The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/uvm/uvm_km.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: uvm_km.c,v 1.77.2.1 2005/12/06 20:00:12 riz Exp $      */
    2 
    3 /*
    4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
    5  * Copyright (c) 1991, 1993, The Regents of the University of California.
    6  *
    7  * All rights reserved.
    8  *
    9  * This code is derived from software contributed to Berkeley by
   10  * The Mach Operating System project at Carnegie-Mellon University.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. All advertising materials mentioning features or use of this software
   21  *    must display the following acknowledgement:
   22  *      This product includes software developed by Charles D. Cranor,
   23  *      Washington University, the University of California, Berkeley and
   24  *      its contributors.
   25  * 4. Neither the name of the University nor the names of its contributors
   26  *    may be used to endorse or promote products derived from this software
   27  *    without specific prior written permission.
   28  *
   29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   39  * SUCH DAMAGE.
   40  *
   41  *      @(#)vm_kern.c   8.3 (Berkeley) 1/12/94
   42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
   43  *
   44  *
   45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   46  * All rights reserved.
   47  *
   48  * Permission to use, copy, modify and distribute this software and
   49  * its documentation is hereby granted, provided that both the copyright
   50  * notice and this permission notice appear in all copies of the
   51  * software, derivative works or modified versions, and any portions
   52  * thereof, and that both notices appear in supporting documentation.
   53  *
   54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   57  *
   58  * Carnegie Mellon requests users of this software to return to
   59  *
   60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   61  *  School of Computer Science
   62  *  Carnegie Mellon University
   63  *  Pittsburgh PA 15213-3890
   64  *
   65  * any improvements or extensions that they make and grant Carnegie the
   66  * rights to redistribute these changes.
   67  */
   68 
   69 /*
   70  * uvm_km.c: handle kernel memory allocation and management
   71  */
   72 
   73 /*
   74  * overview of kernel memory management:
   75  *
   76  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
   77  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
   78  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
   79  *
   80  * the kernel_map has several "submaps."   submaps can only appear in
   81  * the kernel_map (user processes can't use them).   submaps "take over"
   82  * the management of a sub-range of the kernel's address space.  submaps
   83  * are typically allocated at boot time and are never released.   kernel
   84  * virtual address space that is mapped by a submap is locked by the
   85  * submap's lock -- not the kernel_map's lock.
   86  *
   87  * thus, the useful feature of submaps is that they allow us to break
   88  * up the locking and protection of the kernel address space into smaller
   89  * chunks.
   90  *
   91  * the vm system has several standard kernel submaps, including:
   92  *   kmem_map => contains only wired kernel memory for the kernel
   93  *              malloc.   *** access to kmem_map must be protected
   94  *              by splvm() because we are allowed to call malloc()
   95  *              at interrupt time ***
   96  *   mb_map => memory for large mbufs,  *** protected by splvm ***
   97  *   pager_map => used to map "buf" structures into kernel space
   98  *   exec_map => used during exec to handle exec args
   99  *   etc...
  100  *
  101  * the kernel allocates its private memory out of special uvm_objects whose
  102  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
  103  * are "special" and never die).   all kernel objects should be thought of
  104  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
  105  * object is equal to the size of kernel virtual address space (i.e. the
  106  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
  107  *
  108  * most kernel private memory lives in kernel_object.   the only exception
  109  * to this is for memory that belongs to submaps that must be protected
  110  * by splvm().  pages in these submaps are not assigned to an object.
  111  *
  112  * note that just because a kernel object spans the entire kernel virutal
  113  * address space doesn't mean that it has to be mapped into the entire space.
  114  * large chunks of a kernel object's space go unused either because
  115  * that area of kernel VM is unmapped, or there is some other type of
  116  * object mapped into that range (e.g. a vnode).    for submap's kernel
  117  * objects, the only part of the object that can ever be populated is the
  118  * offsets that are managed by the submap.
  119  *
  120  * note that the "offset" in a kernel object is always the kernel virtual
  121  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
  122  * example:
  123  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
  124  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
  125  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
  126  *   then that means that the page at offset 0x235000 in kernel_object is
  127  *   mapped at 0xf8235000.
  128  *
  129  * kernel object have one other special property: when the kernel virtual
  130  * memory mapping them is unmapped, the backing memory in the object is
  131  * freed right away.   this is done with the uvm_km_pgremove() function.
  132  * this has to be done because there is no backing store for kernel pages
  133  * and no need to save them after they are no longer referenced.
  134  */
  135 
  136 #include <sys/cdefs.h>
  137 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.77.2.1 2005/12/06 20:00:12 riz Exp $");
  138 
  139 #include "opt_uvmhist.h"
  140 
  141 #include <sys/param.h>
  142 #include <sys/malloc.h>
  143 #include <sys/systm.h>
  144 #include <sys/proc.h>
  145 #include <sys/pool.h>
  146 
  147 #include <uvm/uvm.h>
  148 
  149 /*
  150  * global data structures
  151  */
  152 
  153 struct vm_map *kernel_map = NULL;
  154 
  155 /*
  156  * local data structues
  157  */
  158 
  159 static struct vm_map_kernel     kernel_map_store;
  160 static struct vm_map_entry      kernel_first_mapent_store;
  161 
  162 #if !defined(PMAP_MAP_POOLPAGE)
  163 
  164 /*
  165  * kva cache
  166  *
  167  * XXX maybe it's better to do this at the uvm_map layer.
  168  */
  169 
  170 #define KM_VACACHE_SIZE (32 * PAGE_SIZE) /* XXX tune */
  171 
  172 static void *km_vacache_alloc(struct pool *, int);
  173 static void km_vacache_free(struct pool *, void *);
  174 static void km_vacache_init(struct vm_map *, const char *, size_t);
  175 
  176 /* XXX */
  177 #define KM_VACACHE_POOL_TO_MAP(pp) \
  178         ((struct vm_map *)((char *)(pp) - \
  179             offsetof(struct vm_map_kernel, vmk_vacache)))
  180 
  181 static void *
  182 km_vacache_alloc(struct pool *pp, int flags)
  183 {
  184         vaddr_t va;
  185         size_t size;
  186         struct vm_map *map;
  187 #if defined(DEBUG)
  188         vaddr_t loopva;
  189 #endif
  190         size = pp->pr_alloc->pa_pagesz;
  191 
  192         map = KM_VACACHE_POOL_TO_MAP(pp);
  193 
  194         va = vm_map_min(map); /* hint */
  195         if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
  196             UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
  197             UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
  198             ((flags & PR_WAITOK) ? 0 : UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
  199                 return NULL;
  200 
  201 #if defined(DEBUG)
  202         for (loopva = va; loopva < va + size; loopva += PAGE_SIZE) {
  203                 if (pmap_extract(pmap_kernel(), loopva, NULL))
  204                         panic("km_vacache_free: has mapping");
  205         }
  206 #endif
  207 
  208         return (void *)va;
  209 }
  210 
  211 static void
  212 km_vacache_free(struct pool *pp, void *v)
  213 {
  214         vaddr_t va = (vaddr_t)v;
  215         size_t size = pp->pr_alloc->pa_pagesz;
  216         struct vm_map *map;
  217 #if defined(DEBUG)
  218         vaddr_t loopva;
  219 
  220         for (loopva = va; loopva < va + size; loopva += PAGE_SIZE) {
  221                 if (pmap_extract(pmap_kernel(), loopva, NULL))
  222                         panic("km_vacache_free: has mapping");
  223         }
  224 #endif
  225         map = KM_VACACHE_POOL_TO_MAP(pp);
  226         uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM);
  227 }
  228 
  229 /*
  230  * km_vacache_init: initialize kva cache.
  231  */
  232 
  233 static void
  234 km_vacache_init(struct vm_map *map, const char *name, size_t size)
  235 {
  236         struct vm_map_kernel *vmk;
  237         struct pool *pp;
  238         struct pool_allocator *pa;
  239 
  240         KASSERT(VM_MAP_IS_KERNEL(map));
  241         KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
  242 
  243         vmk = vm_map_to_kernel(map);
  244         pp = &vmk->vmk_vacache;
  245         pa = &vmk->vmk_vacache_allocator;
  246         memset(pa, 0, sizeof(*pa));
  247         pa->pa_alloc = km_vacache_alloc;
  248         pa->pa_free = km_vacache_free;
  249         pa->pa_pagesz = (unsigned int)size;
  250         pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa);
  251 
  252         /* XXX for now.. */
  253         pool_sethiwat(pp, 0);
  254 }
  255 
  256 void
  257 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
  258 {
  259 
  260         map->flags |= VM_MAP_VACACHE;
  261         if (size == 0)
  262                 size = KM_VACACHE_SIZE;
  263         km_vacache_init(map, name, size);
  264 }
  265 
  266 #else /* !defined(PMAP_MAP_POOLPAGE) */
  267 
  268 void
  269 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
  270 {
  271 
  272         /* nothing */
  273 }
  274 
  275 #endif /* !defined(PMAP_MAP_POOLPAGE) */
  276 
  277 /*
  278  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
  279  * KVM already allocated for text, data, bss, and static data structures).
  280  *
  281  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
  282  *    we assume that [min -> start] has already been allocated and that
  283  *    "end" is the end.
  284  */
  285 
  286 void
  287 uvm_km_init(start, end)
  288         vaddr_t start, end;
  289 {
  290         vaddr_t base = VM_MIN_KERNEL_ADDRESS;
  291 
  292         /*
  293          * next, init kernel memory objects.
  294          */
  295 
  296         /* kernel_object: for pageable anonymous kernel memory */
  297         uao_init();
  298         uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
  299                                  VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
  300 
  301         /*
  302          * init the map and reserve any space that might already
  303          * have been allocated kernel space before installing.
  304          */
  305 
  306         uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
  307         kernel_map_store.vmk_map.pmap = pmap_kernel();
  308         if (start != base) {
  309                 int error;
  310                 struct uvm_map_args args;
  311 
  312                 error = uvm_map_prepare(&kernel_map_store.vmk_map,
  313                     base, start - base,
  314                     NULL, UVM_UNKNOWN_OFFSET, 0,
  315                     UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
  316                                 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
  317                 if (!error) {
  318                         kernel_first_mapent_store.flags =
  319                             UVM_MAP_KERNEL | UVM_MAP_FIRST;
  320                         error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
  321                             &kernel_first_mapent_store);
  322                 }
  323 
  324                 if (error)
  325                         panic(
  326                             "uvm_km_init: could not reserve space for kernel");
  327         }
  328 
  329         /*
  330          * install!
  331          */
  332 
  333         kernel_map = &kernel_map_store.vmk_map;
  334         uvm_km_vacache_init(kernel_map, "kvakernel", 0);
  335 }
  336 
  337 /*
  338  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
  339  * is allocated all references to that area of VM must go through it.  this
  340  * allows the locking of VAs in kernel_map to be broken up into regions.
  341  *
  342  * => if `fixed' is true, *min specifies where the region described
  343  *      by the submap must start
  344  * => if submap is non NULL we use that as the submap, otherwise we
  345  *      alloc a new map
  346  */
  347 struct vm_map *
  348 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
  349         struct vm_map *map;
  350         vaddr_t *min, *max;             /* IN/OUT, OUT */
  351         vsize_t size;
  352         int flags;
  353         boolean_t fixed;
  354         struct vm_map_kernel *submap;
  355 {
  356         int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
  357 
  358         KASSERT(vm_map_pmap(map) == pmap_kernel());
  359 
  360         size = round_page(size);        /* round up to pagesize */
  361 
  362         /*
  363          * first allocate a blank spot in the parent map
  364          */
  365 
  366         if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
  367             UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
  368             UVM_ADV_RANDOM, mapflags)) != 0) {
  369                panic("uvm_km_suballoc: unable to allocate space in parent map");
  370         }
  371 
  372         /*
  373          * set VM bounds (min is filled in by uvm_map)
  374          */
  375 
  376         *max = *min + size;
  377 
  378         /*
  379          * add references to pmap and create or init the submap
  380          */
  381 
  382         pmap_reference(vm_map_pmap(map));
  383         if (submap == NULL) {
  384                 submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
  385                 if (submap == NULL)
  386                         panic("uvm_km_suballoc: unable to create submap");
  387         }
  388         uvm_map_setup_kernel(submap, *min, *max, flags);
  389         submap->vmk_map.pmap = vm_map_pmap(map);
  390 
  391         /*
  392          * now let uvm_map_submap plug in it...
  393          */
  394 
  395         if (uvm_map_submap(map, *min, *max, &submap->vmk_map) != 0)
  396                 panic("uvm_km_suballoc: submap allocation failed");
  397 
  398         return(&submap->vmk_map);
  399 }
  400 
  401 /*
  402  * uvm_km_pgremove: remove pages from a kernel uvm_object.
  403  *
  404  * => when you unmap a part of anonymous kernel memory you want to toss
  405  *    the pages right away.    (this gets called from uvm_unmap_...).
  406  */
  407 
  408 void
  409 uvm_km_pgremove(uobj, start, end)
  410         struct uvm_object *uobj;
  411         vaddr_t start, end;
  412 {
  413         struct vm_page *pg;
  414         voff_t curoff, nextoff;
  415         int swpgonlydelta = 0;
  416         UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
  417 
  418         KASSERT(uobj->pgops == &aobj_pager);
  419         simple_lock(&uobj->vmobjlock);
  420 
  421         for (curoff = start; curoff < end; curoff = nextoff) {
  422                 nextoff = curoff + PAGE_SIZE;
  423                 pg = uvm_pagelookup(uobj, curoff);
  424                 if (pg != NULL && pg->flags & PG_BUSY) {
  425                         pg->flags |= PG_WANTED;
  426                         UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
  427                                     "km_pgrm", 0);
  428                         simple_lock(&uobj->vmobjlock);
  429                         nextoff = curoff;
  430                         continue;
  431                 }
  432 
  433                 /*
  434                  * free the swap slot, then the page.
  435                  */
  436 
  437                 if (pg == NULL &&
  438                     uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
  439                         swpgonlydelta++;
  440                 }
  441                 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
  442                 if (pg != NULL) {
  443                         uvm_lock_pageq();
  444                         uvm_pagefree(pg);
  445                         uvm_unlock_pageq();
  446                 }
  447         }
  448         simple_unlock(&uobj->vmobjlock);
  449 
  450         if (swpgonlydelta > 0) {
  451                 simple_lock(&uvm.swap_data_lock);
  452                 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
  453                 uvmexp.swpgonly -= swpgonlydelta;
  454                 simple_unlock(&uvm.swap_data_lock);
  455         }
  456 }
  457 
  458 
  459 /*
  460  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
  461  *    maps
  462  *
  463  * => when you unmap a part of anonymous kernel memory you want to toss
  464  *    the pages right away.    (this is called from uvm_unmap_...).
  465  * => none of the pages will ever be busy, and none of them will ever
  466  *    be on the active or inactive queues (because they have no object).
  467  */
  468 
  469 void
  470 uvm_km_pgremove_intrsafe(start, end)
  471         vaddr_t start, end;
  472 {
  473         struct vm_page *pg;
  474         paddr_t pa;
  475         UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
  476 
  477         for (; start < end; start += PAGE_SIZE) {
  478                 if (!pmap_extract(pmap_kernel(), start, &pa)) {
  479                         continue;
  480                 }
  481                 pg = PHYS_TO_VM_PAGE(pa);
  482                 KASSERT(pg);
  483                 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
  484                 uvm_pagefree(pg);
  485         }
  486 }
  487 
  488 
  489 /*
  490  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
  491  *
  492  * => we map wired memory into the specified map using the obj passed in
  493  * => NOTE: we can return NULL even if we can wait if there is not enough
  494  *      free VM space in the map... caller should be prepared to handle
  495  *      this case.
  496  * => we return KVA of memory allocated
  497  * => align,prefer - passed on to uvm_map()
  498  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
  499  *      lock the map
  500  */
  501 
  502 vaddr_t
  503 uvm_km_kmemalloc1(map, obj, size, align, prefer, flags)
  504         struct vm_map *map;
  505         struct uvm_object *obj;
  506         vsize_t size;
  507         vsize_t align;
  508         voff_t prefer;
  509         int flags;
  510 {
  511         vaddr_t kva, loopva;
  512         vaddr_t offset;
  513         vsize_t loopsize;
  514         struct vm_page *pg;
  515         UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
  516 
  517         UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
  518                     map, obj, size, flags);
  519         KASSERT(vm_map_pmap(map) == pmap_kernel());
  520 
  521         /*
  522          * setup for call
  523          */
  524 
  525         size = round_page(size);
  526         kva = vm_map_min(map);  /* hint */
  527 
  528         /*
  529          * allocate some virtual space
  530          */
  531 
  532         if (__predict_false(uvm_map(map, &kva, size, obj, prefer, align,
  533                 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
  534                             UVM_ADV_RANDOM,
  535                             (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))
  536                             | UVM_FLAG_QUANTUM))
  537                         != 0)) {
  538                 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
  539                 return(0);
  540         }
  541 
  542         /*
  543          * if all we wanted was VA, return now
  544          */
  545 
  546         if (flags & UVM_KMF_VALLOC) {
  547                 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
  548                 return(kva);
  549         }
  550 
  551         /*
  552          * recover object offset from virtual address
  553          */
  554 
  555         offset = kva - vm_map_min(kernel_map);
  556         UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
  557 
  558         /*
  559          * now allocate and map in the memory... note that we are the only ones
  560          * whom should ever get a handle on this area of VM.
  561          */
  562 
  563         loopva = kva;
  564         loopsize = size;
  565         while (loopsize) {
  566                 if (obj) {
  567                         simple_lock(&obj->vmobjlock);
  568                 }
  569                 pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
  570                 if (__predict_true(pg != NULL)) {
  571                         pg->flags &= ~PG_BUSY;  /* new page */
  572                         UVM_PAGE_OWN(pg, NULL);
  573                 }
  574                 if (obj) {
  575                         simple_unlock(&obj->vmobjlock);
  576                 }
  577 
  578                 /*
  579                  * out of memory?
  580                  */
  581 
  582                 if (__predict_false(pg == NULL)) {
  583                         if ((flags & UVM_KMF_NOWAIT) ||
  584                             ((flags & UVM_KMF_CANFAIL) && uvm_swapisfull())) {
  585                                 /* free everything! */
  586                                 uvm_unmap1(map, kva, kva + size,
  587                                     UVM_FLAG_QUANTUM);
  588                                 return (0);
  589                         } else {
  590                                 uvm_wait("km_getwait2");        /* sleep here */
  591                                 continue;
  592                         }
  593                 }
  594 
  595                 /*
  596                  * map it in
  597                  */
  598 
  599                 if (obj == NULL) {
  600                         pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
  601                             VM_PROT_READ | VM_PROT_WRITE);
  602                 } else {
  603                         pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
  604                             UVM_PROT_ALL,
  605                             PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
  606                 }
  607                 loopva += PAGE_SIZE;
  608                 offset += PAGE_SIZE;
  609                 loopsize -= PAGE_SIZE;
  610         }
  611 
  612         pmap_update(pmap_kernel());
  613 
  614         UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
  615         return(kva);
  616 }
  617 
  618 /*
  619  * uvm_km_free: free an area of kernel memory
  620  */
  621 
  622 void
  623 uvm_km_free(map, addr, size)
  624         struct vm_map *map;
  625         vaddr_t addr;
  626         vsize_t size;
  627 {
  628         uvm_unmap1(map, trunc_page(addr), round_page(addr+size),
  629             UVM_FLAG_QUANTUM);
  630 }
  631 
  632 /*
  633  * uvm_km_alloc1: allocate wired down memory in the kernel map.
  634  *
  635  * => we can sleep if needed
  636  */
  637 
  638 vaddr_t
  639 uvm_km_alloc1(map, size, zeroit)
  640         struct vm_map *map;
  641         vsize_t size;
  642         boolean_t zeroit;
  643 {
  644         vaddr_t kva, loopva, offset;
  645         struct vm_page *pg;
  646         UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
  647 
  648         UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
  649         KASSERT(vm_map_pmap(map) == pmap_kernel());
  650 
  651         size = round_page(size);
  652         kva = vm_map_min(map);          /* hint */
  653 
  654         /*
  655          * allocate some virtual space
  656          */
  657 
  658         if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
  659               UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
  660                                               UVM_INH_NONE, UVM_ADV_RANDOM,
  661                                               UVM_FLAG_QUANTUM)) != 0)) {
  662                 UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
  663                 return(0);
  664         }
  665 
  666         /*
  667          * recover object offset from virtual address
  668          */
  669 
  670         offset = kva - vm_map_min(kernel_map);
  671         UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
  672 
  673         /*
  674          * now allocate the memory.
  675          */
  676 
  677         loopva = kva;
  678         while (size) {
  679                 simple_lock(&uvm.kernel_object->vmobjlock);
  680                 KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
  681                 pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
  682                 if (pg) {
  683                         pg->flags &= ~PG_BUSY;
  684                         UVM_PAGE_OWN(pg, NULL);
  685                 }
  686                 simple_unlock(&uvm.kernel_object->vmobjlock);
  687                 if (pg == NULL) {
  688                         uvm_wait("km_alloc1w");
  689                         continue;
  690                 }
  691                 pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
  692                     UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
  693                 loopva += PAGE_SIZE;
  694                 offset += PAGE_SIZE;
  695                 size -= PAGE_SIZE;
  696         }
  697         pmap_update(map->pmap);
  698 
  699         /*
  700          * zero on request (note that "size" is now zero due to the above loop
  701          * so we need to subtract kva from loopva to reconstruct the size).
  702          */
  703 
  704         if (zeroit)
  705                 memset((caddr_t)kva, 0, loopva - kva);
  706         UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
  707         return(kva);
  708 }
  709 
  710 /*
  711  * uvm_km_valloc1: allocate zero-fill memory in the kernel's address space
  712  *
  713  * => memory is not allocated until fault time
  714  * => the align, prefer and flags parameters are passed on to uvm_map().
  715  *
  716  * Note: this function is also the backend for these macros:
  717  *      uvm_km_valloc
  718  *      uvm_km_valloc_wait
  719  *      uvm_km_valloc_prefer
  720  *      uvm_km_valloc_prefer_wait
  721  *      uvm_km_valloc_align
  722  */
  723 
  724 vaddr_t
  725 uvm_km_valloc1(map, size, align, prefer, flags)
  726         struct vm_map *map;
  727         vsize_t size;
  728         vsize_t align;
  729         voff_t prefer;
  730         uvm_flag_t flags;
  731 {
  732         vaddr_t kva;
  733         int error;
  734         UVMHIST_FUNC("uvm_km_valloc1"); UVMHIST_CALLED(maphist);
  735 
  736         UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x, align=0x%x, prefer=0x%x)",
  737                     map, size, align, prefer);
  738 
  739         KASSERT(vm_map_pmap(map) == pmap_kernel());
  740 
  741         size = round_page(size);
  742         /*
  743          * Check if requested size is larger than the map, in which
  744          * case we can't succeed.
  745          */
  746         if (size > vm_map_max(map) - vm_map_min(map))
  747                 return (0);
  748 
  749         flags |= UVM_FLAG_QUANTUM;
  750         if ((flags & UVM_KMF_NOWAIT) == 0) /* XXX */
  751                 flags |= UVM_FLAG_WAITVA;  /* XXX */
  752 
  753         kva = vm_map_min(map);          /* hint */
  754 
  755         /*
  756          * allocate some virtual space.   will be demand filled
  757          * by kernel_object.
  758          */
  759 
  760         error = uvm_map(map, &kva, size, uvm.kernel_object,
  761             prefer, align, UVM_MAPFLAG(UVM_PROT_ALL,
  762             UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, flags));
  763 
  764         KASSERT(error == 0 || (flags & UVM_KMF_NOWAIT) != 0);
  765 
  766         if (error) {
  767                 return 0;
  768         }
  769 
  770         UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
  771 
  772         return (kva);
  773 }
  774 
  775 /* Function definitions for binary compatibility */
  776 vaddr_t
  777 uvm_km_kmemalloc(struct vm_map *map, struct uvm_object *obj,
  778                  vsize_t sz, int flags)
  779 {
  780         return uvm_km_kmemalloc1(map, obj, sz, 0, UVM_UNKNOWN_OFFSET, flags);
  781 }
  782 
  783 vaddr_t uvm_km_valloc(struct vm_map *map, vsize_t sz)
  784 {
  785         return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
  786 }
  787 
  788 vaddr_t uvm_km_valloc_align(struct vm_map *map, vsize_t sz, vsize_t align)
  789 {
  790         return uvm_km_valloc1(map, sz, align, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
  791 }
  792 
  793 vaddr_t uvm_km_valloc_prefer_wait(struct vm_map *map, vsize_t sz, voff_t prefer)
  794 {
  795         return uvm_km_valloc1(map, sz, 0, prefer, 0);
  796 }
  797 
  798 vaddr_t uvm_km_valloc_wait(struct vm_map *map, vsize_t sz)
  799 {
  800         return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, 0);
  801 }
  802 
  803 /* Sanity; must specify both or none. */
  804 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
  805     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
  806 #error Must specify MAP and UNMAP together.
  807 #endif
  808 
  809 /*
  810  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
  811  *
  812  * => if the pmap specifies an alternate mapping method, we use it.
  813  */
  814 
  815 /* ARGSUSED */
  816 vaddr_t
  817 uvm_km_alloc_poolpage_cache(map, obj, waitok)
  818         struct vm_map *map;
  819         struct uvm_object *obj;
  820         boolean_t waitok;
  821 {
  822 #if defined(PMAP_MAP_POOLPAGE)
  823         return uvm_km_alloc_poolpage1(map, obj, waitok);
  824 #else
  825         struct vm_page *pg;
  826         struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
  827         vaddr_t va;
  828         int s = 0xdeadbeaf; /* XXX: gcc */
  829         const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
  830 
  831         if ((map->flags & VM_MAP_VACACHE) == 0)
  832                 return uvm_km_alloc_poolpage1(map, obj, waitok);
  833 
  834         if (intrsafe)
  835                 s = splvm();
  836         va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
  837         if (intrsafe)
  838                 splx(s);
  839         if (va == 0)
  840                 return 0;
  841         KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
  842 again:
  843         pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
  844         if (__predict_false(pg == NULL)) {
  845                 if (waitok) {
  846                         uvm_wait("plpg");
  847                         goto again;
  848                 } else {
  849                         if (intrsafe)
  850                                 s = splvm();
  851                         pool_put(pp, (void *)va);
  852                         if (intrsafe)
  853                                 splx(s);
  854                         return 0;
  855                 }
  856         }
  857         pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
  858             VM_PROT_READ|VM_PROT_WRITE);
  859         pmap_update(pmap_kernel());
  860 
  861         return va;
  862 #endif /* PMAP_MAP_POOLPAGE */
  863 }
  864 
  865 vaddr_t
  866 uvm_km_alloc_poolpage1(map, obj, waitok)
  867         struct vm_map *map;
  868         struct uvm_object *obj;
  869         boolean_t waitok;
  870 {
  871 #if defined(PMAP_MAP_POOLPAGE)
  872         struct vm_page *pg;
  873         vaddr_t va;
  874 
  875  again:
  876         pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
  877         if (__predict_false(pg == NULL)) {
  878                 if (waitok) {
  879                         uvm_wait("plpg");
  880                         goto again;
  881                 } else
  882                         return (0);
  883         }
  884         va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
  885         if (__predict_false(va == 0))
  886                 uvm_pagefree(pg);
  887         return (va);
  888 #else
  889         vaddr_t va;
  890         int s = 0xdeadbeaf; /* XXX: gcc */
  891         const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
  892 
  893         if (intrsafe)
  894                 s = splvm();
  895         va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
  896             waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
  897         if (intrsafe)
  898                 splx(s);
  899         return (va);
  900 #endif /* PMAP_MAP_POOLPAGE */
  901 }
  902 
  903 /*
  904  * uvm_km_free_poolpage: free a previously allocated pool page
  905  *
  906  * => if the pmap specifies an alternate unmapping method, we use it.
  907  */
  908 
  909 /* ARGSUSED */
  910 void
  911 uvm_km_free_poolpage_cache(map, addr)
  912         struct vm_map *map;
  913         vaddr_t addr;
  914 {
  915 #if defined(PMAP_UNMAP_POOLPAGE)
  916         uvm_km_free_poolpage1(map, addr);
  917 #else
  918         struct pool *pp;
  919         int s = 0xdeadbeaf; /* XXX: gcc */
  920         const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
  921 
  922         if ((map->flags & VM_MAP_VACACHE) == 0) {
  923                 uvm_km_free_poolpage1(map, addr);
  924                 return;
  925         }
  926 
  927         KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
  928         uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
  929         pmap_kremove(addr, PAGE_SIZE);
  930 #if defined(DEBUG)
  931         pmap_update(pmap_kernel());
  932 #endif
  933         KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
  934         pp = &vm_map_to_kernel(map)->vmk_vacache;
  935         if (intrsafe)
  936                 s = splvm();
  937         pool_put(pp, (void *)addr);
  938         if (intrsafe)
  939                 splx(s);
  940 #endif
  941 }
  942 
  943 /* ARGSUSED */
  944 void
  945 uvm_km_free_poolpage1(map, addr)
  946         struct vm_map *map;
  947         vaddr_t addr;
  948 {
  949 #if defined(PMAP_UNMAP_POOLPAGE)
  950         paddr_t pa;
  951 
  952         pa = PMAP_UNMAP_POOLPAGE(addr);
  953         uvm_pagefree(PHYS_TO_VM_PAGE(pa));
  954 #else
  955         int s = 0xdeadbeaf; /* XXX: gcc */
  956         const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
  957 
  958         if (intrsafe)
  959                 s = splvm();
  960         uvm_km_free(map, addr, PAGE_SIZE);
  961         if (intrsafe)
  962                 splx(s);
  963 #endif /* PMAP_UNMAP_POOLPAGE */
  964 }

Cache object: 13ce0f520bb4c1c560c9e48f679a329b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.