FreeBSD/Linux Kernel Cross Reference
sys/uvm/uvm_fault.c
1 /* $NetBSD: uvm_fault.c,v 1.87.2.1 2004/05/10 14:27:00 tron Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.87.2.1 2004/05/10 14:27:00 tron Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 #include <sys/user.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 *
58 * a word on page faults:
59 *
60 * types of page faults we handle:
61 *
62 * CASE 1: upper layer faults CASE 2: lower layer faults
63 *
64 * CASE 1A CASE 1B CASE 2A CASE 2B
65 * read/write1 write>1 read/write +-cow_write/zero
66 * | | | |
67 * +--|--+ +--|--+ +-----+ + | + | +-----+
68 * amap | V | | ----------->new| | | | ^ |
69 * +-----+ +-----+ +-----+ + | + | +--|--+
70 * | | |
71 * +-----+ +-----+ +--|--+ | +--|--+
72 * uobj | d/c | | d/c | | V | +----| |
73 * +-----+ +-----+ +-----+ +-----+
74 *
75 * d/c = don't care
76 *
77 * case [0]: layerless fault
78 * no amap or uobj is present. this is an error.
79 *
80 * case [1]: upper layer fault [anon active]
81 * 1A: [read] or [write with anon->an_ref == 1]
82 * I/O takes place in top level anon and uobj is not touched.
83 * 1B: [write with anon->an_ref > 1]
84 * new anon is alloc'd and data is copied off ["COW"]
85 *
86 * case [2]: lower layer fault [uobj]
87 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
88 * I/O takes place directly in object.
89 * 2B: [write to copy_on_write] or [read on NULL uobj]
90 * data is "promoted" from uobj to a new anon.
91 * if uobj is null, then we zero fill.
92 *
93 * we follow the standard UVM locking protocol ordering:
94 *
95 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
96 * we hold a PG_BUSY page if we unlock for I/O
97 *
98 *
99 * the code is structured as follows:
100 *
101 * - init the "IN" params in the ufi structure
102 * ReFault:
103 * - do lookups [locks maps], check protection, handle needs_copy
104 * - check for case 0 fault (error)
105 * - establish "range" of fault
106 * - if we have an amap lock it and extract the anons
107 * - if sequential advice deactivate pages behind us
108 * - at the same time check pmap for unmapped areas and anon for pages
109 * that we could map in (and do map it if found)
110 * - check object for resident pages that we could map in
111 * - if (case 2) goto Case2
112 * - >>> handle case 1
113 * - ensure source anon is resident in RAM
114 * - if case 1B alloc new anon and copy from source
115 * - map the correct page in
116 * Case2:
117 * - >>> handle case 2
118 * - ensure source page is resident (if uobj)
119 * - if case 2B alloc new anon and copy from source (could be zero
120 * fill if uobj == NULL)
121 * - map the correct page in
122 * - done!
123 *
124 * note on paging:
125 * if we have to do I/O we place a PG_BUSY page in the correct object,
126 * unlock everything, and do the I/O. when I/O is done we must reverify
127 * the state of the world before assuming that our data structures are
128 * valid. [because mappings could change while the map is unlocked]
129 *
130 * alternative 1: unbusy the page in question and restart the page fault
131 * from the top (ReFault). this is easy but does not take advantage
132 * of the information that we already have from our previous lookup,
133 * although it is possible that the "hints" in the vm_map will help here.
134 *
135 * alternative 2: the system already keeps track of a "version" number of
136 * a map. [i.e. every time you write-lock a map (e.g. to change a
137 * mapping) you bump the version number up by one...] so, we can save
138 * the version number of the map before we release the lock and start I/O.
139 * then when I/O is done we can relock and check the version numbers
140 * to see if anything changed. this might save us some over 1 because
141 * we don't have to unbusy the page and may be less compares(?).
142 *
143 * alternative 3: put in backpointers or a way to "hold" part of a map
144 * in place while I/O is in progress. this could be complex to
145 * implement (especially with structures like amap that can be referenced
146 * by multiple map entries, and figuring out what should wait could be
147 * complex as well...).
148 *
149 * given that we are not currently multiprocessor or multithreaded we might
150 * as well choose alternative 2 now. maybe alternative 3 would be useful
151 * in the future. XXX keep in mind for future consideration//rechecking.
152 */
153
154 /*
155 * local data structures
156 */
157
158 struct uvm_advice {
159 int advice;
160 int nback;
161 int nforw;
162 };
163
164 /*
165 * page range array:
166 * note: index in array must match "advice" value
167 * XXX: borrowed numbers from freebsd. do they work well for us?
168 */
169
170 static struct uvm_advice uvmadvice[] = {
171 { MADV_NORMAL, 3, 4 },
172 { MADV_RANDOM, 0, 0 },
173 { MADV_SEQUENTIAL, 8, 7},
174 };
175
176 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
177
178 /*
179 * private prototypes
180 */
181
182 static void uvmfault_amapcopy(struct uvm_faultinfo *);
183 static __inline void uvmfault_anonflush(struct vm_anon **, int);
184
185 /*
186 * inline functions
187 */
188
189 /*
190 * uvmfault_anonflush: try and deactivate pages in specified anons
191 *
192 * => does not have to deactivate page if it is busy
193 */
194
195 static __inline void
196 uvmfault_anonflush(anons, n)
197 struct vm_anon **anons;
198 int n;
199 {
200 int lcv;
201 struct vm_page *pg;
202
203 for (lcv = 0 ; lcv < n ; lcv++) {
204 if (anons[lcv] == NULL)
205 continue;
206 simple_lock(&anons[lcv]->an_lock);
207 pg = anons[lcv]->u.an_page;
208 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
209 uvm_lock_pageq();
210 if (pg->wire_count == 0) {
211 pmap_clear_reference(pg);
212 uvm_pagedeactivate(pg);
213 }
214 uvm_unlock_pageq();
215 }
216 simple_unlock(&anons[lcv]->an_lock);
217 }
218 }
219
220 /*
221 * normal functions
222 */
223
224 /*
225 * uvmfault_amapcopy: clear "needs_copy" in a map.
226 *
227 * => called with VM data structures unlocked (usually, see below)
228 * => we get a write lock on the maps and clear needs_copy for a VA
229 * => if we are out of RAM we sleep (waiting for more)
230 */
231
232 static void
233 uvmfault_amapcopy(ufi)
234 struct uvm_faultinfo *ufi;
235 {
236 for (;;) {
237
238 /*
239 * no mapping? give up.
240 */
241
242 if (uvmfault_lookup(ufi, TRUE) == FALSE)
243 return;
244
245 /*
246 * copy if needed.
247 */
248
249 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
250 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
251 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
252
253 /*
254 * didn't work? must be out of RAM. unlock and sleep.
255 */
256
257 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
258 uvmfault_unlockmaps(ufi, TRUE);
259 uvm_wait("fltamapcopy");
260 continue;
261 }
262
263 /*
264 * got it! unlock and return.
265 */
266
267 uvmfault_unlockmaps(ufi, TRUE);
268 return;
269 }
270 /*NOTREACHED*/
271 }
272
273 /*
274 * uvmfault_anonget: get data in an anon into a non-busy, non-released
275 * page in that anon.
276 *
277 * => maps, amap, and anon locked by caller.
278 * => if we fail (result != 0) we unlock everything.
279 * => if we are successful, we return with everything still locked.
280 * => we don't move the page on the queues [gets moved later]
281 * => if we allocate a new page [we_own], it gets put on the queues.
282 * either way, the result is that the page is on the queues at return time
283 * => for pages which are on loan from a uvm_object (and thus are not
284 * owned by the anon): if successful, we return with the owning object
285 * locked. the caller must unlock this object when it unlocks everything
286 * else.
287 */
288
289 int
290 uvmfault_anonget(ufi, amap, anon)
291 struct uvm_faultinfo *ufi;
292 struct vm_amap *amap;
293 struct vm_anon *anon;
294 {
295 boolean_t we_own; /* we own anon's page? */
296 boolean_t locked; /* did we relock? */
297 struct vm_page *pg;
298 int error;
299 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
300
301 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
302
303 error = 0;
304 uvmexp.fltanget++;
305 /* bump rusage counters */
306 if (anon->u.an_page)
307 curproc->p_stats->p_ru.ru_minflt++;
308 else
309 curproc->p_stats->p_ru.ru_majflt++;
310
311 /*
312 * loop until we get it, or fail.
313 */
314
315 for (;;) {
316 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
317 pg = anon->u.an_page;
318
319 /*
320 * if there is a resident page and it is loaned, then anon
321 * may not own it. call out to uvm_anon_lockpage() to ensure
322 * the real owner of the page has been identified and locked.
323 */
324
325 if (pg && pg->loan_count)
326 pg = uvm_anon_lockloanpg(anon);
327
328 /*
329 * page there? make sure it is not busy/released.
330 */
331
332 if (pg) {
333
334 /*
335 * at this point, if the page has a uobject [meaning
336 * we have it on loan], then that uobject is locked
337 * by us! if the page is busy, we drop all the
338 * locks (including uobject) and try again.
339 */
340
341 if ((pg->flags & PG_BUSY) == 0) {
342 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
343 return (0);
344 }
345 pg->flags |= PG_WANTED;
346 uvmexp.fltpgwait++;
347
348 /*
349 * the last unlock must be an atomic unlock+wait on
350 * the owner of page
351 */
352
353 if (pg->uobject) { /* owner is uobject ? */
354 uvmfault_unlockall(ufi, amap, NULL, anon);
355 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
356 0,0,0);
357 UVM_UNLOCK_AND_WAIT(pg,
358 &pg->uobject->vmobjlock,
359 FALSE, "anonget1",0);
360 } else {
361 /* anon owns page */
362 uvmfault_unlockall(ufi, amap, NULL, NULL);
363 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
364 0,0,0);
365 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
366 "anonget2",0);
367 }
368 } else {
369
370 /*
371 * no page, we must try and bring it in.
372 */
373
374 pg = uvm_pagealloc(NULL, 0, anon, 0);
375 if (pg == NULL) { /* out of RAM. */
376 uvmfault_unlockall(ufi, amap, NULL, anon);
377 uvmexp.fltnoram++;
378 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
379 0,0,0);
380 uvm_wait("flt_noram1");
381 } else {
382 /* we set the PG_BUSY bit */
383 we_own = TRUE;
384 uvmfault_unlockall(ufi, amap, NULL, anon);
385
386 /*
387 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
388 * page into the uvm_swap_get function with
389 * all data structures unlocked. note that
390 * it is ok to read an_swslot here because
391 * we hold PG_BUSY on the page.
392 */
393 uvmexp.pageins++;
394 error = uvm_swap_get(pg, anon->an_swslot,
395 PGO_SYNCIO);
396
397 /*
398 * we clean up after the i/o below in the
399 * "we_own" case
400 */
401 }
402 }
403
404 /*
405 * now relock and try again
406 */
407
408 locked = uvmfault_relock(ufi);
409 if (locked && amap != NULL) {
410 amap_lock(amap);
411 }
412 if (locked || we_own)
413 simple_lock(&anon->an_lock);
414
415 /*
416 * if we own the page (i.e. we set PG_BUSY), then we need
417 * to clean up after the I/O. there are three cases to
418 * consider:
419 * [1] page released during I/O: free anon and ReFault.
420 * [2] I/O not OK. free the page and cause the fault
421 * to fail.
422 * [3] I/O OK! activate the page and sync with the
423 * non-we_own case (i.e. drop anon lock if not locked).
424 */
425
426 if (we_own) {
427 if (pg->flags & PG_WANTED) {
428 wakeup(pg);
429 }
430 if (error) {
431
432 /*
433 * remove the swap slot from the anon
434 * and mark the anon as having no real slot.
435 * don't free the swap slot, thus preventing
436 * it from being used again.
437 */
438
439 if (anon->an_swslot > 0)
440 uvm_swap_markbad(anon->an_swslot, 1);
441 anon->an_swslot = SWSLOT_BAD;
442
443 if ((pg->flags & PG_RELEASED) != 0)
444 goto released;
445
446 /*
447 * note: page was never !PG_BUSY, so it
448 * can't be mapped and thus no need to
449 * pmap_page_protect it...
450 */
451
452 uvm_lock_pageq();
453 uvm_pagefree(pg);
454 uvm_unlock_pageq();
455
456 if (locked)
457 uvmfault_unlockall(ufi, amap, NULL,
458 anon);
459 else
460 simple_unlock(&anon->an_lock);
461 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
462 return error;
463 }
464
465 if ((pg->flags & PG_RELEASED) != 0) {
466 released:
467 KASSERT(anon->an_ref == 0);
468
469 /*
470 * released while we unlocked amap.
471 */
472
473 if (locked)
474 uvmfault_unlockall(ufi, amap, NULL,
475 NULL);
476
477 uvm_anon_release(anon);
478
479 if (error) {
480 UVMHIST_LOG(maphist,
481 "<- ERROR/RELEASED", 0,0,0,0);
482 return error;
483 }
484
485 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
486 return ERESTART;
487 }
488
489 /*
490 * we've successfully read the page, activate it.
491 */
492
493 uvm_lock_pageq();
494 uvm_pageactivate(pg);
495 uvm_unlock_pageq();
496 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
497 UVM_PAGE_OWN(pg, NULL);
498 if (!locked)
499 simple_unlock(&anon->an_lock);
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * F A U L T - m a i n e n t r y p o i n t
536 */
537
538 /*
539 * uvm_fault: page fault handler
540 *
541 * => called from MD code to resolve a page fault
542 * => VM data structures usually should be unlocked. however, it is
543 * possible to call here with the main map locked if the caller
544 * gets a write lock, sets it recusive, and then calls us (c.f.
545 * uvm_map_pageable). this should be avoided because it keeps
546 * the map locked off during I/O.
547 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
548 */
549
550 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
551 ~VM_PROT_WRITE : VM_PROT_ALL)
552
553 int
554 uvm_fault(orig_map, vaddr, fault_type, access_type)
555 struct vm_map *orig_map;
556 vaddr_t vaddr;
557 vm_fault_t fault_type;
558 vm_prot_t access_type;
559 {
560 struct uvm_faultinfo ufi;
561 vm_prot_t enter_prot, check_prot;
562 boolean_t wired, narrow, promote, locked, shadowed, wire_fault, cow_now;
563 int npages, nback, nforw, centeridx, error, lcv, gotpages;
564 vaddr_t startva, objaddr, currva;
565 voff_t uoff;
566 paddr_t pa;
567 struct vm_amap *amap;
568 struct uvm_object *uobj;
569 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
570 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
571 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
572
573 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
574 orig_map, vaddr, fault_type, access_type);
575
576 anon = NULL;
577 pg = NULL;
578
579 uvmexp.faults++; /* XXX: locking? */
580
581 /*
582 * init the IN parameters in the ufi
583 */
584
585 ufi.orig_map = orig_map;
586 ufi.orig_rvaddr = trunc_page(vaddr);
587 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
588 wire_fault = fault_type == VM_FAULT_WIRE ||
589 fault_type == VM_FAULT_WIREMAX;
590 if (wire_fault)
591 narrow = TRUE; /* don't look for neighborhood
592 * pages on wire */
593 else
594 narrow = FALSE; /* normal fault */
595
596 /*
597 * "goto ReFault" means restart the page fault from ground zero.
598 */
599 ReFault:
600
601 /*
602 * lookup and lock the maps
603 */
604
605 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
606 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
607 return (EFAULT);
608 }
609 /* locked: maps(read) */
610
611 #ifdef DIAGNOSTIC
612 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
613 printf("Page fault on non-pageable map:\n");
614 printf("ufi.map = %p\n", ufi.map);
615 printf("ufi.orig_map = %p\n", ufi.orig_map);
616 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
617 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
618 }
619 #endif
620
621 /*
622 * check protection
623 */
624
625 check_prot = fault_type == VM_FAULT_WIREMAX ?
626 ufi.entry->max_protection : ufi.entry->protection;
627 if ((check_prot & access_type) != access_type) {
628 UVMHIST_LOG(maphist,
629 "<- protection failure (prot=0x%x, access=0x%x)",
630 ufi.entry->protection, access_type, 0, 0);
631 uvmfault_unlockmaps(&ufi, FALSE);
632 return EACCES;
633 }
634
635 /*
636 * "enter_prot" is the protection we want to enter the page in at.
637 * for certain pages (e.g. copy-on-write pages) this protection can
638 * be more strict than ufi.entry->protection. "wired" means either
639 * the entry is wired or we are fault-wiring the pg.
640 */
641
642 enter_prot = ufi.entry->protection;
643 wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
644 if (wired) {
645 access_type = enter_prot; /* full access for wired */
646 cow_now = (check_prot & VM_PROT_WRITE) != 0;
647 } else {
648 cow_now = (access_type & VM_PROT_WRITE) != 0;
649 }
650
651 /*
652 * handle "needs_copy" case. if we need to copy the amap we will
653 * have to drop our readlock and relock it with a write lock. (we
654 * need a write lock to change anything in a map entry [e.g.
655 * needs_copy]).
656 */
657
658 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
659 KASSERT(fault_type != VM_FAULT_WIREMAX);
660 if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
661 /* need to clear */
662 UVMHIST_LOG(maphist,
663 " need to clear needs_copy and refault",0,0,0,0);
664 uvmfault_unlockmaps(&ufi, FALSE);
665 uvmfault_amapcopy(&ufi);
666 uvmexp.fltamcopy++;
667 goto ReFault;
668
669 } else {
670
671 /*
672 * ensure that we pmap_enter page R/O since
673 * needs_copy is still true
674 */
675
676 enter_prot &= ~VM_PROT_WRITE;
677 }
678 }
679
680 /*
681 * identify the players
682 */
683
684 amap = ufi.entry->aref.ar_amap; /* top layer */
685 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
686
687 /*
688 * check for a case 0 fault. if nothing backing the entry then
689 * error now.
690 */
691
692 if (amap == NULL && uobj == NULL) {
693 uvmfault_unlockmaps(&ufi, FALSE);
694 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
695 return (EFAULT);
696 }
697
698 /*
699 * establish range of interest based on advice from mapper
700 * and then clip to fit map entry. note that we only want
701 * to do this the first time through the fault. if we
702 * ReFault we will disable this by setting "narrow" to true.
703 */
704
705 if (narrow == FALSE) {
706
707 /* wide fault (!narrow) */
708 KASSERT(uvmadvice[ufi.entry->advice].advice ==
709 ufi.entry->advice);
710 nback = MIN(uvmadvice[ufi.entry->advice].nback,
711 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
712 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
713 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
714 ((ufi.entry->end - ufi.orig_rvaddr) >>
715 PAGE_SHIFT) - 1);
716 /*
717 * note: "-1" because we don't want to count the
718 * faulting page as forw
719 */
720 npages = nback + nforw + 1;
721 centeridx = nback;
722
723 narrow = TRUE; /* ensure only once per-fault */
724
725 } else {
726
727 /* narrow fault! */
728 nback = nforw = 0;
729 startva = ufi.orig_rvaddr;
730 npages = 1;
731 centeridx = 0;
732
733 }
734
735 /* locked: maps(read) */
736 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
737 narrow, nback, nforw, startva);
738 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
739 amap, uobj, 0);
740
741 /*
742 * if we've got an amap, lock it and extract current anons.
743 */
744
745 if (amap) {
746 amap_lock(amap);
747 anons = anons_store;
748 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
749 anons, npages);
750 } else {
751 anons = NULL; /* to be safe */
752 }
753
754 /* locked: maps(read), amap(if there) */
755
756 /*
757 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
758 * now and then forget about them (for the rest of the fault).
759 */
760
761 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
762
763 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
764 0,0,0,0);
765 /* flush back-page anons? */
766 if (amap)
767 uvmfault_anonflush(anons, nback);
768
769 /* flush object? */
770 if (uobj) {
771 objaddr =
772 (startva - ufi.entry->start) + ufi.entry->offset;
773 simple_lock(&uobj->vmobjlock);
774 (void) (uobj->pgops->pgo_put)(uobj, objaddr, objaddr +
775 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
776 }
777
778 /* now forget about the backpages */
779 if (amap)
780 anons += nback;
781 startva += (nback << PAGE_SHIFT);
782 npages -= nback;
783 nback = centeridx = 0;
784 }
785
786 /* locked: maps(read), amap(if there) */
787
788 /*
789 * map in the backpages and frontpages we found in the amap in hopes
790 * of preventing future faults. we also init the pages[] array as
791 * we go.
792 */
793
794 currva = startva;
795 shadowed = FALSE;
796 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
797
798 /*
799 * dont play with VAs that are already mapped
800 * except for center)
801 */
802 if (lcv != centeridx &&
803 pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
804 pages[lcv] = PGO_DONTCARE;
805 continue;
806 }
807
808 /*
809 * unmapped or center page. check if any anon at this level.
810 */
811 if (amap == NULL || anons[lcv] == NULL) {
812 pages[lcv] = NULL;
813 continue;
814 }
815
816 /*
817 * check for present page and map if possible. re-activate it.
818 */
819
820 pages[lcv] = PGO_DONTCARE;
821 if (lcv == centeridx) { /* save center for later! */
822 shadowed = TRUE;
823 continue;
824 }
825 anon = anons[lcv];
826 simple_lock(&anon->an_lock);
827 /* ignore loaned pages */
828 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
829 (anon->u.an_page->flags & PG_BUSY) == 0) {
830 uvm_lock_pageq();
831 uvm_pageactivate(anon->u.an_page);
832 uvm_unlock_pageq();
833 UVMHIST_LOG(maphist,
834 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
835 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
836 uvmexp.fltnamap++;
837
838 /*
839 * Since this isn't the page that's actually faulting,
840 * ignore pmap_enter() failures; it's not critical
841 * that we enter these right now.
842 */
843
844 (void) pmap_enter(ufi.orig_map->pmap, currva,
845 VM_PAGE_TO_PHYS(anon->u.an_page),
846 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
847 enter_prot,
848 PMAP_CANFAIL |
849 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
850 }
851 simple_unlock(&anon->an_lock);
852 pmap_update(ufi.orig_map->pmap);
853 }
854
855 /* locked: maps(read), amap(if there) */
856 /* (shadowed == TRUE) if there is an anon at the faulting address */
857 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
858 (uobj && shadowed == FALSE),0,0);
859
860 /*
861 * note that if we are really short of RAM we could sleep in the above
862 * call to pmap_enter with everything locked. bad?
863 *
864 * XXX Actually, that is bad; pmap_enter() should just fail in that
865 * XXX case. --thorpej
866 */
867
868 /*
869 * if the desired page is not shadowed by the amap and we have a
870 * backing object, then we check to see if the backing object would
871 * prefer to handle the fault itself (rather than letting us do it
872 * with the usual pgo_get hook). the backing object signals this by
873 * providing a pgo_fault routine.
874 */
875
876 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
877 simple_lock(&uobj->vmobjlock);
878
879 /* locked: maps(read), amap (if there), uobj */
880 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
881 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO);
882
883 /* locked: nothing, pgo_fault has unlocked everything */
884
885 if (error == ERESTART)
886 goto ReFault; /* try again! */
887 /*
888 * object fault routine responsible for pmap_update().
889 */
890 return error;
891 }
892
893 /*
894 * now, if the desired page is not shadowed by the amap and we have
895 * a backing object that does not have a special fault routine, then
896 * we ask (with pgo_get) the object for resident pages that we care
897 * about and attempt to map them in. we do not let pgo_get block
898 * (PGO_LOCKED).
899 */
900
901 if (uobj && shadowed == FALSE) {
902 simple_lock(&uobj->vmobjlock);
903
904 /* locked (!shadowed): maps(read), amap (if there), uobj */
905 /*
906 * the following call to pgo_get does _not_ change locking state
907 */
908
909 uvmexp.fltlget++;
910 gotpages = npages;
911 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
912 (startva - ufi.entry->start),
913 pages, &gotpages, centeridx,
914 access_type & MASK(ufi.entry),
915 ufi.entry->advice, PGO_LOCKED);
916
917 /*
918 * check for pages to map, if we got any
919 */
920
921 uobjpage = NULL;
922
923 if (gotpages) {
924 currva = startva;
925 for (lcv = 0; lcv < npages;
926 lcv++, currva += PAGE_SIZE) {
927 struct vm_page *curpg;
928 boolean_t readonly;
929
930 curpg = pages[lcv];
931 if (curpg == NULL || curpg == PGO_DONTCARE) {
932 continue;
933 }
934
935 /*
936 * if center page is resident and not
937 * PG_BUSY|PG_RELEASED then pgo_get
938 * made it PG_BUSY for us and gave
939 * us a handle to it. remember this
940 * page as "uobjpage." (for later use).
941 */
942
943 if (lcv == centeridx) {
944 uobjpage = curpg;
945 UVMHIST_LOG(maphist, " got uobjpage "
946 "(0x%x) with locked get",
947 uobjpage, 0,0,0);
948 continue;
949 }
950
951 /*
952 * calling pgo_get with PGO_LOCKED returns us
953 * pages which are neither busy nor released,
954 * so we don't need to check for this.
955 * we can just directly enter the pages.
956 */
957
958 uvm_lock_pageq();
959 uvm_pageactivate(curpg);
960 uvm_unlock_pageq();
961 UVMHIST_LOG(maphist,
962 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
963 ufi.orig_map->pmap, currva, curpg, 0);
964 uvmexp.fltnomap++;
965
966 /*
967 * Since this page isn't the page that's
968 * actually faulting, ignore pmap_enter()
969 * failures; it's not critical that we
970 * enter these right now.
971 */
972 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
973 KASSERT((curpg->flags & PG_RELEASED) == 0);
974 readonly = (curpg->flags & PG_RDONLY)
975 || (curpg->loan_count > 0);
976
977 (void) pmap_enter(ufi.orig_map->pmap, currva,
978 VM_PAGE_TO_PHYS(curpg),
979 readonly ?
980 enter_prot & ~VM_PROT_WRITE :
981 enter_prot & MASK(ufi.entry),
982 PMAP_CANFAIL |
983 (wired ? PMAP_WIRED : 0));
984
985 /*
986 * NOTE: page can't be PG_WANTED or PG_RELEASED
987 * because we've held the lock the whole time
988 * we've had the handle.
989 */
990
991 curpg->flags &= ~(PG_BUSY);
992 UVM_PAGE_OWN(curpg, NULL);
993 }
994 pmap_update(ufi.orig_map->pmap);
995 }
996 } else {
997 uobjpage = NULL;
998 }
999
1000 /* locked (shadowed): maps(read), amap */
1001 /* locked (!shadowed): maps(read), amap(if there),
1002 uobj(if !null), uobjpage(if !null) */
1003
1004 /*
1005 * note that at this point we are done with any front or back pages.
1006 * we are now going to focus on the center page (i.e. the one we've
1007 * faulted on). if we have faulted on the top (anon) layer
1008 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1009 * not touched it yet). if we have faulted on the bottom (uobj)
1010 * layer [i.e. case 2] and the page was both present and available,
1011 * then we've got a pointer to it as "uobjpage" and we've already
1012 * made it BUSY.
1013 */
1014
1015 /*
1016 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1017 */
1018
1019 /*
1020 * redirect case 2: if we are not shadowed, go to case 2.
1021 */
1022
1023 if (shadowed == FALSE)
1024 goto Case2;
1025
1026 /* locked: maps(read), amap */
1027
1028 /*
1029 * handle case 1: fault on an anon in our amap
1030 */
1031
1032 anon = anons[centeridx];
1033 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1034 simple_lock(&anon->an_lock);
1035
1036 /* locked: maps(read), amap, anon */
1037
1038 /*
1039 * no matter if we have case 1A or case 1B we are going to need to
1040 * have the anon's memory resident. ensure that now.
1041 */
1042
1043 /*
1044 * let uvmfault_anonget do the dirty work.
1045 * if it fails (!OK) it will unlock everything for us.
1046 * if it succeeds, locks are still valid and locked.
1047 * also, if it is OK, then the anon's page is on the queues.
1048 * if the page is on loan from a uvm_object, then anonget will
1049 * lock that object for us if it does not fail.
1050 */
1051
1052 error = uvmfault_anonget(&ufi, amap, anon);
1053 switch (error) {
1054 case 0:
1055 break;
1056
1057 case ERESTART:
1058 goto ReFault;
1059
1060 case EAGAIN:
1061 tsleep(&lbolt, PVM, "fltagain1", 0);
1062 goto ReFault;
1063
1064 default:
1065 return error;
1066 }
1067
1068 /*
1069 * uobj is non null if the page is on loan from an object (i.e. uobj)
1070 */
1071
1072 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1073
1074 /* locked: maps(read), amap, anon, uobj(if one) */
1075
1076 /*
1077 * special handling for loaned pages
1078 */
1079
1080 if (anon->u.an_page->loan_count) {
1081
1082 if (!cow_now) {
1083
1084 /*
1085 * for read faults on loaned pages we just cap the
1086 * protection at read-only.
1087 */
1088
1089 enter_prot = enter_prot & ~VM_PROT_WRITE;
1090
1091 } else {
1092 /*
1093 * note that we can't allow writes into a loaned page!
1094 *
1095 * if we have a write fault on a loaned page in an
1096 * anon then we need to look at the anon's ref count.
1097 * if it is greater than one then we are going to do
1098 * a normal copy-on-write fault into a new anon (this
1099 * is not a problem). however, if the reference count
1100 * is one (a case where we would normally allow a
1101 * write directly to the page) then we need to kill
1102 * the loan before we continue.
1103 */
1104
1105 /* >1 case is already ok */
1106 if (anon->an_ref == 1) {
1107
1108 /* get new un-owned replacement page */
1109 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1110 if (pg == NULL) {
1111 uvmfault_unlockall(&ufi, amap, uobj,
1112 anon);
1113 uvm_wait("flt_noram2");
1114 goto ReFault;
1115 }
1116
1117 /*
1118 * copy data, kill loan, and drop uobj lock
1119 * (if any)
1120 */
1121 /* copy old -> new */
1122 uvm_pagecopy(anon->u.an_page, pg);
1123
1124 /* force reload */
1125 pmap_page_protect(anon->u.an_page,
1126 VM_PROT_NONE);
1127 uvm_lock_pageq(); /* KILL loan */
1128
1129 anon->u.an_page->uanon = NULL;
1130 /* in case we owned */
1131 anon->u.an_page->pqflags &= ~PQ_ANON;
1132
1133 if (uobj) {
1134 /* if we were receiver of loan */
1135 anon->u.an_page->loan_count--;
1136 } else {
1137 /*
1138 * we were the lender (A->K); need
1139 * to remove the page from pageq's.
1140 */
1141 uvm_pagedequeue(anon->u.an_page);
1142 }
1143
1144 uvm_pageactivate(pg);
1145 uvm_unlock_pageq();
1146 if (uobj) {
1147 simple_unlock(&uobj->vmobjlock);
1148 uobj = NULL;
1149 }
1150
1151 /* install new page in anon */
1152 anon->u.an_page = pg;
1153 pg->uanon = anon;
1154 pg->pqflags |= PQ_ANON;
1155 pg->flags &= ~(PG_BUSY|PG_FAKE);
1156 UVM_PAGE_OWN(pg, NULL);
1157
1158 /* done! */
1159 } /* ref == 1 */
1160 } /* write fault */
1161 } /* loan count */
1162
1163 /*
1164 * if we are case 1B then we will need to allocate a new blank
1165 * anon to transfer the data into. note that we have a lock
1166 * on anon, so no one can busy or release the page until we are done.
1167 * also note that the ref count can't drop to zero here because
1168 * it is > 1 and we are only dropping one ref.
1169 *
1170 * in the (hopefully very rare) case that we are out of RAM we
1171 * will unlock, wait for more RAM, and refault.
1172 *
1173 * if we are out of anon VM we kill the process (XXX: could wait?).
1174 */
1175
1176 if (cow_now && anon->an_ref > 1) {
1177
1178 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1179 uvmexp.flt_acow++;
1180 oanon = anon; /* oanon = old, locked anon */
1181 anon = uvm_analloc();
1182 if (anon) {
1183 /* new anon is locked! */
1184 pg = uvm_pagealloc(NULL, 0, anon, 0);
1185 }
1186
1187 /* check for out of RAM */
1188 if (anon == NULL || pg == NULL) {
1189 if (anon) {
1190 anon->an_ref--;
1191 simple_unlock(&anon->an_lock);
1192 uvm_anfree(anon);
1193 }
1194 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1195 if (anon == NULL || uvm_swapisfull()) {
1196 UVMHIST_LOG(maphist,
1197 "<- failed. out of VM",0,0,0,0);
1198 uvmexp.fltnoanon++;
1199 return ENOMEM;
1200 }
1201
1202 uvmexp.fltnoram++;
1203 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1204 goto ReFault;
1205 }
1206
1207 /* got all resources, replace anon with nanon */
1208 uvm_pagecopy(oanon->u.an_page, pg);
1209 uvm_lock_pageq();
1210 uvm_pageactivate(pg);
1211 pg->flags &= ~(PG_BUSY|PG_FAKE);
1212 uvm_unlock_pageq();
1213 UVM_PAGE_OWN(pg, NULL);
1214 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1215 anon, 1);
1216
1217 /* deref: can not drop to zero here by defn! */
1218 oanon->an_ref--;
1219
1220 /*
1221 * note: oanon is still locked, as is the new anon. we
1222 * need to check for this later when we unlock oanon; if
1223 * oanon != anon, we'll have to unlock anon, too.
1224 */
1225
1226 } else {
1227
1228 uvmexp.flt_anon++;
1229 oanon = anon; /* old, locked anon is same as anon */
1230 pg = anon->u.an_page;
1231 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1232 enter_prot = enter_prot & ~VM_PROT_WRITE;
1233
1234 }
1235
1236 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1237
1238 /*
1239 * now map the page in.
1240 */
1241
1242 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1243 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1244 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1245 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1246 != 0) {
1247
1248 /*
1249 * No need to undo what we did; we can simply think of
1250 * this as the pmap throwing away the mapping information.
1251 *
1252 * We do, however, have to go through the ReFault path,
1253 * as the map may change while we're asleep.
1254 */
1255
1256 if (anon != oanon)
1257 simple_unlock(&anon->an_lock);
1258 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1259 if (uvm_swapisfull()) {
1260 UVMHIST_LOG(maphist,
1261 "<- failed. out of VM",0,0,0,0);
1262 /* XXX instrumentation */
1263 return ENOMEM;
1264 }
1265 /* XXX instrumentation */
1266 uvm_wait("flt_pmfail1");
1267 goto ReFault;
1268 }
1269
1270 /*
1271 * ... update the page queues.
1272 */
1273
1274 uvm_lock_pageq();
1275 if (wire_fault) {
1276 uvm_pagewire(pg);
1277
1278 /*
1279 * since the now-wired page cannot be paged out,
1280 * release its swap resources for others to use.
1281 * since an anon with no swap cannot be PG_CLEAN,
1282 * clear its clean flag now.
1283 */
1284
1285 pg->flags &= ~(PG_CLEAN);
1286 uvm_anon_dropswap(anon);
1287 } else {
1288 uvm_pageactivate(pg);
1289 }
1290 uvm_unlock_pageq();
1291
1292 /*
1293 * done case 1! finish up by unlocking everything and returning success
1294 */
1295
1296 if (anon != oanon)
1297 simple_unlock(&anon->an_lock);
1298 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1299 pmap_update(ufi.orig_map->pmap);
1300 return 0;
1301
1302 Case2:
1303 /*
1304 * handle case 2: faulting on backing object or zero fill
1305 */
1306
1307 /*
1308 * locked:
1309 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1310 */
1311
1312 /*
1313 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1314 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1315 * have a backing object, check and see if we are going to promote
1316 * the data up to an anon during the fault.
1317 */
1318
1319 if (uobj == NULL) {
1320 uobjpage = PGO_DONTCARE;
1321 promote = TRUE; /* always need anon here */
1322 } else {
1323 KASSERT(uobjpage != PGO_DONTCARE);
1324 promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1325 }
1326 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1327 promote, (uobj == NULL), 0,0);
1328
1329 /*
1330 * if uobjpage is not null then we do not need to do I/O to get the
1331 * uobjpage.
1332 *
1333 * if uobjpage is null, then we need to unlock and ask the pager to
1334 * get the data for us. once we have the data, we need to reverify
1335 * the state the world. we are currently not holding any resources.
1336 */
1337
1338 if (uobjpage) {
1339 /* update rusage counters */
1340 curproc->p_stats->p_ru.ru_minflt++;
1341 } else {
1342 /* update rusage counters */
1343 curproc->p_stats->p_ru.ru_majflt++;
1344
1345 /* locked: maps(read), amap(if there), uobj */
1346 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1347 /* locked: uobj */
1348
1349 uvmexp.fltget++;
1350 gotpages = 1;
1351 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1352 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1353 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1354 PGO_SYNCIO);
1355 /* locked: uobjpage(if no error) */
1356
1357 /*
1358 * recover from I/O
1359 */
1360
1361 if (error) {
1362 if (error == EAGAIN) {
1363 UVMHIST_LOG(maphist,
1364 " pgo_get says TRY AGAIN!",0,0,0,0);
1365 tsleep(&lbolt, PVM, "fltagain2", 0);
1366 goto ReFault;
1367 }
1368
1369 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1370 error, 0,0,0);
1371 return error;
1372 }
1373
1374 /* locked: uobjpage */
1375
1376 uvm_lock_pageq();
1377 uvm_pageactivate(uobjpage);
1378 uvm_unlock_pageq();
1379
1380 /*
1381 * re-verify the state of the world by first trying to relock
1382 * the maps. always relock the object.
1383 */
1384
1385 locked = uvmfault_relock(&ufi);
1386 if (locked && amap)
1387 amap_lock(amap);
1388 simple_lock(&uobj->vmobjlock);
1389
1390 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1391 /* locked(!locked): uobj, uobjpage */
1392
1393 /*
1394 * verify that the page has not be released and re-verify
1395 * that amap slot is still free. if there is a problem,
1396 * we unlock and clean up.
1397 */
1398
1399 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1400 (locked && amap &&
1401 amap_lookup(&ufi.entry->aref,
1402 ufi.orig_rvaddr - ufi.entry->start))) {
1403 if (locked)
1404 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1405 locked = FALSE;
1406 }
1407
1408 /*
1409 * didn't get the lock? release the page and retry.
1410 */
1411
1412 if (locked == FALSE) {
1413 UVMHIST_LOG(maphist,
1414 " wasn't able to relock after fault: retry",
1415 0,0,0,0);
1416 if (uobjpage->flags & PG_WANTED)
1417 wakeup(uobjpage);
1418 if (uobjpage->flags & PG_RELEASED) {
1419 uvmexp.fltpgrele++;
1420 uvm_pagefree(uobjpage);
1421 goto ReFault;
1422 }
1423 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1424 UVM_PAGE_OWN(uobjpage, NULL);
1425 simple_unlock(&uobj->vmobjlock);
1426 goto ReFault;
1427 }
1428
1429 /*
1430 * we have the data in uobjpage which is busy and
1431 * not released. we are holding object lock (so the page
1432 * can't be released on us).
1433 */
1434
1435 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1436 }
1437
1438 /*
1439 * locked:
1440 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1441 */
1442
1443 /*
1444 * notes:
1445 * - at this point uobjpage can not be NULL
1446 * - at this point uobjpage can not be PG_RELEASED (since we checked
1447 * for it above)
1448 * - at this point uobjpage could be PG_WANTED (handle later)
1449 */
1450
1451 if (promote == FALSE) {
1452
1453 /*
1454 * we are not promoting. if the mapping is COW ensure that we
1455 * don't give more access than we should (e.g. when doing a read
1456 * fault on a COPYONWRITE mapping we want to map the COW page in
1457 * R/O even though the entry protection could be R/W).
1458 *
1459 * set "pg" to the page we want to map in (uobjpage, usually)
1460 */
1461
1462 /* no anon in this case. */
1463 anon = NULL;
1464
1465 uvmexp.flt_obj++;
1466 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1467 enter_prot &= ~VM_PROT_WRITE;
1468 pg = uobjpage; /* map in the actual object */
1469
1470 /* assert(uobjpage != PGO_DONTCARE) */
1471
1472 /*
1473 * we are faulting directly on the page. be careful
1474 * about writing to loaned pages...
1475 */
1476
1477 if (uobjpage->loan_count) {
1478 if (!cow_now) {
1479 /* read fault: cap the protection at readonly */
1480 /* cap! */
1481 enter_prot = enter_prot & ~VM_PROT_WRITE;
1482 } else {
1483 /* write fault: must break the loan here */
1484
1485 pg = uvm_loanbreak(uobjpage);
1486 if (pg == NULL) {
1487
1488 /*
1489 * drop ownership of page, it can't
1490 * be released
1491 */
1492
1493 if (uobjpage->flags & PG_WANTED)
1494 wakeup(uobjpage);
1495 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1496 UVM_PAGE_OWN(uobjpage, NULL);
1497
1498 uvmfault_unlockall(&ufi, amap, uobj,
1499 NULL);
1500 UVMHIST_LOG(maphist,
1501 " out of RAM breaking loan, waiting",
1502 0,0,0,0);
1503 uvmexp.fltnoram++;
1504 uvm_wait("flt_noram4");
1505 goto ReFault;
1506 }
1507 uobjpage = pg;
1508 }
1509 }
1510 } else {
1511
1512 /*
1513 * if we are going to promote the data to an anon we
1514 * allocate a blank anon here and plug it into our amap.
1515 */
1516 #if DIAGNOSTIC
1517 if (amap == NULL)
1518 panic("uvm_fault: want to promote data, but no anon");
1519 #endif
1520
1521 anon = uvm_analloc();
1522 if (anon) {
1523
1524 /*
1525 * The new anon is locked.
1526 *
1527 * In `Fill in data...' below, if
1528 * uobjpage == PGO_DONTCARE, we want
1529 * a zero'd, dirty page, so have
1530 * uvm_pagealloc() do that for us.
1531 */
1532
1533 pg = uvm_pagealloc(NULL, 0, anon,
1534 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1535 }
1536
1537 /*
1538 * out of memory resources?
1539 */
1540
1541 if (anon == NULL || pg == NULL) {
1542 if (anon != NULL) {
1543 anon->an_ref--;
1544 simple_unlock(&anon->an_lock);
1545 uvm_anfree(anon);
1546 }
1547
1548 /*
1549 * arg! must unbusy our page and fail or sleep.
1550 */
1551
1552 if (uobjpage != PGO_DONTCARE) {
1553 if (uobjpage->flags & PG_WANTED)
1554 /* still holding object lock */
1555 wakeup(uobjpage);
1556
1557 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1558 UVM_PAGE_OWN(uobjpage, NULL);
1559 }
1560
1561 /* unlock and fail ... */
1562 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1563 if (anon == NULL || uvm_swapisfull()) {
1564 UVMHIST_LOG(maphist, " promote: out of VM",
1565 0,0,0,0);
1566 uvmexp.fltnoanon++;
1567 return ENOMEM;
1568 }
1569
1570 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1571 0,0,0,0);
1572 uvmexp.fltnoram++;
1573 uvm_wait("flt_noram5");
1574 goto ReFault;
1575 }
1576
1577 /*
1578 * fill in the data
1579 */
1580
1581 if (uobjpage != PGO_DONTCARE) {
1582 uvmexp.flt_prcopy++;
1583 /* copy page [pg now dirty] */
1584 uvm_pagecopy(uobjpage, pg);
1585
1586 /*
1587 * promote to shared amap? make sure all sharing
1588 * procs see it
1589 */
1590
1591 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1592 pmap_page_protect(uobjpage, VM_PROT_NONE);
1593 /*
1594 * XXX: PAGE MIGHT BE WIRED!
1595 */
1596 }
1597
1598 /*
1599 * dispose of uobjpage. it can't be PG_RELEASED
1600 * since we still hold the object lock.
1601 * drop handle to uobj as well.
1602 */
1603
1604 if (uobjpage->flags & PG_WANTED)
1605 /* still have the obj lock */
1606 wakeup(uobjpage);
1607 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1608 UVM_PAGE_OWN(uobjpage, NULL);
1609 simple_unlock(&uobj->vmobjlock);
1610 uobj = NULL;
1611
1612 UVMHIST_LOG(maphist,
1613 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1614 uobjpage, anon, pg, 0);
1615
1616 } else {
1617 uvmexp.flt_przero++;
1618
1619 /*
1620 * Page is zero'd and marked dirty by uvm_pagealloc()
1621 * above.
1622 */
1623
1624 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1625 anon, pg, 0, 0);
1626 }
1627 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1628 anon, 0);
1629 }
1630
1631 /*
1632 * locked:
1633 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1634 * anon(if !null), pg(if anon)
1635 *
1636 * note: pg is either the uobjpage or the new page in the new anon
1637 */
1638
1639 /*
1640 * all resources are present. we can now map it in and free our
1641 * resources.
1642 */
1643
1644 UVMHIST_LOG(maphist,
1645 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1646 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1647 KASSERT((access_type & VM_PROT_WRITE) == 0 ||
1648 (pg->flags & PG_RDONLY) == 0);
1649 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1650 pg->flags & PG_RDONLY ? enter_prot & ~VM_PROT_WRITE : enter_prot,
1651 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1652
1653 /*
1654 * No need to undo what we did; we can simply think of
1655 * this as the pmap throwing away the mapping information.
1656 *
1657 * We do, however, have to go through the ReFault path,
1658 * as the map may change while we're asleep.
1659 */
1660
1661 if (pg->flags & PG_WANTED)
1662 wakeup(pg);
1663
1664 /*
1665 * note that pg can't be PG_RELEASED since we did not drop
1666 * the object lock since the last time we checked.
1667 */
1668
1669 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1670 UVM_PAGE_OWN(pg, NULL);
1671 uvmfault_unlockall(&ufi, amap, uobj, anon);
1672 if (uvm_swapisfull()) {
1673 UVMHIST_LOG(maphist,
1674 "<- failed. out of VM",0,0,0,0);
1675 /* XXX instrumentation */
1676 return ENOMEM;
1677 }
1678 /* XXX instrumentation */
1679 uvm_wait("flt_pmfail2");
1680 goto ReFault;
1681 }
1682
1683 uvm_lock_pageq();
1684 if (wire_fault) {
1685 uvm_pagewire(pg);
1686 if (pg->pqflags & PQ_AOBJ) {
1687
1688 /*
1689 * since the now-wired page cannot be paged out,
1690 * release its swap resources for others to use.
1691 * since an aobj page with no swap cannot be PG_CLEAN,
1692 * clear its clean flag now.
1693 */
1694
1695 pg->flags &= ~(PG_CLEAN);
1696 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1697 }
1698 } else {
1699 uvm_pageactivate(pg);
1700 }
1701 uvm_unlock_pageq();
1702 if (pg->flags & PG_WANTED)
1703 wakeup(pg);
1704
1705 /*
1706 * note that pg can't be PG_RELEASED since we did not drop the object
1707 * lock since the last time we checked.
1708 */
1709
1710 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1711 UVM_PAGE_OWN(pg, NULL);
1712 uvmfault_unlockall(&ufi, amap, uobj, anon);
1713 pmap_update(ufi.orig_map->pmap);
1714 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1715 return 0;
1716 }
1717
1718 /*
1719 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1720 *
1721 * => map may be read-locked by caller, but MUST NOT be write-locked.
1722 * => if map is read-locked, any operations which may cause map to
1723 * be write-locked in uvm_fault() must be taken care of by
1724 * the caller. See uvm_map_pageable().
1725 */
1726
1727 int
1728 uvm_fault_wire(map, start, end, fault_type, access_type)
1729 struct vm_map *map;
1730 vaddr_t start, end;
1731 vm_fault_t fault_type;
1732 vm_prot_t access_type;
1733 {
1734 vaddr_t va;
1735 int error;
1736
1737 /*
1738 * now fault it in a page at a time. if the fault fails then we have
1739 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1740 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1741 */
1742
1743 /*
1744 * XXX work around overflowing a vaddr_t. this prevents us from
1745 * wiring the last page in the address space, though.
1746 */
1747 if (start > end) {
1748 return EFAULT;
1749 }
1750
1751 for (va = start ; va < end ; va += PAGE_SIZE) {
1752 error = uvm_fault(map, va, fault_type, access_type);
1753 if (error) {
1754 if (va != start) {
1755 uvm_fault_unwire(map, start, va);
1756 }
1757 return error;
1758 }
1759 }
1760 return 0;
1761 }
1762
1763 /*
1764 * uvm_fault_unwire(): unwire range of virtual space.
1765 */
1766
1767 void
1768 uvm_fault_unwire(map, start, end)
1769 struct vm_map *map;
1770 vaddr_t start, end;
1771 {
1772 vm_map_lock_read(map);
1773 uvm_fault_unwire_locked(map, start, end);
1774 vm_map_unlock_read(map);
1775 }
1776
1777 /*
1778 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1779 *
1780 * => map must be at least read-locked.
1781 */
1782
1783 void
1784 uvm_fault_unwire_locked(map, start, end)
1785 struct vm_map *map;
1786 vaddr_t start, end;
1787 {
1788 struct vm_map_entry *entry;
1789 pmap_t pmap = vm_map_pmap(map);
1790 vaddr_t va;
1791 paddr_t pa;
1792 struct vm_page *pg;
1793
1794 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1795
1796 /*
1797 * we assume that the area we are unwiring has actually been wired
1798 * in the first place. this means that we should be able to extract
1799 * the PAs from the pmap. we also lock out the page daemon so that
1800 * we can call uvm_pageunwire.
1801 */
1802
1803 uvm_lock_pageq();
1804
1805 /*
1806 * find the beginning map entry for the region.
1807 */
1808
1809 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1810 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1811 panic("uvm_fault_unwire_locked: address not in map");
1812
1813 for (va = start; va < end; va += PAGE_SIZE) {
1814 if (pmap_extract(pmap, va, &pa) == FALSE)
1815 continue;
1816
1817 /*
1818 * find the map entry for the current address.
1819 */
1820
1821 KASSERT(va >= entry->start);
1822 while (va >= entry->end) {
1823 KASSERT(entry->next != &map->header &&
1824 entry->next->start <= entry->end);
1825 entry = entry->next;
1826 }
1827
1828 /*
1829 * if the entry is no longer wired, tell the pmap.
1830 */
1831
1832 if (VM_MAPENT_ISWIRED(entry) == 0)
1833 pmap_unwire(pmap, va);
1834
1835 pg = PHYS_TO_VM_PAGE(pa);
1836 if (pg)
1837 uvm_pageunwire(pg);
1838 }
1839
1840 uvm_unlock_pageq();
1841 }
Cache object: 402ceb291afd54fb3d196b864fe7b6f0
|