The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/uvm/uvm_km.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: uvm_km.c,v 1.101.4.2 2009/04/19 15:43:14 snj Exp $     */
    2 
    3 /*
    4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
    5  * Copyright (c) 1991, 1993, The Regents of the University of California.
    6  *
    7  * All rights reserved.
    8  *
    9  * This code is derived from software contributed to Berkeley by
   10  * The Mach Operating System project at Carnegie-Mellon University.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. All advertising materials mentioning features or use of this software
   21  *    must display the following acknowledgement:
   22  *      This product includes software developed by Charles D. Cranor,
   23  *      Washington University, the University of California, Berkeley and
   24  *      its contributors.
   25  * 4. Neither the name of the University nor the names of its contributors
   26  *    may be used to endorse or promote products derived from this software
   27  *    without specific prior written permission.
   28  *
   29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   39  * SUCH DAMAGE.
   40  *
   41  *      @(#)vm_kern.c   8.3 (Berkeley) 1/12/94
   42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
   43  *
   44  *
   45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   46  * All rights reserved.
   47  *
   48  * Permission to use, copy, modify and distribute this software and
   49  * its documentation is hereby granted, provided that both the copyright
   50  * notice and this permission notice appear in all copies of the
   51  * software, derivative works or modified versions, and any portions
   52  * thereof, and that both notices appear in supporting documentation.
   53  *
   54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   57  *
   58  * Carnegie Mellon requests users of this software to return to
   59  *
   60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   61  *  School of Computer Science
   62  *  Carnegie Mellon University
   63  *  Pittsburgh PA 15213-3890
   64  *
   65  * any improvements or extensions that they make and grant Carnegie the
   66  * rights to redistribute these changes.
   67  */
   68 
   69 /*
   70  * uvm_km.c: handle kernel memory allocation and management
   71  */
   72 
   73 /*
   74  * overview of kernel memory management:
   75  *
   76  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
   77  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
   78  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
   79  *
   80  * the kernel_map has several "submaps."   submaps can only appear in
   81  * the kernel_map (user processes can't use them).   submaps "take over"
   82  * the management of a sub-range of the kernel's address space.  submaps
   83  * are typically allocated at boot time and are never released.   kernel
   84  * virtual address space that is mapped by a submap is locked by the
   85  * submap's lock -- not the kernel_map's lock.
   86  *
   87  * thus, the useful feature of submaps is that they allow us to break
   88  * up the locking and protection of the kernel address space into smaller
   89  * chunks.
   90  *
   91  * the vm system has several standard kernel submaps, including:
   92  *   kmem_map => contains only wired kernel memory for the kernel
   93  *              malloc.
   94  *   mb_map => memory for large mbufs,
   95  *   pager_map => used to map "buf" structures into kernel space
   96  *   exec_map => used during exec to handle exec args
   97  *   etc...
   98  *
   99  * the kernel allocates its private memory out of special uvm_objects whose
  100  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
  101  * are "special" and never die).   all kernel objects should be thought of
  102  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
  103  * object is equal to the size of kernel virtual address space (i.e. the
  104  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
  105  *
  106  * note that just because a kernel object spans the entire kernel virtual
  107  * address space doesn't mean that it has to be mapped into the entire space.
  108  * large chunks of a kernel object's space go unused either because
  109  * that area of kernel VM is unmapped, or there is some other type of
  110  * object mapped into that range (e.g. a vnode).    for submap's kernel
  111  * objects, the only part of the object that can ever be populated is the
  112  * offsets that are managed by the submap.
  113  *
  114  * note that the "offset" in a kernel object is always the kernel virtual
  115  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
  116  * example:
  117  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
  118  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
  119  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
  120  *   then that means that the page at offset 0x235000 in kernel_object is
  121  *   mapped at 0xf8235000.
  122  *
  123  * kernel object have one other special property: when the kernel virtual
  124  * memory mapping them is unmapped, the backing memory in the object is
  125  * freed right away.   this is done with the uvm_km_pgremove() function.
  126  * this has to be done because there is no backing store for kernel pages
  127  * and no need to save them after they are no longer referenced.
  128  */
  129 
  130 #include <sys/cdefs.h>
  131 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.101.4.2 2009/04/19 15:43:14 snj Exp $");
  132 
  133 #include "opt_uvmhist.h"
  134 
  135 #include <sys/param.h>
  136 #include <sys/malloc.h>
  137 #include <sys/systm.h>
  138 #include <sys/proc.h>
  139 #include <sys/pool.h>
  140 
  141 #include <uvm/uvm.h>
  142 
  143 /*
  144  * global data structures
  145  */
  146 
  147 struct vm_map *kernel_map = NULL;
  148 
  149 /*
  150  * local data structues
  151  */
  152 
  153 static struct vm_map_kernel     kernel_map_store;
  154 static struct vm_map_entry      kernel_first_mapent_store;
  155 
  156 #if !defined(PMAP_MAP_POOLPAGE)
  157 
  158 /*
  159  * kva cache
  160  *
  161  * XXX maybe it's better to do this at the uvm_map layer.
  162  */
  163 
  164 #define KM_VACACHE_SIZE (32 * PAGE_SIZE) /* XXX tune */
  165 
  166 static void *km_vacache_alloc(struct pool *, int);
  167 static void km_vacache_free(struct pool *, void *);
  168 static void km_vacache_init(struct vm_map *, const char *, size_t);
  169 
  170 /* XXX */
  171 #define KM_VACACHE_POOL_TO_MAP(pp) \
  172         ((struct vm_map *)((char *)(pp) - \
  173             offsetof(struct vm_map_kernel, vmk_vacache)))
  174 
  175 static void *
  176 km_vacache_alloc(struct pool *pp, int flags)
  177 {
  178         vaddr_t va;
  179         size_t size;
  180         struct vm_map *map;
  181         size = pp->pr_alloc->pa_pagesz;
  182 
  183         map = KM_VACACHE_POOL_TO_MAP(pp);
  184 
  185         va = vm_map_min(map); /* hint */
  186         if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
  187             UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
  188             UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
  189             ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA :
  190             UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
  191                 return NULL;
  192 
  193         return (void *)va;
  194 }
  195 
  196 static void
  197 km_vacache_free(struct pool *pp, void *v)
  198 {
  199         vaddr_t va = (vaddr_t)v;
  200         size_t size = pp->pr_alloc->pa_pagesz;
  201         struct vm_map *map;
  202 
  203         map = KM_VACACHE_POOL_TO_MAP(pp);
  204         uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
  205 }
  206 
  207 /*
  208  * km_vacache_init: initialize kva cache.
  209  */
  210 
  211 static void
  212 km_vacache_init(struct vm_map *map, const char *name, size_t size)
  213 {
  214         struct vm_map_kernel *vmk;
  215         struct pool *pp;
  216         struct pool_allocator *pa;
  217         int ipl;
  218 
  219         KASSERT(VM_MAP_IS_KERNEL(map));
  220         KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
  221 
  222 
  223         vmk = vm_map_to_kernel(map);
  224         pp = &vmk->vmk_vacache;
  225         pa = &vmk->vmk_vacache_allocator;
  226         memset(pa, 0, sizeof(*pa));
  227         pa->pa_alloc = km_vacache_alloc;
  228         pa->pa_free = km_vacache_free;
  229         pa->pa_pagesz = (unsigned int)size;
  230         pa->pa_backingmap = map;
  231         pa->pa_backingmapptr = NULL;
  232 
  233         if ((map->flags & VM_MAP_INTRSAFE) != 0)
  234                 ipl = IPL_VM;
  235         else
  236                 ipl = IPL_NONE;
  237 
  238         pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa,
  239             ipl);
  240 }
  241 
  242 void
  243 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
  244 {
  245 
  246         map->flags |= VM_MAP_VACACHE;
  247         if (size == 0)
  248                 size = KM_VACACHE_SIZE;
  249         km_vacache_init(map, name, size);
  250 }
  251 
  252 #else /* !defined(PMAP_MAP_POOLPAGE) */
  253 
  254 void
  255 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
  256 {
  257 
  258         /* nothing */
  259 }
  260 
  261 #endif /* !defined(PMAP_MAP_POOLPAGE) */
  262 
  263 void
  264 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
  265 {
  266         struct vm_map_kernel *vmk = vm_map_to_kernel(map);
  267 
  268         callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL);
  269 }
  270 
  271 /*
  272  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
  273  * KVM already allocated for text, data, bss, and static data structures).
  274  *
  275  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
  276  *    we assume that [vmin -> start] has already been allocated and that
  277  *    "end" is the end.
  278  */
  279 
  280 void
  281 uvm_km_init(vaddr_t start, vaddr_t end)
  282 {
  283         vaddr_t base = VM_MIN_KERNEL_ADDRESS;
  284 
  285         /*
  286          * next, init kernel memory objects.
  287          */
  288 
  289         /* kernel_object: for pageable anonymous kernel memory */
  290         uao_init();
  291         uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
  292                                  VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
  293 
  294         /*
  295          * init the map and reserve any space that might already
  296          * have been allocated kernel space before installing.
  297          */
  298 
  299         uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
  300         kernel_map_store.vmk_map.pmap = pmap_kernel();
  301         if (start != base) {
  302                 int error;
  303                 struct uvm_map_args args;
  304 
  305                 error = uvm_map_prepare(&kernel_map_store.vmk_map,
  306                     base, start - base,
  307                     NULL, UVM_UNKNOWN_OFFSET, 0,
  308                     UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
  309                                 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
  310                 if (!error) {
  311                         kernel_first_mapent_store.flags =
  312                             UVM_MAP_KERNEL | UVM_MAP_FIRST;
  313                         error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
  314                             &kernel_first_mapent_store);
  315                 }
  316 
  317                 if (error)
  318                         panic(
  319                             "uvm_km_init: could not reserve space for kernel");
  320         }
  321 
  322         /*
  323          * install!
  324          */
  325 
  326         kernel_map = &kernel_map_store.vmk_map;
  327         uvm_km_vacache_init(kernel_map, "kvakernel", 0);
  328 }
  329 
  330 /*
  331  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
  332  * is allocated all references to that area of VM must go through it.  this
  333  * allows the locking of VAs in kernel_map to be broken up into regions.
  334  *
  335  * => if `fixed' is true, *vmin specifies where the region described
  336  *      by the submap must start
  337  * => if submap is non NULL we use that as the submap, otherwise we
  338  *      alloc a new map
  339  */
  340 
  341 struct vm_map *
  342 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
  343     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
  344     struct vm_map_kernel *submap)
  345 {
  346         int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
  347 
  348         KASSERT(vm_map_pmap(map) == pmap_kernel());
  349 
  350         size = round_page(size);        /* round up to pagesize */
  351         size += uvm_mapent_overhead(size, flags);
  352 
  353         /*
  354          * first allocate a blank spot in the parent map
  355          */
  356 
  357         if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
  358             UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
  359             UVM_ADV_RANDOM, mapflags)) != 0) {
  360                panic("uvm_km_suballoc: unable to allocate space in parent map");
  361         }
  362 
  363         /*
  364          * set VM bounds (vmin is filled in by uvm_map)
  365          */
  366 
  367         *vmax = *vmin + size;
  368 
  369         /*
  370          * add references to pmap and create or init the submap
  371          */
  372 
  373         pmap_reference(vm_map_pmap(map));
  374         if (submap == NULL) {
  375                 submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
  376                 if (submap == NULL)
  377                         panic("uvm_km_suballoc: unable to create submap");
  378         }
  379         uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
  380         submap->vmk_map.pmap = vm_map_pmap(map);
  381 
  382         /*
  383          * now let uvm_map_submap plug in it...
  384          */
  385 
  386         if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
  387                 panic("uvm_km_suballoc: submap allocation failed");
  388 
  389         return(&submap->vmk_map);
  390 }
  391 
  392 /*
  393  * uvm_km_pgremove: remove pages from a kernel uvm_object.
  394  *
  395  * => when you unmap a part of anonymous kernel memory you want to toss
  396  *    the pages right away.    (this gets called from uvm_unmap_...).
  397  */
  398 
  399 void
  400 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
  401 {
  402         struct uvm_object * const uobj = uvm_kernel_object;
  403         const voff_t start = startva - vm_map_min(kernel_map);
  404         const voff_t end = endva - vm_map_min(kernel_map);
  405         struct vm_page *pg;
  406         voff_t curoff, nextoff;
  407         int swpgonlydelta = 0;
  408         UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
  409 
  410         KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
  411         KASSERT(startva < endva);
  412         KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
  413 
  414         mutex_enter(&uobj->vmobjlock);
  415 
  416         for (curoff = start; curoff < end; curoff = nextoff) {
  417                 nextoff = curoff + PAGE_SIZE;
  418                 pg = uvm_pagelookup(uobj, curoff);
  419                 if (pg != NULL && pg->flags & PG_BUSY) {
  420                         pg->flags |= PG_WANTED;
  421                         UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
  422                                     "km_pgrm", 0);
  423                         mutex_enter(&uobj->vmobjlock);
  424                         nextoff = curoff;
  425                         continue;
  426                 }
  427 
  428                 /*
  429                  * free the swap slot, then the page.
  430                  */
  431 
  432                 if (pg == NULL &&
  433                     uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
  434                         swpgonlydelta++;
  435                 }
  436                 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
  437                 if (pg != NULL) {
  438                         mutex_enter(&uvm_pageqlock);
  439                         uvm_pagefree(pg);
  440                         mutex_exit(&uvm_pageqlock);
  441                 }
  442         }
  443         mutex_exit(&uobj->vmobjlock);
  444 
  445         if (swpgonlydelta > 0) {
  446                 mutex_enter(&uvm_swap_data_lock);
  447                 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
  448                 uvmexp.swpgonly -= swpgonlydelta;
  449                 mutex_exit(&uvm_swap_data_lock);
  450         }
  451 }
  452 
  453 
  454 /*
  455  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
  456  *    regions.
  457  *
  458  * => when you unmap a part of anonymous kernel memory you want to toss
  459  *    the pages right away.    (this is called from uvm_unmap_...).
  460  * => none of the pages will ever be busy, and none of them will ever
  461  *    be on the active or inactive queues (because they have no object).
  462  */
  463 
  464 void
  465 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
  466 {
  467         struct vm_page *pg;
  468         paddr_t pa;
  469         UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
  470 
  471         KASSERT(VM_MAP_IS_KERNEL(map));
  472         KASSERT(vm_map_min(map) <= start);
  473         KASSERT(start < end);
  474         KASSERT(end <= vm_map_max(map));
  475 
  476         for (; start < end; start += PAGE_SIZE) {
  477                 if (!pmap_extract(pmap_kernel(), start, &pa)) {
  478                         continue;
  479                 }
  480                 pg = PHYS_TO_VM_PAGE(pa);
  481                 KASSERT(pg);
  482                 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
  483                 uvm_pagefree(pg);
  484         }
  485 }
  486 
  487 #if defined(DEBUG)
  488 void
  489 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
  490 {
  491         struct vm_page *pg;
  492         vaddr_t va;
  493         paddr_t pa;
  494 
  495         KDASSERT(VM_MAP_IS_KERNEL(map));
  496         KDASSERT(vm_map_min(map) <= start);
  497         KDASSERT(start < end);
  498         KDASSERT(end <= vm_map_max(map));
  499 
  500         for (va = start; va < end; va += PAGE_SIZE) {
  501                 if (pmap_extract(pmap_kernel(), va, &pa)) {
  502                         panic("uvm_km_check_empty: va %p has pa 0x%llx",
  503                             (void *)va, (long long)pa);
  504                 }
  505                 if ((map->flags & VM_MAP_INTRSAFE) == 0) {
  506                         mutex_enter(&uvm_kernel_object->vmobjlock);
  507                         pg = uvm_pagelookup(uvm_kernel_object,
  508                             va - vm_map_min(kernel_map));
  509                         mutex_exit(&uvm_kernel_object->vmobjlock);
  510                         if (pg) {
  511                                 panic("uvm_km_check_empty: "
  512                                     "has page hashed at %p", (const void *)va);
  513                         }
  514                 }
  515         }
  516 }
  517 #endif /* defined(DEBUG) */
  518 
  519 /*
  520  * uvm_km_alloc: allocate an area of kernel memory.
  521  *
  522  * => NOTE: we can return 0 even if we can wait if there is not enough
  523  *      free VM space in the map... caller should be prepared to handle
  524  *      this case.
  525  * => we return KVA of memory allocated
  526  */
  527 
  528 vaddr_t
  529 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
  530 {
  531         vaddr_t kva, loopva;
  532         vaddr_t offset;
  533         vsize_t loopsize;
  534         struct vm_page *pg;
  535         struct uvm_object *obj;
  536         int pgaflags;
  537         vm_prot_t prot;
  538         UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
  539 
  540         KASSERT(vm_map_pmap(map) == pmap_kernel());
  541         KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
  542                 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
  543                 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
  544 
  545         /*
  546          * setup for call
  547          */
  548 
  549         kva = vm_map_min(map);  /* hint */
  550         size = round_page(size);
  551         obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
  552         UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
  553                     map, obj, size, flags);
  554 
  555         /*
  556          * allocate some virtual space
  557          */
  558 
  559         if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
  560             align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
  561             UVM_ADV_RANDOM,
  562             (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
  563             | UVM_FLAG_QUANTUM)) != 0)) {
  564                 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
  565                 return(0);
  566         }
  567 
  568         /*
  569          * if all we wanted was VA, return now
  570          */
  571 
  572         if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
  573                 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
  574                 return(kva);
  575         }
  576 
  577         /*
  578          * recover object offset from virtual address
  579          */
  580 
  581         offset = kva - vm_map_min(kernel_map);
  582         UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
  583 
  584         /*
  585          * now allocate and map in the memory... note that we are the only ones
  586          * whom should ever get a handle on this area of VM.
  587          */
  588 
  589         loopva = kva;
  590         loopsize = size;
  591 
  592         pgaflags = 0;
  593         if (flags & UVM_KMF_NOWAIT)
  594                 pgaflags |= UVM_PGA_USERESERVE;
  595         if (flags & UVM_KMF_ZERO)
  596                 pgaflags |= UVM_PGA_ZERO;
  597         prot = VM_PROT_READ | VM_PROT_WRITE;
  598         if (flags & UVM_KMF_EXEC)
  599                 prot |= VM_PROT_EXECUTE;
  600         while (loopsize) {
  601                 KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
  602 
  603                 pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
  604 
  605                 /*
  606                  * out of memory?
  607                  */
  608 
  609                 if (__predict_false(pg == NULL)) {
  610                         if ((flags & UVM_KMF_NOWAIT) ||
  611                             ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
  612                                 /* free everything! */
  613                                 uvm_km_free(map, kva, size,
  614                                     flags & UVM_KMF_TYPEMASK);
  615                                 return (0);
  616                         } else {
  617                                 uvm_wait("km_getwait2");        /* sleep here */
  618                                 continue;
  619                         }
  620                 }
  621 
  622                 pg->flags &= ~PG_BUSY;  /* new page */
  623                 UVM_PAGE_OWN(pg, NULL);
  624 
  625                 /*
  626                  * map it in
  627                  */
  628 
  629                 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), prot|PMAP_KMPAGE);
  630                 loopva += PAGE_SIZE;
  631                 offset += PAGE_SIZE;
  632                 loopsize -= PAGE_SIZE;
  633         }
  634 
  635         pmap_update(pmap_kernel());
  636 
  637         UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
  638         return(kva);
  639 }
  640 
  641 /*
  642  * uvm_km_free: free an area of kernel memory
  643  */
  644 
  645 void
  646 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
  647 {
  648 
  649         KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
  650                 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
  651                 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
  652         KASSERT((addr & PAGE_MASK) == 0);
  653         KASSERT(vm_map_pmap(map) == pmap_kernel());
  654 
  655         size = round_page(size);
  656 
  657         if (flags & UVM_KMF_PAGEABLE) {
  658                 uvm_km_pgremove(addr, addr + size);
  659                 pmap_remove(pmap_kernel(), addr, addr + size);
  660         } else if (flags & UVM_KMF_WIRED) {
  661                 uvm_km_pgremove_intrsafe(map, addr, addr + size);
  662                 pmap_kremove(addr, size);
  663         }
  664 
  665         /*
  666          * uvm_unmap_remove calls pmap_update for us.
  667          */
  668 
  669         uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
  670 }
  671 
  672 /* Sanity; must specify both or none. */
  673 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
  674     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
  675 #error Must specify MAP and UNMAP together.
  676 #endif
  677 
  678 /*
  679  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
  680  *
  681  * => if the pmap specifies an alternate mapping method, we use it.
  682  */
  683 
  684 /* ARGSUSED */
  685 vaddr_t
  686 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
  687 {
  688 #if defined(PMAP_MAP_POOLPAGE)
  689         return uvm_km_alloc_poolpage(map, waitok);
  690 #else
  691         struct vm_page *pg;
  692         struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
  693         vaddr_t va;
  694 
  695         if ((map->flags & VM_MAP_VACACHE) == 0)
  696                 return uvm_km_alloc_poolpage(map, waitok);
  697 
  698         va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
  699         if (va == 0)
  700                 return 0;
  701         KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
  702 again:
  703         pg = uvm_pagealloc(NULL, 0, NULL, waitok ? 0 : UVM_PGA_USERESERVE);
  704         if (__predict_false(pg == NULL)) {
  705                 if (waitok) {
  706                         uvm_wait("plpg");
  707                         goto again;
  708                 } else {
  709                         pool_put(pp, (void *)va);
  710                         return 0;
  711                 }
  712         }
  713         pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
  714             VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
  715         pmap_update(pmap_kernel());
  716 
  717         return va;
  718 #endif /* PMAP_MAP_POOLPAGE */
  719 }
  720 
  721 vaddr_t
  722 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
  723 {
  724 #if defined(PMAP_MAP_POOLPAGE)
  725         struct vm_page *pg;
  726         vaddr_t va;
  727 
  728  again:
  729         pg = uvm_pagealloc(NULL, 0, NULL, waitok ? 0 : UVM_PGA_USERESERVE);
  730         if (__predict_false(pg == NULL)) {
  731                 if (waitok) {
  732                         uvm_wait("plpg");
  733                         goto again;
  734                 } else
  735                         return (0);
  736         }
  737         va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
  738         if (__predict_false(va == 0))
  739                 uvm_pagefree(pg);
  740         return (va);
  741 #else
  742         vaddr_t va;
  743 
  744         va = uvm_km_alloc(map, PAGE_SIZE, 0,
  745             (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
  746         return (va);
  747 #endif /* PMAP_MAP_POOLPAGE */
  748 }
  749 
  750 /*
  751  * uvm_km_free_poolpage: free a previously allocated pool page
  752  *
  753  * => if the pmap specifies an alternate unmapping method, we use it.
  754  */
  755 
  756 /* ARGSUSED */
  757 void
  758 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
  759 {
  760 #if defined(PMAP_UNMAP_POOLPAGE)
  761         uvm_km_free_poolpage(map, addr);
  762 #else
  763         struct pool *pp;
  764 
  765         if ((map->flags & VM_MAP_VACACHE) == 0) {
  766                 uvm_km_free_poolpage(map, addr);
  767                 return;
  768         }
  769 
  770         KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
  771         uvm_km_pgremove_intrsafe(map, addr, addr + PAGE_SIZE);
  772         pmap_kremove(addr, PAGE_SIZE);
  773 #if defined(DEBUG)
  774         pmap_update(pmap_kernel());
  775 #endif
  776         KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
  777         pp = &vm_map_to_kernel(map)->vmk_vacache;
  778         pool_put(pp, (void *)addr);
  779 #endif
  780 }
  781 
  782 /* ARGSUSED */
  783 void
  784 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
  785 {
  786 #if defined(PMAP_UNMAP_POOLPAGE)
  787         paddr_t pa;
  788 
  789         pa = PMAP_UNMAP_POOLPAGE(addr);
  790         uvm_pagefree(PHYS_TO_VM_PAGE(pa));
  791 #else
  792         uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
  793 #endif /* PMAP_UNMAP_POOLPAGE */
  794 }

Cache object: d8fc689627d47b1bf7208889f9cce1d2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.