FreeBSD/Linux Kernel Cross Reference
sys/uvm/uvm_swap.c
1 /* $NetBSD: uvm_swap.c,v 1.85.2.1 2004/05/15 13:48:49 tron Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.85.2.1 2004/05/15 13:48:49 tron Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/conf.h>
46 #include <sys/proc.h>
47 #include <sys/namei.h>
48 #include <sys/disklabel.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/vnode.h>
53 #include <sys/file.h>
54 #include <sys/extent.h>
55 #include <sys/mount.h>
56 #include <sys/pool.h>
57 #include <sys/sa.h>
58 #include <sys/syscallargs.h>
59 #include <sys/swap.h>
60
61 #include <uvm/uvm.h>
62
63 #include <miscfs/specfs/specdev.h>
64
65 /*
66 * uvm_swap.c: manage configuration and i/o to swap space.
67 */
68
69 /*
70 * swap space is managed in the following way:
71 *
72 * each swap partition or file is described by a "swapdev" structure.
73 * each "swapdev" structure contains a "swapent" structure which contains
74 * information that is passed up to the user (via system calls).
75 *
76 * each swap partition is assigned a "priority" (int) which controls
77 * swap parition usage.
78 *
79 * the system maintains a global data structure describing all swap
80 * partitions/files. there is a sorted LIST of "swappri" structures
81 * which describe "swapdev"'s at that priority. this LIST is headed
82 * by the "swap_priority" global var. each "swappri" contains a
83 * CIRCLEQ of "swapdev" structures at that priority.
84 *
85 * locking:
86 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
87 * system call and prevents the swap priority list from changing
88 * while we are in the middle of a system call (e.g. SWAP_STATS).
89 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
90 * structures including the priority list, the swapdev structures,
91 * and the swapmap extent.
92 *
93 * each swap device has the following info:
94 * - swap device in use (could be disabled, preventing future use)
95 * - swap enabled (allows new allocations on swap)
96 * - map info in /dev/drum
97 * - vnode pointer
98 * for swap files only:
99 * - block size
100 * - max byte count in buffer
101 * - buffer
102 *
103 * userland controls and configures swap with the swapctl(2) system call.
104 * the sys_swapctl performs the following operations:
105 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
106 * [2] SWAP_STATS: given a pointer to an array of swapent structures
107 * (passed in via "arg") of a size passed in via "misc" ... we load
108 * the current swap config into the array. The actual work is done
109 * in the uvm_swap_stats(9) function.
110 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
111 * priority in "misc", start swapping on it.
112 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
113 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
114 * "misc")
115 */
116
117 /*
118 * swapdev: describes a single swap partition/file
119 *
120 * note the following should be true:
121 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
122 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
123 */
124 struct swapdev {
125 struct oswapent swd_ose;
126 #define swd_dev swd_ose.ose_dev /* device id */
127 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
128 #define swd_priority swd_ose.ose_priority /* our priority */
129 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
130 char *swd_path; /* saved pathname of device */
131 int swd_pathlen; /* length of pathname */
132 int swd_npages; /* #pages we can use */
133 int swd_npginuse; /* #pages in use */
134 int swd_npgbad; /* #pages bad */
135 int swd_drumoffset; /* page0 offset in drum */
136 int swd_drumsize; /* #pages in drum */
137 struct extent *swd_ex; /* extent for this swapdev */
138 char swd_exname[12]; /* name of extent above */
139 struct vnode *swd_vp; /* backing vnode */
140 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
141
142 int swd_bsize; /* blocksize (bytes) */
143 int swd_maxactive; /* max active i/o reqs */
144 struct bufq_state swd_tab; /* buffer list */
145 int swd_active; /* number of active buffers */
146 };
147
148 /*
149 * swap device priority entry; the list is kept sorted on `spi_priority'.
150 */
151 struct swappri {
152 int spi_priority; /* priority */
153 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
154 /* circleq of swapdevs at this priority */
155 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
156 };
157
158 /*
159 * The following two structures are used to keep track of data transfers
160 * on swap devices associated with regular files.
161 * NOTE: this code is more or less a copy of vnd.c; we use the same
162 * structure names here to ease porting..
163 */
164 struct vndxfer {
165 struct buf *vx_bp; /* Pointer to parent buffer */
166 struct swapdev *vx_sdp;
167 int vx_error;
168 int vx_pending; /* # of pending aux buffers */
169 int vx_flags;
170 #define VX_BUSY 1
171 #define VX_DEAD 2
172 };
173
174 struct vndbuf {
175 struct buf vb_buf;
176 struct vndxfer *vb_xfer;
177 };
178
179
180 /*
181 * We keep a of pool vndbuf's and vndxfer structures.
182 */
183 static struct pool vndxfer_pool;
184 static struct pool vndbuf_pool;
185
186 #define getvndxfer(vnx) do { \
187 int s = splbio(); \
188 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
189 splx(s); \
190 } while (/*CONSTCOND*/ 0)
191
192 #define putvndxfer(vnx) { \
193 pool_put(&vndxfer_pool, (void *)(vnx)); \
194 }
195
196 #define getvndbuf(vbp) do { \
197 int s = splbio(); \
198 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
199 splx(s); \
200 } while (/*CONSTCOND*/ 0)
201
202 #define putvndbuf(vbp) { \
203 pool_put(&vndbuf_pool, (void *)(vbp)); \
204 }
205
206 /*
207 * local variables
208 */
209 static struct extent *swapmap; /* controls the mapping of /dev/drum */
210
211 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
212
213 /* list of all active swap devices [by priority] */
214 LIST_HEAD(swap_priority, swappri);
215 static struct swap_priority swap_priority;
216
217 /* locks */
218 struct lock swap_syscall_lock;
219
220 /*
221 * prototypes
222 */
223 static struct swapdev *swapdrum_getsdp(int);
224
225 static struct swapdev *swaplist_find(struct vnode *, int);
226 static void swaplist_insert(struct swapdev *,
227 struct swappri *, int);
228 static void swaplist_trim(void);
229
230 static int swap_on(struct proc *, struct swapdev *);
231 static int swap_off(struct proc *, struct swapdev *);
232
233 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
234 static void sw_reg_iodone(struct buf *);
235 static void sw_reg_start(struct swapdev *);
236
237 static int uvm_swap_io(struct vm_page **, int, int, int);
238
239 dev_type_read(swread);
240 dev_type_write(swwrite);
241 dev_type_strategy(swstrategy);
242
243 const struct bdevsw swap_bdevsw = {
244 noopen, noclose, swstrategy, noioctl, nodump, nosize,
245 };
246
247 const struct cdevsw swap_cdevsw = {
248 nullopen, nullclose, swread, swwrite, noioctl,
249 nostop, notty, nopoll, nommap, nokqfilter
250 };
251
252 /*
253 * uvm_swap_init: init the swap system data structures and locks
254 *
255 * => called at boot time from init_main.c after the filesystems
256 * are brought up (which happens after uvm_init())
257 */
258 void
259 uvm_swap_init()
260 {
261 UVMHIST_FUNC("uvm_swap_init");
262
263 UVMHIST_CALLED(pdhist);
264 /*
265 * first, init the swap list, its counter, and its lock.
266 * then get a handle on the vnode for /dev/drum by using
267 * the its dev_t number ("swapdev", from MD conf.c).
268 */
269
270 LIST_INIT(&swap_priority);
271 uvmexp.nswapdev = 0;
272 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
273 simple_lock_init(&uvm.swap_data_lock);
274
275 if (bdevvp(swapdev, &swapdev_vp))
276 panic("uvm_swap_init: can't get vnode for swap device");
277
278 /*
279 * create swap block resource map to map /dev/drum. the range
280 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
281 * that block 0 is reserved (used to indicate an allocation
282 * failure, or no allocation).
283 */
284 swapmap = extent_create("swapmap", 1, INT_MAX,
285 M_VMSWAP, 0, 0, EX_NOWAIT);
286 if (swapmap == 0)
287 panic("uvm_swap_init: extent_create failed");
288
289 /*
290 * allocate pools for structures used for swapping to files.
291 */
292
293 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0,
294 "swp vnx", NULL);
295
296 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0,
297 "swp vnd", NULL);
298
299 /*
300 * done!
301 */
302 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
303 }
304
305 /*
306 * swaplist functions: functions that operate on the list of swap
307 * devices on the system.
308 */
309
310 /*
311 * swaplist_insert: insert swap device "sdp" into the global list
312 *
313 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
314 * => caller must provide a newly malloc'd swappri structure (we will
315 * FREE it if we don't need it... this it to prevent malloc blocking
316 * here while adding swap)
317 */
318 static void
319 swaplist_insert(sdp, newspp, priority)
320 struct swapdev *sdp;
321 struct swappri *newspp;
322 int priority;
323 {
324 struct swappri *spp, *pspp;
325 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
326
327 /*
328 * find entry at or after which to insert the new device.
329 */
330 pspp = NULL;
331 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
332 if (priority <= spp->spi_priority)
333 break;
334 pspp = spp;
335 }
336
337 /*
338 * new priority?
339 */
340 if (spp == NULL || spp->spi_priority != priority) {
341 spp = newspp; /* use newspp! */
342 UVMHIST_LOG(pdhist, "created new swappri = %d",
343 priority, 0, 0, 0);
344
345 spp->spi_priority = priority;
346 CIRCLEQ_INIT(&spp->spi_swapdev);
347
348 if (pspp)
349 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
350 else
351 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
352 } else {
353 /* we don't need a new priority structure, free it */
354 FREE(newspp, M_VMSWAP);
355 }
356
357 /*
358 * priority found (or created). now insert on the priority's
359 * circleq list and bump the total number of swapdevs.
360 */
361 sdp->swd_priority = priority;
362 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
363 uvmexp.nswapdev++;
364 }
365
366 /*
367 * swaplist_find: find and optionally remove a swap device from the
368 * global list.
369 *
370 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
371 * => we return the swapdev we found (and removed)
372 */
373 static struct swapdev *
374 swaplist_find(vp, remove)
375 struct vnode *vp;
376 boolean_t remove;
377 {
378 struct swapdev *sdp;
379 struct swappri *spp;
380
381 /*
382 * search the lists for the requested vp
383 */
384
385 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
386 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
387 if (sdp->swd_vp == vp) {
388 if (remove) {
389 CIRCLEQ_REMOVE(&spp->spi_swapdev,
390 sdp, swd_next);
391 uvmexp.nswapdev--;
392 }
393 return(sdp);
394 }
395 }
396 }
397 return (NULL);
398 }
399
400
401 /*
402 * swaplist_trim: scan priority list for empty priority entries and kill
403 * them.
404 *
405 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
406 */
407 static void
408 swaplist_trim()
409 {
410 struct swappri *spp, *nextspp;
411
412 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
413 nextspp = LIST_NEXT(spp, spi_swappri);
414 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
415 (void *)&spp->spi_swapdev)
416 continue;
417 LIST_REMOVE(spp, spi_swappri);
418 free(spp, M_VMSWAP);
419 }
420 }
421
422 /*
423 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
424 * to the "swapdev" that maps that section of the drum.
425 *
426 * => each swapdev takes one big contig chunk of the drum
427 * => caller must hold uvm.swap_data_lock
428 */
429 static struct swapdev *
430 swapdrum_getsdp(pgno)
431 int pgno;
432 {
433 struct swapdev *sdp;
434 struct swappri *spp;
435
436 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
437 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
438 if (sdp->swd_flags & SWF_FAKE)
439 continue;
440 if (pgno >= sdp->swd_drumoffset &&
441 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
442 return sdp;
443 }
444 }
445 }
446 return NULL;
447 }
448
449
450 /*
451 * sys_swapctl: main entry point for swapctl(2) system call
452 * [with two helper functions: swap_on and swap_off]
453 */
454 int
455 sys_swapctl(l, v, retval)
456 struct lwp *l;
457 void *v;
458 register_t *retval;
459 {
460 struct sys_swapctl_args /* {
461 syscallarg(int) cmd;
462 syscallarg(void *) arg;
463 syscallarg(int) misc;
464 } */ *uap = (struct sys_swapctl_args *)v;
465 struct proc *p = l->l_proc;
466 struct vnode *vp;
467 struct nameidata nd;
468 struct swappri *spp;
469 struct swapdev *sdp;
470 struct swapent *sep;
471 char userpath[PATH_MAX + 1];
472 size_t len;
473 int error, misc;
474 int priority;
475 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
476
477 misc = SCARG(uap, misc);
478
479 /*
480 * ensure serialized syscall access by grabbing the swap_syscall_lock
481 */
482 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
483
484 /*
485 * we handle the non-priv NSWAP and STATS request first.
486 *
487 * SWAP_NSWAP: return number of config'd swap devices
488 * [can also be obtained with uvmexp sysctl]
489 */
490 if (SCARG(uap, cmd) == SWAP_NSWAP) {
491 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
492 0, 0, 0);
493 *retval = uvmexp.nswapdev;
494 error = 0;
495 goto out;
496 }
497
498 /*
499 * SWAP_STATS: get stats on current # of configured swap devs
500 *
501 * note that the swap_priority list can't change as long
502 * as we are holding the swap_syscall_lock. we don't want
503 * to grab the uvm.swap_data_lock because we may fault&sleep during
504 * copyout() and we don't want to be holding that lock then!
505 */
506 if (SCARG(uap, cmd) == SWAP_STATS
507 #if defined(COMPAT_13)
508 || SCARG(uap, cmd) == SWAP_OSTATS
509 #endif
510 ) {
511 if ((size_t)misc > (size_t)uvmexp.nswapdev)
512 misc = uvmexp.nswapdev;
513 #if defined(COMPAT_13)
514 if (SCARG(uap, cmd) == SWAP_OSTATS)
515 len = sizeof(struct oswapent) * misc;
516 else
517 #endif
518 len = sizeof(struct swapent) * misc;
519 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
520
521 uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
522 error = copyout(sep, (void *)SCARG(uap, arg), len);
523
524 free(sep, M_TEMP);
525 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
526 goto out;
527 }
528 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
529 dev_t *devp = (dev_t *)SCARG(uap, arg);
530
531 error = copyout(&dumpdev, devp, sizeof(dumpdev));
532 goto out;
533 }
534
535 /*
536 * all other requests require superuser privs. verify.
537 */
538 if ((error = suser(p->p_ucred, &p->p_acflag)))
539 goto out;
540
541 /*
542 * at this point we expect a path name in arg. we will
543 * use namei() to gain a vnode reference (vref), and lock
544 * the vnode (VOP_LOCK).
545 *
546 * XXX: a NULL arg means use the root vnode pointer (e.g. for
547 * miniroot)
548 */
549 if (SCARG(uap, arg) == NULL) {
550 vp = rootvp; /* miniroot */
551 if (vget(vp, LK_EXCLUSIVE)) {
552 error = EBUSY;
553 goto out;
554 }
555 if (SCARG(uap, cmd) == SWAP_ON &&
556 copystr("miniroot", userpath, sizeof userpath, &len))
557 panic("swapctl: miniroot copy failed");
558 } else {
559 int space;
560 char *where;
561
562 if (SCARG(uap, cmd) == SWAP_ON) {
563 if ((error = copyinstr(SCARG(uap, arg), userpath,
564 sizeof userpath, &len)))
565 goto out;
566 space = UIO_SYSSPACE;
567 where = userpath;
568 } else {
569 space = UIO_USERSPACE;
570 where = (char *)SCARG(uap, arg);
571 }
572 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
573 if ((error = namei(&nd)))
574 goto out;
575 vp = nd.ni_vp;
576 }
577 /* note: "vp" is referenced and locked */
578
579 error = 0; /* assume no error */
580 switch(SCARG(uap, cmd)) {
581
582 case SWAP_DUMPDEV:
583 if (vp->v_type != VBLK) {
584 error = ENOTBLK;
585 break;
586 }
587 dumpdev = vp->v_rdev;
588 cpu_dumpconf();
589 break;
590
591 case SWAP_CTL:
592 /*
593 * get new priority, remove old entry (if any) and then
594 * reinsert it in the correct place. finally, prune out
595 * any empty priority structures.
596 */
597 priority = SCARG(uap, misc);
598 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
599 simple_lock(&uvm.swap_data_lock);
600 if ((sdp = swaplist_find(vp, 1)) == NULL) {
601 error = ENOENT;
602 } else {
603 swaplist_insert(sdp, spp, priority);
604 swaplist_trim();
605 }
606 simple_unlock(&uvm.swap_data_lock);
607 if (error)
608 free(spp, M_VMSWAP);
609 break;
610
611 case SWAP_ON:
612
613 /*
614 * check for duplicates. if none found, then insert a
615 * dummy entry on the list to prevent someone else from
616 * trying to enable this device while we are working on
617 * it.
618 */
619
620 priority = SCARG(uap, misc);
621 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
622 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
623 memset(sdp, 0, sizeof(*sdp));
624 sdp->swd_flags = SWF_FAKE;
625 sdp->swd_vp = vp;
626 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
627 bufq_alloc(&sdp->swd_tab, BUFQ_DISKSORT|BUFQ_SORT_RAWBLOCK);
628 simple_lock(&uvm.swap_data_lock);
629 if (swaplist_find(vp, 0) != NULL) {
630 error = EBUSY;
631 simple_unlock(&uvm.swap_data_lock);
632 bufq_free(&sdp->swd_tab);
633 free(sdp, M_VMSWAP);
634 free(spp, M_VMSWAP);
635 break;
636 }
637 swaplist_insert(sdp, spp, priority);
638 simple_unlock(&uvm.swap_data_lock);
639
640 sdp->swd_pathlen = len;
641 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
642 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
643 panic("swapctl: copystr");
644
645 /*
646 * we've now got a FAKE placeholder in the swap list.
647 * now attempt to enable swap on it. if we fail, undo
648 * what we've done and kill the fake entry we just inserted.
649 * if swap_on is a success, it will clear the SWF_FAKE flag
650 */
651
652 if ((error = swap_on(p, sdp)) != 0) {
653 simple_lock(&uvm.swap_data_lock);
654 (void) swaplist_find(vp, 1); /* kill fake entry */
655 swaplist_trim();
656 simple_unlock(&uvm.swap_data_lock);
657 bufq_free(&sdp->swd_tab);
658 free(sdp->swd_path, M_VMSWAP);
659 free(sdp, M_VMSWAP);
660 break;
661 }
662 break;
663
664 case SWAP_OFF:
665 simple_lock(&uvm.swap_data_lock);
666 if ((sdp = swaplist_find(vp, 0)) == NULL) {
667 simple_unlock(&uvm.swap_data_lock);
668 error = ENXIO;
669 break;
670 }
671
672 /*
673 * If a device isn't in use or enabled, we
674 * can't stop swapping from it (again).
675 */
676 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
677 simple_unlock(&uvm.swap_data_lock);
678 error = EBUSY;
679 break;
680 }
681
682 /*
683 * do the real work.
684 */
685 error = swap_off(p, sdp);
686 break;
687
688 default:
689 error = EINVAL;
690 }
691
692 /*
693 * done! release the ref gained by namei() and unlock.
694 */
695 vput(vp);
696
697 out:
698 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
699
700 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
701 return (error);
702 }
703
704 /*
705 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
706 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
707 * emulation to use it directly without going through sys_swapctl().
708 * The problem with using sys_swapctl() there is that it involves
709 * copying the swapent array to the stackgap, and this array's size
710 * is not known at build time. Hence it would not be possible to
711 * ensure it would fit in the stackgap in any case.
712 */
713 void
714 uvm_swap_stats(cmd, sep, sec, retval)
715 int cmd;
716 struct swapent *sep;
717 int sec;
718 register_t *retval;
719 {
720 struct swappri *spp;
721 struct swapdev *sdp;
722 int count = 0;
723
724 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
725 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
726 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
727 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
728 /*
729 * backwards compatibility for system call.
730 * note that we use 'struct oswapent' as an
731 * overlay into both 'struct swapdev' and
732 * the userland 'struct swapent', as we
733 * want to retain backwards compatibility
734 * with NetBSD 1.3.
735 */
736 sdp->swd_ose.ose_inuse =
737 btodb((u_int64_t)sdp->swd_npginuse <<
738 PAGE_SHIFT);
739 (void)memcpy(sep, &sdp->swd_ose,
740 sizeof(struct oswapent));
741
742 /* now copy out the path if necessary */
743 #if defined(COMPAT_13)
744 if (cmd == SWAP_STATS)
745 #endif
746 (void)memcpy(&sep->se_path, sdp->swd_path,
747 sdp->swd_pathlen);
748
749 count++;
750 #if defined(COMPAT_13)
751 if (cmd == SWAP_OSTATS)
752 sep = (struct swapent *)
753 ((struct oswapent *)sep + 1);
754 else
755 #endif
756 sep++;
757 }
758 }
759
760 *retval = count;
761 return;
762 }
763
764 /*
765 * swap_on: attempt to enable a swapdev for swapping. note that the
766 * swapdev is already on the global list, but disabled (marked
767 * SWF_FAKE).
768 *
769 * => we avoid the start of the disk (to protect disk labels)
770 * => we also avoid the miniroot, if we are swapping to root.
771 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
772 * if needed.
773 */
774 static int
775 swap_on(p, sdp)
776 struct proc *p;
777 struct swapdev *sdp;
778 {
779 static int count = 0; /* static */
780 struct vnode *vp;
781 int error, npages, nblocks, size;
782 long addr;
783 u_long result;
784 struct vattr va;
785 #ifdef NFS
786 extern int (**nfsv2_vnodeop_p)(void *);
787 #endif /* NFS */
788 const struct bdevsw *bdev;
789 dev_t dev;
790 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
791
792 /*
793 * we want to enable swapping on sdp. the swd_vp contains
794 * the vnode we want (locked and ref'd), and the swd_dev
795 * contains the dev_t of the file, if it a block device.
796 */
797
798 vp = sdp->swd_vp;
799 dev = sdp->swd_dev;
800
801 /*
802 * open the swap file (mostly useful for block device files to
803 * let device driver know what is up).
804 *
805 * we skip the open/close for root on swap because the root
806 * has already been opened when root was mounted (mountroot).
807 */
808 if (vp != rootvp) {
809 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
810 return (error);
811 }
812
813 /* XXX this only works for block devices */
814 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
815
816 /*
817 * we now need to determine the size of the swap area. for
818 * block specials we can call the d_psize function.
819 * for normal files, we must stat [get attrs].
820 *
821 * we put the result in nblks.
822 * for normal files, we also want the filesystem block size
823 * (which we get with statfs).
824 */
825 switch (vp->v_type) {
826 case VBLK:
827 bdev = bdevsw_lookup(dev);
828 if (bdev == NULL || bdev->d_psize == NULL ||
829 (nblocks = (*bdev->d_psize)(dev)) == -1) {
830 error = ENXIO;
831 goto bad;
832 }
833 break;
834
835 case VREG:
836 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
837 goto bad;
838 nblocks = (int)btodb(va.va_size);
839 if ((error =
840 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
841 goto bad;
842
843 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
844 /*
845 * limit the max # of outstanding I/O requests we issue
846 * at any one time. take it easy on NFS servers.
847 */
848 #ifdef NFS
849 if (vp->v_op == nfsv2_vnodeop_p)
850 sdp->swd_maxactive = 2; /* XXX */
851 else
852 #endif /* NFS */
853 sdp->swd_maxactive = 8; /* XXX */
854 break;
855
856 default:
857 error = ENXIO;
858 goto bad;
859 }
860
861 /*
862 * save nblocks in a safe place and convert to pages.
863 */
864
865 sdp->swd_ose.ose_nblks = nblocks;
866 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
867
868 /*
869 * for block special files, we want to make sure that leave
870 * the disklabel and bootblocks alone, so we arrange to skip
871 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
872 * note that because of this the "size" can be less than the
873 * actual number of blocks on the device.
874 */
875 if (vp->v_type == VBLK) {
876 /* we use pages 1 to (size - 1) [inclusive] */
877 size = npages - 1;
878 addr = 1;
879 } else {
880 /* we use pages 0 to (size - 1) [inclusive] */
881 size = npages;
882 addr = 0;
883 }
884
885 /*
886 * make sure we have enough blocks for a reasonable sized swap
887 * area. we want at least one page.
888 */
889
890 if (size < 1) {
891 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
892 error = EINVAL;
893 goto bad;
894 }
895
896 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
897
898 /*
899 * now we need to allocate an extent to manage this swap device
900 */
901 snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
902 count++);
903
904 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
905 sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
906 0, 0, EX_WAITOK);
907 /* allocate the `saved' region from the extent so it won't be used */
908 if (addr) {
909 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
910 panic("disklabel region");
911 }
912
913 /*
914 * if the vnode we are swapping to is the root vnode
915 * (i.e. we are swapping to the miniroot) then we want
916 * to make sure we don't overwrite it. do a statfs to
917 * find its size and skip over it.
918 */
919 if (vp == rootvp) {
920 struct mount *mp;
921 struct statfs *sp;
922 int rootblocks, rootpages;
923
924 mp = rootvnode->v_mount;
925 sp = &mp->mnt_stat;
926 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
927 /*
928 * XXX: sp->f_blocks isn't the total number of
929 * blocks in the filesystem, it's the number of
930 * data blocks. so, our rootblocks almost
931 * definitely underestimates the total size
932 * of the filesystem - how badly depends on the
933 * details of the filesystem type. there isn't
934 * an obvious way to deal with this cleanly
935 * and perfectly, so for now we just pad our
936 * rootblocks estimate with an extra 5 percent.
937 */
938 rootblocks += (rootblocks >> 5) +
939 (rootblocks >> 6) +
940 (rootblocks >> 7);
941 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
942 if (rootpages > size)
943 panic("swap_on: miniroot larger than swap?");
944
945 if (extent_alloc_region(sdp->swd_ex, addr,
946 rootpages, EX_WAITOK))
947 panic("swap_on: unable to preserve miniroot");
948
949 size -= rootpages;
950 printf("Preserved %d pages of miniroot ", rootpages);
951 printf("leaving %d pages of swap\n", size);
952 }
953
954 /*
955 * try to add anons to reflect the new swap space.
956 */
957
958 error = uvm_anon_add(size);
959 if (error) {
960 goto bad;
961 }
962
963 /*
964 * add a ref to vp to reflect usage as a swap device.
965 */
966 vref(vp);
967
968 /*
969 * now add the new swapdev to the drum and enable.
970 */
971 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
972 EX_WAITOK, &result))
973 panic("swapdrum_add");
974
975 sdp->swd_drumoffset = (int)result;
976 sdp->swd_drumsize = npages;
977 sdp->swd_npages = size;
978 simple_lock(&uvm.swap_data_lock);
979 sdp->swd_flags &= ~SWF_FAKE; /* going live */
980 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
981 uvmexp.swpages += size;
982 uvmexp.swpgavail += size;
983 simple_unlock(&uvm.swap_data_lock);
984 return (0);
985
986 /*
987 * failure: clean up and return error.
988 */
989
990 bad:
991 if (sdp->swd_ex) {
992 extent_destroy(sdp->swd_ex);
993 }
994 if (vp != rootvp) {
995 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
996 }
997 return (error);
998 }
999
1000 /*
1001 * swap_off: stop swapping on swapdev
1002 *
1003 * => swap data should be locked, we will unlock.
1004 */
1005 static int
1006 swap_off(p, sdp)
1007 struct proc *p;
1008 struct swapdev *sdp;
1009 {
1010 int npages = sdp->swd_npages;
1011
1012 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1013 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1014
1015 /* disable the swap area being removed */
1016 sdp->swd_flags &= ~SWF_ENABLE;
1017 uvmexp.swpgavail -= npages;
1018 simple_unlock(&uvm.swap_data_lock);
1019
1020 /*
1021 * the idea is to find all the pages that are paged out to this
1022 * device, and page them all in. in uvm, swap-backed pageable
1023 * memory can take two forms: aobjs and anons. call the
1024 * swapoff hook for each subsystem to bring in pages.
1025 */
1026
1027 if (uao_swap_off(sdp->swd_drumoffset,
1028 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1029 anon_swap_off(sdp->swd_drumoffset,
1030 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1031
1032 simple_lock(&uvm.swap_data_lock);
1033 sdp->swd_flags |= SWF_ENABLE;
1034 uvmexp.swpgavail += npages;
1035 simple_unlock(&uvm.swap_data_lock);
1036 return ENOMEM;
1037 }
1038 KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
1039
1040 /*
1041 * done with the vnode.
1042 * drop our ref on the vnode before calling VOP_CLOSE()
1043 * so that spec_close() can tell if this is the last close.
1044 */
1045 vrele(sdp->swd_vp);
1046 if (sdp->swd_vp != rootvp) {
1047 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1048 }
1049
1050 /* remove anons from the system */
1051 uvm_anon_remove(npages);
1052
1053 simple_lock(&uvm.swap_data_lock);
1054 uvmexp.swpages -= npages;
1055 uvmexp.swpginuse -= sdp->swd_npgbad;
1056
1057 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1058 panic("swap_off: swapdev not in list");
1059 swaplist_trim();
1060 simple_unlock(&uvm.swap_data_lock);
1061
1062 /*
1063 * free all resources!
1064 */
1065 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1066 EX_WAITOK);
1067 extent_destroy(sdp->swd_ex);
1068 bufq_free(&sdp->swd_tab);
1069 free(sdp, M_VMSWAP);
1070 return (0);
1071 }
1072
1073 /*
1074 * /dev/drum interface and i/o functions
1075 */
1076
1077 /*
1078 * swread: the read function for the drum (just a call to physio)
1079 */
1080 /*ARGSUSED*/
1081 int
1082 swread(dev, uio, ioflag)
1083 dev_t dev;
1084 struct uio *uio;
1085 int ioflag;
1086 {
1087 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1088
1089 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1090 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1091 }
1092
1093 /*
1094 * swwrite: the write function for the drum (just a call to physio)
1095 */
1096 /*ARGSUSED*/
1097 int
1098 swwrite(dev, uio, ioflag)
1099 dev_t dev;
1100 struct uio *uio;
1101 int ioflag;
1102 {
1103 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1104
1105 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1106 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1107 }
1108
1109 /*
1110 * swstrategy: perform I/O on the drum
1111 *
1112 * => we must map the i/o request from the drum to the correct swapdev.
1113 */
1114 void
1115 swstrategy(bp)
1116 struct buf *bp;
1117 {
1118 struct swapdev *sdp;
1119 struct vnode *vp;
1120 int s, pageno, bn;
1121 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1122
1123 /*
1124 * convert block number to swapdev. note that swapdev can't
1125 * be yanked out from under us because we are holding resources
1126 * in it (i.e. the blocks we are doing I/O on).
1127 */
1128 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1129 simple_lock(&uvm.swap_data_lock);
1130 sdp = swapdrum_getsdp(pageno);
1131 simple_unlock(&uvm.swap_data_lock);
1132 if (sdp == NULL) {
1133 bp->b_error = EINVAL;
1134 bp->b_flags |= B_ERROR;
1135 biodone(bp);
1136 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1137 return;
1138 }
1139
1140 /*
1141 * convert drum page number to block number on this swapdev.
1142 */
1143
1144 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1145 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1146
1147 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1148 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1149 sdp->swd_drumoffset, bn, bp->b_bcount);
1150
1151 /*
1152 * for block devices we finish up here.
1153 * for regular files we have to do more work which we delegate
1154 * to sw_reg_strategy().
1155 */
1156
1157 switch (sdp->swd_vp->v_type) {
1158 default:
1159 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1160
1161 case VBLK:
1162
1163 /*
1164 * must convert "bp" from an I/O on /dev/drum to an I/O
1165 * on the swapdev (sdp).
1166 */
1167 s = splbio();
1168 bp->b_blkno = bn; /* swapdev block number */
1169 vp = sdp->swd_vp; /* swapdev vnode pointer */
1170 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1171
1172 /*
1173 * if we are doing a write, we have to redirect the i/o on
1174 * drum's v_numoutput counter to the swapdevs.
1175 */
1176 if ((bp->b_flags & B_READ) == 0) {
1177 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1178 V_INCR_NUMOUTPUT(vp); /* put it on swapdev */
1179 }
1180
1181 /*
1182 * finally plug in swapdev vnode and start I/O
1183 */
1184 bp->b_vp = vp;
1185 splx(s);
1186 VOP_STRATEGY(vp, bp);
1187 return;
1188
1189 case VREG:
1190 /*
1191 * delegate to sw_reg_strategy function.
1192 */
1193 sw_reg_strategy(sdp, bp, bn);
1194 return;
1195 }
1196 /* NOTREACHED */
1197 }
1198
1199 /*
1200 * sw_reg_strategy: handle swap i/o to regular files
1201 */
1202 static void
1203 sw_reg_strategy(sdp, bp, bn)
1204 struct swapdev *sdp;
1205 struct buf *bp;
1206 int bn;
1207 {
1208 struct vnode *vp;
1209 struct vndxfer *vnx;
1210 daddr_t nbn;
1211 caddr_t addr;
1212 off_t byteoff;
1213 int s, off, nra, error, sz, resid;
1214 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1215
1216 /*
1217 * allocate a vndxfer head for this transfer and point it to
1218 * our buffer.
1219 */
1220 getvndxfer(vnx);
1221 vnx->vx_flags = VX_BUSY;
1222 vnx->vx_error = 0;
1223 vnx->vx_pending = 0;
1224 vnx->vx_bp = bp;
1225 vnx->vx_sdp = sdp;
1226
1227 /*
1228 * setup for main loop where we read filesystem blocks into
1229 * our buffer.
1230 */
1231 error = 0;
1232 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1233 addr = bp->b_data; /* current position in buffer */
1234 byteoff = dbtob((u_int64_t)bn);
1235
1236 for (resid = bp->b_resid; resid; resid -= sz) {
1237 struct vndbuf *nbp;
1238
1239 /*
1240 * translate byteoffset into block number. return values:
1241 * vp = vnode of underlying device
1242 * nbn = new block number (on underlying vnode dev)
1243 * nra = num blocks we can read-ahead (excludes requested
1244 * block)
1245 */
1246 nra = 0;
1247 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1248 &vp, &nbn, &nra);
1249
1250 if (error == 0 && nbn == (daddr_t)-1) {
1251 /*
1252 * this used to just set error, but that doesn't
1253 * do the right thing. Instead, it causes random
1254 * memory errors. The panic() should remain until
1255 * this condition doesn't destabilize the system.
1256 */
1257 #if 1
1258 panic("sw_reg_strategy: swap to sparse file");
1259 #else
1260 error = EIO; /* failure */
1261 #endif
1262 }
1263
1264 /*
1265 * punt if there was an error or a hole in the file.
1266 * we must wait for any i/o ops we have already started
1267 * to finish before returning.
1268 *
1269 * XXX we could deal with holes here but it would be
1270 * a hassle (in the write case).
1271 */
1272 if (error) {
1273 s = splbio();
1274 vnx->vx_error = error; /* pass error up */
1275 goto out;
1276 }
1277
1278 /*
1279 * compute the size ("sz") of this transfer (in bytes).
1280 */
1281 off = byteoff % sdp->swd_bsize;
1282 sz = (1 + nra) * sdp->swd_bsize - off;
1283 if (sz > resid)
1284 sz = resid;
1285
1286 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1287 "vp %p/%p offset 0x%x/0x%x",
1288 sdp->swd_vp, vp, byteoff, nbn);
1289
1290 /*
1291 * now get a buf structure. note that the vb_buf is
1292 * at the front of the nbp structure so that you can
1293 * cast pointers between the two structure easily.
1294 */
1295 getvndbuf(nbp);
1296 BUF_INIT(&nbp->vb_buf);
1297 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1298 nbp->vb_buf.b_bcount = sz;
1299 nbp->vb_buf.b_bufsize = sz;
1300 nbp->vb_buf.b_error = 0;
1301 nbp->vb_buf.b_data = addr;
1302 nbp->vb_buf.b_lblkno = 0;
1303 nbp->vb_buf.b_blkno = nbn + btodb(off);
1304 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1305 nbp->vb_buf.b_iodone = sw_reg_iodone;
1306 nbp->vb_buf.b_vp = vp;
1307 if (vp->v_type == VBLK) {
1308 nbp->vb_buf.b_dev = vp->v_rdev;
1309 }
1310
1311 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1312
1313 /*
1314 * Just sort by block number
1315 */
1316 s = splbio();
1317 if (vnx->vx_error != 0) {
1318 putvndbuf(nbp);
1319 goto out;
1320 }
1321 vnx->vx_pending++;
1322
1323 /* sort it in and start I/O if we are not over our limit */
1324 BUFQ_PUT(&sdp->swd_tab, &nbp->vb_buf);
1325 sw_reg_start(sdp);
1326 splx(s);
1327
1328 /*
1329 * advance to the next I/O
1330 */
1331 byteoff += sz;
1332 addr += sz;
1333 }
1334
1335 s = splbio();
1336
1337 out: /* Arrive here at splbio */
1338 vnx->vx_flags &= ~VX_BUSY;
1339 if (vnx->vx_pending == 0) {
1340 if (vnx->vx_error != 0) {
1341 bp->b_error = vnx->vx_error;
1342 bp->b_flags |= B_ERROR;
1343 }
1344 putvndxfer(vnx);
1345 biodone(bp);
1346 }
1347 splx(s);
1348 }
1349
1350 /*
1351 * sw_reg_start: start an I/O request on the requested swapdev
1352 *
1353 * => reqs are sorted by b_rawblkno (above)
1354 */
1355 static void
1356 sw_reg_start(sdp)
1357 struct swapdev *sdp;
1358 {
1359 struct buf *bp;
1360 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1361
1362 /* recursion control */
1363 if ((sdp->swd_flags & SWF_BUSY) != 0)
1364 return;
1365
1366 sdp->swd_flags |= SWF_BUSY;
1367
1368 while (sdp->swd_active < sdp->swd_maxactive) {
1369 bp = BUFQ_GET(&sdp->swd_tab);
1370 if (bp == NULL)
1371 break;
1372 sdp->swd_active++;
1373
1374 UVMHIST_LOG(pdhist,
1375 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1376 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1377 if ((bp->b_flags & B_READ) == 0)
1378 V_INCR_NUMOUTPUT(bp->b_vp);
1379
1380 VOP_STRATEGY(bp->b_vp, bp);
1381 }
1382 sdp->swd_flags &= ~SWF_BUSY;
1383 }
1384
1385 /*
1386 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1387 *
1388 * => note that we can recover the vndbuf struct by casting the buf ptr
1389 */
1390 static void
1391 sw_reg_iodone(bp)
1392 struct buf *bp;
1393 {
1394 struct vndbuf *vbp = (struct vndbuf *) bp;
1395 struct vndxfer *vnx = vbp->vb_xfer;
1396 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1397 struct swapdev *sdp = vnx->vx_sdp;
1398 int s, resid, error;
1399 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1400
1401 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1402 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1403 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1404 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1405
1406 /*
1407 * protect vbp at splbio and update.
1408 */
1409
1410 s = splbio();
1411 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1412 pbp->b_resid -= resid;
1413 vnx->vx_pending--;
1414
1415 if (vbp->vb_buf.b_flags & B_ERROR) {
1416 /* pass error upward */
1417 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1418 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1419 vnx->vx_error = error;
1420 }
1421
1422 /*
1423 * kill vbp structure
1424 */
1425 putvndbuf(vbp);
1426
1427 /*
1428 * wrap up this transaction if it has run to completion or, in
1429 * case of an error, when all auxiliary buffers have returned.
1430 */
1431 if (vnx->vx_error != 0) {
1432 /* pass error upward */
1433 pbp->b_flags |= B_ERROR;
1434 pbp->b_error = vnx->vx_error;
1435 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1436 putvndxfer(vnx);
1437 biodone(pbp);
1438 }
1439 } else if (pbp->b_resid == 0) {
1440 KASSERT(vnx->vx_pending == 0);
1441 if ((vnx->vx_flags & VX_BUSY) == 0) {
1442 UVMHIST_LOG(pdhist, " iodone error=%d !",
1443 pbp, vnx->vx_error, 0, 0);
1444 putvndxfer(vnx);
1445 biodone(pbp);
1446 }
1447 }
1448
1449 /*
1450 * done! start next swapdev I/O if one is pending
1451 */
1452 sdp->swd_active--;
1453 sw_reg_start(sdp);
1454 splx(s);
1455 }
1456
1457
1458 /*
1459 * uvm_swap_alloc: allocate space on swap
1460 *
1461 * => allocation is done "round robin" down the priority list, as we
1462 * allocate in a priority we "rotate" the circle queue.
1463 * => space can be freed with uvm_swap_free
1464 * => we return the page slot number in /dev/drum (0 == invalid slot)
1465 * => we lock uvm.swap_data_lock
1466 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1467 */
1468 int
1469 uvm_swap_alloc(nslots, lessok)
1470 int *nslots; /* IN/OUT */
1471 boolean_t lessok;
1472 {
1473 struct swapdev *sdp;
1474 struct swappri *spp;
1475 u_long result;
1476 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1477
1478 /*
1479 * no swap devices configured yet? definite failure.
1480 */
1481 if (uvmexp.nswapdev < 1)
1482 return 0;
1483
1484 /*
1485 * lock data lock, convert slots into blocks, and enter loop
1486 */
1487 simple_lock(&uvm.swap_data_lock);
1488
1489 ReTry: /* XXXMRG */
1490 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1491 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1492 /* if it's not enabled, then we can't swap from it */
1493 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1494 continue;
1495 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1496 continue;
1497 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1498 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1499 &result) != 0) {
1500 continue;
1501 }
1502
1503 /*
1504 * successful allocation! now rotate the circleq.
1505 */
1506 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1507 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1508 sdp->swd_npginuse += *nslots;
1509 uvmexp.swpginuse += *nslots;
1510 simple_unlock(&uvm.swap_data_lock);
1511 /* done! return drum slot number */
1512 UVMHIST_LOG(pdhist,
1513 "success! returning %d slots starting at %d",
1514 *nslots, result + sdp->swd_drumoffset, 0, 0);
1515 return (result + sdp->swd_drumoffset);
1516 }
1517 }
1518
1519 /* XXXMRG: BEGIN HACK */
1520 if (*nslots > 1 && lessok) {
1521 *nslots = 1;
1522 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1523 }
1524 /* XXXMRG: END HACK */
1525
1526 simple_unlock(&uvm.swap_data_lock);
1527 return 0;
1528 }
1529
1530 boolean_t
1531 uvm_swapisfull(void)
1532 {
1533 boolean_t rv;
1534
1535 simple_lock(&uvm.swap_data_lock);
1536 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1537 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1538 simple_unlock(&uvm.swap_data_lock);
1539
1540 return (rv);
1541 }
1542
1543 /*
1544 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1545 *
1546 * => we lock uvm.swap_data_lock
1547 */
1548 void
1549 uvm_swap_markbad(startslot, nslots)
1550 int startslot;
1551 int nslots;
1552 {
1553 struct swapdev *sdp;
1554 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1555
1556 simple_lock(&uvm.swap_data_lock);
1557 sdp = swapdrum_getsdp(startslot);
1558 KASSERT(sdp != NULL);
1559
1560 /*
1561 * we just keep track of how many pages have been marked bad
1562 * in this device, to make everything add up in swap_off().
1563 * we assume here that the range of slots will all be within
1564 * one swap device.
1565 */
1566
1567 KASSERT(uvmexp.swpgonly >= nslots);
1568 uvmexp.swpgonly -= nslots;
1569 sdp->swd_npgbad += nslots;
1570 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1571 simple_unlock(&uvm.swap_data_lock);
1572 }
1573
1574 /*
1575 * uvm_swap_free: free swap slots
1576 *
1577 * => this can be all or part of an allocation made by uvm_swap_alloc
1578 * => we lock uvm.swap_data_lock
1579 */
1580 void
1581 uvm_swap_free(startslot, nslots)
1582 int startslot;
1583 int nslots;
1584 {
1585 struct swapdev *sdp;
1586 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1587
1588 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1589 startslot, 0, 0);
1590
1591 /*
1592 * ignore attempts to free the "bad" slot.
1593 */
1594
1595 if (startslot == SWSLOT_BAD) {
1596 return;
1597 }
1598
1599 /*
1600 * convert drum slot offset back to sdp, free the blocks
1601 * in the extent, and return. must hold pri lock to do
1602 * lookup and access the extent.
1603 */
1604
1605 simple_lock(&uvm.swap_data_lock);
1606 sdp = swapdrum_getsdp(startslot);
1607 KASSERT(uvmexp.nswapdev >= 1);
1608 KASSERT(sdp != NULL);
1609 KASSERT(sdp->swd_npginuse >= nslots);
1610 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1611 EX_MALLOCOK|EX_NOWAIT) != 0) {
1612 printf("warning: resource shortage: %d pages of swap lost\n",
1613 nslots);
1614 }
1615 sdp->swd_npginuse -= nslots;
1616 uvmexp.swpginuse -= nslots;
1617 simple_unlock(&uvm.swap_data_lock);
1618 }
1619
1620 /*
1621 * uvm_swap_put: put any number of pages into a contig place on swap
1622 *
1623 * => can be sync or async
1624 */
1625
1626 int
1627 uvm_swap_put(swslot, ppsp, npages, flags)
1628 int swslot;
1629 struct vm_page **ppsp;
1630 int npages;
1631 int flags;
1632 {
1633 int error;
1634
1635 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1636 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1637 return error;
1638 }
1639
1640 /*
1641 * uvm_swap_get: get a single page from swap
1642 *
1643 * => usually a sync op (from fault)
1644 */
1645
1646 int
1647 uvm_swap_get(page, swslot, flags)
1648 struct vm_page *page;
1649 int swslot, flags;
1650 {
1651 int error;
1652
1653 uvmexp.nswget++;
1654 KASSERT(flags & PGO_SYNCIO);
1655 if (swslot == SWSLOT_BAD) {
1656 return EIO;
1657 }
1658
1659 error = uvm_swap_io(&page, swslot, 1, B_READ |
1660 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1661 if (error == 0) {
1662
1663 /*
1664 * this page is no longer only in swap.
1665 */
1666
1667 simple_lock(&uvm.swap_data_lock);
1668 KASSERT(uvmexp.swpgonly > 0);
1669 uvmexp.swpgonly--;
1670 simple_unlock(&uvm.swap_data_lock);
1671 }
1672 return error;
1673 }
1674
1675 /*
1676 * uvm_swap_io: do an i/o operation to swap
1677 */
1678
1679 static int
1680 uvm_swap_io(pps, startslot, npages, flags)
1681 struct vm_page **pps;
1682 int startslot, npages, flags;
1683 {
1684 daddr_t startblk;
1685 struct buf *bp;
1686 vaddr_t kva;
1687 int error, s, mapinflags;
1688 boolean_t write, async;
1689 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1690
1691 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1692 startslot, npages, flags, 0);
1693
1694 write = (flags & B_READ) == 0;
1695 async = (flags & B_ASYNC) != 0;
1696
1697 /*
1698 * convert starting drum slot to block number
1699 */
1700
1701 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1702
1703 /*
1704 * first, map the pages into the kernel.
1705 */
1706
1707 mapinflags = !write ?
1708 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1709 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1710 kva = uvm_pagermapin(pps, npages, mapinflags);
1711
1712 /*
1713 * now allocate a buf for the i/o.
1714 */
1715
1716 s = splbio();
1717 bp = pool_get(&bufpool, PR_WAITOK);
1718 splx(s);
1719
1720 /*
1721 * fill in the bp/sbp. we currently route our i/o through
1722 * /dev/drum's vnode [swapdev_vp].
1723 */
1724
1725 BUF_INIT(bp);
1726 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1727 bp->b_proc = &proc0; /* XXX */
1728 bp->b_vnbufs.le_next = NOLIST;
1729 bp->b_data = (caddr_t)kva;
1730 bp->b_blkno = startblk;
1731 bp->b_vp = swapdev_vp;
1732 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1733
1734 /*
1735 * bump v_numoutput (counter of number of active outputs).
1736 */
1737
1738 if (write) {
1739 s = splbio();
1740 V_INCR_NUMOUTPUT(swapdev_vp);
1741 splx(s);
1742 }
1743
1744 /*
1745 * for async ops we must set up the iodone handler.
1746 */
1747
1748 if (async) {
1749 bp->b_flags |= B_CALL;
1750 bp->b_iodone = uvm_aio_biodone;
1751 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1752 if (curproc == uvm.pagedaemon_proc)
1753 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1754 else
1755 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1756 } else {
1757 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1758 }
1759 UVMHIST_LOG(pdhist,
1760 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1761 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1762
1763 /*
1764 * now we start the I/O, and if async, return.
1765 */
1766
1767 VOP_STRATEGY(swapdev_vp, bp);
1768 if (async)
1769 return 0;
1770
1771 /*
1772 * must be sync i/o. wait for it to finish
1773 */
1774
1775 error = biowait(bp);
1776
1777 /*
1778 * kill the pager mapping
1779 */
1780
1781 uvm_pagermapout(kva, npages);
1782
1783 /*
1784 * now dispose of the buf and we're done.
1785 */
1786
1787 s = splbio();
1788 if (write)
1789 vwakeup(bp);
1790 pool_put(&bufpool, bp);
1791 splx(s);
1792 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1793 return (error);
1794 }
Cache object: 5069355804842c1bfee4d693d312c104
|