap->a_vp);
 1489         fs = ip->i_fs;
 1490 
 1491         if (ap->a_vp->v_type == VCHR)
 1492                 return (EOPNOTSUPP);
 1493 
 1494         error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
 1495             ap->a_cred, ap->a_td, IREAD);
 1496         if (error)
 1497                 return (error);
 1498 
 1499         if (ip->i_ea_area == NULL) {
 1500                 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
 1501                 if (error)
 1502                         return (error);
 1503                 stand_alone = 1;
 1504         } else {
 1505                 stand_alone = 0;
 1506         }
 1507         eae = ip->i_ea_area;
 1508         easize = ip->i_ea_len;
 1509 
 1510         ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
 1511             NULL, &p);
 1512         if (ealen >= 0) {
 1513                 error = 0;
 1514                 if (ap->a_size != NULL)
 1515                         *ap->a_size = ealen;
 1516                 else if (ap->a_uio != NULL)
 1517                         error = uiomove(p, ealen, ap->a_uio);
 1518         } else
 1519                 error = ENOATTR;
 1520         if (stand_alone)
 1521                 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
 1522         return(error);
 1523 }
 1524 
 1525 /*
 1526  * Vnode operation to retrieve extended attributes on a vnode.
 1527  */
 1528 static int
 1529 ffs_listextattr(struct vop_listextattr_args *ap)
 1530 /*
 1531 vop_listextattr {
 1532         IN struct vnode *a_vp;
 1533         IN int a_attrnamespace;
 1534         INOUT struct uio *a_uio;
 1535         OUT size_t *a_size;
 1536         IN struct ucred *a_cred;
 1537         IN struct thread *a_td;
 1538 };
 1539 */
 1540 {
 1541         struct inode *ip;
 1542         struct fs *fs;
 1543         u_char *eae, *p, *pe, *pn;
 1544         unsigned easize;
 1545         uint32_t ul;
 1546         int error, ealen, stand_alone;
 1547 
 1548         ip = VTOI(ap->a_vp);
 1549         fs = ip->i_fs;
 1550 
 1551         if (ap->a_vp->v_type == VCHR)
 1552                 return (EOPNOTSUPP);
 1553 
 1554         error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
 1555             ap->a_cred, ap->a_td, IREAD);
 1556         if (error)
 1557                 return (error);
 1558 
 1559         if (ip->i_ea_area == NULL) {
 1560                 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
 1561                 if (error)
 1562                         return (error);
 1563                 stand_alone = 1;
 1564         } else {
 1565                 stand_alone = 0;
 1566         }
 1567         eae = ip->i_ea_area;
 1568         easize = ip->i_ea_len;
 1569 
 1570         error = 0;
 1571         if (ap->a_size != NULL)
 1572                 *ap->a_size = 0;
 1573         pe = eae + easize;
 1574         for(p = eae; error == 0 && p < pe; p = pn) {
 1575                 bcopy(p, &ul, sizeof(ul));
 1576                 pn = p + ul;
 1577                 if (pn > pe)
 1578                         break;
 1579                 p += sizeof(ul);
 1580                 if (*p++ != ap->a_attrnamespace)
 1581                         continue;
 1582                 p++;    /* pad2 */
 1583                 ealen = *p;
 1584                 if (ap->a_size != NULL) {
 1585                         *ap->a_size += ealen + 1;
 1586                 } else if (ap->a_uio != NULL) {
 1587                         error = uiomove(p, ealen + 1, ap->a_uio);
 1588                 }
 1589         }
 1590         if (stand_alone)
 1591                 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
 1592         return(error);
 1593 }
 1594 
 1595 /*
 1596  * Vnode operation to set a named attribute.
 1597  */
 1598 static int
 1599 ffs_setextattr(struct vop_setextattr_args *ap)
 1600 /*
 1601 vop_setextattr {
 1602         IN struct vnode *a_vp;
 1603         IN int a_attrnamespace;
 1604         IN const char *a_name;
 1605         INOUT struct uio *a_uio;
 1606         IN struct ucred *a_cred;
 1607         IN struct thread *a_td;
 1608 };
 1609 */
 1610 {
 1611         struct inode *ip;
 1612         struct fs *fs;
 1613         uint32_t ealength, ul;
 1614         int ealen, olen, eapad1, eapad2, error, i, easize;
 1615         u_char *eae, *p;
 1616         int stand_alone;
 1617 
 1618         ip = VTOI(ap->a_vp);
 1619         fs = ip->i_fs;
 1620 
 1621         if (ap->a_vp->v_type == VCHR)
 1622                 return (EOPNOTSUPP);
 1623 
 1624         if (strlen(ap->a_name) == 0)
 1625                 return (EINVAL);
 1626 
 1627         /* XXX Now unsupported API to delete EAs using NULL uio. */
 1628         if (ap->a_uio == NULL)
 1629                 return (EOPNOTSUPP);
 1630 
 1631         if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
 1632                 return (EROFS);
 1633 
 1634         error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
 1635             ap->a_cred, ap->a_td, IWRITE);
 1636         if (error) {
 1637                 if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
 1638                         ip->i_ea_error = error;
 1639                 return (error);
 1640         }
 1641 
 1642         if (ip->i_ea_area == NULL) {
 1643                 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
 1644                 if (error)
 1645                         return (error);
 1646                 stand_alone = 1;
 1647         } else {
 1648                 stand_alone = 0;
 1649         }
 1650 
 1651         ealen = ap->a_uio->uio_resid;
 1652         ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name);
 1653         eapad1 = 8 - (ealength % 8);
 1654         if (eapad1 == 8)
 1655                 eapad1 = 0;
 1656         eapad2 = 8 - (ealen % 8);
 1657         if (eapad2 == 8)
 1658                 eapad2 = 0;
 1659         ealength += eapad1 + ealen + eapad2;
 1660 
 1661         eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK);
 1662         bcopy(ip->i_ea_area, eae, ip->i_ea_len);
 1663         easize = ip->i_ea_len;
 1664 
 1665         olen = ffs_findextattr(eae, easize,
 1666             ap->a_attrnamespace, ap->a_name, &p, NULL);
 1667         if (olen == -1) {
 1668                 /* new, append at end */
 1669                 p = eae + easize;
 1670                 easize += ealength;
 1671         } else {
 1672                 bcopy(p, &ul, sizeof ul);
 1673                 i = p - eae + ul;
 1674                 if (ul != ealength) {
 1675                         bcopy(p + ul, p + ealength, easize - i);
 1676                         easize += (ealength - ul);
 1677                 }
 1678         }
 1679         if (easize > NXADDR * fs->fs_bsize) {
 1680                 free(eae, M_TEMP);
 1681                 if (stand_alone)
 1682                         ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
 1683                 else if (ip->i_ea_error == 0)
 1684                         ip->i_ea_error = ENOSPC;
 1685                 return(ENOSPC);
 1686         }
 1687         bcopy(&ealength, p, sizeof(ealength));
 1688         p += sizeof(ealength);
 1689         *p++ = ap->a_attrnamespace;
 1690         *p++ = eapad2;
 1691         *p++ = strlen(ap->a_name);
 1692         strcpy(p, ap->a_name);
 1693         p += strlen(ap->a_name);
 1694         bzero(p, eapad1);
 1695         p += eapad1;
 1696         error = uiomove(p, ealen, ap->a_uio);
 1697         if (error) {
 1698                 free(eae, M_TEMP);
 1699                 if (stand_alone)
 1700                         ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
 1701                 else if (ip->i_ea_error == 0)
 1702                         ip->i_ea_error = error;
 1703                 return(error);
 1704         }
 1705         p += ealen;
 1706         bzero(p, eapad2);
 1707 
 1708         p = ip->i_ea_area;
 1709         ip->i_ea_area = eae;
 1710         ip->i_ea_len = easize;
 1711         free(p, M_TEMP);
 1712         if (stand_alone)
 1713                 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
 1714         return(error);
 1715 }
 1716 
 1717 /*
 1718  * Vnode pointer to File handle
 1719  */
 1720 static int
 1721 ffs_vptofh(struct vop_vptofh_args *ap)
 1722 /*
 1723 vop_vptofh {
 1724         IN struct vnode *a_vp;
 1725         IN struct fid *a_fhp;
 1726 };
 1727 */
 1728 {
 1729         struct inode *ip;
 1730         struct ufid *ufhp;
 1731 
 1732         ip = VTOI(ap->a_vp);
 1733         ufhp = (struct ufid *)ap->a_fhp;
 1734         ufhp->ufid_len = sizeof(struct ufid);
 1735         ufhp->ufid_ino = ip->i_number;
 1736         ufhp->ufid_gen = ip->i_gen;
 1737         return (0);
 1738 }

Cache object: 6fcf7e852d557deef279aaf9f5af3a4b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.