The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/uvm/uvm_km.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: uvm_km.c,v 1.162 2022/08/06 05:55:37 chs Exp $ */
    2 
    3 /*
    4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
    5  * Copyright (c) 1991, 1993, The Regents of the University of California.
    6  *
    7  * All rights reserved.
    8  *
    9  * This code is derived from software contributed to Berkeley by
   10  * The Mach Operating System project at Carnegie-Mellon University.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)vm_kern.c   8.3 (Berkeley) 1/12/94
   37  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
   38  *
   39  *
   40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   41  * All rights reserved.
   42  *
   43  * Permission to use, copy, modify and distribute this software and
   44  * its documentation is hereby granted, provided that both the copyright
   45  * notice and this permission notice appear in all copies of the
   46  * software, derivative works or modified versions, and any portions
   47  * thereof, and that both notices appear in supporting documentation.
   48  *
   49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   52  *
   53  * Carnegie Mellon requests users of this software to return to
   54  *
   55  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   56  *  School of Computer Science
   57  *  Carnegie Mellon University
   58  *  Pittsburgh PA 15213-3890
   59  *
   60  * any improvements or extensions that they make and grant Carnegie the
   61  * rights to redistribute these changes.
   62  */
   63 
   64 /*
   65  * uvm_km.c: handle kernel memory allocation and management
   66  */
   67 
   68 /*
   69  * overview of kernel memory management:
   70  *
   71  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
   72  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
   73  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
   74  *
   75  * the kernel_map has several "submaps."   submaps can only appear in
   76  * the kernel_map (user processes can't use them).   submaps "take over"
   77  * the management of a sub-range of the kernel's address space.  submaps
   78  * are typically allocated at boot time and are never released.   kernel
   79  * virtual address space that is mapped by a submap is locked by the
   80  * submap's lock -- not the kernel_map's lock.
   81  *
   82  * thus, the useful feature of submaps is that they allow us to break
   83  * up the locking and protection of the kernel address space into smaller
   84  * chunks.
   85  *
   86  * the vm system has several standard kernel submaps/arenas, including:
   87  *   kmem_arena => used for kmem/pool (memoryallocators(9))
   88  *   pager_map => used to map "buf" structures into kernel space
   89  *   exec_map => used during exec to handle exec args
   90  *   etc...
   91  *
   92  * The kmem_arena is a "special submap", as it lives in a fixed map entry
   93  * within the kernel_map and is controlled by vmem(9).
   94  *
   95  * the kernel allocates its private memory out of special uvm_objects whose
   96  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
   97  * are "special" and never die).   all kernel objects should be thought of
   98  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
   99  * object is equal to the size of kernel virtual address space (i.e. the
  100  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
  101  *
  102  * note that just because a kernel object spans the entire kernel virtual
  103  * address space doesn't mean that it has to be mapped into the entire space.
  104  * large chunks of a kernel object's space go unused either because
  105  * that area of kernel VM is unmapped, or there is some other type of
  106  * object mapped into that range (e.g. a vnode).    for submap's kernel
  107  * objects, the only part of the object that can ever be populated is the
  108  * offsets that are managed by the submap.
  109  *
  110  * note that the "offset" in a kernel object is always the kernel virtual
  111  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
  112  * example:
  113  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
  114  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
  115  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
  116  *   then that means that the page at offset 0x235000 in kernel_object is
  117  *   mapped at 0xf8235000.
  118  *
  119  * kernel object have one other special property: when the kernel virtual
  120  * memory mapping them is unmapped, the backing memory in the object is
  121  * freed right away.   this is done with the uvm_km_pgremove() function.
  122  * this has to be done because there is no backing store for kernel pages
  123  * and no need to save them after they are no longer referenced.
  124  *
  125  * Generic arenas:
  126  *
  127  * kmem_arena:
  128  *      Main arena controlling the kernel KVA used by other arenas.
  129  *
  130  * kmem_va_arena:
  131  *      Implements quantum caching in order to speedup allocations and
  132  *      reduce fragmentation.  The pool(9), unless created with a custom
  133  *      meta-data allocator, and kmem(9) subsystems use this arena.
  134  *
  135  * Arenas for meta-data allocations are used by vmem(9) and pool(9).
  136  * These arenas cannot use quantum cache.  However, kmem_va_meta_arena
  137  * compensates this by importing larger chunks from kmem_arena.
  138  *
  139  * kmem_va_meta_arena:
  140  *      Space for meta-data.
  141  *
  142  * kmem_meta_arena:
  143  *      Imports from kmem_va_meta_arena.  Allocations from this arena are
  144  *      backed with the pages.
  145  *
  146  * Arena stacking:
  147  *
  148  *      kmem_arena
  149  *              kmem_va_arena
  150  *              kmem_va_meta_arena
  151  *                      kmem_meta_arena
  152  */
  153 
  154 #include <sys/cdefs.h>
  155 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.162 2022/08/06 05:55:37 chs Exp $");
  156 
  157 #include "opt_uvmhist.h"
  158 
  159 #include "opt_kmempages.h"
  160 
  161 #ifndef NKMEMPAGES
  162 #define NKMEMPAGES 0
  163 #endif
  164 
  165 /*
  166  * Defaults for lower and upper-bounds for the kmem_arena page count.
  167  * Can be overridden by kernel config options.
  168  */
  169 #ifndef NKMEMPAGES_MIN
  170 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
  171 #endif
  172 
  173 #ifndef NKMEMPAGES_MAX
  174 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
  175 #endif
  176 
  177 
  178 #include <sys/param.h>
  179 #include <sys/systm.h>
  180 #include <sys/atomic.h>
  181 #include <sys/proc.h>
  182 #include <sys/pool.h>
  183 #include <sys/vmem.h>
  184 #include <sys/vmem_impl.h>
  185 #include <sys/kmem.h>
  186 #include <sys/msan.h>
  187 
  188 #include <uvm/uvm.h>
  189 
  190 /*
  191  * global data structures
  192  */
  193 
  194 struct vm_map *kernel_map = NULL;
  195 
  196 /*
  197  * local data structues
  198  */
  199 
  200 static struct vm_map            kernel_map_store;
  201 static struct vm_map_entry      kernel_image_mapent_store;
  202 static struct vm_map_entry      kernel_kmem_mapent_store;
  203 
  204 int nkmempages = 0;
  205 vaddr_t kmembase;
  206 vsize_t kmemsize;
  207 
  208 static struct vmem kmem_arena_store;
  209 vmem_t *kmem_arena = NULL;
  210 static struct vmem kmem_va_arena_store;
  211 vmem_t *kmem_va_arena;
  212 
  213 /*
  214  * kmeminit_nkmempages: calculate the size of kmem_arena.
  215  */
  216 void
  217 kmeminit_nkmempages(void)
  218 {
  219         int npages;
  220 
  221         if (nkmempages != 0) {
  222                 /*
  223                  * It's already been set (by us being here before)
  224                  * bail out now;
  225                  */
  226                 return;
  227         }
  228 
  229 #if defined(NKMEMPAGES_MAX_UNLIMITED) && !defined(KMSAN)
  230         npages = physmem;
  231 #else
  232 
  233 #if defined(KMSAN)
  234         npages = (physmem / 4);
  235 #elif defined(PMAP_MAP_POOLPAGE)
  236         npages = (physmem / 4);
  237 #else
  238         npages = (physmem / 3) * 2;
  239 #endif /* defined(PMAP_MAP_POOLPAGE) */
  240 
  241 #if !defined(NKMEMPAGES_MAX_UNLIMITED)
  242         if (npages > NKMEMPAGES_MAX)
  243                 npages = NKMEMPAGES_MAX;
  244 #endif
  245 
  246 #endif
  247 
  248         if (npages < NKMEMPAGES_MIN)
  249                 npages = NKMEMPAGES_MIN;
  250 
  251         nkmempages = npages;
  252 }
  253 
  254 /*
  255  * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
  256  * KVM already allocated for text, data, bss, and static data structures).
  257  *
  258  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
  259  *    we assume that [vmin -> start] has already been allocated and that
  260  *    "end" is the end.
  261  */
  262 
  263 void
  264 uvm_km_bootstrap(vaddr_t start, vaddr_t end)
  265 {
  266         bool kmem_arena_small;
  267         vaddr_t base = VM_MIN_KERNEL_ADDRESS;
  268         struct uvm_map_args args;
  269         int error;
  270 
  271         UVMHIST_FUNC(__func__);
  272         UVMHIST_CALLARGS(maphist, "start=%#jx end=%#jx", start, end, 0,0);
  273 
  274         kmeminit_nkmempages();
  275         kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
  276         kmem_arena_small = kmemsize < 64 * 1024 * 1024;
  277 
  278         UVMHIST_LOG(maphist, "kmemsize=%#jx", kmemsize, 0,0,0);
  279 
  280         /*
  281          * next, init kernel memory objects.
  282          */
  283 
  284         /* kernel_object: for pageable anonymous kernel memory */
  285         uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
  286                                 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
  287 
  288         /*
  289          * init the map and reserve any space that might already
  290          * have been allocated kernel space before installing.
  291          */
  292 
  293         uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
  294         kernel_map_store.pmap = pmap_kernel();
  295         if (start != base) {
  296                 error = uvm_map_prepare(&kernel_map_store,
  297                     base, start - base,
  298                     NULL, UVM_UNKNOWN_OFFSET, 0,
  299                     UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
  300                                 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
  301                 if (!error) {
  302                         kernel_image_mapent_store.flags =
  303                             UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
  304                         error = uvm_map_enter(&kernel_map_store, &args,
  305                             &kernel_image_mapent_store);
  306                 }
  307 
  308                 if (error)
  309                         panic(
  310                             "uvm_km_bootstrap: could not reserve space for kernel");
  311 
  312                 kmembase = args.uma_start + args.uma_size;
  313         } else {
  314                 kmembase = base;
  315         }
  316 
  317         error = uvm_map_prepare(&kernel_map_store,
  318             kmembase, kmemsize,
  319             NULL, UVM_UNKNOWN_OFFSET, 0,
  320             UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
  321                         UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
  322         if (!error) {
  323                 kernel_kmem_mapent_store.flags =
  324                     UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
  325                 error = uvm_map_enter(&kernel_map_store, &args,
  326                     &kernel_kmem_mapent_store);
  327         }
  328 
  329         if (error)
  330                 panic("uvm_km_bootstrap: could not reserve kernel kmem");
  331 
  332         /*
  333          * install!
  334          */
  335 
  336         kernel_map = &kernel_map_store;
  337 
  338         pool_subsystem_init();
  339 
  340         kmem_arena = vmem_init(&kmem_arena_store, "kmem",
  341             kmembase, kmemsize, PAGE_SIZE, NULL, NULL, NULL,
  342             0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
  343 #ifdef PMAP_GROWKERNEL
  344         /*
  345          * kmem_arena VA allocations happen independently of uvm_map.
  346          * grow kernel to accommodate the kmem_arena.
  347          */
  348         if (uvm_maxkaddr < kmembase + kmemsize) {
  349                 uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
  350                 KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
  351                     "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
  352                     uvm_maxkaddr, kmembase, kmemsize);
  353         }
  354 #endif
  355 
  356         vmem_subsystem_init(kmem_arena);
  357 
  358         UVMHIST_LOG(maphist, "kmem vmem created (base=%#jx, size=%#jx",
  359             kmembase, kmemsize, 0,0);
  360 
  361         kmem_va_arena = vmem_init(&kmem_va_arena_store, "kva",
  362             0, 0, PAGE_SIZE, vmem_alloc, vmem_free, kmem_arena,
  363             (kmem_arena_small ? 4 : VMEM_QCACHE_IDX_MAX) * PAGE_SIZE,
  364             VM_NOSLEEP, IPL_VM);
  365 
  366         UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
  367 }
  368 
  369 /*
  370  * uvm_km_init: init the kernel maps virtual memory caches
  371  * and start the pool/kmem allocator.
  372  */
  373 void
  374 uvm_km_init(void)
  375 {
  376         kmem_init();
  377 }
  378 
  379 /*
  380  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
  381  * is allocated all references to that area of VM must go through it.  this
  382  * allows the locking of VAs in kernel_map to be broken up into regions.
  383  *
  384  * => if `fixed' is true, *vmin specifies where the region described
  385  *   pager_map => used to map "buf" structures into kernel space
  386  *      by the submap must start
  387  * => if submap is non NULL we use that as the submap, otherwise we
  388  *      alloc a new map
  389  */
  390 
  391 struct vm_map *
  392 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
  393     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
  394     struct vm_map *submap)
  395 {
  396         int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
  397         UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
  398 
  399         KASSERT(vm_map_pmap(map) == pmap_kernel());
  400 
  401         size = round_page(size);        /* round up to pagesize */
  402 
  403         /*
  404          * first allocate a blank spot in the parent map
  405          */
  406 
  407         if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
  408             UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
  409             UVM_ADV_RANDOM, mapflags)) != 0) {
  410                 panic("%s: unable to allocate space in parent map", __func__);
  411         }
  412 
  413         /*
  414          * set VM bounds (vmin is filled in by uvm_map)
  415          */
  416 
  417         *vmax = *vmin + size;
  418 
  419         /*
  420          * add references to pmap and create or init the submap
  421          */
  422 
  423         pmap_reference(vm_map_pmap(map));
  424         if (submap == NULL) {
  425                 submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
  426         }
  427         uvm_map_setup(submap, *vmin, *vmax, flags);
  428         submap->pmap = vm_map_pmap(map);
  429 
  430         /*
  431          * now let uvm_map_submap plug in it...
  432          */
  433 
  434         if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
  435                 panic("uvm_km_suballoc: submap allocation failed");
  436 
  437         return(submap);
  438 }
  439 
  440 /*
  441  * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
  442  */
  443 
  444 void
  445 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
  446 {
  447         struct uvm_object * const uobj = uvm_kernel_object;
  448         const voff_t start = startva - vm_map_min(kernel_map);
  449         const voff_t end = endva - vm_map_min(kernel_map);
  450         struct vm_page *pg;
  451         voff_t curoff, nextoff;
  452         int swpgonlydelta = 0;
  453         UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
  454 
  455         KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
  456         KASSERT(startva < endva);
  457         KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
  458 
  459         rw_enter(uobj->vmobjlock, RW_WRITER);
  460         pmap_remove(pmap_kernel(), startva, endva);
  461         for (curoff = start; curoff < end; curoff = nextoff) {
  462                 nextoff = curoff + PAGE_SIZE;
  463                 pg = uvm_pagelookup(uobj, curoff);
  464                 if (pg != NULL && pg->flags & PG_BUSY) {
  465                         uvm_pagewait(pg, uobj->vmobjlock, "km_pgrm");
  466                         rw_enter(uobj->vmobjlock, RW_WRITER);
  467                         nextoff = curoff;
  468                         continue;
  469                 }
  470 
  471                 /*
  472                  * free the swap slot, then the page.
  473                  */
  474 
  475                 if (pg == NULL &&
  476                     uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
  477                         swpgonlydelta++;
  478                 }
  479                 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
  480                 if (pg != NULL) {
  481                         uvm_pagefree(pg);
  482                 }
  483         }
  484         rw_exit(uobj->vmobjlock);
  485 
  486         if (swpgonlydelta > 0) {
  487                 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
  488                 atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
  489         }
  490 }
  491 
  492 
  493 /*
  494  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
  495  *    regions.
  496  *
  497  * => when you unmap a part of anonymous kernel memory you want to toss
  498  *    the pages right away.    (this is called from uvm_unmap_...).
  499  * => none of the pages will ever be busy, and none of them will ever
  500  *    be on the active or inactive queues (because they have no object).
  501  */
  502 
  503 void
  504 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
  505 {
  506 #define __PGRM_BATCH 16
  507         struct vm_page *pg;
  508         paddr_t pa[__PGRM_BATCH];
  509         int npgrm, i;
  510         vaddr_t va, batch_vastart;
  511 
  512         UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
  513 
  514         KASSERT(VM_MAP_IS_KERNEL(map));
  515         KASSERTMSG(vm_map_min(map) <= start,
  516             "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
  517             " (size=%#"PRIxVSIZE")",
  518             vm_map_min(map), start, end - start);
  519         KASSERT(start < end);
  520         KASSERT(end <= vm_map_max(map));
  521 
  522         for (va = start; va < end;) {
  523                 batch_vastart = va;
  524                 /* create a batch of at most __PGRM_BATCH pages to free */
  525                 for (i = 0;
  526                      i < __PGRM_BATCH && va < end;
  527                      va += PAGE_SIZE) {
  528                         if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
  529                                 continue;
  530                         }
  531                         i++;
  532                 }
  533                 npgrm = i;
  534                 /* now remove the mappings */
  535                 pmap_kremove(batch_vastart, va - batch_vastart);
  536                 /* and free the pages */
  537                 for (i = 0; i < npgrm; i++) {
  538                         pg = PHYS_TO_VM_PAGE(pa[i]);
  539                         KASSERT(pg);
  540                         KASSERT(pg->uobject == NULL && pg->uanon == NULL);
  541                         KASSERT((pg->flags & PG_BUSY) == 0);
  542                         uvm_pagefree(pg);
  543                 }
  544         }
  545 #undef __PGRM_BATCH
  546 }
  547 
  548 #if defined(DEBUG)
  549 void
  550 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
  551 {
  552         vaddr_t va;
  553         UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
  554 
  555         KDASSERT(VM_MAP_IS_KERNEL(map));
  556         KDASSERT(vm_map_min(map) <= start);
  557         KDASSERT(start < end);
  558         KDASSERT(end <= vm_map_max(map));
  559 
  560         for (va = start; va < end; va += PAGE_SIZE) {
  561                 paddr_t pa;
  562 
  563                 if (pmap_extract(pmap_kernel(), va, &pa)) {
  564                         panic("uvm_km_check_empty: va %p has pa %#llx",
  565                             (void *)va, (long long)pa);
  566                 }
  567                 /*
  568                  * kernel_object should not have pages for the corresponding
  569                  * region.  check it.
  570                  *
  571                  * why trylock?  because:
  572                  * - caller might not want to block.
  573                  * - we can recurse when allocating radix_node for
  574                  *   kernel_object.
  575                  */
  576                 if (rw_tryenter(uvm_kernel_object->vmobjlock, RW_READER)) {
  577                         struct vm_page *pg;
  578 
  579                         pg = uvm_pagelookup(uvm_kernel_object,
  580                             va - vm_map_min(kernel_map));
  581                         rw_exit(uvm_kernel_object->vmobjlock);
  582                         if (pg) {
  583                                 panic("uvm_km_check_empty: "
  584                                     "has page hashed at %p",
  585                                     (const void *)va);
  586                         }
  587                 }
  588         }
  589 }
  590 #endif /* defined(DEBUG) */
  591 
  592 /*
  593  * uvm_km_alloc: allocate an area of kernel memory.
  594  *
  595  * => NOTE: we can return 0 even if we can wait if there is not enough
  596  *      free VM space in the map... caller should be prepared to handle
  597  *      this case.
  598  * => we return KVA of memory allocated
  599  */
  600 
  601 vaddr_t
  602 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
  603 {
  604         vaddr_t kva, loopva;
  605         vaddr_t offset;
  606         vsize_t loopsize;
  607         struct vm_page *pg;
  608         struct uvm_object *obj;
  609         int pgaflags;
  610         vm_prot_t prot, vaprot;
  611         UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
  612 
  613         KASSERT(vm_map_pmap(map) == pmap_kernel());
  614         KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
  615                 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
  616                 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
  617         KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
  618         KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
  619 
  620         /*
  621          * setup for call
  622          */
  623 
  624         kva = vm_map_min(map);  /* hint */
  625         size = round_page(size);
  626         obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
  627         UVMHIST_LOG(maphist,"  (map=%#jx, obj=%#jx, size=%#jx, flags=%#jx)",
  628             (uintptr_t)map, (uintptr_t)obj, size, flags);
  629 
  630         /*
  631          * allocate some virtual space
  632          */
  633 
  634         vaprot = (flags & UVM_KMF_EXEC) ? UVM_PROT_ALL : UVM_PROT_RW;
  635         if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
  636             align, UVM_MAPFLAG(vaprot, UVM_PROT_ALL, UVM_INH_NONE,
  637             UVM_ADV_RANDOM,
  638             (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
  639              | UVM_KMF_COLORMATCH)))) != 0)) {
  640                 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
  641                 return(0);
  642         }
  643 
  644         /*
  645          * if all we wanted was VA, return now
  646          */
  647 
  648         if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
  649                 UVMHIST_LOG(maphist,"<- done valloc (kva=%#jx)", kva,0,0,0);
  650                 return(kva);
  651         }
  652 
  653         /*
  654          * recover object offset from virtual address
  655          */
  656 
  657         offset = kva - vm_map_min(kernel_map);
  658         UVMHIST_LOG(maphist, "  kva=%#jx, offset=%#jx", kva, offset,0,0);
  659 
  660         /*
  661          * now allocate and map in the memory... note that we are the only ones
  662          * whom should ever get a handle on this area of VM.
  663          */
  664 
  665         loopva = kva;
  666         loopsize = size;
  667 
  668         pgaflags = UVM_FLAG_COLORMATCH;
  669         if (flags & UVM_KMF_NOWAIT)
  670                 pgaflags |= UVM_PGA_USERESERVE;
  671         if (flags & UVM_KMF_ZERO)
  672                 pgaflags |= UVM_PGA_ZERO;
  673         prot = VM_PROT_READ | VM_PROT_WRITE;
  674         if (flags & UVM_KMF_EXEC)
  675                 prot |= VM_PROT_EXECUTE;
  676         while (loopsize) {
  677                 KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
  678                     "loopva=%#"PRIxVADDR, loopva);
  679 
  680                 pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
  681 #ifdef UVM_KM_VMFREELIST
  682                    UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
  683 #else
  684                    UVM_PGA_STRAT_NORMAL, 0
  685 #endif
  686                    );
  687 
  688                 /*
  689                  * out of memory?
  690                  */
  691 
  692                 if (__predict_false(pg == NULL)) {
  693                         if ((flags & UVM_KMF_NOWAIT) ||
  694                             ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
  695                                 /* free everything! */
  696                                 uvm_km_free(map, kva, size,
  697                                     flags & UVM_KMF_TYPEMASK);
  698                                 return (0);
  699                         } else {
  700                                 uvm_wait("km_getwait2");        /* sleep here */
  701                                 continue;
  702                         }
  703                 }
  704 
  705                 pg->flags &= ~PG_BUSY;  /* new page */
  706                 UVM_PAGE_OWN(pg, NULL);
  707 
  708                 /*
  709                  * map it in
  710                  */
  711 
  712                 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
  713                     prot, PMAP_KMPAGE);
  714                 loopva += PAGE_SIZE;
  715                 offset += PAGE_SIZE;
  716                 loopsize -= PAGE_SIZE;
  717         }
  718 
  719         pmap_update(pmap_kernel());
  720 
  721         if ((flags & UVM_KMF_ZERO) == 0) {
  722                 kmsan_orig((void *)kva, size, KMSAN_TYPE_UVM, __RET_ADDR);
  723                 kmsan_mark((void *)kva, size, KMSAN_STATE_UNINIT);
  724         }
  725 
  726         UVMHIST_LOG(maphist,"<- done (kva=%#jx)", kva,0,0,0);
  727         return(kva);
  728 }
  729 
  730 /*
  731  * uvm_km_protect: change the protection of an allocated area
  732  */
  733 
  734 int
  735 uvm_km_protect(struct vm_map *map, vaddr_t addr, vsize_t size, vm_prot_t prot)
  736 {
  737         return uvm_map_protect(map, addr, addr + round_page(size), prot, false);
  738 }
  739 
  740 /*
  741  * uvm_km_free: free an area of kernel memory
  742  */
  743 
  744 void
  745 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
  746 {
  747         UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
  748 
  749         KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
  750                 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
  751                 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
  752         KASSERT((addr & PAGE_MASK) == 0);
  753         KASSERT(vm_map_pmap(map) == pmap_kernel());
  754 
  755         size = round_page(size);
  756 
  757         if (flags & UVM_KMF_PAGEABLE) {
  758                 uvm_km_pgremove(addr, addr + size);
  759         } else if (flags & UVM_KMF_WIRED) {
  760                 /*
  761                  * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
  762                  * remove it after.  See comment below about KVA visibility.
  763                  */
  764                 uvm_km_pgremove_intrsafe(map, addr, addr + size);
  765         }
  766 
  767         /*
  768          * Note: uvm_unmap_remove() calls pmap_update() for us, before
  769          * KVA becomes globally available.
  770          */
  771 
  772         uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
  773 }
  774 
  775 /* Sanity; must specify both or none. */
  776 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
  777     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
  778 #error Must specify MAP and UNMAP together.
  779 #endif
  780 
  781 #if defined(PMAP_ALLOC_POOLPAGE) && \
  782     !defined(PMAP_MAP_POOLPAGE) && !defined(PMAP_UNMAP_POOLPAGE)
  783 #error Must specify ALLOC with MAP and UNMAP
  784 #endif
  785 
  786 int
  787 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
  788     vmem_addr_t *addr)
  789 {
  790         struct vm_page *pg;
  791         vmem_addr_t va;
  792         int rc;
  793         vaddr_t loopva;
  794         vsize_t loopsize;
  795 
  796         size = round_page(size);
  797 
  798 #if defined(PMAP_MAP_POOLPAGE)
  799         if (size == PAGE_SIZE) {
  800 again:
  801 #ifdef PMAP_ALLOC_POOLPAGE
  802                 pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
  803                    0 : UVM_PGA_USERESERVE);
  804 #else
  805                 pg = uvm_pagealloc(NULL, 0, NULL,
  806                    (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
  807 #endif /* PMAP_ALLOC_POOLPAGE */
  808                 if (__predict_false(pg == NULL)) {
  809                         if (flags & VM_SLEEP) {
  810                                 uvm_wait("plpg");
  811                                 goto again;
  812                         }
  813                         return ENOMEM;
  814                 }
  815                 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
  816                 KASSERT(va != 0);
  817                 *addr = va;
  818                 return 0;
  819         }
  820 #endif /* PMAP_MAP_POOLPAGE */
  821 
  822         rc = vmem_alloc(vm, size, flags, &va);
  823         if (rc != 0)
  824                 return rc;
  825 
  826 #ifdef PMAP_GROWKERNEL
  827         /*
  828          * These VA allocations happen independently of uvm_map
  829          * so this allocation must not extend beyond the current limit.
  830          */
  831         KASSERTMSG(uvm_maxkaddr >= va + size,
  832             "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
  833             uvm_maxkaddr, va, size);
  834 #endif
  835 
  836         loopva = va;
  837         loopsize = size;
  838 
  839         while (loopsize) {
  840                 paddr_t pa __diagused;
  841                 KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
  842                     "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
  843                     " pa=%#"PRIxPADDR" vmem=%p",
  844                     loopva, loopsize, pa, vm);
  845 
  846                 pg = uvm_pagealloc(NULL, loopva, NULL,
  847                     UVM_FLAG_COLORMATCH
  848                     | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
  849                 if (__predict_false(pg == NULL)) {
  850                         if (flags & VM_SLEEP) {
  851                                 uvm_wait("plpg");
  852                                 continue;
  853                         } else {
  854                                 uvm_km_pgremove_intrsafe(kernel_map, va,
  855                                     va + size);
  856                                 vmem_free(vm, va, size);
  857                                 return ENOMEM;
  858                         }
  859                 }
  860 
  861                 pg->flags &= ~PG_BUSY;  /* new page */
  862                 UVM_PAGE_OWN(pg, NULL);
  863                 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
  864                     VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
  865 
  866                 loopva += PAGE_SIZE;
  867                 loopsize -= PAGE_SIZE;
  868         }
  869         pmap_update(pmap_kernel());
  870 
  871         *addr = va;
  872 
  873         return 0;
  874 }
  875 
  876 void
  877 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
  878 {
  879 
  880         size = round_page(size);
  881 #if defined(PMAP_UNMAP_POOLPAGE)
  882         if (size == PAGE_SIZE) {
  883                 paddr_t pa;
  884 
  885                 pa = PMAP_UNMAP_POOLPAGE(addr);
  886                 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
  887                 return;
  888         }
  889 #endif /* PMAP_UNMAP_POOLPAGE */
  890         uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
  891         pmap_update(pmap_kernel());
  892 
  893         vmem_free(vm, addr, size);
  894 }
  895 
  896 bool
  897 uvm_km_va_starved_p(void)
  898 {
  899         vmem_size_t total;
  900         vmem_size_t free;
  901 
  902         if (kmem_arena == NULL)
  903                 return false;
  904 
  905         total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
  906         free = vmem_size(kmem_arena, VMEM_FREE);
  907 
  908         return (free < (total / 10));
  909 }

Cache object: 01a47146f241b63572a67f888af12397


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.