The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/ufs/ffs/ffs_vnops.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002, 2003 Networks Associates Technology, Inc.
    3  * All rights reserved.
    4  *
    5  * This software was developed for the FreeBSD Project by Marshall
    6  * Kirk McKusick and Network Associates Laboratories, the Security
    7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
    8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
    9  * research program
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  * Copyright (c) 1982, 1986, 1989, 1993
   33  *      The Regents of the University of California.  All rights reserved.
   34  *
   35  * Redistribution and use in source and binary forms, with or without
   36  * modification, are permitted provided that the following conditions
   37  * are met:
   38  * 1. Redistributions of source code must retain the above copyright
   39  *    notice, this list of conditions and the following disclaimer.
   40  * 2. Redistributions in binary form must reproduce the above copyright
   41  *    notice, this list of conditions and the following disclaimer in the
   42  *    documentation and/or other materials provided with the distribution.
   43  * 4. Neither the name of the University nor the names of its contributors
   44  *    may be used to endorse or promote products derived from this software
   45  *    without specific prior written permission.
   46  *
   47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   57  * SUCH DAMAGE.
   58  *
   59  *      from: @(#)ufs_readwrite.c       8.11 (Berkeley) 5/8/95
   60  * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ...
   61  *      @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95
   62  */
   63 
   64 #include <sys/cdefs.h>
   65 __FBSDID("$FreeBSD$");
   66 
   67 #include <sys/param.h>
   68 #include <sys/bio.h>
   69 #include <sys/systm.h>
   70 #include <sys/buf.h>
   71 #include <sys/conf.h>
   72 #include <sys/extattr.h>
   73 #include <sys/kernel.h>
   74 #include <sys/limits.h>
   75 #include <sys/malloc.h>
   76 #include <sys/mount.h>
   77 #include <sys/priv.h>
   78 #include <sys/proc.h>
   79 #include <sys/resourcevar.h>
   80 #include <sys/signalvar.h>
   81 #include <sys/stat.h>
   82 #include <sys/vmmeter.h>
   83 #include <sys/vnode.h>
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_extern.h>
   87 #include <vm/vm_object.h>
   88 #include <vm/vm_page.h>
   89 #include <vm/vm_pager.h>
   90 #include <vm/vnode_pager.h>
   91 
   92 #include <ufs/ufs/extattr.h>
   93 #include <ufs/ufs/quota.h>
   94 #include <ufs/ufs/inode.h>
   95 #include <ufs/ufs/ufs_extern.h>
   96 #include <ufs/ufs/ufsmount.h>
   97 
   98 #include <ufs/ffs/fs.h>
   99 #include <ufs/ffs/ffs_extern.h>
  100 #include "opt_directio.h"
  101 #include "opt_ffs.h"
  102 
  103 #ifdef DIRECTIO
  104 extern int      ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone);
  105 #endif
  106 static vop_fsync_t      ffs_fsync;
  107 static vop_lock1_t      ffs_lock;
  108 static vop_getpages_t   ffs_getpages;
  109 static vop_read_t       ffs_read;
  110 static vop_write_t      ffs_write;
  111 static int      ffs_extread(struct vnode *vp, struct uio *uio, int ioflag);
  112 static int      ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag,
  113                     struct ucred *cred);
  114 static vop_strategy_t   ffsext_strategy;
  115 static vop_closeextattr_t       ffs_closeextattr;
  116 static vop_deleteextattr_t      ffs_deleteextattr;
  117 static vop_getextattr_t ffs_getextattr;
  118 static vop_listextattr_t        ffs_listextattr;
  119 static vop_openextattr_t        ffs_openextattr;
  120 static vop_setextattr_t ffs_setextattr;
  121 static vop_vptofh_t     ffs_vptofh;
  122 
  123 
  124 /* Global vfs data structures for ufs. */
  125 struct vop_vector ffs_vnodeops1 = {
  126         .vop_default =          &ufs_vnodeops,
  127         .vop_fsync =            ffs_fsync,
  128         .vop_getpages =         ffs_getpages,
  129         .vop_lock1 =            ffs_lock,
  130         .vop_read =             ffs_read,
  131         .vop_reallocblks =      ffs_reallocblks,
  132         .vop_write =            ffs_write,
  133         .vop_vptofh =           ffs_vptofh,
  134 };
  135 
  136 struct vop_vector ffs_fifoops1 = {
  137         .vop_default =          &ufs_fifoops,
  138         .vop_fsync =            ffs_fsync,
  139         .vop_reallocblks =      ffs_reallocblks, /* XXX: really ??? */
  140         .vop_vptofh =           ffs_vptofh,
  141 };
  142 
  143 /* Global vfs data structures for ufs. */
  144 struct vop_vector ffs_vnodeops2 = {
  145         .vop_default =          &ufs_vnodeops,
  146         .vop_fsync =            ffs_fsync,
  147         .vop_getpages =         ffs_getpages,
  148         .vop_lock1 =            ffs_lock,
  149         .vop_read =             ffs_read,
  150         .vop_reallocblks =      ffs_reallocblks,
  151         .vop_write =            ffs_write,
  152         .vop_closeextattr =     ffs_closeextattr,
  153         .vop_deleteextattr =    ffs_deleteextattr,
  154         .vop_getextattr =       ffs_getextattr,
  155         .vop_listextattr =      ffs_listextattr,
  156         .vop_openextattr =      ffs_openextattr,
  157         .vop_setextattr =       ffs_setextattr,
  158         .vop_vptofh =           ffs_vptofh,
  159 };
  160 
  161 struct vop_vector ffs_fifoops2 = {
  162         .vop_default =          &ufs_fifoops,
  163         .vop_fsync =            ffs_fsync,
  164         .vop_lock1 =            ffs_lock,
  165         .vop_reallocblks =      ffs_reallocblks,
  166         .vop_strategy =         ffsext_strategy,
  167         .vop_closeextattr =     ffs_closeextattr,
  168         .vop_deleteextattr =    ffs_deleteextattr,
  169         .vop_getextattr =       ffs_getextattr,
  170         .vop_listextattr =      ffs_listextattr,
  171         .vop_openextattr =      ffs_openextattr,
  172         .vop_setextattr =       ffs_setextattr,
  173         .vop_vptofh =           ffs_vptofh,
  174 };
  175 
  176 /*
  177  * Synch an open file.
  178  */
  179 /* ARGSUSED */
  180 static int
  181 ffs_fsync(struct vop_fsync_args *ap)
  182 {
  183         int error;
  184 
  185         error = ffs_syncvnode(ap->a_vp, ap->a_waitfor);
  186         if (error)
  187                 return (error);
  188         if (ap->a_waitfor == MNT_WAIT &&
  189             (ap->a_vp->v_mount->mnt_flag & MNT_SOFTDEP))
  190                 error = softdep_fsync(ap->a_vp);
  191         return (error);
  192 }
  193 
  194 int
  195 ffs_syncvnode(struct vnode *vp, int waitfor)
  196 {
  197         struct inode *ip = VTOI(vp);
  198         struct buf *bp;
  199         struct buf *nbp;
  200         int s, error, wait, passes, skipmeta;
  201         ufs_lbn_t lbn;
  202 
  203         wait = (waitfor == MNT_WAIT);
  204         lbn = lblkno(ip->i_fs, (ip->i_size + ip->i_fs->fs_bsize - 1));
  205 
  206         /*
  207          * Flush all dirty buffers associated with a vnode.
  208          */
  209         passes = NIADDR + 1;
  210         skipmeta = 0;
  211         if (wait)
  212                 skipmeta = 1;
  213         s = splbio();
  214         VI_LOCK(vp);
  215 loop:
  216         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs)
  217                 bp->b_vflags &= ~BV_SCANNED;
  218         TAILQ_FOREACH_SAFE(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs, nbp) {
  219                 /*
  220                  * Reasons to skip this buffer: it has already been considered
  221                  * on this pass, this pass is the first time through on a
  222                  * synchronous flush request and the buffer being considered
  223                  * is metadata, the buffer has dependencies that will cause
  224                  * it to be redirtied and it has not already been deferred,
  225                  * or it is already being written.
  226                  */
  227                 if ((bp->b_vflags & BV_SCANNED) != 0)
  228                         continue;
  229                 bp->b_vflags |= BV_SCANNED;
  230                 if ((skipmeta == 1 && bp->b_lblkno < 0))
  231                         continue;
  232                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
  233                         continue;
  234                 VI_UNLOCK(vp);
  235                 if (!wait && !LIST_EMPTY(&bp->b_dep) &&
  236                     (bp->b_flags & B_DEFERRED) == 0 &&
  237                     buf_countdeps(bp, 0)) {
  238                         bp->b_flags |= B_DEFERRED;
  239                         BUF_UNLOCK(bp);
  240                         VI_LOCK(vp);
  241                         continue;
  242                 }
  243                 if ((bp->b_flags & B_DELWRI) == 0)
  244                         panic("ffs_fsync: not dirty");
  245                 /*
  246                  * If this is a synchronous flush request, or it is not a
  247                  * file or device, start the write on this buffer immediatly.
  248                  */
  249                 if (wait || (vp->v_type != VREG && vp->v_type != VBLK)) {
  250 
  251                         /*
  252                          * On our final pass through, do all I/O synchronously
  253                          * so that we can find out if our flush is failing
  254                          * because of write errors.
  255                          */
  256                         if (passes > 0 || !wait) {
  257                                 if ((bp->b_flags & B_CLUSTEROK) && !wait) {
  258                                         (void) vfs_bio_awrite(bp);
  259                                 } else {
  260                                         bremfree(bp);
  261                                         splx(s);
  262                                         (void) bawrite(bp);
  263                                         s = splbio();
  264                                 }
  265                         } else {
  266                                 bremfree(bp);
  267                                 splx(s);
  268                                 if ((error = bwrite(bp)) != 0)
  269                                         return (error);
  270                                 s = splbio();
  271                         }
  272                 } else if ((vp->v_type == VREG) && (bp->b_lblkno >= lbn)) {
  273                         /*
  274                          * If the buffer is for data that has been truncated
  275                          * off the file, then throw it away.
  276                          */
  277                         bremfree(bp);
  278                         bp->b_flags |= B_INVAL | B_NOCACHE;
  279                         splx(s);
  280                         brelse(bp);
  281                         s = splbio();
  282                 } else
  283                         vfs_bio_awrite(bp);
  284 
  285                 /*
  286                  * Since we may have slept during the I/O, we need
  287                  * to start from a known point.
  288                  */
  289                 VI_LOCK(vp);
  290                 nbp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd);
  291         }
  292         /*
  293          * If we were asked to do this synchronously, then go back for
  294          * another pass, this time doing the metadata.
  295          */
  296         if (skipmeta) {
  297                 skipmeta = 0;
  298                 goto loop;
  299         }
  300 
  301         if (wait) {
  302                 bufobj_wwait(&vp->v_bufobj, 3, 0);
  303                 VI_UNLOCK(vp);
  304 
  305                 /*
  306                  * Ensure that any filesystem metatdata associated
  307                  * with the vnode has been written.
  308                  */
  309                 splx(s);
  310                 if ((error = softdep_sync_metadata(vp)) != 0)
  311                         return (error);
  312                 s = splbio();
  313 
  314                 VI_LOCK(vp);
  315                 if (vp->v_bufobj.bo_dirty.bv_cnt > 0) {
  316                         /*
  317                          * Block devices associated with filesystems may
  318                          * have new I/O requests posted for them even if
  319                          * the vnode is locked, so no amount of trying will
  320                          * get them clean. Thus we give block devices a
  321                          * good effort, then just give up. For all other file
  322                          * types, go around and try again until it is clean.
  323                          */
  324                         if (passes > 0) {
  325                                 passes -= 1;
  326                                 goto loop;
  327                         }
  328 #ifdef INVARIANTS
  329                         if (!vn_isdisk(vp, NULL))
  330                                 vprint("ffs_fsync: dirty", vp);
  331 #endif
  332                 }
  333         }
  334         VI_UNLOCK(vp);
  335         splx(s);
  336         return (ffs_update(vp, wait));
  337 }
  338 
  339 static int
  340 ffs_lock(ap)
  341         struct vop_lock1_args /* {
  342                 struct vnode *a_vp;
  343                 int a_flags;
  344                 struct thread *a_td;
  345                 char *file;
  346                 int line;
  347         } */ *ap;
  348 {
  349 #ifndef NO_FFS_SNAPSHOT
  350         struct vnode *vp;
  351         int flags;
  352         struct lock *lkp;
  353         int result;
  354 
  355         switch (ap->a_flags & LK_TYPE_MASK) {
  356         case LK_SHARED:
  357         case LK_UPGRADE:
  358         case LK_EXCLUSIVE:
  359                 vp = ap->a_vp;
  360                 flags = ap->a_flags;
  361                 for (;;) {
  362                         /*
  363                          * vnode interlock must be held to ensure that
  364                          * the possibly external lock isn't freed,
  365                          * e.g. when mutating from snapshot file vnode
  366                          * to regular file vnode.
  367                          */
  368                         if ((flags & LK_INTERLOCK) == 0) {
  369                                 VI_LOCK(vp);
  370                                 flags |= LK_INTERLOCK;
  371                         }
  372 #ifdef DEBUG_VFS_LOCKS
  373                         KASSERT(vp->v_holdcnt != 0,
  374                             ("ffs_lock %p: zero hold count", vp));
  375 #endif
  376                         lkp = vp->v_vnlock;
  377                         result = _lockmgr(lkp, flags, VI_MTX(vp), ap->a_td, ap->a_file, ap->a_line);
  378                         if (lkp == vp->v_vnlock || result != 0)
  379                                 break;
  380                         /*
  381                          * Apparent success, except that the vnode
  382                          * mutated between snapshot file vnode and
  383                          * regular file vnode while this process
  384                          * slept.  The lock currently held is not the
  385                          * right lock.  Release it, and try to get the
  386                          * new lock.
  387                          */
  388                         (void) _lockmgr(lkp, LK_RELEASE, VI_MTX(vp), ap->a_td, ap->a_file, ap->a_line);
  389                         if ((flags & LK_TYPE_MASK) == LK_UPGRADE)
  390                                 flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE;
  391                         flags &= ~LK_INTERLOCK;
  392                 }
  393                 break;
  394         default:
  395                 result = VOP_LOCK1_APV(&ufs_vnodeops, ap);
  396         }
  397         return (result);
  398 #else
  399         return (VOP_LOCK1_APV(&ufs_vnodeops, ap));
  400 #endif
  401 }
  402 
  403 /*
  404  * Vnode op for reading.
  405  */
  406 /* ARGSUSED */
  407 static int
  408 ffs_read(ap)
  409         struct vop_read_args /* {
  410                 struct vnode *a_vp;
  411                 struct uio *a_uio;
  412                 int a_ioflag;
  413                 struct ucred *a_cred;
  414         } */ *ap;
  415 {
  416         struct vnode *vp;
  417         struct inode *ip;
  418         struct uio *uio;
  419         struct fs *fs;
  420         struct buf *bp;
  421         ufs_lbn_t lbn, nextlbn;
  422         off_t bytesinfile;
  423         long size, xfersize, blkoffset;
  424         int error, orig_resid;
  425         int seqcount;
  426         int ioflag;
  427 
  428         vp = ap->a_vp;
  429         uio = ap->a_uio;
  430         ioflag = ap->a_ioflag;
  431         if (ap->a_ioflag & IO_EXT)
  432 #ifdef notyet
  433                 return (ffs_extread(vp, uio, ioflag));
  434 #else
  435                 panic("ffs_read+IO_EXT");
  436 #endif
  437 #ifdef DIRECTIO
  438         if ((ioflag & IO_DIRECT) != 0) {
  439                 int workdone;
  440 
  441                 error = ffs_rawread(vp, uio, &workdone);
  442                 if (error != 0 || workdone != 0)
  443                         return error;
  444         }
  445 #endif
  446 
  447         seqcount = ap->a_ioflag >> IO_SEQSHIFT;
  448         ip = VTOI(vp);
  449 
  450 #ifdef INVARIANTS
  451         if (uio->uio_rw != UIO_READ)
  452                 panic("ffs_read: mode");
  453 
  454         if (vp->v_type == VLNK) {
  455                 if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen)
  456                         panic("ffs_read: short symlink");
  457         } else if (vp->v_type != VREG && vp->v_type != VDIR)
  458                 panic("ffs_read: type %d",  vp->v_type);
  459 #endif
  460         orig_resid = uio->uio_resid;
  461         KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0"));
  462         if (orig_resid == 0)
  463                 return (0);
  464         KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0"));
  465         fs = ip->i_fs;
  466         if (uio->uio_offset < ip->i_size &&
  467             uio->uio_offset >= fs->fs_maxfilesize)
  468                 return (EOVERFLOW);
  469 
  470         for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
  471                 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0)
  472                         break;
  473                 lbn = lblkno(fs, uio->uio_offset);
  474                 nextlbn = lbn + 1;
  475 
  476                 /*
  477                  * size of buffer.  The buffer representing the
  478                  * end of the file is rounded up to the size of
  479                  * the block type ( fragment or full block,
  480                  * depending ).
  481                  */
  482                 size = blksize(fs, ip, lbn);
  483                 blkoffset = blkoff(fs, uio->uio_offset);
  484 
  485                 /*
  486                  * The amount we want to transfer in this iteration is
  487                  * one FS block less the amount of the data before
  488                  * our startpoint (duh!)
  489                  */
  490                 xfersize = fs->fs_bsize - blkoffset;
  491 
  492                 /*
  493                  * But if we actually want less than the block,
  494                  * or the file doesn't have a whole block more of data,
  495                  * then use the lesser number.
  496                  */
  497                 if (uio->uio_resid < xfersize)
  498                         xfersize = uio->uio_resid;
  499                 if (bytesinfile < xfersize)
  500                         xfersize = bytesinfile;
  501 
  502                 if (lblktosize(fs, nextlbn) >= ip->i_size) {
  503                         /*
  504                          * Don't do readahead if this is the end of the file.
  505                          */
  506                         error = bread(vp, lbn, size, NOCRED, &bp);
  507                 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
  508                         /*
  509                          * Otherwise if we are allowed to cluster,
  510                          * grab as much as we can.
  511                          *
  512                          * XXX  This may not be a win if we are not
  513                          * doing sequential access.
  514                          */
  515                         error = cluster_read(vp, ip->i_size, lbn,
  516                                 size, NOCRED, blkoffset + uio->uio_resid, seqcount, &bp);
  517                 } else if (seqcount > 1) {
  518                         /*
  519                          * If we are NOT allowed to cluster, then
  520                          * if we appear to be acting sequentially,
  521                          * fire off a request for a readahead
  522                          * as well as a read. Note that the 4th and 5th
  523                          * arguments point to arrays of the size specified in
  524                          * the 6th argument.
  525                          */
  526                         int nextsize = blksize(fs, ip, nextlbn);
  527                         error = breadn(vp, lbn,
  528                             size, &nextlbn, &nextsize, 1, NOCRED, &bp);
  529                 } else {
  530                         /*
  531                          * Failing all of the above, just read what the
  532                          * user asked for. Interestingly, the same as
  533                          * the first option above.
  534                          */
  535                         error = bread(vp, lbn, size, NOCRED, &bp);
  536                 }
  537                 if (error) {
  538                         brelse(bp);
  539                         bp = NULL;
  540                         break;
  541                 }
  542 
  543                 /*
  544                  * If IO_DIRECT then set B_DIRECT for the buffer.  This
  545                  * will cause us to attempt to release the buffer later on
  546                  * and will cause the buffer cache to attempt to free the
  547                  * underlying pages.
  548                  */
  549                 if (ioflag & IO_DIRECT)
  550                         bp->b_flags |= B_DIRECT;
  551 
  552                 /*
  553                  * We should only get non-zero b_resid when an I/O error
  554                  * has occurred, which should cause us to break above.
  555                  * However, if the short read did not cause an error,
  556                  * then we want to ensure that we do not uiomove bad
  557                  * or uninitialized data.
  558                  */
  559                 size -= bp->b_resid;
  560                 if (size < xfersize) {
  561                         if (size == 0)
  562                                 break;
  563                         xfersize = size;
  564                 }
  565 
  566                 error = uiomove((char *)bp->b_data + blkoffset,
  567                     (int)xfersize, uio);
  568                 if (error)
  569                         break;
  570 
  571                 if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
  572                    (LIST_EMPTY(&bp->b_dep))) {
  573                         /*
  574                          * If there are no dependencies, and it's VMIO,
  575                          * then we don't need the buf, mark it available
  576                          * for freeing. The VM has the data.
  577                          */
  578                         bp->b_flags |= B_RELBUF;
  579                         brelse(bp);
  580                 } else {
  581                         /*
  582                          * Otherwise let whoever
  583                          * made the request take care of
  584                          * freeing it. We just queue
  585                          * it onto another list.
  586                          */
  587                         bqrelse(bp);
  588                 }
  589         }
  590 
  591         /*
  592          * This can only happen in the case of an error
  593          * because the loop above resets bp to NULL on each iteration
  594          * and on normal completion has not set a new value into it.
  595          * so it must have come from a 'break' statement
  596          */
  597         if (bp != NULL) {
  598                 if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
  599                    (LIST_EMPTY(&bp->b_dep))) {
  600                         bp->b_flags |= B_RELBUF;
  601                         brelse(bp);
  602                 } else {
  603                         bqrelse(bp);
  604                 }
  605         }
  606 
  607         if ((error == 0 || uio->uio_resid != orig_resid) &&
  608             (vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
  609                 VI_LOCK(vp);
  610                 ip->i_flag |= IN_ACCESS;
  611                 VI_UNLOCK(vp);
  612         }
  613         return (error);
  614 }
  615 
  616 /*
  617  * Vnode op for writing.
  618  */
  619 static int
  620 ffs_write(ap)
  621         struct vop_write_args /* {
  622                 struct vnode *a_vp;
  623                 struct uio *a_uio;
  624                 int a_ioflag;
  625                 struct ucred *a_cred;
  626         } */ *ap;
  627 {
  628         struct vnode *vp;
  629         struct uio *uio;
  630         struct inode *ip;
  631         struct fs *fs;
  632         struct buf *bp;
  633         struct thread *td;
  634         ufs_lbn_t lbn;
  635         off_t osize;
  636         int seqcount;
  637         int blkoffset, error, flags, ioflag, resid, size, xfersize;
  638 
  639         vp = ap->a_vp;
  640         uio = ap->a_uio;
  641         ioflag = ap->a_ioflag;
  642         if (ap->a_ioflag & IO_EXT)
  643 #ifdef notyet
  644                 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred));
  645 #else
  646                 panic("ffs_write+IO_EXT");
  647 #endif
  648 
  649         seqcount = ap->a_ioflag >> IO_SEQSHIFT;
  650         ip = VTOI(vp);
  651 
  652 #ifdef INVARIANTS
  653         if (uio->uio_rw != UIO_WRITE)
  654                 panic("ffs_write: mode");
  655 #endif
  656 
  657         switch (vp->v_type) {
  658         case VREG:
  659                 if (ioflag & IO_APPEND)
  660                         uio->uio_offset = ip->i_size;
  661                 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size)
  662                         return (EPERM);
  663                 /* FALLTHROUGH */
  664         case VLNK:
  665                 break;
  666         case VDIR:
  667                 panic("ffs_write: dir write");
  668                 break;
  669         default:
  670                 panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type,
  671                         (int)uio->uio_offset,
  672                         (int)uio->uio_resid
  673                 );
  674         }
  675 
  676         KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0"));
  677         KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0"));
  678         fs = ip->i_fs;
  679         if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize)
  680                 return (EFBIG);
  681         /*
  682          * Maybe this should be above the vnode op call, but so long as
  683          * file servers have no limits, I don't think it matters.
  684          */
  685         td = uio->uio_td;
  686         if (vp->v_type == VREG && td != NULL) {
  687                 PROC_LOCK(td->td_proc);
  688                 if (uio->uio_offset + uio->uio_resid >
  689                     lim_cur(td->td_proc, RLIMIT_FSIZE)) {
  690                         psignal(td->td_proc, SIGXFSZ);
  691                         PROC_UNLOCK(td->td_proc);
  692                         return (EFBIG);
  693                 }
  694                 PROC_UNLOCK(td->td_proc);
  695         }
  696 
  697         resid = uio->uio_resid;
  698         osize = ip->i_size;
  699         if (seqcount > BA_SEQMAX)
  700                 flags = BA_SEQMAX << BA_SEQSHIFT;
  701         else
  702                 flags = seqcount << BA_SEQSHIFT;
  703         if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
  704                 flags |= IO_SYNC;
  705 
  706         for (error = 0; uio->uio_resid > 0;) {
  707                 lbn = lblkno(fs, uio->uio_offset);
  708                 blkoffset = blkoff(fs, uio->uio_offset);
  709                 xfersize = fs->fs_bsize - blkoffset;
  710                 if (uio->uio_resid < xfersize)
  711                         xfersize = uio->uio_resid;
  712                 if (uio->uio_offset + xfersize > ip->i_size)
  713                         vnode_pager_setsize(vp, uio->uio_offset + xfersize);
  714 
  715                 /*
  716                  * We must perform a read-before-write if the transfer size
  717                  * does not cover the entire buffer.
  718                  */
  719                 if (fs->fs_bsize > xfersize)
  720                         flags |= BA_CLRBUF;
  721                 else
  722                         flags &= ~BA_CLRBUF;
  723 /* XXX is uio->uio_offset the right thing here? */
  724                 error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
  725                     ap->a_cred, flags, &bp);
  726                 if (error != 0)
  727                         break;
  728                 /*
  729                  * If the buffer is not valid we have to clear out any
  730                  * garbage data from the pages instantiated for the buffer.
  731                  * If we do not, a failed uiomove() during a write can leave
  732                  * the prior contents of the pages exposed to a userland
  733                  * mmap().  XXX deal with uiomove() errors a better way.
  734                  */
  735                 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
  736                         vfs_bio_clrbuf(bp);
  737                 if (ioflag & IO_DIRECT)
  738                         bp->b_flags |= B_DIRECT;
  739                 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL))
  740                         bp->b_flags |= B_NOCACHE;
  741 
  742                 if (uio->uio_offset + xfersize > ip->i_size) {
  743                         ip->i_size = uio->uio_offset + xfersize;
  744                         DIP_SET(ip, i_size, ip->i_size);
  745                 }
  746 
  747                 size = blksize(fs, ip, lbn) - bp->b_resid;
  748                 if (size < xfersize)
  749                         xfersize = size;
  750 
  751                 error =
  752                     uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
  753                 if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
  754                    (LIST_EMPTY(&bp->b_dep))) {
  755                         bp->b_flags |= B_RELBUF;
  756                 }
  757 
  758                 /*
  759                  * If IO_SYNC each buffer is written synchronously.  Otherwise
  760                  * if we have a severe page deficiency write the buffer
  761                  * asynchronously.  Otherwise try to cluster, and if that
  762                  * doesn't do it then either do an async write (if O_DIRECT),
  763                  * or a delayed write (if not).
  764                  */
  765                 if (ioflag & IO_SYNC) {
  766                         (void)bwrite(bp);
  767                 } else if (vm_page_count_severe() ||
  768                             buf_dirty_count_severe() ||
  769                             (ioflag & IO_ASYNC)) {
  770                         bp->b_flags |= B_CLUSTEROK;
  771                         bawrite(bp);
  772                 } else if (xfersize + blkoffset == fs->fs_bsize) {
  773                         if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
  774                                 bp->b_flags |= B_CLUSTEROK;
  775                                 cluster_write(vp, bp, ip->i_size, seqcount);
  776                         } else {
  777                                 bawrite(bp);
  778                         }
  779                 } else if (ioflag & IO_DIRECT) {
  780                         bp->b_flags |= B_CLUSTEROK;
  781                         bawrite(bp);
  782                 } else {
  783                         bp->b_flags |= B_CLUSTEROK;
  784                         bdwrite(bp);
  785                 }
  786                 if (error || xfersize == 0)
  787                         break;
  788                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
  789         }
  790         /*
  791          * If we successfully wrote any data, and we are not the superuser
  792          * we clear the setuid and setgid bits as a precaution against
  793          * tampering.
  794          */
  795         if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid &&
  796             ap->a_cred) {
  797                 if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID, 0)) {
  798                         ip->i_mode &= ~(ISUID | ISGID);
  799                         DIP_SET(ip, i_mode, ip->i_mode);
  800                 }
  801         }
  802         if (error) {
  803                 if (ioflag & IO_UNIT) {
  804                         (void)ffs_truncate(vp, osize,
  805                             IO_NORMAL | (ioflag & IO_SYNC),
  806                             ap->a_cred, uio->uio_td);
  807                         uio->uio_offset -= resid - uio->uio_resid;
  808                         uio->uio_resid = resid;
  809                 }
  810         } else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
  811                 error = ffs_update(vp, 1);
  812         return (error);
  813 }
  814 
  815 /*
  816  * get page routine
  817  */
  818 static int
  819 ffs_getpages(ap)
  820         struct vop_getpages_args *ap;
  821 {
  822         int i;
  823         vm_page_t mreq;
  824         int pcount;
  825 
  826         pcount = round_page(ap->a_count) / PAGE_SIZE;
  827         mreq = ap->a_m[ap->a_reqpage];
  828 
  829         /*
  830          * if ANY DEV_BSIZE blocks are valid on a large filesystem block,
  831          * then the entire page is valid.  Since the page may be mapped,
  832          * user programs might reference data beyond the actual end of file
  833          * occuring within the page.  We have to zero that data.
  834          */
  835         VM_OBJECT_LOCK(mreq->object);
  836         if (mreq->valid) {
  837                 if (mreq->valid != VM_PAGE_BITS_ALL)
  838                         vm_page_zero_invalid(mreq, TRUE);
  839                 vm_page_lock_queues();
  840                 for (i = 0; i < pcount; i++) {
  841                         if (i != ap->a_reqpage) {
  842                                 vm_page_free(ap->a_m[i]);
  843                         }
  844                 }
  845                 vm_page_unlock_queues();
  846                 VM_OBJECT_UNLOCK(mreq->object);
  847                 return VM_PAGER_OK;
  848         }
  849         VM_OBJECT_UNLOCK(mreq->object);
  850 
  851         return vnode_pager_generic_getpages(ap->a_vp, ap->a_m,
  852                                             ap->a_count,
  853                                             ap->a_reqpage);
  854 }
  855 
  856 
  857 /*
  858  * Extended attribute area reading.
  859  */
  860 static int
  861 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag)
  862 {
  863         struct inode *ip;
  864         struct ufs2_dinode *dp;
  865         struct fs *fs;
  866         struct buf *bp;
  867         ufs_lbn_t lbn, nextlbn;
  868         off_t bytesinfile;
  869         long size, xfersize, blkoffset;
  870         int error, orig_resid;
  871 
  872         ip = VTOI(vp);
  873         fs = ip->i_fs;
  874         dp = ip->i_din2;
  875 
  876 #ifdef INVARIANTS
  877         if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC)
  878                 panic("ffs_extread: mode");
  879 
  880 #endif
  881         orig_resid = uio->uio_resid;
  882         KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0"));
  883         if (orig_resid == 0)
  884                 return (0);
  885         KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0"));
  886 
  887         for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
  888                 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0)
  889                         break;
  890                 lbn = lblkno(fs, uio->uio_offset);
  891                 nextlbn = lbn + 1;
  892 
  893                 /*
  894                  * size of buffer.  The buffer representing the
  895                  * end of the file is rounded up to the size of
  896                  * the block type ( fragment or full block,
  897                  * depending ).
  898                  */
  899                 size = sblksize(fs, dp->di_extsize, lbn);
  900                 blkoffset = blkoff(fs, uio->uio_offset);
  901 
  902                 /*
  903                  * The amount we want to transfer in this iteration is
  904                  * one FS block less the amount of the data before
  905                  * our startpoint (duh!)
  906                  */
  907                 xfersize = fs->fs_bsize - blkoffset;
  908 
  909                 /*
  910                  * But if we actually want less than the block,
  911                  * or the file doesn't have a whole block more of data,
  912                  * then use the lesser number.
  913                  */
  914                 if (uio->uio_resid < xfersize)
  915                         xfersize = uio->uio_resid;
  916                 if (bytesinfile < xfersize)
  917                         xfersize = bytesinfile;
  918 
  919                 if (lblktosize(fs, nextlbn) >= dp->di_extsize) {
  920                         /*
  921                          * Don't do readahead if this is the end of the info.
  922                          */
  923                         error = bread(vp, -1 - lbn, size, NOCRED, &bp);
  924                 } else {
  925                         /*
  926                          * If we have a second block, then
  927                          * fire off a request for a readahead
  928                          * as well as a read. Note that the 4th and 5th
  929                          * arguments point to arrays of the size specified in
  930                          * the 6th argument.
  931                          */
  932                         int nextsize = sblksize(fs, dp->di_extsize, nextlbn);
  933 
  934                         nextlbn = -1 - nextlbn;
  935                         error = breadn(vp, -1 - lbn,
  936                             size, &nextlbn, &nextsize, 1, NOCRED, &bp);
  937                 }
  938                 if (error) {
  939                         brelse(bp);
  940                         bp = NULL;
  941                         break;
  942                 }
  943 
  944                 /*
  945                  * If IO_DIRECT then set B_DIRECT for the buffer.  This
  946                  * will cause us to attempt to release the buffer later on
  947                  * and will cause the buffer cache to attempt to free the
  948                  * underlying pages.
  949                  */
  950                 if (ioflag & IO_DIRECT)
  951                         bp->b_flags |= B_DIRECT;
  952 
  953                 /*
  954                  * We should only get non-zero b_resid when an I/O error
  955                  * has occurred, which should cause us to break above.
  956                  * However, if the short read did not cause an error,
  957                  * then we want to ensure that we do not uiomove bad
  958                  * or uninitialized data.
  959                  */
  960                 size -= bp->b_resid;
  961                 if (size < xfersize) {
  962                         if (size == 0)
  963                                 break;
  964                         xfersize = size;
  965                 }
  966 
  967                 error = uiomove((char *)bp->b_data + blkoffset,
  968                                         (int)xfersize, uio);
  969                 if (error)
  970                         break;
  971 
  972                 if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
  973                    (LIST_EMPTY(&bp->b_dep))) {
  974                         /*
  975                          * If there are no dependencies, and it's VMIO,
  976                          * then we don't need the buf, mark it available
  977                          * for freeing. The VM has the data.
  978                          */
  979                         bp->b_flags |= B_RELBUF;
  980                         brelse(bp);
  981                 } else {
  982                         /*
  983                          * Otherwise let whoever
  984                          * made the request take care of
  985                          * freeing it. We just queue
  986                          * it onto another list.
  987                          */
  988                         bqrelse(bp);
  989                 }
  990         }
  991 
  992         /*
  993          * This can only happen in the case of an error
  994          * because the loop above resets bp to NULL on each iteration
  995          * and on normal completion has not set a new value into it.
  996          * so it must have come from a 'break' statement
  997          */
  998         if (bp != NULL) {
  999                 if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
 1000                    (LIST_EMPTY(&bp->b_dep))) {
 1001                         bp->b_flags |= B_RELBUF;
 1002                         brelse(bp);
 1003                 } else {
 1004                         bqrelse(bp);
 1005                 }
 1006         }
 1007 
 1008         if ((error == 0 || uio->uio_resid != orig_resid) &&
 1009             (vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
 1010                 VI_LOCK(vp);
 1011                 ip->i_flag |= IN_ACCESS;
 1012                 VI_UNLOCK(vp);
 1013         }
 1014         return (error);
 1015 }
 1016 
 1017 /*
 1018  * Extended attribute area writing.
 1019  */
 1020 static int
 1021 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred)
 1022 {
 1023         struct inode *ip;
 1024         struct ufs2_dinode *dp;
 1025         struct fs *fs;
 1026         struct buf *bp;
 1027         ufs_lbn_t lbn;
 1028         off_t osize;
 1029         int blkoffset, error, flags, resid, size, xfersize;
 1030 
 1031         ip = VTOI(vp);
 1032         fs = ip->i_fs;
 1033         dp = ip->i_din2;
 1034 
 1035         KASSERT(!(ip->i_flag & IN_SPACECOUNTED), ("inode %u: inode is dead",
 1036             ip->i_number));
 1037 
 1038 #ifdef INVARIANTS
 1039         if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC)
 1040                 panic("ffs_extwrite: mode");
 1041 #endif
 1042 
 1043         if (ioflag & IO_APPEND)
 1044                 uio->uio_offset = dp->di_extsize;
 1045         KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0"));
 1046         KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0"));
 1047         if ((uoff_t)uio->uio_offset + uio->uio_resid > NXADDR * fs->fs_bsize)
 1048                 return (EFBIG);
 1049 
 1050         resid = uio->uio_resid;
 1051         osize = dp->di_extsize;
 1052         flags = IO_EXT;
 1053         if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
 1054                 flags |= IO_SYNC;
 1055 
 1056         for (error = 0; uio->uio_resid > 0;) {
 1057                 lbn = lblkno(fs, uio->uio_offset);
 1058                 blkoffset = blkoff(fs, uio->uio_offset);
 1059                 xfersize = fs->fs_bsize - blkoffset;
 1060                 if (uio->uio_resid < xfersize)
 1061                         xfersize = uio->uio_resid;
 1062 
 1063                 /*
 1064                  * We must perform a read-before-write if the transfer size
 1065                  * does not cover the entire buffer.
 1066                  */
 1067                 if (fs->fs_bsize > xfersize)
 1068                         flags |= BA_CLRBUF;
 1069                 else
 1070                         flags &= ~BA_CLRBUF;
 1071                 error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
 1072                     ucred, flags, &bp);
 1073                 if (error != 0)
 1074                         break;
 1075                 /*
 1076                  * If the buffer is not valid we have to clear out any
 1077                  * garbage data from the pages instantiated for the buffer.
 1078                  * If we do not, a failed uiomove() during a write can leave
 1079                  * the prior contents of the pages exposed to a userland
 1080                  * mmap().  XXX deal with uiomove() errors a better way.
 1081                  */
 1082                 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
 1083                         vfs_bio_clrbuf(bp);
 1084                 if (ioflag & IO_DIRECT)
 1085                         bp->b_flags |= B_DIRECT;
 1086 
 1087                 if (uio->uio_offset + xfersize > dp->di_extsize)
 1088                         dp->di_extsize = uio->uio_offset + xfersize;
 1089 
 1090                 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid;
 1091                 if (size < xfersize)
 1092                         xfersize = size;
 1093 
 1094                 error =
 1095                     uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
 1096                 if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
 1097                    (LIST_EMPTY(&bp->b_dep))) {
 1098                         bp->b_flags |= B_RELBUF;
 1099                 }
 1100 
 1101                 /*
 1102                  * If IO_SYNC each buffer is written synchronously.  Otherwise
 1103                  * if we have a severe page deficiency write the buffer
 1104                  * asynchronously.  Otherwise try to cluster, and if that
 1105                  * doesn't do it then either do an async write (if O_DIRECT),
 1106                  * or a delayed write (if not).
 1107                  */
 1108                 if (ioflag & IO_SYNC) {
 1109                         (void)bwrite(bp);
 1110                 } else if (vm_page_count_severe() ||
 1111                             buf_dirty_count_severe() ||
 1112                             xfersize + blkoffset == fs->fs_bsize ||
 1113                             (ioflag & (IO_ASYNC | IO_DIRECT)))
 1114                         bawrite(bp);
 1115                 else
 1116                         bdwrite(bp);
 1117                 if (error || xfersize == 0)
 1118                         break;
 1119                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
 1120         }
 1121         /*
 1122          * If we successfully wrote any data, and we are not the superuser
 1123          * we clear the setuid and setgid bits as a precaution against
 1124          * tampering.
 1125          */
 1126         if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) {
 1127                 if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID, 0)) {
 1128                         ip->i_mode &= ~(ISUID | ISGID);
 1129                         dp->di_mode = ip->i_mode;
 1130                 }
 1131         }
 1132         if (error) {
 1133                 if (ioflag & IO_UNIT) {
 1134                         (void)ffs_truncate(vp, osize,
 1135                             IO_EXT | (ioflag&IO_SYNC), ucred, uio->uio_td);
 1136                         uio->uio_offset -= resid - uio->uio_resid;
 1137                         uio->uio_resid = resid;
 1138                 }
 1139         } else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
 1140                 error = ffs_update(vp, 1);
 1141         return (error);
 1142 }
 1143 
 1144 
 1145 /*
 1146  * Vnode operating to retrieve a named extended attribute.
 1147  *
 1148  * Locate a particular EA (nspace:name) in the area (ptr:length), and return
 1149  * the length of the EA, and possibly the pointer to the entry and to the data.
 1150  */
 1151 static int
 1152 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, u_char **eap, u_char **eac)
 1153 {
 1154         u_char *p, *pe, *pn, *p0;
 1155         int eapad1, eapad2, ealength, ealen, nlen;
 1156         uint32_t ul;
 1157 
 1158         pe = ptr + length;
 1159         nlen = strlen(name);
 1160 
 1161         for (p = ptr; p < pe; p = pn) {
 1162                 p0 = p;
 1163                 bcopy(p, &ul, sizeof(ul));
 1164                 pn = p + ul;
 1165                 /* make sure this entry is complete */
 1166                 if (pn > pe)
 1167                         break;
 1168                 p += sizeof(uint32_t);
 1169                 if (*p != nspace)
 1170                         continue;
 1171                 p++;
 1172                 eapad2 = *p++;
 1173                 if (*p != nlen)
 1174                         continue;
 1175                 p++;
 1176                 if (bcmp(p, name, nlen))
 1177                         continue;
 1178                 ealength = sizeof(uint32_t) + 3 + nlen;
 1179                 eapad1 = 8 - (ealength % 8);
 1180                 if (eapad1 == 8)
 1181                         eapad1 = 0;
 1182                 ealength += eapad1;
 1183                 ealen = ul - ealength - eapad2;
 1184                 p += nlen + eapad1;
 1185                 if (eap != NULL)
 1186                         *eap = p0;
 1187                 if (eac != NULL)
 1188                         *eac = p;
 1189                 return (ealen);
 1190         }
 1191         return(-1);
 1192 }
 1193 
 1194 static int
 1195 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra)
 1196 {
 1197         struct inode *ip;
 1198         struct ufs2_dinode *dp;
 1199         struct fs *fs;
 1200         struct uio luio;
 1201         struct iovec liovec;
 1202         int easize, error;
 1203         u_char *eae;
 1204 
 1205         ip = VTOI(vp);
 1206         fs = ip->i_fs;
 1207         dp = ip->i_din2;
 1208         easize = dp->di_extsize;
 1209         if ((uoff_t)easize + extra > NXADDR * fs->fs_bsize)
 1210                 return (EFBIG);
 1211 
 1212         eae = malloc(easize + extra, M_TEMP, M_WAITOK);
 1213 
 1214         liovec.iov_base = eae;
 1215         liovec.iov_len = easize;
 1216         luio.uio_iov = &liovec;
 1217         luio.uio_iovcnt = 1;
 1218         luio.uio_offset = 0;
 1219         luio.uio_resid = easize;
 1220         luio.uio_segflg = UIO_SYSSPACE;
 1221         luio.uio_rw = UIO_READ;
 1222         luio.uio_td = td;
 1223 
 1224         error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC);
 1225         if (error) {
 1226                 free(eae, M_TEMP);
 1227                 return(error);
 1228         }
 1229         *p = eae;
 1230         return (0);
 1231 }
 1232 
 1233 static int
 1234 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td)
 1235 {
 1236         struct inode *ip;
 1237         struct ufs2_dinode *dp;
 1238         int error;
 1239 
 1240         ip = VTOI(vp);
 1241 
 1242         if (ip->i_ea_area != NULL)
 1243                 return (EBUSY);
 1244         dp = ip->i_din2;
 1245         error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0);
 1246         if (error)
 1247                 return (error);
 1248         ip->i_ea_len = dp->di_extsize;
 1249         ip->i_ea_error = 0;
 1250         return (0);
 1251 }
 1252 
 1253 /*
 1254  * Vnode extattr transaction commit/abort
 1255  */
 1256 static int
 1257 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td)
 1258 {
 1259         struct inode *ip;
 1260         struct uio luio;
 1261         struct iovec liovec;
 1262         int error;
 1263         struct ufs2_dinode *dp;
 1264 
 1265         ip = VTOI(vp);
 1266         if (ip->i_ea_area == NULL)
 1267                 return (EINVAL);
 1268         dp = ip->i_din2;
 1269         error = ip->i_ea_error;
 1270         if (commit && error == 0) {
 1271                 if (cred == NOCRED)
 1272                         cred =  vp->v_mount->mnt_cred;
 1273                 liovec.iov_base = ip->i_ea_area;
 1274                 liovec.iov_len = ip->i_ea_len;
 1275                 luio.uio_iov = &liovec;
 1276                 luio.uio_iovcnt = 1;
 1277                 luio.uio_offset = 0;
 1278                 luio.uio_resid = ip->i_ea_len;
 1279                 luio.uio_segflg = UIO_SYSSPACE;
 1280                 luio.uio_rw = UIO_WRITE;
 1281                 luio.uio_td = td;
 1282                 /* XXX: I'm not happy about truncating to zero size */
 1283                 if (ip->i_ea_len < dp->di_extsize)
 1284                         error = ffs_truncate(vp, 0, IO_EXT, cred, td);
 1285                 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred);
 1286         }
 1287         free(ip->i_ea_area, M_TEMP);
 1288         ip->i_ea_area = NULL;
 1289         ip->i_ea_len = 0;
 1290         ip->i_ea_error = 0;
 1291         return (error);
 1292 }
 1293 
 1294 /*
 1295  * Vnode extattr strategy routine for fifos.
 1296  *
 1297  * We need to check for a read or write of the external attributes.
 1298  * Otherwise we just fall through and do the usual thing.
 1299  */
 1300 static int
 1301 ffsext_strategy(struct vop_strategy_args *ap)
 1302 /*
 1303 struct vop_strategy_args {
 1304         struct vnodeop_desc *a_desc;
 1305         struct vnode *a_vp;
 1306         struct buf *a_bp;
 1307 };
 1308 */
 1309 {
 1310         struct vnode *vp;
 1311         daddr_t lbn;
 1312 
 1313         vp = ap->a_vp;
 1314         lbn = ap->a_bp->b_lblkno;
 1315         if (VTOI(vp)->i_fs->fs_magic == FS_UFS2_MAGIC &&
 1316             lbn < 0 && lbn >= -NXADDR)
 1317                 return (VOP_STRATEGY_APV(&ufs_vnodeops, ap));
 1318         if (vp->v_type == VFIFO)
 1319                 return (VOP_STRATEGY_APV(&ufs_fifoops, ap));
 1320         panic("spec nodes went here");
 1321 }
 1322 
 1323 /*
 1324  * Vnode extattr transaction commit/abort
 1325  */
 1326 static int
 1327 ffs_openextattr(struct vop_openextattr_args *ap)
 1328 /*
 1329 struct vop_openextattr_args {
 1330         struct vnodeop_desc *a_desc;
 1331         struct vnode *a_vp;
 1332         IN struct ucred *a_cred;
 1333         IN struct thread *a_td;
 1334 };
 1335 */
 1336 {
 1337         struct inode *ip;
 1338         struct fs *fs;
 1339 
 1340         ip = VTOI(ap->a_vp);
 1341         fs = ip->i_fs;
 1342 
 1343         if (ap->a_vp->v_type == VCHR)
 1344                 return (EOPNOTSUPP);
 1345 
 1346         return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td));
 1347 }
 1348 
 1349 
 1350 /*
 1351  * Vnode extattr transaction commit/abort
 1352  */
 1353 static int
 1354 ffs_closeextattr(struct vop_closeextattr_args *ap)
 1355 /*
 1356 struct vop_closeextattr_args {
 1357         struct vnodeop_desc *a_desc;
 1358         struct vnode *a_vp;
 1359         int a_commit;
 1360         IN struct ucred *a_cred;
 1361         IN struct thread *a_td;
 1362 };
 1363 */
 1364 {
 1365         struct inode *ip;
 1366         struct fs *fs;
 1367 
 1368         ip = VTOI(ap->a_vp);
 1369         fs = ip->i_fs;
 1370 
 1371         if (ap->a_vp->v_type == VCHR)
 1372                 return (EOPNOTSUPP);
 1373 
 1374         if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY))
 1375                 return (EROFS);
 1376 
 1377         return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td));
 1378 }
 1379 
 1380 /*
 1381  * Vnode operation to remove a named attribute.
 1382  */
 1383 static int
 1384 ffs_deleteextattr(struct vop_deleteextattr_args *ap)
 1385 /*
 1386 vop_deleteextattr {
 1387         IN struct vnode *a_vp;
 1388         IN int a_attrnamespace;
 1389         IN const char *a_name;
 1390         IN struct ucred *a_cred;
 1391         IN struct thread *a_td;
 1392 };
 1393 */
 1394 {
 1395         struct inode *ip;
 1396         struct fs *fs;
 1397         uint32_t ealength, ul;
 1398         int ealen, olen, eapad1, eapad2, error, i, easize;
 1399         u_char *eae, *p;
 1400         int stand_alone;
 1401 
 1402         ip = VTOI(ap->a_vp);
 1403         fs = ip->i_fs;
 1404 
 1405         if (ap->a_vp->v_type == VCHR)
 1406                 return (EOPNOTSUPP);
 1407 
 1408         if (strlen(ap->a_name) == 0)
 1409                 return (EINVAL);
 1410 
 1411         if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
 1412                 return (EROFS);
 1413 
 1414         error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
 1415             ap->a_cred, ap->a_td, IWRITE);
 1416         if (error) {
 1417                 if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
 1418                         ip->i_ea_error = error;
 1419                 return (error);
 1420         }
 1421 
 1422         if (ip->i_ea_area == NULL) {
 1423                 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
 1424                 if (error)
 1425                         return (error);
 1426                 stand_alone = 1;
 1427         } else {
 1428                 stand_alone = 0;
 1429         }
 1430 
 1431         ealength = eapad1 = ealen = eapad2 = 0;
 1432 
 1433         eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK);
 1434         bcopy(ip->i_ea_area, eae, ip->i_ea_len);
 1435         easize = ip->i_ea_len;
 1436 
 1437         olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
 1438             &p, NULL);
 1439         if (olen == -1) {
 1440                 /* delete but nonexistent */
 1441                 free(eae, M_TEMP);
 1442                 if (stand_alone)
 1443                         ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
 1444                 return(ENOATTR);
 1445         }
 1446         bcopy(p, &ul, sizeof ul);
 1447         i = p - eae + ul;
 1448         if (ul != ealength) {
 1449                 bcopy(p + ul, p + ealength, easize - i);
 1450                 easize += (ealength - ul);
 1451         }
 1452         if (easize > NXADDR * fs->fs_bsize) {
 1453                 free(eae, M_TEMP);
 1454                 if (stand_alone)
 1455                         ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
 1456                 else if (ip->i_ea_error == 0)
 1457                         ip->i_ea_error = ENOSPC;
 1458                 return(ENOSPC);
 1459         }
 1460         p = ip->i_ea_area;
 1461         ip->i_ea_area = eae;
 1462         ip->i_ea_len = easize;
 1463         free(p, M_TEMP);
 1464         if (stand_alone)
 1465                 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
 1466         return(error);
 1467 }
 1468 
 1469 /*
 1470  * Vnode operation to retrieve a named extended attribute.
 1471  */
 1472 static int
 1473 ffs_getextattr(struct vop_getextattr_args *ap)
 1474 /*
 1475 vop_getextattr {
 1476         IN struct vnode *a_vp;
 1477         IN int a_attrnamespace;
 1478         IN const char *a_name;
 1479         INOUT struct uio *a_uio;
 1480         OUT size_t *a_size;
 1481         IN struct ucred *a_cred;
 1482         IN struct thread *a_td;
 1483 };
 1484 */
 1485 {
 1486         struct inode *ip;
 1487         struct fs *fs;
 1488         u_char *eae, *p;
 1489         unsigned easize;
 1490         int error, ealen, stand_alone;
 1491 
 1492         ip = VTOI(ap->a_vp);
 1493         fs = ip->i_fs;
 1494 
 1495         if (ap->a_vp->v_type == VCHR)
 1496                 return (EOPNOTSUPP);
 1497 
 1498         error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
 1499             ap->a_cred, ap->a_td, IREAD);
 1500         if (error)
 1501                 return (error);
 1502 
 1503         if (ip->i_ea_area == NULL) {
 1504                 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
 1505                 if (error)
 1506                         return (error);
 1507                 stand_alone = 1;
 1508         } else {
 1509                 stand_alone = 0;
 1510         }
 1511         eae = ip->i_ea_area;
 1512         easize = ip->i_ea_len;
 1513 
 1514         ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
 1515             NULL, &p);
 1516         if (ealen >= 0) {
 1517                 error = 0;
 1518                 if (ap->a_size != NULL)
 1519                         *ap->a_size = ealen;
 1520                 else if (ap->a_uio != NULL)
 1521                         error = uiomove(p, ealen, ap->a_uio);
 1522         } else
 1523                 error = ENOATTR;
 1524         if (stand_alone)
 1525                 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
 1526         return(error);
 1527 }
 1528 
 1529 /*
 1530  * Vnode operation to retrieve extended attributes on a vnode.
 1531  */
 1532 static int
 1533 ffs_listextattr(struct vop_listextattr_args *ap)
 1534 /*
 1535 vop_listextattr {
 1536         IN struct vnode *a_vp;
 1537         IN int a_attrnamespace;
 1538         INOUT struct uio *a_uio;
 1539         OUT size_t *a_size;
 1540         IN struct ucred *a_cred;
 1541         IN struct thread *a_td;
 1542 };
 1543 */
 1544 {
 1545         struct inode *ip;
 1546         struct fs *fs;
 1547         u_char *eae, *p, *pe, *pn;
 1548         unsigned easize;
 1549         uint32_t ul;
 1550         int error, ealen, stand_alone;
 1551 
 1552         ip = VTOI(ap->a_vp);
 1553         fs = ip->i_fs;
 1554 
 1555         if (ap->a_vp->v_type == VCHR)
 1556                 return (EOPNOTSUPP);
 1557 
 1558         error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
 1559             ap->a_cred, ap->a_td, IREAD);
 1560         if (error)
 1561                 return (error);
 1562 
 1563         if (ip->i_ea_area == NULL) {
 1564                 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
 1565                 if (error)
 1566                         return (error);
 1567                 stand_alone = 1;
 1568         } else {
 1569                 stand_alone = 0;
 1570         }
 1571         eae = ip->i_ea_area;
 1572         easize = ip->i_ea_len;
 1573 
 1574         error = 0;
 1575         if (ap->a_size != NULL)
 1576                 *ap->a_size = 0;
 1577         pe = eae + easize;
 1578         for(p = eae; error == 0 && p < pe; p = pn) {
 1579                 bcopy(p, &ul, sizeof(ul));
 1580                 pn = p + ul;
 1581                 if (pn > pe)
 1582                         break;
 1583                 p += sizeof(ul);
 1584                 if (*p++ != ap->a_attrnamespace)
 1585                         continue;
 1586                 p++;    /* pad2 */
 1587                 ealen = *p;
 1588                 if (ap->a_size != NULL) {
 1589                         *ap->a_size += ealen + 1;
 1590                 } else if (ap->a_uio != NULL) {
 1591                         error = uiomove(p, ealen + 1, ap->a_uio);
 1592                 }
 1593         }
 1594         if (stand_alone)
 1595                 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
 1596         return(error);
 1597 }
 1598 
 1599 /*
 1600  * Vnode operation to set a named attribute.
 1601  */
 1602 static int
 1603 ffs_setextattr(struct vop_setextattr_args *ap)
 1604 /*
 1605 vop_setextattr {
 1606         IN struct vnode *a_vp;
 1607         IN int a_attrnamespace;
 1608         IN const char *a_name;
 1609         INOUT struct uio *a_uio;
 1610         IN struct ucred *a_cred;
 1611         IN struct thread *a_td;
 1612 };
 1613 */
 1614 {
 1615         struct inode *ip;
 1616         struct fs *fs;
 1617         uint32_t ealength, ul;
 1618         int ealen, olen, eapad1, eapad2, error, i, easize;
 1619         u_char *eae, *p;
 1620         int stand_alone;
 1621 
 1622         ip = VTOI(ap->a_vp);
 1623         fs = ip->i_fs;
 1624 
 1625         if (ap->a_vp->v_type == VCHR)
 1626                 return (EOPNOTSUPP);
 1627 
 1628         if (strlen(ap->a_name) == 0)
 1629                 return (EINVAL);
 1630 
 1631         /* XXX Now unsupported API to delete EAs using NULL uio. */
 1632         if (ap->a_uio == NULL)
 1633                 return (EOPNOTSUPP);
 1634 
 1635         if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
 1636                 return (EROFS);
 1637 
 1638         error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
 1639             ap->a_cred, ap->a_td, IWRITE);
 1640         if (error) {
 1641                 if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
 1642                         ip->i_ea_error = error;
 1643                 return (error);
 1644         }
 1645 
 1646         if (ip->i_ea_area == NULL) {
 1647                 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
 1648                 if (error)
 1649                         return (error);
 1650                 stand_alone = 1;
 1651         } else {
 1652                 stand_alone = 0;
 1653         }
 1654 
 1655         ealen = ap->a_uio->uio_resid;
 1656         ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name);
 1657         eapad1 = 8 - (ealength % 8);
 1658         if (eapad1 == 8)
 1659                 eapad1 = 0;
 1660         eapad2 = 8 - (ealen % 8);
 1661         if (eapad2 == 8)
 1662                 eapad2 = 0;
 1663         ealength += eapad1 + ealen + eapad2;
 1664 
 1665         eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK);
 1666         bcopy(ip->i_ea_area, eae, ip->i_ea_len);
 1667         easize = ip->i_ea_len;
 1668 
 1669         olen = ffs_findextattr(eae, easize,
 1670             ap->a_attrnamespace, ap->a_name, &p, NULL);
 1671         if (olen == -1) {
 1672                 /* new, append at end */
 1673                 p = eae + easize;
 1674                 easize += ealength;
 1675         } else {
 1676                 bcopy(p, &ul, sizeof ul);
 1677                 i = p - eae + ul;
 1678                 if (ul != ealength) {
 1679                         bcopy(p + ul, p + ealength, easize - i);
 1680                         easize += (ealength - ul);
 1681                 }
 1682         }
 1683         if (easize > NXADDR * fs->fs_bsize) {
 1684                 free(eae, M_TEMP);
 1685                 if (stand_alone)
 1686                         ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
 1687                 else if (ip->i_ea_error == 0)
 1688                         ip->i_ea_error = ENOSPC;
 1689                 return(ENOSPC);
 1690         }
 1691         bcopy(&ealength, p, sizeof(ealength));
 1692         p += sizeof(ealength);
 1693         *p++ = ap->a_attrnamespace;
 1694         *p++ = eapad2;
 1695         *p++ = strlen(ap->a_name);
 1696         strcpy(p, ap->a_name);
 1697         p += strlen(ap->a_name);
 1698         bzero(p, eapad1);
 1699         p += eapad1;
 1700         error = uiomove(p, ealen, ap->a_uio);
 1701         if (error) {
 1702                 free(eae, M_TEMP);
 1703                 if (stand_alone)
 1704                         ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
 1705                 else if (ip->i_ea_error == 0)
 1706                         ip->i_ea_error = error;
 1707                 return(error);
 1708         }
 1709         p += ealen;
 1710         bzero(p, eapad2);
 1711 
 1712         p = ip->i_ea_area;
 1713         ip->i_ea_area = eae;
 1714         ip->i_ea_len = easize;
 1715         free(p, M_TEMP);
 1716         if (stand_alone)
 1717                 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
 1718         return(error);
 1719 }
 1720 
 1721 /*
 1722  * Vnode pointer to File handle
 1723  */
 1724 static int
 1725 ffs_vptofh(struct vop_vptofh_args *ap)
 1726 /*
 1727 vop_vptofh {
 1728         IN struct vnode *a_vp;
 1729         IN struct fid *a_fhp;
 1730 };
 1731 */
 1732 {
 1733         struct inode *ip;
 1734         struct ufid *ufhp;
 1735 
 1736         ip = VTOI(ap->a_vp);
 1737         ufhp = (struct ufid *)ap->a_fhp;
 1738         ufhp->ufid_len = sizeof(struct ufid);
 1739         ufhp->ufid_ino = ip->i_number;
 1740         ufhp->ufid_gen = ip->i_gen;
 1741         return (0);
 1742 }

Cache object: a6c5512df37b636827bf023b1f750cb2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.