The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/uvm/uvm_swap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: uvm_swap.c,v 1.113.2.2 2006/12/09 11:53:42 bouyer Exp $        */
    2 
    3 /*
    4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. The name of the author may not be used to endorse or promote products
   16  *    derived from this software without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
   23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
   25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
   31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.113.2.2 2006/12/09 11:53:42 bouyer Exp $");
   36 
   37 #include "fs_nfs.h"
   38 #include "opt_uvmhist.h"
   39 #include "opt_compat_netbsd.h"
   40 #include "opt_ddb.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/buf.h>
   45 #include <sys/bufq.h>
   46 #include <sys/conf.h>
   47 #include <sys/proc.h>
   48 #include <sys/namei.h>
   49 #include <sys/disklabel.h>
   50 #include <sys/errno.h>
   51 #include <sys/kernel.h>
   52 #include <sys/malloc.h>
   53 #include <sys/vnode.h>
   54 #include <sys/file.h>
   55 #include <sys/vmem.h>
   56 #include <sys/blist.h>
   57 #include <sys/mount.h>
   58 #include <sys/pool.h>
   59 #include <sys/sa.h>
   60 #include <sys/syscallargs.h>
   61 #include <sys/swap.h>
   62 #include <sys/kauth.h>
   63 
   64 #include <uvm/uvm.h>
   65 
   66 #include <miscfs/specfs/specdev.h>
   67 
   68 /*
   69  * uvm_swap.c: manage configuration and i/o to swap space.
   70  */
   71 
   72 /*
   73  * swap space is managed in the following way:
   74  *
   75  * each swap partition or file is described by a "swapdev" structure.
   76  * each "swapdev" structure contains a "swapent" structure which contains
   77  * information that is passed up to the user (via system calls).
   78  *
   79  * each swap partition is assigned a "priority" (int) which controls
   80  * swap parition usage.
   81  *
   82  * the system maintains a global data structure describing all swap
   83  * partitions/files.   there is a sorted LIST of "swappri" structures
   84  * which describe "swapdev"'s at that priority.   this LIST is headed
   85  * by the "swap_priority" global var.    each "swappri" contains a
   86  * CIRCLEQ of "swapdev" structures at that priority.
   87  *
   88  * locking:
   89  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
   90  *    system call and prevents the swap priority list from changing
   91  *    while we are in the middle of a system call (e.g. SWAP_STATS).
   92  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
   93  *    structures including the priority list, the swapdev structures,
   94  *    and the swapmap arena.
   95  *
   96  * each swap device has the following info:
   97  *  - swap device in use (could be disabled, preventing future use)
   98  *  - swap enabled (allows new allocations on swap)
   99  *  - map info in /dev/drum
  100  *  - vnode pointer
  101  * for swap files only:
  102  *  - block size
  103  *  - max byte count in buffer
  104  *  - buffer
  105  *
  106  * userland controls and configures swap with the swapctl(2) system call.
  107  * the sys_swapctl performs the following operations:
  108  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
  109  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
  110  *      (passed in via "arg") of a size passed in via "misc" ... we load
  111  *      the current swap config into the array. The actual work is done
  112  *      in the uvm_swap_stats(9) function.
  113  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
  114  *      priority in "misc", start swapping on it.
  115  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
  116  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
  117  *      "misc")
  118  */
  119 
  120 /*
  121  * swapdev: describes a single swap partition/file
  122  *
  123  * note the following should be true:
  124  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
  125  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
  126  */
  127 struct swapdev {
  128         struct oswapent swd_ose;
  129 #define swd_dev         swd_ose.ose_dev         /* device id */
  130 #define swd_flags       swd_ose.ose_flags       /* flags:inuse/enable/fake */
  131 #define swd_priority    swd_ose.ose_priority    /* our priority */
  132         /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
  133         char                    *swd_path;      /* saved pathname of device */
  134         int                     swd_pathlen;    /* length of pathname */
  135         int                     swd_npages;     /* #pages we can use */
  136         int                     swd_npginuse;   /* #pages in use */
  137         int                     swd_npgbad;     /* #pages bad */
  138         int                     swd_drumoffset; /* page0 offset in drum */
  139         int                     swd_drumsize;   /* #pages in drum */
  140         blist_t                 swd_blist;      /* blist for this swapdev */
  141         struct vnode            *swd_vp;        /* backing vnode */
  142         CIRCLEQ_ENTRY(swapdev)  swd_next;       /* priority circleq */
  143 
  144         int                     swd_bsize;      /* blocksize (bytes) */
  145         int                     swd_maxactive;  /* max active i/o reqs */
  146         struct bufq_state       *swd_tab;       /* buffer list */
  147         int                     swd_active;     /* number of active buffers */
  148 };
  149 
  150 /*
  151  * swap device priority entry; the list is kept sorted on `spi_priority'.
  152  */
  153 struct swappri {
  154         int                     spi_priority;     /* priority */
  155         CIRCLEQ_HEAD(spi_swapdev, swapdev)      spi_swapdev;
  156         /* circleq of swapdevs at this priority */
  157         LIST_ENTRY(swappri)     spi_swappri;      /* global list of pri's */
  158 };
  159 
  160 /*
  161  * The following two structures are used to keep track of data transfers
  162  * on swap devices associated with regular files.
  163  * NOTE: this code is more or less a copy of vnd.c; we use the same
  164  * structure names here to ease porting..
  165  */
  166 struct vndxfer {
  167         struct buf      *vx_bp;         /* Pointer to parent buffer */
  168         struct swapdev  *vx_sdp;
  169         int             vx_error;
  170         int             vx_pending;     /* # of pending aux buffers */
  171         int             vx_flags;
  172 #define VX_BUSY         1
  173 #define VX_DEAD         2
  174 };
  175 
  176 struct vndbuf {
  177         struct buf      vb_buf;
  178         struct vndxfer  *vb_xfer;
  179 };
  180 
  181 
  182 /*
  183  * We keep a of pool vndbuf's and vndxfer structures.
  184  */
  185 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
  186 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
  187 
  188 #define getvndxfer(vnx) do {                                            \
  189         int sp = splbio();                                              \
  190         vnx = pool_get(&vndxfer_pool, PR_WAITOK);                       \
  191         splx(sp);                                                       \
  192 } while (/*CONSTCOND*/ 0)
  193 
  194 #define putvndxfer(vnx) {                                               \
  195         pool_put(&vndxfer_pool, (void *)(vnx));                         \
  196 }
  197 
  198 #define getvndbuf(vbp)  do {                                            \
  199         int sp = splbio();                                              \
  200         vbp = pool_get(&vndbuf_pool, PR_WAITOK);                        \
  201         splx(sp);                                                       \
  202 } while (/*CONSTCOND*/ 0)
  203 
  204 #define putvndbuf(vbp) {                                                \
  205         pool_put(&vndbuf_pool, (void *)(vbp));                          \
  206 }
  207 
  208 /*
  209  * local variables
  210  */
  211 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
  212 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
  213 
  214 /* list of all active swap devices [by priority] */
  215 LIST_HEAD(swap_priority, swappri);
  216 static struct swap_priority swap_priority;
  217 
  218 /* locks */
  219 static struct lock swap_syscall_lock;
  220 
  221 /*
  222  * prototypes
  223  */
  224 static struct swapdev   *swapdrum_getsdp(int);
  225 
  226 static struct swapdev   *swaplist_find(struct vnode *, int);
  227 static void              swaplist_insert(struct swapdev *,
  228                                          struct swappri *, int);
  229 static void              swaplist_trim(void);
  230 
  231 static int swap_on(struct lwp *, struct swapdev *);
  232 static int swap_off(struct lwp *, struct swapdev *);
  233 
  234 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
  235 
  236 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
  237 static void sw_reg_iodone(struct buf *);
  238 static void sw_reg_start(struct swapdev *);
  239 
  240 static int uvm_swap_io(struct vm_page **, int, int, int);
  241 
  242 /*
  243  * uvm_swap_init: init the swap system data structures and locks
  244  *
  245  * => called at boot time from init_main.c after the filesystems
  246  *      are brought up (which happens after uvm_init())
  247  */
  248 void
  249 uvm_swap_init(void)
  250 {
  251         UVMHIST_FUNC("uvm_swap_init");
  252 
  253         UVMHIST_CALLED(pdhist);
  254         /*
  255          * first, init the swap list, its counter, and its lock.
  256          * then get a handle on the vnode for /dev/drum by using
  257          * the its dev_t number ("swapdev", from MD conf.c).
  258          */
  259 
  260         LIST_INIT(&swap_priority);
  261         uvmexp.nswapdev = 0;
  262         lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
  263         simple_lock_init(&uvm.swap_data_lock);
  264 
  265         if (bdevvp(swapdev, &swapdev_vp))
  266                 panic("uvm_swap_init: can't get vnode for swap device");
  267 
  268         /*
  269          * create swap block resource map to map /dev/drum.   the range
  270          * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
  271          * that block 0 is reserved (used to indicate an allocation
  272          * failure, or no allocation).
  273          */
  274         swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
  275             VM_NOSLEEP);
  276         if (swapmap == 0)
  277                 panic("uvm_swap_init: extent_create failed");
  278 
  279         /*
  280          * done!
  281          */
  282         UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
  283 }
  284 
  285 /*
  286  * swaplist functions: functions that operate on the list of swap
  287  * devices on the system.
  288  */
  289 
  290 /*
  291  * swaplist_insert: insert swap device "sdp" into the global list
  292  *
  293  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
  294  * => caller must provide a newly malloc'd swappri structure (we will
  295  *      FREE it if we don't need it... this it to prevent malloc blocking
  296  *      here while adding swap)
  297  */
  298 static void
  299 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
  300 {
  301         struct swappri *spp, *pspp;
  302         UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
  303 
  304         /*
  305          * find entry at or after which to insert the new device.
  306          */
  307         pspp = NULL;
  308         LIST_FOREACH(spp, &swap_priority, spi_swappri) {
  309                 if (priority <= spp->spi_priority)
  310                         break;
  311                 pspp = spp;
  312         }
  313 
  314         /*
  315          * new priority?
  316          */
  317         if (spp == NULL || spp->spi_priority != priority) {
  318                 spp = newspp;  /* use newspp! */
  319                 UVMHIST_LOG(pdhist, "created new swappri = %d",
  320                             priority, 0, 0, 0);
  321 
  322                 spp->spi_priority = priority;
  323                 CIRCLEQ_INIT(&spp->spi_swapdev);
  324 
  325                 if (pspp)
  326                         LIST_INSERT_AFTER(pspp, spp, spi_swappri);
  327                 else
  328                         LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
  329         } else {
  330                 /* we don't need a new priority structure, free it */
  331                 FREE(newspp, M_VMSWAP);
  332         }
  333 
  334         /*
  335          * priority found (or created).   now insert on the priority's
  336          * circleq list and bump the total number of swapdevs.
  337          */
  338         sdp->swd_priority = priority;
  339         CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
  340         uvmexp.nswapdev++;
  341 }
  342 
  343 /*
  344  * swaplist_find: find and optionally remove a swap device from the
  345  *      global list.
  346  *
  347  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
  348  * => we return the swapdev we found (and removed)
  349  */
  350 static struct swapdev *
  351 swaplist_find(struct vnode *vp, boolean_t remove)
  352 {
  353         struct swapdev *sdp;
  354         struct swappri *spp;
  355 
  356         /*
  357          * search the lists for the requested vp
  358          */
  359 
  360         LIST_FOREACH(spp, &swap_priority, spi_swappri) {
  361                 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
  362                         if (sdp->swd_vp == vp) {
  363                                 if (remove) {
  364                                         CIRCLEQ_REMOVE(&spp->spi_swapdev,
  365                                             sdp, swd_next);
  366                                         uvmexp.nswapdev--;
  367                                 }
  368                                 return(sdp);
  369                         }
  370                 }
  371         }
  372         return (NULL);
  373 }
  374 
  375 /*
  376  * swaplist_trim: scan priority list for empty priority entries and kill
  377  *      them.
  378  *
  379  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
  380  */
  381 static void
  382 swaplist_trim(void)
  383 {
  384         struct swappri *spp, *nextspp;
  385 
  386         for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
  387                 nextspp = LIST_NEXT(spp, spi_swappri);
  388                 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
  389                     (void *)&spp->spi_swapdev)
  390                         continue;
  391                 LIST_REMOVE(spp, spi_swappri);
  392                 free(spp, M_VMSWAP);
  393         }
  394 }
  395 
  396 /*
  397  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
  398  *      to the "swapdev" that maps that section of the drum.
  399  *
  400  * => each swapdev takes one big contig chunk of the drum
  401  * => caller must hold uvm.swap_data_lock
  402  */
  403 static struct swapdev *
  404 swapdrum_getsdp(int pgno)
  405 {
  406         struct swapdev *sdp;
  407         struct swappri *spp;
  408 
  409         LIST_FOREACH(spp, &swap_priority, spi_swappri) {
  410                 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
  411                         if (sdp->swd_flags & SWF_FAKE)
  412                                 continue;
  413                         if (pgno >= sdp->swd_drumoffset &&
  414                             pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
  415                                 return sdp;
  416                         }
  417                 }
  418         }
  419         return NULL;
  420 }
  421 
  422 
  423 /*
  424  * sys_swapctl: main entry point for swapctl(2) system call
  425  *      [with two helper functions: swap_on and swap_off]
  426  */
  427 int
  428 sys_swapctl(struct lwp *l, void *v, register_t *retval)
  429 {
  430         struct sys_swapctl_args /* {
  431                 syscallarg(int) cmd;
  432                 syscallarg(void *) arg;
  433                 syscallarg(int) misc;
  434         } */ *uap = (struct sys_swapctl_args *)v;
  435         struct vnode *vp;
  436         struct nameidata nd;
  437         struct swappri *spp;
  438         struct swapdev *sdp;
  439         struct swapent *sep;
  440 #define SWAP_PATH_MAX (PATH_MAX + 1)
  441         char    *userpath;
  442         size_t  len;
  443         int     error, misc;
  444         int     priority;
  445         UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
  446 
  447         misc = SCARG(uap, misc);
  448 
  449         /*
  450          * ensure serialized syscall access by grabbing the swap_syscall_lock
  451          */
  452         lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
  453 
  454         userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
  455         /*
  456          * we handle the non-priv NSWAP and STATS request first.
  457          *
  458          * SWAP_NSWAP: return number of config'd swap devices
  459          * [can also be obtained with uvmexp sysctl]
  460          */
  461         if (SCARG(uap, cmd) == SWAP_NSWAP) {
  462                 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
  463                     0, 0, 0);
  464                 *retval = uvmexp.nswapdev;
  465                 error = 0;
  466                 goto out;
  467         }
  468 
  469         /*
  470          * SWAP_STATS: get stats on current # of configured swap devs
  471          *
  472          * note that the swap_priority list can't change as long
  473          * as we are holding the swap_syscall_lock.  we don't want
  474          * to grab the uvm.swap_data_lock because we may fault&sleep during
  475          * copyout() and we don't want to be holding that lock then!
  476          */
  477         if (SCARG(uap, cmd) == SWAP_STATS
  478 #if defined(COMPAT_13)
  479             || SCARG(uap, cmd) == SWAP_OSTATS
  480 #endif
  481             ) {
  482                 if ((size_t)misc > (size_t)uvmexp.nswapdev)
  483                         misc = uvmexp.nswapdev;
  484 #if defined(COMPAT_13)
  485                 if (SCARG(uap, cmd) == SWAP_OSTATS)
  486                         len = sizeof(struct oswapent) * misc;
  487                 else
  488 #endif
  489                         len = sizeof(struct swapent) * misc;
  490                 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
  491 
  492                 uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
  493                 error = copyout(sep, SCARG(uap, arg), len);
  494 
  495                 free(sep, M_TEMP);
  496                 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
  497                 goto out;
  498         }
  499         if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
  500                 dev_t   *devp = (dev_t *)SCARG(uap, arg);
  501 
  502                 error = copyout(&dumpdev, devp, sizeof(dumpdev));
  503                 goto out;
  504         }
  505 
  506         /*
  507          * all other requests require superuser privs.   verify.
  508          */
  509         if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
  510             0, NULL, NULL, NULL)))
  511                 goto out;
  512 
  513         if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
  514                 /* drop the current dump device */
  515                 dumpdev = NODEV;
  516                 cpu_dumpconf();
  517                 goto out;
  518         }
  519 
  520         /*
  521          * at this point we expect a path name in arg.   we will
  522          * use namei() to gain a vnode reference (vref), and lock
  523          * the vnode (VOP_LOCK).
  524          *
  525          * XXX: a NULL arg means use the root vnode pointer (e.g. for
  526          * miniroot)
  527          */
  528         if (SCARG(uap, arg) == NULL) {
  529                 vp = rootvp;            /* miniroot */
  530                 if (vget(vp, LK_EXCLUSIVE)) {
  531                         error = EBUSY;
  532                         goto out;
  533                 }
  534                 if (SCARG(uap, cmd) == SWAP_ON &&
  535                     copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
  536                         panic("swapctl: miniroot copy failed");
  537         } else {
  538                 int     space;
  539                 char    *where;
  540 
  541                 if (SCARG(uap, cmd) == SWAP_ON) {
  542                         if ((error = copyinstr(SCARG(uap, arg), userpath,
  543                             SWAP_PATH_MAX, &len)))
  544                                 goto out;
  545                         space = UIO_SYSSPACE;
  546                         where = userpath;
  547                 } else {
  548                         space = UIO_USERSPACE;
  549                         where = (char *)SCARG(uap, arg);
  550                 }
  551                 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, l);
  552                 if ((error = namei(&nd)))
  553                         goto out;
  554                 vp = nd.ni_vp;
  555         }
  556         /* note: "vp" is referenced and locked */
  557 
  558         error = 0;              /* assume no error */
  559         switch(SCARG(uap, cmd)) {
  560 
  561         case SWAP_DUMPDEV:
  562                 if (vp->v_type != VBLK) {
  563                         error = ENOTBLK;
  564                         break;
  565                 }
  566                 if (bdevsw_lookup(vp->v_rdev))
  567                         dumpdev = vp->v_rdev;
  568                 else
  569                         dumpdev = NODEV;
  570                 cpu_dumpconf();
  571                 break;
  572 
  573         case SWAP_CTL:
  574                 /*
  575                  * get new priority, remove old entry (if any) and then
  576                  * reinsert it in the correct place.  finally, prune out
  577                  * any empty priority structures.
  578                  */
  579                 priority = SCARG(uap, misc);
  580                 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
  581                 simple_lock(&uvm.swap_data_lock);
  582                 if ((sdp = swaplist_find(vp, 1)) == NULL) {
  583                         error = ENOENT;
  584                 } else {
  585                         swaplist_insert(sdp, spp, priority);
  586                         swaplist_trim();
  587                 }
  588                 simple_unlock(&uvm.swap_data_lock);
  589                 if (error)
  590                         free(spp, M_VMSWAP);
  591                 break;
  592 
  593         case SWAP_ON:
  594 
  595                 /*
  596                  * check for duplicates.   if none found, then insert a
  597                  * dummy entry on the list to prevent someone else from
  598                  * trying to enable this device while we are working on
  599                  * it.
  600                  */
  601 
  602                 priority = SCARG(uap, misc);
  603                 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
  604                 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
  605                 memset(sdp, 0, sizeof(*sdp));
  606                 sdp->swd_flags = SWF_FAKE;
  607                 sdp->swd_vp = vp;
  608                 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
  609                 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
  610                 simple_lock(&uvm.swap_data_lock);
  611                 if (swaplist_find(vp, 0) != NULL) {
  612                         error = EBUSY;
  613                         simple_unlock(&uvm.swap_data_lock);
  614                         bufq_free(sdp->swd_tab);
  615                         free(sdp, M_VMSWAP);
  616                         free(spp, M_VMSWAP);
  617                         break;
  618                 }
  619                 swaplist_insert(sdp, spp, priority);
  620                 simple_unlock(&uvm.swap_data_lock);
  621 
  622                 sdp->swd_pathlen = len;
  623                 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
  624                 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
  625                         panic("swapctl: copystr");
  626 
  627                 /*
  628                  * we've now got a FAKE placeholder in the swap list.
  629                  * now attempt to enable swap on it.  if we fail, undo
  630                  * what we've done and kill the fake entry we just inserted.
  631                  * if swap_on is a success, it will clear the SWF_FAKE flag
  632                  */
  633 
  634                 if ((error = swap_on(l, sdp)) != 0) {
  635                         simple_lock(&uvm.swap_data_lock);
  636                         (void) swaplist_find(vp, 1);  /* kill fake entry */
  637                         swaplist_trim();
  638                         simple_unlock(&uvm.swap_data_lock);
  639                         bufq_free(sdp->swd_tab);
  640                         free(sdp->swd_path, M_VMSWAP);
  641                         free(sdp, M_VMSWAP);
  642                         break;
  643                 }
  644                 break;
  645 
  646         case SWAP_OFF:
  647                 simple_lock(&uvm.swap_data_lock);
  648                 if ((sdp = swaplist_find(vp, 0)) == NULL) {
  649                         simple_unlock(&uvm.swap_data_lock);
  650                         error = ENXIO;
  651                         break;
  652                 }
  653 
  654                 /*
  655                  * If a device isn't in use or enabled, we
  656                  * can't stop swapping from it (again).
  657                  */
  658                 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
  659                         simple_unlock(&uvm.swap_data_lock);
  660                         error = EBUSY;
  661                         break;
  662                 }
  663 
  664                 /*
  665                  * do the real work.
  666                  */
  667                 error = swap_off(l, sdp);
  668                 break;
  669 
  670         default:
  671                 error = EINVAL;
  672         }
  673 
  674         /*
  675          * done!  release the ref gained by namei() and unlock.
  676          */
  677         vput(vp);
  678 
  679 out:
  680         free(userpath, M_TEMP);
  681         lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
  682 
  683         UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
  684         return (error);
  685 }
  686 
  687 /*
  688  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
  689  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
  690  * emulation to use it directly without going through sys_swapctl().
  691  * The problem with using sys_swapctl() there is that it involves
  692  * copying the swapent array to the stackgap, and this array's size
  693  * is not known at build time. Hence it would not be possible to
  694  * ensure it would fit in the stackgap in any case.
  695  */
  696 void
  697 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
  698 {
  699 
  700         lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
  701         uvm_swap_stats_locked(cmd, sep, sec, retval);
  702         lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
  703 }
  704 
  705 static void
  706 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
  707 {
  708         struct swappri *spp;
  709         struct swapdev *sdp;
  710         int count = 0;
  711 
  712         LIST_FOREACH(spp, &swap_priority, spi_swappri) {
  713                 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
  714                      sdp != (void *)&spp->spi_swapdev && sec-- > 0;
  715                      sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
  716                         /*
  717                          * backwards compatibility for system call.
  718                          * note that we use 'struct oswapent' as an
  719                          * overlay into both 'struct swapdev' and
  720                          * the userland 'struct swapent', as we
  721                          * want to retain backwards compatibility
  722                          * with NetBSD 1.3.
  723                          */
  724                         sdp->swd_ose.ose_inuse =
  725                             btodb((uint64_t)sdp->swd_npginuse <<
  726                             PAGE_SHIFT);
  727                         (void)memcpy(sep, &sdp->swd_ose,
  728                             sizeof(struct oswapent));
  729 
  730                         /* now copy out the path if necessary */
  731 #if !defined(COMPAT_13)
  732                         (void) cmd;
  733 #endif
  734 #if defined(COMPAT_13)
  735                         if (cmd == SWAP_STATS)
  736 #endif
  737                                 (void)memcpy(&sep->se_path, sdp->swd_path,
  738                                     sdp->swd_pathlen);
  739 
  740                         count++;
  741 #if defined(COMPAT_13)
  742                         if (cmd == SWAP_OSTATS)
  743                                 sep = (struct swapent *)
  744                                     ((struct oswapent *)sep + 1);
  745                         else
  746 #endif
  747                                 sep++;
  748                 }
  749         }
  750 
  751         *retval = count;
  752         return;
  753 }
  754 
  755 /*
  756  * swap_on: attempt to enable a swapdev for swapping.   note that the
  757  *      swapdev is already on the global list, but disabled (marked
  758  *      SWF_FAKE).
  759  *
  760  * => we avoid the start of the disk (to protect disk labels)
  761  * => we also avoid the miniroot, if we are swapping to root.
  762  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
  763  *      if needed.
  764  */
  765 static int
  766 swap_on(struct lwp *l, struct swapdev *sdp)
  767 {
  768         struct vnode *vp;
  769         int error, npages, nblocks, size;
  770         long addr;
  771         u_long result;
  772         struct vattr va;
  773 #ifdef NFS
  774         extern int (**nfsv2_vnodeop_p)(void *);
  775 #endif /* NFS */
  776         const struct bdevsw *bdev;
  777         dev_t dev;
  778         UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
  779 
  780         /*
  781          * we want to enable swapping on sdp.   the swd_vp contains
  782          * the vnode we want (locked and ref'd), and the swd_dev
  783          * contains the dev_t of the file, if it a block device.
  784          */
  785 
  786         vp = sdp->swd_vp;
  787         dev = sdp->swd_dev;
  788 
  789         /*
  790          * open the swap file (mostly useful for block device files to
  791          * let device driver know what is up).
  792          *
  793          * we skip the open/close for root on swap because the root
  794          * has already been opened when root was mounted (mountroot).
  795          */
  796         if (vp != rootvp) {
  797                 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred, l)))
  798                         return (error);
  799         }
  800 
  801         /* XXX this only works for block devices */
  802         UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
  803 
  804         /*
  805          * we now need to determine the size of the swap area.   for
  806          * block specials we can call the d_psize function.
  807          * for normal files, we must stat [get attrs].
  808          *
  809          * we put the result in nblks.
  810          * for normal files, we also want the filesystem block size
  811          * (which we get with statfs).
  812          */
  813         switch (vp->v_type) {
  814         case VBLK:
  815                 bdev = bdevsw_lookup(dev);
  816                 if (bdev == NULL || bdev->d_psize == NULL ||
  817                     (nblocks = (*bdev->d_psize)(dev)) == -1) {
  818                         error = ENXIO;
  819                         goto bad;
  820                 }
  821                 break;
  822 
  823         case VREG:
  824                 if ((error = VOP_GETATTR(vp, &va, l->l_cred, l)))
  825                         goto bad;
  826                 nblocks = (int)btodb(va.va_size);
  827                 if ((error =
  828                      VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
  829                         goto bad;
  830 
  831                 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
  832                 /*
  833                  * limit the max # of outstanding I/O requests we issue
  834                  * at any one time.   take it easy on NFS servers.
  835                  */
  836 #ifdef NFS
  837                 if (vp->v_op == nfsv2_vnodeop_p)
  838                         sdp->swd_maxactive = 2; /* XXX */
  839                 else
  840 #endif /* NFS */
  841                         sdp->swd_maxactive = 8; /* XXX */
  842                 break;
  843 
  844         default:
  845                 error = ENXIO;
  846                 goto bad;
  847         }
  848 
  849         /*
  850          * save nblocks in a safe place and convert to pages.
  851          */
  852 
  853         sdp->swd_ose.ose_nblks = nblocks;
  854         npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
  855 
  856         /*
  857          * for block special files, we want to make sure that leave
  858          * the disklabel and bootblocks alone, so we arrange to skip
  859          * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
  860          * note that because of this the "size" can be less than the
  861          * actual number of blocks on the device.
  862          */
  863         if (vp->v_type == VBLK) {
  864                 /* we use pages 1 to (size - 1) [inclusive] */
  865                 size = npages - 1;
  866                 addr = 1;
  867         } else {
  868                 /* we use pages 0 to (size - 1) [inclusive] */
  869                 size = npages;
  870                 addr = 0;
  871         }
  872 
  873         /*
  874          * make sure we have enough blocks for a reasonable sized swap
  875          * area.   we want at least one page.
  876          */
  877 
  878         if (size < 1) {
  879                 UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
  880                 error = EINVAL;
  881                 goto bad;
  882         }
  883 
  884         UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
  885 
  886         /*
  887          * now we need to allocate an extent to manage this swap device
  888          */
  889 
  890         sdp->swd_blist = blist_create(npages);
  891         /* mark all expect the `saved' region free. */
  892         blist_free(sdp->swd_blist, addr, size);
  893 
  894         /*
  895          * if the vnode we are swapping to is the root vnode
  896          * (i.e. we are swapping to the miniroot) then we want
  897          * to make sure we don't overwrite it.   do a statfs to
  898          * find its size and skip over it.
  899          */
  900         if (vp == rootvp) {
  901                 struct mount *mp;
  902                 struct statvfs *sp;
  903                 int rootblocks, rootpages;
  904 
  905                 mp = rootvnode->v_mount;
  906                 sp = &mp->mnt_stat;
  907                 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
  908                 /*
  909                  * XXX: sp->f_blocks isn't the total number of
  910                  * blocks in the filesystem, it's the number of
  911                  * data blocks.  so, our rootblocks almost
  912                  * definitely underestimates the total size
  913                  * of the filesystem - how badly depends on the
  914                  * details of the filesystem type.  there isn't
  915                  * an obvious way to deal with this cleanly
  916                  * and perfectly, so for now we just pad our
  917                  * rootblocks estimate with an extra 5 percent.
  918                  */
  919                 rootblocks += (rootblocks >> 5) +
  920                         (rootblocks >> 6) +
  921                         (rootblocks >> 7);
  922                 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
  923                 if (rootpages > size)
  924                         panic("swap_on: miniroot larger than swap?");
  925 
  926                 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
  927                         panic("swap_on: unable to preserve miniroot");
  928                 }
  929 
  930                 size -= rootpages;
  931                 printf("Preserved %d pages of miniroot ", rootpages);
  932                 printf("leaving %d pages of swap\n", size);
  933         }
  934 
  935         /*
  936          * add a ref to vp to reflect usage as a swap device.
  937          */
  938         vref(vp);
  939 
  940         /*
  941          * now add the new swapdev to the drum and enable.
  942          */
  943         result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
  944         if (result == 0)
  945                 panic("swapdrum_add");
  946 
  947         sdp->swd_drumoffset = (int)result;
  948         sdp->swd_drumsize = npages;
  949         sdp->swd_npages = size;
  950         simple_lock(&uvm.swap_data_lock);
  951         sdp->swd_flags &= ~SWF_FAKE;    /* going live */
  952         sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
  953         uvmexp.swpages += size;
  954         uvmexp.swpgavail += size;
  955         simple_unlock(&uvm.swap_data_lock);
  956         return (0);
  957 
  958         /*
  959          * failure: clean up and return error.
  960          */
  961 
  962 bad:
  963         if (sdp->swd_blist) {
  964                 blist_destroy(sdp->swd_blist);
  965         }
  966         if (vp != rootvp) {
  967                 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred, l);
  968         }
  969         return (error);
  970 }
  971 
  972 /*
  973  * swap_off: stop swapping on swapdev
  974  *
  975  * => swap data should be locked, we will unlock.
  976  */
  977 static int
  978 swap_off(struct lwp *l, struct swapdev *sdp)
  979 {
  980         int npages = sdp->swd_npages;
  981         int error = 0;
  982 
  983         UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
  984         UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
  985 
  986         /* disable the swap area being removed */
  987         sdp->swd_flags &= ~SWF_ENABLE;
  988         uvmexp.swpgavail -= npages;
  989         simple_unlock(&uvm.swap_data_lock);
  990 
  991         /*
  992          * the idea is to find all the pages that are paged out to this
  993          * device, and page them all in.  in uvm, swap-backed pageable
  994          * memory can take two forms: aobjs and anons.  call the
  995          * swapoff hook for each subsystem to bring in pages.
  996          */
  997 
  998         if (uao_swap_off(sdp->swd_drumoffset,
  999                          sdp->swd_drumoffset + sdp->swd_drumsize) ||
 1000             amap_swap_off(sdp->swd_drumoffset,
 1001                           sdp->swd_drumoffset + sdp->swd_drumsize)) {
 1002                 error = ENOMEM;
 1003         } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
 1004                 error = EBUSY;
 1005         }
 1006 
 1007         if (error) {
 1008                 simple_lock(&uvm.swap_data_lock);
 1009                 sdp->swd_flags |= SWF_ENABLE;
 1010                 uvmexp.swpgavail += npages;
 1011                 simple_unlock(&uvm.swap_data_lock);
 1012 
 1013                 return error;
 1014         }
 1015 
 1016         /*
 1017          * done with the vnode.
 1018          * drop our ref on the vnode before calling VOP_CLOSE()
 1019          * so that spec_close() can tell if this is the last close.
 1020          */
 1021         vrele(sdp->swd_vp);
 1022         if (sdp->swd_vp != rootvp) {
 1023                 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred, l);
 1024         }
 1025 
 1026         simple_lock(&uvm.swap_data_lock);
 1027         uvmexp.swpages -= npages;
 1028         uvmexp.swpginuse -= sdp->swd_npgbad;
 1029 
 1030         if (swaplist_find(sdp->swd_vp, 1) == NULL)
 1031                 panic("swap_off: swapdev not in list");
 1032         swaplist_trim();
 1033         simple_unlock(&uvm.swap_data_lock);
 1034 
 1035         /*
 1036          * free all resources!
 1037          */
 1038         vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
 1039         blist_destroy(sdp->swd_blist);
 1040         bufq_free(sdp->swd_tab);
 1041         free(sdp, M_VMSWAP);
 1042         return (0);
 1043 }
 1044 
 1045 /*
 1046  * /dev/drum interface and i/o functions
 1047  */
 1048 
 1049 /*
 1050  * swstrategy: perform I/O on the drum
 1051  *
 1052  * => we must map the i/o request from the drum to the correct swapdev.
 1053  */
 1054 static void
 1055 swstrategy(struct buf *bp)
 1056 {
 1057         struct swapdev *sdp;
 1058         struct vnode *vp;
 1059         int s, pageno, bn;
 1060         UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
 1061 
 1062         /*
 1063          * convert block number to swapdev.   note that swapdev can't
 1064          * be yanked out from under us because we are holding resources
 1065          * in it (i.e. the blocks we are doing I/O on).
 1066          */
 1067         pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
 1068         simple_lock(&uvm.swap_data_lock);
 1069         sdp = swapdrum_getsdp(pageno);
 1070         simple_unlock(&uvm.swap_data_lock);
 1071         if (sdp == NULL) {
 1072                 bp->b_error = EINVAL;
 1073                 bp->b_flags |= B_ERROR;
 1074                 biodone(bp);
 1075                 UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
 1076                 return;
 1077         }
 1078 
 1079         /*
 1080          * convert drum page number to block number on this swapdev.
 1081          */
 1082 
 1083         pageno -= sdp->swd_drumoffset;  /* page # on swapdev */
 1084         bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
 1085 
 1086         UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
 1087                 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
 1088                 sdp->swd_drumoffset, bn, bp->b_bcount);
 1089 
 1090         /*
 1091          * for block devices we finish up here.
 1092          * for regular files we have to do more work which we delegate
 1093          * to sw_reg_strategy().
 1094          */
 1095 
 1096         switch (sdp->swd_vp->v_type) {
 1097         default:
 1098                 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
 1099 
 1100         case VBLK:
 1101 
 1102                 /*
 1103                  * must convert "bp" from an I/O on /dev/drum to an I/O
 1104                  * on the swapdev (sdp).
 1105                  */
 1106                 s = splbio();
 1107                 bp->b_blkno = bn;               /* swapdev block number */
 1108                 vp = sdp->swd_vp;               /* swapdev vnode pointer */
 1109                 bp->b_dev = sdp->swd_dev;       /* swapdev dev_t */
 1110 
 1111                 /*
 1112                  * if we are doing a write, we have to redirect the i/o on
 1113                  * drum's v_numoutput counter to the swapdevs.
 1114                  */
 1115                 if ((bp->b_flags & B_READ) == 0) {
 1116                         vwakeup(bp);    /* kills one 'v_numoutput' on drum */
 1117                         V_INCR_NUMOUTPUT(vp);   /* put it on swapdev */
 1118                 }
 1119 
 1120                 /*
 1121                  * finally plug in swapdev vnode and start I/O
 1122                  */
 1123                 bp->b_vp = vp;
 1124                 splx(s);
 1125                 VOP_STRATEGY(vp, bp);
 1126                 return;
 1127 
 1128         case VREG:
 1129                 /*
 1130                  * delegate to sw_reg_strategy function.
 1131                  */
 1132                 sw_reg_strategy(sdp, bp, bn);
 1133                 return;
 1134         }
 1135         /* NOTREACHED */
 1136 }
 1137 
 1138 /*
 1139  * swread: the read function for the drum (just a call to physio)
 1140  */
 1141 /*ARGSUSED*/
 1142 static int
 1143 swread(dev_t dev, struct uio *uio, int ioflag)
 1144 {
 1145         UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
 1146 
 1147         UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
 1148         return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
 1149 }
 1150 
 1151 /*
 1152  * swwrite: the write function for the drum (just a call to physio)
 1153  */
 1154 /*ARGSUSED*/
 1155 static int
 1156 swwrite(dev_t dev, struct uio *uio, int ioflag)
 1157 {
 1158         UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
 1159 
 1160         UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
 1161         return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
 1162 }
 1163 
 1164 const struct bdevsw swap_bdevsw = {
 1165         noopen, noclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
 1166 };
 1167 
 1168 const struct cdevsw swap_cdevsw = {
 1169         nullopen, nullclose, swread, swwrite, noioctl,
 1170         nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
 1171 };
 1172 
 1173 /*
 1174  * sw_reg_strategy: handle swap i/o to regular files
 1175  */
 1176 static void
 1177 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
 1178 {
 1179         struct vnode    *vp;
 1180         struct vndxfer  *vnx;
 1181         daddr_t         nbn;
 1182         caddr_t         addr;
 1183         off_t           byteoff;
 1184         int             s, off, nra, error, sz, resid;
 1185         UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
 1186 
 1187         /*
 1188          * allocate a vndxfer head for this transfer and point it to
 1189          * our buffer.
 1190          */
 1191         getvndxfer(vnx);
 1192         vnx->vx_flags = VX_BUSY;
 1193         vnx->vx_error = 0;
 1194         vnx->vx_pending = 0;
 1195         vnx->vx_bp = bp;
 1196         vnx->vx_sdp = sdp;
 1197 
 1198         /*
 1199          * setup for main loop where we read filesystem blocks into
 1200          * our buffer.
 1201          */
 1202         error = 0;
 1203         bp->b_resid = bp->b_bcount;     /* nothing transfered yet! */
 1204         addr = bp->b_data;              /* current position in buffer */
 1205         byteoff = dbtob((uint64_t)bn);
 1206 
 1207         for (resid = bp->b_resid; resid; resid -= sz) {
 1208                 struct vndbuf   *nbp;
 1209 
 1210                 /*
 1211                  * translate byteoffset into block number.  return values:
 1212                  *   vp = vnode of underlying device
 1213                  *  nbn = new block number (on underlying vnode dev)
 1214                  *  nra = num blocks we can read-ahead (excludes requested
 1215                  *      block)
 1216                  */
 1217                 nra = 0;
 1218                 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
 1219                                         &vp, &nbn, &nra);
 1220 
 1221                 if (error == 0 && nbn == (daddr_t)-1) {
 1222                         /*
 1223                          * this used to just set error, but that doesn't
 1224                          * do the right thing.  Instead, it causes random
 1225                          * memory errors.  The panic() should remain until
 1226                          * this condition doesn't destabilize the system.
 1227                          */
 1228 #if 1
 1229                         panic("sw_reg_strategy: swap to sparse file");
 1230 #else
 1231                         error = EIO;    /* failure */
 1232 #endif
 1233                 }
 1234 
 1235                 /*
 1236                  * punt if there was an error or a hole in the file.
 1237                  * we must wait for any i/o ops we have already started
 1238                  * to finish before returning.
 1239                  *
 1240                  * XXX we could deal with holes here but it would be
 1241                  * a hassle (in the write case).
 1242                  */
 1243                 if (error) {
 1244                         s = splbio();
 1245                         vnx->vx_error = error;  /* pass error up */
 1246                         goto out;
 1247                 }
 1248 
 1249                 /*
 1250                  * compute the size ("sz") of this transfer (in bytes).
 1251                  */
 1252                 off = byteoff % sdp->swd_bsize;
 1253                 sz = (1 + nra) * sdp->swd_bsize - off;
 1254                 if (sz > resid)
 1255                         sz = resid;
 1256 
 1257                 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
 1258                             "vp %p/%p offset 0x%x/0x%x",
 1259                             sdp->swd_vp, vp, byteoff, nbn);
 1260 
 1261                 /*
 1262                  * now get a buf structure.   note that the vb_buf is
 1263                  * at the front of the nbp structure so that you can
 1264                  * cast pointers between the two structure easily.
 1265                  */
 1266                 getvndbuf(nbp);
 1267                 BUF_INIT(&nbp->vb_buf);
 1268                 nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
 1269                 nbp->vb_buf.b_bcount   = sz;
 1270                 nbp->vb_buf.b_bufsize  = sz;
 1271                 nbp->vb_buf.b_error    = 0;
 1272                 nbp->vb_buf.b_data     = addr;
 1273                 nbp->vb_buf.b_lblkno   = 0;
 1274                 nbp->vb_buf.b_blkno    = nbn + btodb(off);
 1275                 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
 1276                 nbp->vb_buf.b_iodone   = sw_reg_iodone;
 1277                 nbp->vb_buf.b_vp       = vp;
 1278                 if (vp->v_type == VBLK) {
 1279                         nbp->vb_buf.b_dev = vp->v_rdev;
 1280                 }
 1281 
 1282                 nbp->vb_xfer = vnx;     /* patch it back in to vnx */
 1283 
 1284                 /*
 1285                  * Just sort by block number
 1286                  */
 1287                 s = splbio();
 1288                 if (vnx->vx_error != 0) {
 1289                         putvndbuf(nbp);
 1290                         goto out;
 1291                 }
 1292                 vnx->vx_pending++;
 1293 
 1294                 /* sort it in and start I/O if we are not over our limit */
 1295                 BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
 1296                 sw_reg_start(sdp);
 1297                 splx(s);
 1298 
 1299                 /*
 1300                  * advance to the next I/O
 1301                  */
 1302                 byteoff += sz;
 1303                 addr += sz;
 1304         }
 1305 
 1306         s = splbio();
 1307 
 1308 out: /* Arrive here at splbio */
 1309         vnx->vx_flags &= ~VX_BUSY;
 1310         if (vnx->vx_pending == 0) {
 1311                 if (vnx->vx_error != 0) {
 1312                         bp->b_error = vnx->vx_error;
 1313                         bp->b_flags |= B_ERROR;
 1314                 }
 1315                 putvndxfer(vnx);
 1316                 biodone(bp);
 1317         }
 1318         splx(s);
 1319 }
 1320 
 1321 /*
 1322  * sw_reg_start: start an I/O request on the requested swapdev
 1323  *
 1324  * => reqs are sorted by b_rawblkno (above)
 1325  */
 1326 static void
 1327 sw_reg_start(struct swapdev *sdp)
 1328 {
 1329         struct buf      *bp;
 1330         UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
 1331 
 1332         /* recursion control */
 1333         if ((sdp->swd_flags & SWF_BUSY) != 0)
 1334                 return;
 1335 
 1336         sdp->swd_flags |= SWF_BUSY;
 1337 
 1338         while (sdp->swd_active < sdp->swd_maxactive) {
 1339                 bp = BUFQ_GET(sdp->swd_tab);
 1340                 if (bp == NULL)
 1341                         break;
 1342                 sdp->swd_active++;
 1343 
 1344                 UVMHIST_LOG(pdhist,
 1345                     "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
 1346                     bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
 1347                 if ((bp->b_flags & B_READ) == 0)
 1348                         V_INCR_NUMOUTPUT(bp->b_vp);
 1349 
 1350                 VOP_STRATEGY(bp->b_vp, bp);
 1351         }
 1352         sdp->swd_flags &= ~SWF_BUSY;
 1353 }
 1354 
 1355 /*
 1356  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
 1357  *
 1358  * => note that we can recover the vndbuf struct by casting the buf ptr
 1359  */
 1360 static void
 1361 sw_reg_iodone(struct buf *bp)
 1362 {
 1363         struct vndbuf *vbp = (struct vndbuf *) bp;
 1364         struct vndxfer *vnx = vbp->vb_xfer;
 1365         struct buf *pbp = vnx->vx_bp;           /* parent buffer */
 1366         struct swapdev  *sdp = vnx->vx_sdp;
 1367         int s, resid, error;
 1368         UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
 1369 
 1370         UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
 1371             vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
 1372         UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
 1373             vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
 1374 
 1375         /*
 1376          * protect vbp at splbio and update.
 1377          */
 1378 
 1379         s = splbio();
 1380         resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
 1381         pbp->b_resid -= resid;
 1382         vnx->vx_pending--;
 1383 
 1384         if (vbp->vb_buf.b_flags & B_ERROR) {
 1385                 /* pass error upward */
 1386                 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
 1387                 UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
 1388                 vnx->vx_error = error;
 1389         }
 1390 
 1391         /*
 1392          * kill vbp structure
 1393          */
 1394         putvndbuf(vbp);
 1395 
 1396         /*
 1397          * wrap up this transaction if it has run to completion or, in
 1398          * case of an error, when all auxiliary buffers have returned.
 1399          */
 1400         if (vnx->vx_error != 0) {
 1401                 /* pass error upward */
 1402                 pbp->b_flags |= B_ERROR;
 1403                 pbp->b_error = vnx->vx_error;
 1404                 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
 1405                         putvndxfer(vnx);
 1406                         biodone(pbp);
 1407                 }
 1408         } else if (pbp->b_resid == 0) {
 1409                 KASSERT(vnx->vx_pending == 0);
 1410                 if ((vnx->vx_flags & VX_BUSY) == 0) {
 1411                         UVMHIST_LOG(pdhist, "  iodone error=%d !",
 1412                             pbp, vnx->vx_error, 0, 0);
 1413                         putvndxfer(vnx);
 1414                         biodone(pbp);
 1415                 }
 1416         }
 1417 
 1418         /*
 1419          * done!   start next swapdev I/O if one is pending
 1420          */
 1421         sdp->swd_active--;
 1422         sw_reg_start(sdp);
 1423         splx(s);
 1424 }
 1425 
 1426 
 1427 /*
 1428  * uvm_swap_alloc: allocate space on swap
 1429  *
 1430  * => allocation is done "round robin" down the priority list, as we
 1431  *      allocate in a priority we "rotate" the circle queue.
 1432  * => space can be freed with uvm_swap_free
 1433  * => we return the page slot number in /dev/drum (0 == invalid slot)
 1434  * => we lock uvm.swap_data_lock
 1435  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
 1436  */
 1437 int
 1438 uvm_swap_alloc(int *nslots /* IN/OUT */, boolean_t lessok)
 1439 {
 1440         struct swapdev *sdp;
 1441         struct swappri *spp;
 1442         UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
 1443 
 1444         /*
 1445          * no swap devices configured yet?   definite failure.
 1446          */
 1447         if (uvmexp.nswapdev < 1)
 1448                 return 0;
 1449 
 1450         /*
 1451          * lock data lock, convert slots into blocks, and enter loop
 1452          */
 1453         simple_lock(&uvm.swap_data_lock);
 1454 
 1455 ReTry:  /* XXXMRG */
 1456         LIST_FOREACH(spp, &swap_priority, spi_swappri) {
 1457                 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
 1458                         uint64_t result;
 1459 
 1460                         /* if it's not enabled, then we can't swap from it */
 1461                         if ((sdp->swd_flags & SWF_ENABLE) == 0)
 1462                                 continue;
 1463                         if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
 1464                                 continue;
 1465                         result = blist_alloc(sdp->swd_blist, *nslots);
 1466                         if (result == BLIST_NONE) {
 1467                                 continue;
 1468                         }
 1469                         KASSERT(result < sdp->swd_drumsize);
 1470 
 1471                         /*
 1472                          * successful allocation!  now rotate the circleq.
 1473                          */
 1474                         CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
 1475                         CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
 1476                         sdp->swd_npginuse += *nslots;
 1477                         uvmexp.swpginuse += *nslots;
 1478                         simple_unlock(&uvm.swap_data_lock);
 1479                         /* done!  return drum slot number */
 1480                         UVMHIST_LOG(pdhist,
 1481                             "success!  returning %d slots starting at %d",
 1482                             *nslots, result + sdp->swd_drumoffset, 0, 0);
 1483                         return (result + sdp->swd_drumoffset);
 1484                 }
 1485         }
 1486 
 1487         /* XXXMRG: BEGIN HACK */
 1488         if (*nslots > 1 && lessok) {
 1489                 *nslots = 1;
 1490                 /* XXXMRG: ugh!  blist should support this for us */
 1491                 goto ReTry;
 1492         }
 1493         /* XXXMRG: END HACK */
 1494 
 1495         simple_unlock(&uvm.swap_data_lock);
 1496         return 0;
 1497 }
 1498 
 1499 boolean_t
 1500 uvm_swapisfull(void)
 1501 {
 1502         boolean_t rv;
 1503 
 1504         simple_lock(&uvm.swap_data_lock);
 1505         KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
 1506         rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
 1507         simple_unlock(&uvm.swap_data_lock);
 1508 
 1509         return (rv);
 1510 }
 1511 
 1512 /*
 1513  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
 1514  *
 1515  * => we lock uvm.swap_data_lock
 1516  */
 1517 void
 1518 uvm_swap_markbad(int startslot, int nslots)
 1519 {
 1520         struct swapdev *sdp;
 1521         UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
 1522 
 1523         simple_lock(&uvm.swap_data_lock);
 1524         sdp = swapdrum_getsdp(startslot);
 1525         KASSERT(sdp != NULL);
 1526 
 1527         /*
 1528          * we just keep track of how many pages have been marked bad
 1529          * in this device, to make everything add up in swap_off().
 1530          * we assume here that the range of slots will all be within
 1531          * one swap device.
 1532          */
 1533 
 1534         KASSERT(uvmexp.swpgonly >= nslots);
 1535         uvmexp.swpgonly -= nslots;
 1536         sdp->swd_npgbad += nslots;
 1537         UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
 1538         simple_unlock(&uvm.swap_data_lock);
 1539 }
 1540 
 1541 /*
 1542  * uvm_swap_free: free swap slots
 1543  *
 1544  * => this can be all or part of an allocation made by uvm_swap_alloc
 1545  * => we lock uvm.swap_data_lock
 1546  */
 1547 void
 1548 uvm_swap_free(int startslot, int nslots)
 1549 {
 1550         struct swapdev *sdp;
 1551         UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
 1552 
 1553         UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
 1554             startslot, 0, 0);
 1555 
 1556         /*
 1557          * ignore attempts to free the "bad" slot.
 1558          */
 1559 
 1560         if (startslot == SWSLOT_BAD) {
 1561                 return;
 1562         }
 1563 
 1564         /*
 1565          * convert drum slot offset back to sdp, free the blocks
 1566          * in the extent, and return.   must hold pri lock to do
 1567          * lookup and access the extent.
 1568          */
 1569 
 1570         simple_lock(&uvm.swap_data_lock);
 1571         sdp = swapdrum_getsdp(startslot);
 1572         KASSERT(uvmexp.nswapdev >= 1);
 1573         KASSERT(sdp != NULL);
 1574         KASSERT(sdp->swd_npginuse >= nslots);
 1575         blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
 1576         sdp->swd_npginuse -= nslots;
 1577         uvmexp.swpginuse -= nslots;
 1578         simple_unlock(&uvm.swap_data_lock);
 1579 }
 1580 
 1581 /*
 1582  * uvm_swap_put: put any number of pages into a contig place on swap
 1583  *
 1584  * => can be sync or async
 1585  */
 1586 
 1587 int
 1588 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
 1589 {
 1590         int error;
 1591 
 1592         error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
 1593             ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
 1594         return error;
 1595 }
 1596 
 1597 /*
 1598  * uvm_swap_get: get a single page from swap
 1599  *
 1600  * => usually a sync op (from fault)
 1601  */
 1602 
 1603 int
 1604 uvm_swap_get(struct vm_page *page, int swslot, int flags)
 1605 {
 1606         int error;
 1607 
 1608         uvmexp.nswget++;
 1609         KASSERT(flags & PGO_SYNCIO);
 1610         if (swslot == SWSLOT_BAD) {
 1611                 return EIO;
 1612         }
 1613 
 1614         error = uvm_swap_io(&page, swslot, 1, B_READ |
 1615             ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
 1616         if (error == 0) {
 1617 
 1618                 /*
 1619                  * this page is no longer only in swap.
 1620                  */
 1621 
 1622                 simple_lock(&uvm.swap_data_lock);
 1623                 KASSERT(uvmexp.swpgonly > 0);
 1624                 uvmexp.swpgonly--;
 1625                 simple_unlock(&uvm.swap_data_lock);
 1626         }
 1627         return error;
 1628 }
 1629 
 1630 /*
 1631  * uvm_swap_io: do an i/o operation to swap
 1632  */
 1633 
 1634 static int
 1635 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
 1636 {
 1637         daddr_t startblk;
 1638         struct  buf *bp;
 1639         vaddr_t kva;
 1640         int     error, s, mapinflags;
 1641         boolean_t write, async;
 1642         UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
 1643 
 1644         UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
 1645             startslot, npages, flags, 0);
 1646 
 1647         write = (flags & B_READ) == 0;
 1648         async = (flags & B_ASYNC) != 0;
 1649 
 1650         /*
 1651          * convert starting drum slot to block number
 1652          */
 1653 
 1654         startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
 1655 
 1656         /*
 1657          * first, map the pages into the kernel.
 1658          */
 1659 
 1660         mapinflags = !write ?
 1661                 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
 1662                 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
 1663         kva = uvm_pagermapin(pps, npages, mapinflags);
 1664 
 1665         /*
 1666          * now allocate a buf for the i/o.
 1667          */
 1668 
 1669         bp = getiobuf();
 1670 
 1671         /*
 1672          * fill in the bp/sbp.   we currently route our i/o through
 1673          * /dev/drum's vnode [swapdev_vp].
 1674          */
 1675 
 1676         bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
 1677         bp->b_proc = &proc0;    /* XXX */
 1678         bp->b_vnbufs.le_next = NOLIST;
 1679         bp->b_data = (caddr_t)kva;
 1680         bp->b_blkno = startblk;
 1681         bp->b_vp = swapdev_vp;
 1682         bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
 1683 
 1684         /*
 1685          * bump v_numoutput (counter of number of active outputs).
 1686          */
 1687 
 1688         if (write) {
 1689                 s = splbio();
 1690                 V_INCR_NUMOUTPUT(swapdev_vp);
 1691                 splx(s);
 1692         }
 1693 
 1694         /*
 1695          * for async ops we must set up the iodone handler.
 1696          */
 1697 
 1698         if (async) {
 1699                 bp->b_flags |= B_CALL;
 1700                 bp->b_iodone = uvm_aio_biodone;
 1701                 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
 1702                 if (curproc == uvm.pagedaemon_proc)
 1703                         BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
 1704                 else
 1705                         BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
 1706         } else {
 1707                 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
 1708         }
 1709         UVMHIST_LOG(pdhist,
 1710             "about to start io: data = %p blkno = 0x%x, bcount = %ld",
 1711             bp->b_data, bp->b_blkno, bp->b_bcount, 0);
 1712 
 1713         /*
 1714          * now we start the I/O, and if async, return.
 1715          */
 1716 
 1717         VOP_STRATEGY(swapdev_vp, bp);
 1718         if (async)
 1719                 return 0;
 1720 
 1721         /*
 1722          * must be sync i/o.   wait for it to finish
 1723          */
 1724 
 1725         error = biowait(bp);
 1726 
 1727         /*
 1728          * kill the pager mapping
 1729          */
 1730 
 1731         uvm_pagermapout(kva, npages);
 1732 
 1733         /*
 1734          * now dispose of the buf and we're done.
 1735          */
 1736 
 1737         s = splbio();
 1738         if (write)
 1739                 vwakeup(bp);
 1740         putiobuf(bp);
 1741         splx(s);
 1742         UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
 1743         return (error);
 1744 }

Cache object: 144e7e01b882e90723a7f7ba4041a5e0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.