The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/ufs/ufs/ufs_bmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1989, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)ufs_bmap.c  8.7 (Berkeley) 3/21/95
   37  */
   38 
   39 #include <sys/cdefs.h>
   40 __FBSDID("$FreeBSD$");
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/bio.h>
   45 #include <sys/buf.h>
   46 #include <sys/proc.h>
   47 #include <sys/vnode.h>
   48 #include <sys/mount.h>
   49 #include <sys/racct.h>
   50 #include <sys/resourcevar.h>
   51 #include <sys/stat.h>
   52 
   53 #include <ufs/ufs/extattr.h>
   54 #include <ufs/ufs/quota.h>
   55 #include <ufs/ufs/inode.h>
   56 #include <ufs/ufs/ufsmount.h>
   57 #include <ufs/ufs/ufs_extern.h>
   58 
   59 static ufs_lbn_t lbn_count(struct ufsmount *, int);
   60 static int readindir(struct vnode *, ufs_lbn_t, ufs2_daddr_t, struct buf **);
   61 
   62 /*
   63  * Bmap converts the logical block number of a file to its physical block
   64  * number on the disk. The conversion is done by using the logical block
   65  * number to index into the array of block pointers described by the dinode.
   66  */
   67 int
   68 ufs_bmap(
   69         struct vop_bmap_args /* {
   70                 struct vnode *a_vp;
   71                 daddr_t a_bn;
   72                 struct bufobj **a_bop;
   73                 daddr_t *a_bnp;
   74                 int *a_runp;
   75                 int *a_runb;
   76         } */ *ap)
   77 {
   78         ufs2_daddr_t blkno;
   79         int error;
   80 
   81         /*
   82          * Check for underlying vnode requests and ensure that logical
   83          * to physical mapping is requested.
   84          */
   85         if (ap->a_bop != NULL)
   86                 *ap->a_bop = &VFSTOUFS(ap->a_vp->v_mount)->um_devvp->v_bufobj;
   87         if (ap->a_bnp == NULL)
   88                 return (0);
   89 
   90         error = ufs_bmaparray(ap->a_vp, ap->a_bn, &blkno, NULL,
   91             ap->a_runp, ap->a_runb);
   92         *ap->a_bnp = blkno;
   93         return (error);
   94 }
   95 
   96 static int
   97 readindir(struct vnode *vp,
   98         ufs_lbn_t lbn,
   99         ufs2_daddr_t daddr,
  100         struct buf **bpp)
  101 {
  102         struct buf *bp;
  103         struct mount *mp;
  104         struct ufsmount *ump;
  105         int error;
  106 
  107         mp = vp->v_mount;
  108         ump = VFSTOUFS(mp);
  109 
  110         bp = getblk(vp, lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
  111         if ((bp->b_flags & B_CACHE) == 0) {
  112                 KASSERT(daddr != 0,
  113                     ("readindir: indirect block not in cache"));
  114 
  115                 bp->b_blkno = blkptrtodb(ump, daddr);
  116                 bp->b_iocmd = BIO_READ;
  117                 bp->b_flags &= ~B_INVAL;
  118                 bp->b_ioflags &= ~BIO_ERROR;
  119                 vfs_busy_pages(bp, 0);
  120                 bp->b_iooffset = dbtob(bp->b_blkno);
  121                 bstrategy(bp);
  122 #ifdef RACCT
  123                 if (racct_enable) {
  124                         PROC_LOCK(curproc);
  125                         racct_add_buf(curproc, bp, 0);
  126                         PROC_UNLOCK(curproc);
  127                 }
  128 #endif
  129                 curthread->td_ru.ru_inblock++;
  130                 error = bufwait(bp);
  131                 if (error != 0) {
  132                         brelse(bp);
  133                         return (error);
  134                 }
  135         }
  136         *bpp = bp;
  137         return (0);
  138 }
  139 
  140 /*
  141  * Indirect blocks are now on the vnode for the file.  They are given negative
  142  * logical block numbers.  Indirect blocks are addressed by the negative
  143  * address of the first data block to which they point.  Double indirect blocks
  144  * are addressed by one less than the address of the first indirect block to
  145  * which they point.  Triple indirect blocks are addressed by one less than
  146  * the address of the first double indirect block to which they point.
  147  *
  148  * ufs_bmaparray does the bmap conversion, and if requested returns the
  149  * array of logical blocks which must be traversed to get to a block.
  150  * Each entry contains the offset into that block that gets you to the
  151  * next block and the disk address of the block (if it is assigned).
  152  */
  153 
  154 int
  155 ufs_bmaparray(struct vnode *vp,
  156         ufs2_daddr_t bn,
  157         ufs2_daddr_t *bnp,
  158         struct buf *nbp,
  159         int *runp,
  160         int *runb)
  161 {
  162         struct inode *ip;
  163         struct buf *bp;
  164         struct ufsmount *ump;
  165         struct mount *mp;
  166         struct indir a[UFS_NIADDR+1], *ap;
  167         ufs2_daddr_t daddr;
  168         ufs_lbn_t metalbn;
  169         int error, num, maxrun = 0;
  170         int *nump;
  171 
  172         ap = NULL;
  173         ip = VTOI(vp);
  174         mp = vp->v_mount;
  175         ump = VFSTOUFS(mp);
  176 
  177         if (runp) {
  178                 maxrun = mp->mnt_iosize_max / mp->mnt_stat.f_iosize - 1;
  179                 *runp = 0;
  180         }
  181 
  182         if (runb) {
  183                 *runb = 0;
  184         }
  185 
  186         ap = a;
  187         nump = &num;
  188         error = ufs_getlbns(vp, bn, ap, nump);
  189         if (error)
  190                 return (error);
  191 
  192         num = *nump;
  193         if (num == 0) {
  194                 if (bn >= 0 && bn < UFS_NDADDR) {
  195                         *bnp = blkptrtodb(ump, DIP(ip, i_db[bn]));
  196                 } else if (bn < 0 && bn >= -UFS_NXADDR) {
  197                         *bnp = blkptrtodb(ump, ip->i_din2->di_extb[-1 - bn]);
  198                         if (*bnp == 0)
  199                                 *bnp = -1;
  200                         if (nbp == NULL) {
  201                                 /* indirect block not found */
  202                                 return (EINVAL);
  203                         }
  204                         nbp->b_xflags |= BX_ALTDATA;
  205                         return (0);
  206                 } else {
  207                         /* blkno out of range */
  208                         return (EINVAL);
  209                 }
  210                 /*
  211                  * Since this is FFS independent code, we are out of
  212                  * scope for the definitions of BLK_NOCOPY and
  213                  * BLK_SNAP, but we do know that they will fall in
  214                  * the range 1..um_seqinc, so we use that test and
  215                  * return a request for a zeroed out buffer if attempts
  216                  * are made to read a BLK_NOCOPY or BLK_SNAP block.
  217                  */
  218                 if (IS_SNAPSHOT(ip) && DIP(ip, i_db[bn]) > 0 &&
  219                     DIP(ip, i_db[bn]) < ump->um_seqinc) {
  220                         *bnp = -1;
  221                 } else if (*bnp == 0) {
  222                         *bnp = IS_SNAPSHOT(ip) ? blkptrtodb(ump,
  223                             bn * ump->um_seqinc) : -1;
  224                 } else if (runp) {
  225                         ufs2_daddr_t bnb = bn;
  226                         for (++bn; bn < UFS_NDADDR && *runp < maxrun &&
  227                             is_sequential(ump, DIP(ip, i_db[bn - 1]),
  228                             DIP(ip, i_db[bn]));
  229                             ++bn, ++*runp);
  230                         bn = bnb;
  231                         if (runb && (bn > 0)) {
  232                                 for (--bn; (bn >= 0) && (*runb < maxrun) &&
  233                                         is_sequential(ump, DIP(ip, i_db[bn]),
  234                                                 DIP(ip, i_db[bn+1]));
  235                                                 --bn, ++*runb);
  236                         }
  237                 }
  238                 return (0);
  239         }
  240 
  241         /* Get disk address out of indirect block array */
  242         daddr = DIP(ip, i_ib[ap->in_off]);
  243 
  244         for (bp = NULL, ++ap; --num; ++ap) {
  245                 /*
  246                  * Exit the loop if there is no disk address assigned yet and
  247                  * the indirect block isn't in the cache, or if we were
  248                  * looking for an indirect block and we've found it.
  249                  */
  250 
  251                 metalbn = ap->in_lbn;
  252                 if ((daddr == 0 && !incore(&vp->v_bufobj, metalbn)) || metalbn == bn)
  253                         break;
  254                 /*
  255                  * If we get here, we've either got the block in the cache
  256                  * or we have a disk address for it, go fetch it.
  257                  */
  258                 if (bp)
  259                         bqrelse(bp);
  260                 error = readindir(vp, metalbn, daddr, &bp);
  261                 if (error != 0)
  262                         return (error);
  263 
  264                 if (I_IS_UFS1(ip))
  265                         daddr = ((ufs1_daddr_t *)bp->b_data)[ap->in_off];
  266                 else
  267                         daddr = ((ufs2_daddr_t *)bp->b_data)[ap->in_off];
  268                 if ((error = UFS_CHECK_BLKNO(mp, ip->i_number, daddr,
  269                      mp->mnt_stat.f_iosize)) != 0) {
  270                         bqrelse(bp);
  271                         return (error);
  272                 }
  273                 if (I_IS_UFS1(ip)) {
  274                         if (num == 1 && daddr && runp) {
  275                                 for (bn = ap->in_off + 1;
  276                                     bn < MNINDIR(ump) && *runp < maxrun &&
  277                                     is_sequential(ump,
  278                                     ((ufs1_daddr_t *)bp->b_data)[bn - 1],
  279                                     ((ufs1_daddr_t *)bp->b_data)[bn]);
  280                                     ++bn, ++*runp);
  281                                 bn = ap->in_off;
  282                                 if (runb && bn) {
  283                                         for (--bn; bn >= 0 && *runb < maxrun &&
  284                                             is_sequential(ump,
  285                                             ((ufs1_daddr_t *)bp->b_data)[bn],
  286                                             ((ufs1_daddr_t *)bp->b_data)[bn+1]);
  287                                             --bn, ++*runb);
  288                                 }
  289                         }
  290                         continue;
  291                 }
  292                 if (num == 1 && daddr && runp) {
  293                         for (bn = ap->in_off + 1;
  294                             bn < MNINDIR(ump) && *runp < maxrun &&
  295                             is_sequential(ump,
  296                             ((ufs2_daddr_t *)bp->b_data)[bn - 1],
  297                             ((ufs2_daddr_t *)bp->b_data)[bn]);
  298                             ++bn, ++*runp);
  299                         bn = ap->in_off;
  300                         if (runb && bn) {
  301                                 for (--bn; bn >= 0 && *runb < maxrun &&
  302                                     is_sequential(ump,
  303                                     ((ufs2_daddr_t *)bp->b_data)[bn],
  304                                     ((ufs2_daddr_t *)bp->b_data)[bn + 1]);
  305                                     --bn, ++*runb);
  306                         }
  307                 }
  308         }
  309         if (bp)
  310                 bqrelse(bp);
  311 
  312         /*
  313          * Since this is FFS independent code, we are out of scope for the
  314          * definitions of BLK_NOCOPY and BLK_SNAP, but we do know that they
  315          * will fall in the range 1..um_seqinc, so we use that test and
  316          * return a request for a zeroed out buffer if attempts are made
  317          * to read a BLK_NOCOPY or BLK_SNAP block.
  318          */
  319         if (IS_SNAPSHOT(ip) && daddr > 0 && daddr < ump->um_seqinc){
  320                 *bnp = -1;
  321                 return (0);
  322         }
  323         *bnp = blkptrtodb(ump, daddr);
  324         if (*bnp == 0) {
  325                 if (IS_SNAPSHOT(ip))
  326                         *bnp = blkptrtodb(ump, bn * ump->um_seqinc);
  327                 else
  328                         *bnp = -1;
  329         }
  330         return (0);
  331 }
  332 
  333 static ufs_lbn_t
  334 lbn_count(struct ufsmount *ump, int level)
  335 {
  336         ufs_lbn_t blockcnt;
  337 
  338         for (blockcnt = 1; level > 0; level--)
  339                 blockcnt *= MNINDIR(ump);
  340         return (blockcnt);
  341 }
  342 
  343 int
  344 ufs_bmap_seekdata(struct vnode *vp, off_t *offp)
  345 {
  346         struct buf *bp;
  347         struct indir a[UFS_NIADDR + 1], *ap;
  348         struct inode *ip;
  349         struct mount *mp;
  350         struct ufsmount *ump;
  351         ufs2_daddr_t bn, daddr, nextbn;
  352         uint64_t bsize;
  353         off_t numblks;
  354         int error, num, num1, off;
  355 
  356         bp = NULL;
  357         error = 0;
  358         ip = VTOI(vp);
  359         mp = vp->v_mount;
  360         ump = VFSTOUFS(mp);
  361 
  362         if (vp->v_type != VREG || IS_SNAPSHOT(ip))
  363                 return (EINVAL);
  364         if (*offp < 0 || *offp >= ip->i_size)
  365                 return (ENXIO);
  366 
  367         bsize = mp->mnt_stat.f_iosize;
  368         for (bn = *offp / bsize, numblks = howmany(ip->i_size, bsize);
  369             bn < numblks; bn = nextbn) {
  370                 if (bn < UFS_NDADDR) {
  371                         daddr = DIP(ip, i_db[bn]);
  372                         if (daddr != 0)
  373                                 break;
  374                         nextbn = bn + 1;
  375                         continue;
  376                 }
  377 
  378                 ap = a;
  379                 error = ufs_getlbns(vp, bn, ap, &num);
  380                 if (error != 0)
  381                         break;
  382                 MPASS(num >= 2);
  383                 daddr = DIP(ip, i_ib[ap->in_off]);
  384                 ap++, num--;
  385                 for (nextbn = UFS_NDADDR, num1 = num - 1; num1 > 0; num1--)
  386                         nextbn += lbn_count(ump, num1);
  387                 if (daddr == 0) {
  388                         nextbn += lbn_count(ump, num);
  389                         continue;
  390                 }
  391 
  392                 for (; daddr != 0 && num > 0; ap++, num--) {
  393                         if (bp != NULL)
  394                                 bqrelse(bp);
  395                         error = readindir(vp, ap->in_lbn, daddr, &bp);
  396                         if (error != 0)
  397                                 return (error);
  398 
  399                         /*
  400                          * Scan the indirect block until we find a non-zero
  401                          * pointer.
  402                          */
  403                         off = ap->in_off;
  404                         do {
  405                                 daddr = I_IS_UFS1(ip) ?
  406                                     ((ufs1_daddr_t *)bp->b_data)[off] :
  407                                     ((ufs2_daddr_t *)bp->b_data)[off];
  408                         } while (daddr == 0 && ++off < MNINDIR(ump));
  409                         nextbn += off * lbn_count(ump, num - 1);
  410 
  411                         /*
  412                          * We need to recompute the LBNs of indirect
  413                          * blocks, so restart with the updated block offset.
  414                          */
  415                         if (off != ap->in_off)
  416                                 break;
  417                 }
  418                 if (num == 0) {
  419                         /*
  420                          * We found a data block.
  421                          */
  422                         bn = nextbn;
  423                         break;
  424                 }
  425         }
  426         if (bp != NULL)
  427                 bqrelse(bp);
  428         if (bn >= numblks)
  429                 error = ENXIO;
  430         if (error == 0 && *offp < bn * bsize)
  431                 *offp = bn * bsize;
  432         return (error);
  433 }
  434 
  435 /*
  436  * Create an array of logical block number/offset pairs which represent the
  437  * path of indirect blocks required to access a data block.  The first "pair"
  438  * contains the logical block number of the appropriate single, double or
  439  * triple indirect block and the offset into the inode indirect block array.
  440  * Note, the logical block number of the inode single/double/triple indirect
  441  * block appears twice in the array, once with the offset into the i_ib and
  442  * once with the offset into the page itself.
  443  */
  444 int
  445 ufs_getlbns(struct vnode *vp,
  446         ufs2_daddr_t bn,
  447         struct indir *ap,
  448         int *nump)
  449 {
  450         ufs2_daddr_t blockcnt;
  451         ufs_lbn_t metalbn, realbn;
  452         struct ufsmount *ump;
  453         int i, numlevels, off;
  454 
  455         ump = VFSTOUFS(vp->v_mount);
  456         if (nump)
  457                 *nump = 0;
  458         numlevels = 0;
  459         realbn = bn;
  460         if (bn < 0)
  461                 bn = -bn;
  462 
  463         /* The first UFS_NDADDR blocks are direct blocks. */
  464         if (bn < UFS_NDADDR)
  465                 return (0);
  466 
  467         /*
  468          * Determine the number of levels of indirection.  After this loop
  469          * is done, blockcnt indicates the number of data blocks possible
  470          * at the previous level of indirection, and UFS_NIADDR - i is the
  471          * number of levels of indirection needed to locate the requested block.
  472          */
  473         for (blockcnt = 1, i = UFS_NIADDR, bn -= UFS_NDADDR; ;
  474             i--, bn -= blockcnt) {
  475                 if (i == 0)
  476                         return (EFBIG);
  477                 blockcnt *= MNINDIR(ump);
  478                 if (bn < blockcnt)
  479                         break;
  480         }
  481 
  482         /* Calculate the address of the first meta-block. */
  483         if (realbn >= 0)
  484                 metalbn = -(realbn - bn + UFS_NIADDR - i);
  485         else
  486                 metalbn = -(-realbn - bn + UFS_NIADDR - i);
  487 
  488         /*
  489          * At each iteration, off is the offset into the bap array which is
  490          * an array of disk addresses at the current level of indirection.
  491          * The logical block number and the offset in that block are stored
  492          * into the argument array.
  493          */
  494         ap->in_lbn = metalbn;
  495         ap->in_off = off = UFS_NIADDR - i;
  496         ap++;
  497         for (++numlevels; i <= UFS_NIADDR; i++) {
  498                 /* If searching for a meta-data block, quit when found. */
  499                 if (metalbn == realbn)
  500                         break;
  501 
  502                 blockcnt /= MNINDIR(ump);
  503                 off = (bn / blockcnt) % MNINDIR(ump);
  504 
  505                 ++numlevels;
  506                 ap->in_lbn = metalbn;
  507                 ap->in_off = off;
  508                 ++ap;
  509 
  510                 metalbn -= -1 + off * blockcnt;
  511         }
  512         if (nump)
  513                 *nump = numlevels;
  514         return (0);
  515 }

Cache object: 95686cd9ea96411bb40b2264465022f5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.