The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vfs/hammer/hammer_btree.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
    3  * 
    4  * This code is derived from software contributed to The DragonFly Project
    5  * by Matthew Dillon <dillon@backplane.com>
    6  * 
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in
   15  *    the documentation and/or other materials provided with the
   16  *    distribution.
   17  * 3. Neither the name of The DragonFly Project nor the names of its
   18  *    contributors may be used to endorse or promote products derived
   19  *    from this software without specific, prior written permission.
   20  * 
   21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
   24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
   25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
   27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
   29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  */
   34 
   35 /*
   36  * HAMMER B-Tree index
   37  *
   38  * HAMMER implements a modified B+Tree.  In documentation this will
   39  * simply be refered to as the HAMMER B-Tree.  Basically a HAMMER B-Tree
   40  * looks like a B+Tree (A B-Tree which stores its records only at the leafs
   41  * of the tree), but adds two additional boundary elements which describe
   42  * the left-most and right-most element a node is able to represent.  In
   43  * otherwords, we have boundary elements at the two ends of a B-Tree node
   44  * instead of sub-tree pointers.
   45  *
   46  * A B-Tree internal node looks like this:
   47  *
   48  *      B N N N N N N B   <-- boundary and internal elements
   49  *       S S S S S S S    <-- subtree pointers
   50  *
   51  * A B-Tree leaf node basically looks like this:
   52  *
   53  *      L L L L L L L L   <-- leaf elemenets
   54  *
   55  * The radix for an internal node is 1 less then a leaf but we get a
   56  * number of significant benefits for our troubles.
   57  *
   58  * The big benefit to using a B-Tree containing boundary information
   59  * is that it is possible to cache pointers into the middle of the tree
   60  * and not have to start searches, insertions, OR deletions at the root
   61  * node.   In particular, searches are able to progress in a definitive
   62  * direction from any point in the tree without revisting nodes.  This
   63  * greatly improves the efficiency of many operations, most especially
   64  * record appends.
   65  *
   66  * B-Trees also make the stacking of trees fairly straightforward.
   67  *
   68  * INSERTIONS:  A search performed with the intention of doing
   69  * an insert will guarantee that the terminal leaf node is not full by
   70  * splitting full nodes.  Splits occur top-down during the dive down the
   71  * B-Tree.
   72  *
   73  * DELETIONS: A deletion makes no attempt to proactively balance the
   74  * tree and will recursively remove nodes that become empty.  If a
   75  * deadlock occurs a deletion may not be able to remove an empty leaf.
   76  * Deletions never allow internal nodes to become empty (that would blow
   77  * up the boundaries).
   78  */
   79 #include "hammer.h"
   80 #include <sys/buf.h>
   81 #include <sys/buf2.h>
   82 
   83 static int btree_search(hammer_cursor_t cursor, int flags);
   84 static int btree_split_internal(hammer_cursor_t cursor);
   85 static int btree_split_leaf(hammer_cursor_t cursor);
   86 static int btree_remove(hammer_cursor_t cursor);
   87 static int btree_node_is_full(hammer_node_ondisk_t node);
   88 static int hammer_btree_mirror_propagate(hammer_cursor_t cursor,        
   89                         hammer_tid_t mirror_tid);
   90 static void hammer_make_separator(hammer_base_elm_t key1,
   91                         hammer_base_elm_t key2, hammer_base_elm_t dest);
   92 static void hammer_cursor_mirror_filter(hammer_cursor_t cursor);
   93 
   94 /*
   95  * Iterate records after a search.  The cursor is iterated forwards past
   96  * the current record until a record matching the key-range requirements
   97  * is found.  ENOENT is returned if the iteration goes past the ending
   98  * key. 
   99  *
  100  * The iteration is inclusive of key_beg and can be inclusive or exclusive
  101  * of key_end depending on whether HAMMER_CURSOR_END_INCLUSIVE is set.
  102  *
  103  * When doing an as-of search (cursor->asof != 0), key_beg.create_tid
  104  * may be modified by B-Tree functions.
  105  *
  106  * cursor->key_beg may or may not be modified by this function during
  107  * the iteration.  XXX future - in case of an inverted lock we may have
  108  * to reinitiate the lookup and set key_beg to properly pick up where we
  109  * left off.
  110  *
  111  * If HAMMER_CURSOR_ITERATE_CHECK is set it is possible that the cursor
  112  * was reverse indexed due to being moved to a parent while unlocked,
  113  * and something else might have inserted an element outside the iteration
  114  * range.  When this case occurs the iterator just keeps iterating until
  115  * it gets back into the iteration range (instead of asserting).
  116  *
  117  * NOTE!  EDEADLK *CANNOT* be returned by this procedure.
  118  */
  119 int
  120 hammer_btree_iterate(hammer_cursor_t cursor)
  121 {
  122         hammer_node_ondisk_t node;
  123         hammer_btree_elm_t elm;
  124         hammer_mount_t hmp;
  125         int error = 0;
  126         int r;
  127         int s;
  128 
  129         /*
  130          * Skip past the current record
  131          */
  132         hmp = cursor->trans->hmp;
  133         node = cursor->node->ondisk;
  134         if (node == NULL)
  135                 return(ENOENT);
  136         if (cursor->index < node->count && 
  137             (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
  138                 ++cursor->index;
  139         }
  140 
  141         /*
  142          * HAMMER can wind up being cpu-bound.
  143          */
  144         if (++hmp->check_yield > hammer_yield_check) {
  145                 hmp->check_yield = 0;
  146                 lwkt_user_yield();
  147         }
  148 
  149 
  150         /*
  151          * Loop until an element is found or we are done.
  152          */
  153         for (;;) {
  154                 /*
  155                  * We iterate up the tree and then index over one element
  156                  * while we are at the last element in the current node.
  157                  *
  158                  * If we are at the root of the filesystem, cursor_up
  159                  * returns ENOENT.
  160                  *
  161                  * XXX this could be optimized by storing the information in
  162                  * the parent reference.
  163                  *
  164                  * XXX we can lose the node lock temporarily, this could mess
  165                  * up our scan.
  166                  */
  167                 ++hammer_stats_btree_iterations;
  168                 hammer_flusher_clean_loose_ios(hmp);
  169 
  170                 if (cursor->index == node->count) {
  171                         if (hammer_debug_btree) {
  172                                 kprintf("BRACKETU %016llx[%d] -> %016llx[%d] (td=%p)\n",
  173                                         (long long)cursor->node->node_offset,
  174                                         cursor->index,
  175                                         (long long)(cursor->parent ? cursor->parent->node_offset : -1),
  176                                         cursor->parent_index,
  177                                         curthread);
  178                         }
  179                         KKASSERT(cursor->parent == NULL || cursor->parent->ondisk->elms[cursor->parent_index].internal.subtree_offset == cursor->node->node_offset);
  180                         error = hammer_cursor_up(cursor);
  181                         if (error)
  182                                 break;
  183                         /* reload stale pointer */
  184                         node = cursor->node->ondisk;
  185                         KKASSERT(cursor->index != node->count);
  186 
  187                         /*
  188                          * If we are reblocking we want to return internal
  189                          * nodes.  Note that the internal node will be
  190                          * returned multiple times, on each upward recursion
  191                          * from its children.  The caller selects which
  192                          * revisit it cares about (usually first or last only).
  193                          */
  194                         if (cursor->flags & HAMMER_CURSOR_REBLOCKING) {
  195                                 cursor->flags |= HAMMER_CURSOR_ATEDISK;
  196                                 return(0);
  197                         }
  198                         ++cursor->index;
  199                         continue;
  200                 }
  201 
  202                 /*
  203                  * Check internal or leaf element.  Determine if the record
  204                  * at the cursor has gone beyond the end of our range.
  205                  *
  206                  * We recurse down through internal nodes.
  207                  */
  208                 if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
  209                         elm = &node->elms[cursor->index];
  210 
  211                         r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
  212                         s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
  213                         if (hammer_debug_btree) {
  214                                 kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d (td=%p)\n",
  215                                         (long long)cursor->node->node_offset,
  216                                         cursor->index,
  217                                         (long long)elm[0].internal.base.obj_id,
  218                                         elm[0].internal.base.rec_type,
  219                                         (long long)elm[0].internal.base.key,
  220                                         elm[0].internal.base.localization,
  221                                         r,
  222                                         curthread
  223                                 );
  224                                 kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
  225                                         (long long)cursor->node->node_offset,
  226                                         cursor->index + 1,
  227                                         (long long)elm[1].internal.base.obj_id,
  228                                         elm[1].internal.base.rec_type,
  229                                         (long long)elm[1].internal.base.key,
  230                                         elm[1].internal.base.localization,
  231                                         s
  232                                 );
  233                         }
  234 
  235                         if (r < 0) {
  236                                 error = ENOENT;
  237                                 break;
  238                         }
  239                         if (r == 0 && (cursor->flags &
  240                                        HAMMER_CURSOR_END_INCLUSIVE) == 0) {
  241                                 error = ENOENT;
  242                                 break;
  243                         }
  244 
  245                         /*
  246                          * Better not be zero
  247                          */
  248                         KKASSERT(elm->internal.subtree_offset != 0);
  249 
  250                         if (s <= 0) {
  251                                 /*
  252                                  * If running the mirror filter see if we
  253                                  * can skip one or more entire sub-trees.
  254                                  * If we can we return the internal node
  255                                  * and the caller processes the skipped
  256                                  * range (see mirror_read).
  257                                  */
  258                                 if (cursor->flags &
  259                                     HAMMER_CURSOR_MIRROR_FILTERED) {
  260                                         if (elm->internal.mirror_tid <
  261                                             cursor->cmirror->mirror_tid) {
  262                                                 hammer_cursor_mirror_filter(cursor);
  263                                                 return(0);
  264                                         }
  265                                 }
  266                         } else {
  267                                 /*
  268                                  * Normally it would be impossible for the
  269                                  * cursor to have gotten back-indexed,
  270                                  * but it can happen if a node is deleted
  271                                  * and the cursor is moved to its parent
  272                                  * internal node.  ITERATE_CHECK will be set.
  273                                  */
  274                                 KKASSERT(cursor->flags &
  275                                          HAMMER_CURSOR_ITERATE_CHECK);
  276                                 kprintf("hammer_btree_iterate: "
  277                                         "DEBUG: Caught parent seek "
  278                                         "in internal iteration\n");
  279                         }
  280 
  281                         error = hammer_cursor_down(cursor);
  282                         if (error)
  283                                 break;
  284                         KKASSERT(cursor->index == 0);
  285                         /* reload stale pointer */
  286                         node = cursor->node->ondisk;
  287                         continue;
  288                 } else {
  289                         elm = &node->elms[cursor->index];
  290                         r = hammer_btree_cmp(&cursor->key_end, &elm->base);
  291                         if (hammer_debug_btree) {
  292                                 kprintf("ELEMENT  %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
  293                                         (long long)cursor->node->node_offset,
  294                                         cursor->index,
  295                                         (elm[0].leaf.base.btype ?
  296                                          elm[0].leaf.base.btype : '?'),
  297                                         (long long)elm[0].leaf.base.obj_id,
  298                                         elm[0].leaf.base.rec_type,
  299                                         (long long)elm[0].leaf.base.key,
  300                                         elm[0].leaf.base.localization,
  301                                         r
  302                                 );
  303                         }
  304                         if (r < 0) {
  305                                 error = ENOENT;
  306                                 break;
  307                         }
  308 
  309                         /*
  310                          * We support both end-inclusive and
  311                          * end-exclusive searches.
  312                          */
  313                         if (r == 0 &&
  314                            (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
  315                                 error = ENOENT;
  316                                 break;
  317                         }
  318 
  319                         /*
  320                          * If ITERATE_CHECK is set an unlocked cursor may
  321                          * have been moved to a parent and the iterate can
  322                          * happen upon elements that are not in the requested
  323                          * range.
  324                          */
  325                         if (cursor->flags & HAMMER_CURSOR_ITERATE_CHECK) {
  326                                 s = hammer_btree_cmp(&cursor->key_beg,
  327                                                      &elm->base);
  328                                 if (s > 0) {
  329                                         kprintf("hammer_btree_iterate: "
  330                                                 "DEBUG: Caught parent seek "
  331                                                 "in leaf iteration\n");
  332                                         ++cursor->index;
  333                                         continue;
  334                                 }
  335                         }
  336                         cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
  337 
  338                         /*
  339                          * Return the element
  340                          */
  341                         switch(elm->leaf.base.btype) {
  342                         case HAMMER_BTREE_TYPE_RECORD:
  343                                 if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
  344                                     hammer_btree_chkts(cursor->asof, &elm->base)) {
  345                                         ++cursor->index;
  346                                         continue;
  347                                 }
  348                                 error = 0;
  349                                 break;
  350                         default:
  351                                 error = EINVAL;
  352                                 break;
  353                         }
  354                         if (error)
  355                                 break;
  356                 }
  357                 /*
  358                  * node pointer invalid after loop
  359                  */
  360 
  361                 /*
  362                  * Return entry
  363                  */
  364                 if (hammer_debug_btree) {
  365                         int i = cursor->index;
  366                         hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
  367                         kprintf("ITERATE  %p:%d %016llx %02x %016llx lo=%02x\n",
  368                                 cursor->node, i,
  369                                 (long long)elm->internal.base.obj_id,
  370                                 elm->internal.base.rec_type,
  371                                 (long long)elm->internal.base.key,
  372                                 elm->internal.base.localization
  373                         );
  374                 }
  375                 return(0);
  376         }
  377         return(error);
  378 }
  379 
  380 /*
  381  * We hit an internal element that we could skip as part of a mirroring
  382  * scan.  Calculate the entire range being skipped.
  383  *
  384  * It is important to include any gaps between the parent's left_bound
  385  * and the node's left_bound, and same goes for the right side.
  386  */
  387 static void
  388 hammer_cursor_mirror_filter(hammer_cursor_t cursor)
  389 {
  390         struct hammer_cmirror *cmirror;
  391         hammer_node_ondisk_t ondisk;
  392         hammer_btree_elm_t elm;
  393 
  394         ondisk = cursor->node->ondisk;
  395         cmirror = cursor->cmirror;
  396 
  397         /*
  398          * Calculate the skipped range
  399          */
  400         elm = &ondisk->elms[cursor->index];
  401         if (cursor->index == 0)
  402                 cmirror->skip_beg = *cursor->left_bound;
  403         else
  404                 cmirror->skip_beg = elm->internal.base;
  405         while (cursor->index < ondisk->count) {
  406                 if (elm->internal.mirror_tid >= cmirror->mirror_tid)
  407                         break;
  408                 ++cursor->index;
  409                 ++elm;
  410         }
  411         if (cursor->index == ondisk->count)
  412                 cmirror->skip_end = *cursor->right_bound;
  413         else
  414                 cmirror->skip_end = elm->internal.base;
  415 
  416         /*
  417          * clip the returned result.
  418          */
  419         if (hammer_btree_cmp(&cmirror->skip_beg, &cursor->key_beg) < 0)
  420                 cmirror->skip_beg = cursor->key_beg;
  421         if (hammer_btree_cmp(&cmirror->skip_end, &cursor->key_end) > 0)
  422                 cmirror->skip_end = cursor->key_end;
  423 }
  424 
  425 /*
  426  * Iterate in the reverse direction.  This is used by the pruning code to
  427  * avoid overlapping records.
  428  */
  429 int
  430 hammer_btree_iterate_reverse(hammer_cursor_t cursor)
  431 {
  432         hammer_node_ondisk_t node;
  433         hammer_btree_elm_t elm;
  434         hammer_mount_t hmp;
  435         int error = 0;
  436         int r;
  437         int s;
  438 
  439         /* mirror filtering not supported for reverse iteration */
  440         KKASSERT ((cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) == 0);
  441 
  442         /*
  443          * Skip past the current record.  For various reasons the cursor
  444          * may end up set to -1 or set to point at the end of the current
  445          * node.  These cases must be addressed.
  446          */
  447         node = cursor->node->ondisk;
  448         if (node == NULL)
  449                 return(ENOENT);
  450         if (cursor->index != -1 && 
  451             (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
  452                 --cursor->index;
  453         }
  454         if (cursor->index == cursor->node->ondisk->count)
  455                 --cursor->index;
  456 
  457         /*
  458          * HAMMER can wind up being cpu-bound.
  459          */
  460         hmp = cursor->trans->hmp;
  461         if (++hmp->check_yield > hammer_yield_check) {
  462                 hmp->check_yield = 0;
  463                 lwkt_user_yield();
  464         }
  465 
  466         /*
  467          * Loop until an element is found or we are done.
  468          */
  469         for (;;) {
  470                 ++hammer_stats_btree_iterations;
  471                 hammer_flusher_clean_loose_ios(hmp);
  472 
  473                 /*
  474                  * We iterate up the tree and then index over one element
  475                  * while we are at the last element in the current node.
  476                  */
  477                 if (cursor->index == -1) {
  478                         error = hammer_cursor_up(cursor);
  479                         if (error) {
  480                                 cursor->index = 0; /* sanity */
  481                                 break;
  482                         }
  483                         /* reload stale pointer */
  484                         node = cursor->node->ondisk;
  485                         KKASSERT(cursor->index != node->count);
  486                         --cursor->index;
  487                         continue;
  488                 }
  489 
  490                 /*
  491                  * Check internal or leaf element.  Determine if the record
  492                  * at the cursor has gone beyond the end of our range.
  493                  *
  494                  * We recurse down through internal nodes. 
  495                  */
  496                 KKASSERT(cursor->index != node->count);
  497                 if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
  498                         elm = &node->elms[cursor->index];
  499                         r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
  500                         s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
  501                         if (hammer_debug_btree) {
  502                                 kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
  503                                         (long long)cursor->node->node_offset,
  504                                         cursor->index,
  505                                         (long long)elm[0].internal.base.obj_id,
  506                                         elm[0].internal.base.rec_type,
  507                                         (long long)elm[0].internal.base.key,
  508                                         elm[0].internal.base.localization,
  509                                         r
  510                                 );
  511                                 kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
  512                                         (long long)cursor->node->node_offset,
  513                                         cursor->index + 1,
  514                                         (long long)elm[1].internal.base.obj_id,
  515                                         elm[1].internal.base.rec_type,
  516                                         (long long)elm[1].internal.base.key,
  517                                         elm[1].internal.base.localization,
  518                                         s
  519                                 );
  520                         }
  521 
  522                         if (s >= 0) {
  523                                 error = ENOENT;
  524                                 break;
  525                         }
  526 
  527                         /*
  528                          * It shouldn't be possible to be seeked past key_end,
  529                          * even if the cursor got moved to a parent.
  530                          */
  531                         KKASSERT(r >= 0);
  532 
  533                         /*
  534                          * Better not be zero
  535                          */
  536                         KKASSERT(elm->internal.subtree_offset != 0);
  537 
  538                         error = hammer_cursor_down(cursor);
  539                         if (error)
  540                                 break;
  541                         KKASSERT(cursor->index == 0);
  542                         /* reload stale pointer */
  543                         node = cursor->node->ondisk;
  544 
  545                         /* this can assign -1 if the leaf was empty */
  546                         cursor->index = node->count - 1;
  547                         continue;
  548                 } else {
  549                         elm = &node->elms[cursor->index];
  550                         s = hammer_btree_cmp(&cursor->key_beg, &elm->base);
  551                         if (hammer_debug_btree) {
  552                                 kprintf("ELEMENT  %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
  553                                         (long long)cursor->node->node_offset,
  554                                         cursor->index,
  555                                         (elm[0].leaf.base.btype ?
  556                                          elm[0].leaf.base.btype : '?'),
  557                                         (long long)elm[0].leaf.base.obj_id,
  558                                         elm[0].leaf.base.rec_type,
  559                                         (long long)elm[0].leaf.base.key,
  560                                         elm[0].leaf.base.localization,
  561                                         s
  562                                 );
  563                         }
  564                         if (s > 0) {
  565                                 error = ENOENT;
  566                                 break;
  567                         }
  568 
  569                         /*
  570                          * It shouldn't be possible to be seeked past key_end,
  571                          * even if the cursor got moved to a parent.
  572                          */
  573                         cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
  574 
  575                         /*
  576                          * Return the element
  577                          */
  578                         switch(elm->leaf.base.btype) {
  579                         case HAMMER_BTREE_TYPE_RECORD:
  580                                 if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
  581                                     hammer_btree_chkts(cursor->asof, &elm->base)) {
  582                                         --cursor->index;
  583                                         continue;
  584                                 }
  585                                 error = 0;
  586                                 break;
  587                         default:
  588                                 error = EINVAL;
  589                                 break;
  590                         }
  591                         if (error)
  592                                 break;
  593                 }
  594                 /*
  595                  * node pointer invalid after loop
  596                  */
  597 
  598                 /*
  599                  * Return entry
  600                  */
  601                 if (hammer_debug_btree) {
  602                         int i = cursor->index;
  603                         hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
  604                         kprintf("ITERATE  %p:%d %016llx %02x %016llx lo=%02x\n",
  605                                 cursor->node, i,
  606                                 (long long)elm->internal.base.obj_id,
  607                                 elm->internal.base.rec_type,
  608                                 (long long)elm->internal.base.key,
  609                                 elm->internal.base.localization
  610                         );
  611                 }
  612                 return(0);
  613         }
  614         return(error);
  615 }
  616 
  617 /*
  618  * Lookup cursor->key_beg.  0 is returned on success, ENOENT if the entry
  619  * could not be found, EDEADLK if inserting and a retry is needed, and a
  620  * fatal error otherwise.  When retrying, the caller must terminate the
  621  * cursor and reinitialize it.  EDEADLK cannot be returned if not inserting.
  622  * 
  623  * The cursor is suitably positioned for a deletion on success, and suitably
  624  * positioned for an insertion on ENOENT if HAMMER_CURSOR_INSERT was
  625  * specified.
  626  *
  627  * The cursor may begin anywhere, the search will traverse the tree in
  628  * either direction to locate the requested element.
  629  *
  630  * Most of the logic implementing historical searches is handled here.  We
  631  * do an initial lookup with create_tid set to the asof TID.  Due to the
  632  * way records are laid out, a backwards iteration may be required if
  633  * ENOENT is returned to locate the historical record.  Here's the
  634  * problem:
  635  *
  636  * create_tid:    10      15       20
  637  *                   LEAF1   LEAF2
  638  * records:         (11)        (18)
  639  *
  640  * Lets say we want to do a lookup AS-OF timestamp 17.  We will traverse
  641  * LEAF2 but the only record in LEAF2 has a create_tid of 18, which is
  642  * not visible and thus causes ENOENT to be returned.  We really need
  643  * to check record 11 in LEAF1.  If it also fails then the search fails
  644  * (e.g. it might represent the range 11-16 and thus still not match our
  645  * AS-OF timestamp of 17).  Note that LEAF1 could be empty, requiring
  646  * further iterations.
  647  *
  648  * If this case occurs btree_search() will set HAMMER_CURSOR_CREATE_CHECK
  649  * and the cursor->create_check TID if an iteration might be needed.
  650  * In the above example create_check would be set to 14.
  651  */
  652 int
  653 hammer_btree_lookup(hammer_cursor_t cursor)
  654 {
  655         int error;
  656 
  657         cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
  658         KKASSERT ((cursor->flags & HAMMER_CURSOR_INSERT) == 0 ||
  659                   cursor->trans->sync_lock_refs > 0);
  660         ++hammer_stats_btree_lookups;
  661         if (cursor->flags & HAMMER_CURSOR_ASOF) {
  662                 KKASSERT((cursor->flags & HAMMER_CURSOR_INSERT) == 0);
  663                 cursor->key_beg.create_tid = cursor->asof;
  664                 for (;;) {
  665                         cursor->flags &= ~HAMMER_CURSOR_CREATE_CHECK;
  666                         error = btree_search(cursor, 0);
  667                         if (error != ENOENT ||
  668                             (cursor->flags & HAMMER_CURSOR_CREATE_CHECK) == 0) {
  669                                 /*
  670                                  * Stop if no error.
  671                                  * Stop if error other then ENOENT.
  672                                  * Stop if ENOENT and not special case.
  673                                  */
  674                                 break;
  675                         }
  676                         if (hammer_debug_btree) {
  677                                 kprintf("CREATE_CHECK %016llx\n",
  678                                         (long long)cursor->create_check);
  679                         }
  680                         cursor->key_beg.create_tid = cursor->create_check;
  681                         /* loop */
  682                 }
  683         } else {
  684                 error = btree_search(cursor, 0);
  685         }
  686         if (error == 0)
  687                 error = hammer_btree_extract(cursor, cursor->flags);
  688         return(error);
  689 }
  690 
  691 /*
  692  * Execute the logic required to start an iteration.  The first record
  693  * located within the specified range is returned and iteration control
  694  * flags are adjusted for successive hammer_btree_iterate() calls.
  695  *
  696  * Set ATEDISK so a low-level caller can call btree_first/btree_iterate
  697  * in a loop without worrying about it.  Higher-level merged searches will
  698  * adjust the flag appropriately.
  699  */
  700 int
  701 hammer_btree_first(hammer_cursor_t cursor)
  702 {
  703         int error;
  704 
  705         error = hammer_btree_lookup(cursor);
  706         if (error == ENOENT) {
  707                 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
  708                 error = hammer_btree_iterate(cursor);
  709         }
  710         cursor->flags |= HAMMER_CURSOR_ATEDISK;
  711         return(error);
  712 }
  713 
  714 /*
  715  * Similarly but for an iteration in the reverse direction.
  716  *
  717  * Set ATEDISK when iterating backwards to skip the current entry,
  718  * which after an ENOENT lookup will be pointing beyond our end point.
  719  *
  720  * Set ATEDISK so a low-level caller can call btree_last/btree_iterate_reverse
  721  * in a loop without worrying about it.  Higher-level merged searches will
  722  * adjust the flag appropriately.
  723  */
  724 int
  725 hammer_btree_last(hammer_cursor_t cursor)
  726 {
  727         struct hammer_base_elm save;
  728         int error;
  729 
  730         save = cursor->key_beg;
  731         cursor->key_beg = cursor->key_end;
  732         error = hammer_btree_lookup(cursor);
  733         cursor->key_beg = save;
  734         if (error == ENOENT ||
  735             (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
  736                 cursor->flags |= HAMMER_CURSOR_ATEDISK;
  737                 error = hammer_btree_iterate_reverse(cursor);
  738         }
  739         cursor->flags |= HAMMER_CURSOR_ATEDISK;
  740         return(error);
  741 }
  742 
  743 /*
  744  * Extract the record and/or data associated with the cursor's current
  745  * position.  Any prior record or data stored in the cursor is replaced.
  746  * The cursor must be positioned at a leaf node.
  747  *
  748  * NOTE: All extractions occur at the leaf of the B-Tree.
  749  */
  750 int
  751 hammer_btree_extract(hammer_cursor_t cursor, int flags)
  752 {
  753         hammer_node_ondisk_t node;
  754         hammer_btree_elm_t elm;
  755         hammer_off_t data_off;
  756         hammer_mount_t hmp;
  757         int32_t data_len;
  758         int error;
  759 
  760         /*
  761          * The case where the data reference resolves to the same buffer
  762          * as the record reference must be handled.
  763          */
  764         node = cursor->node->ondisk;
  765         elm = &node->elms[cursor->index];
  766         cursor->data = NULL;
  767         hmp = cursor->node->hmp;
  768 
  769         /*
  770          * There is nothing to extract for an internal element.
  771          */
  772         if (node->type == HAMMER_BTREE_TYPE_INTERNAL)
  773                 return(EINVAL);
  774 
  775         /*
  776          * Only record types have data.
  777          */
  778         KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
  779         cursor->leaf = &elm->leaf;
  780 
  781         if ((flags & HAMMER_CURSOR_GET_DATA) == 0)
  782                 return(0);
  783         if (elm->leaf.base.btype != HAMMER_BTREE_TYPE_RECORD)
  784                 return(0);
  785         data_off = elm->leaf.data_offset;
  786         data_len = elm->leaf.data_len;
  787         if (data_off == 0)
  788                 return(0);
  789 
  790         /*
  791          * Load the data
  792          */
  793         KKASSERT(data_len >= 0 && data_len <= HAMMER_XBUFSIZE);
  794         cursor->data = hammer_bread_ext(hmp, data_off, data_len,
  795                                         &error, &cursor->data_buffer);
  796 
  797         /*
  798          * Mark the data buffer as not being meta-data if it isn't
  799          * meta-data (sometimes bulk data is accessed via a volume
  800          * block device).
  801          */
  802         if (error == 0) {
  803                 switch(elm->leaf.base.rec_type) {
  804                 case HAMMER_RECTYPE_DATA:
  805                 case HAMMER_RECTYPE_DB:
  806                         if ((data_off & HAMMER_ZONE_LARGE_DATA) == 0)
  807                                 break;
  808                         if (hammer_double_buffer == 0 ||
  809                             (cursor->flags & HAMMER_CURSOR_NOSWAPCACHE)) {
  810                                 hammer_io_notmeta(cursor->data_buffer);
  811                         }
  812                         break;
  813                 default:
  814                         break;
  815                 }
  816         }
  817 
  818         /*
  819          * Deal with CRC errors on the extracted data.
  820          */
  821         if (error == 0 &&
  822             hammer_crc_test_leaf(cursor->data, &elm->leaf) == 0) {
  823                 kprintf("CRC DATA @ %016llx/%d FAILED\n",
  824                         (long long)elm->leaf.data_offset, elm->leaf.data_len);
  825                 if (hammer_debug_critical)
  826                         Debugger("CRC FAILED: DATA");
  827                 if (cursor->trans->flags & HAMMER_TRANSF_CRCDOM)
  828                         error = EDOM;   /* less critical (mirroring) */
  829                 else
  830                         error = EIO;    /* critical */
  831         }
  832         return(error);
  833 }
  834 
  835 
  836 /*
  837  * Insert a leaf element into the B-Tree at the current cursor position.
  838  * The cursor is positioned such that the element at and beyond the cursor
  839  * are shifted to make room for the new record.
  840  *
  841  * The caller must call hammer_btree_lookup() with the HAMMER_CURSOR_INSERT
  842  * flag set and that call must return ENOENT before this function can be
  843  * called.
  844  *
  845  * The caller may depend on the cursor's exclusive lock after return to
  846  * interlock frontend visibility (see HAMMER_RECF_CONVERT_DELETE).
  847  *
  848  * ENOSPC is returned if there is no room to insert a new record.
  849  */
  850 int
  851 hammer_btree_insert(hammer_cursor_t cursor, hammer_btree_leaf_elm_t elm,
  852                     int *doprop)
  853 {
  854         hammer_node_ondisk_t node;
  855         int i;
  856         int error;
  857 
  858         *doprop = 0;
  859         if ((error = hammer_cursor_upgrade_node(cursor)) != 0)
  860                 return(error);
  861         ++hammer_stats_btree_inserts;
  862 
  863         /*
  864          * Insert the element at the leaf node and update the count in the
  865          * parent.  It is possible for parent to be NULL, indicating that
  866          * the filesystem's ROOT B-Tree node is a leaf itself, which is
  867          * possible.  The root inode can never be deleted so the leaf should
  868          * never be empty.
  869          *
  870          * Remember that the right-hand boundary is not included in the
  871          * count.
  872          */
  873         hammer_modify_node_all(cursor->trans, cursor->node);
  874         node = cursor->node->ondisk;
  875         i = cursor->index;
  876         KKASSERT(elm->base.btype != 0);
  877         KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
  878         KKASSERT(node->count < HAMMER_BTREE_LEAF_ELMS);
  879         if (i != node->count) {
  880                 bcopy(&node->elms[i], &node->elms[i+1],
  881                       (node->count - i) * sizeof(*elm));
  882         }
  883         node->elms[i].leaf = *elm;
  884         ++node->count;
  885         hammer_cursor_inserted_element(cursor->node, i);
  886 
  887         /*
  888          * Update the leaf node's aggregate mirror_tid for mirroring
  889          * support.
  890          */
  891         if (node->mirror_tid < elm->base.delete_tid) {
  892                 node->mirror_tid = elm->base.delete_tid;
  893                 *doprop = 1;
  894         }
  895         if (node->mirror_tid < elm->base.create_tid) {
  896                 node->mirror_tid = elm->base.create_tid;
  897                 *doprop = 1;
  898         }
  899         hammer_modify_node_done(cursor->node);
  900 
  901         /*
  902          * Debugging sanity checks.
  903          */
  904         KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->base) <= 0);
  905         KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->base) > 0);
  906         if (i) {
  907                 KKASSERT(hammer_btree_cmp(&node->elms[i-1].leaf.base, &elm->base) < 0);
  908         }
  909         if (i != node->count - 1)
  910                 KKASSERT(hammer_btree_cmp(&node->elms[i+1].leaf.base, &elm->base) > 0);
  911 
  912         return(0);
  913 }
  914 
  915 /*
  916  * Delete a record from the B-Tree at the current cursor position.
  917  * The cursor is positioned such that the current element is the one
  918  * to be deleted.
  919  *
  920  * On return the cursor will be positioned after the deleted element and
  921  * MAY point to an internal node.  It will be suitable for the continuation
  922  * of an iteration but not for an insertion or deletion.
  923  *
  924  * Deletions will attempt to partially rebalance the B-Tree in an upward
  925  * direction, but will terminate rather then deadlock.  Empty internal nodes
  926  * are never allowed by a deletion which deadlocks may end up giving us an
  927  * empty leaf.  The pruner will clean up and rebalance the tree.
  928  *
  929  * This function can return EDEADLK, requiring the caller to retry the
  930  * operation after clearing the deadlock.
  931  */
  932 int
  933 hammer_btree_delete(hammer_cursor_t cursor)
  934 {
  935         hammer_node_ondisk_t ondisk;
  936         hammer_node_t node;
  937         hammer_node_t parent __debugvar;
  938         int error;
  939         int i;
  940 
  941         KKASSERT (cursor->trans->sync_lock_refs > 0);
  942         if ((error = hammer_cursor_upgrade(cursor)) != 0)
  943                 return(error);
  944         ++hammer_stats_btree_deletes;
  945 
  946         /*
  947          * Delete the element from the leaf node. 
  948          *
  949          * Remember that leaf nodes do not have boundaries.
  950          */
  951         node = cursor->node;
  952         ondisk = node->ondisk;
  953         i = cursor->index;
  954 
  955         KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_LEAF);
  956         KKASSERT(i >= 0 && i < ondisk->count);
  957         hammer_modify_node_all(cursor->trans, node);
  958         if (i + 1 != ondisk->count) {
  959                 bcopy(&ondisk->elms[i+1], &ondisk->elms[i],
  960                       (ondisk->count - i - 1) * sizeof(ondisk->elms[0]));
  961         }
  962         --ondisk->count;
  963         hammer_modify_node_done(node);
  964         hammer_cursor_deleted_element(node, i);
  965 
  966         /*
  967          * Validate local parent
  968          */
  969         if (ondisk->parent) {
  970                 parent = cursor->parent;
  971 
  972                 KKASSERT(parent != NULL);
  973                 KKASSERT(parent->node_offset == ondisk->parent);
  974         }
  975 
  976         /*
  977          * If the leaf becomes empty it must be detached from the parent,
  978          * potentially recursing through to the filesystem root.
  979          *
  980          * This may reposition the cursor at one of the parent's of the
  981          * current node.
  982          *
  983          * Ignore deadlock errors, that simply means that btree_remove
  984          * was unable to recurse and had to leave us with an empty leaf. 
  985          */
  986         KKASSERT(cursor->index <= ondisk->count);
  987         if (ondisk->count == 0) {
  988                 error = btree_remove(cursor);
  989                 if (error == EDEADLK)
  990                         error = 0;
  991         } else {
  992                 error = 0;
  993         }
  994         KKASSERT(cursor->parent == NULL ||
  995                  cursor->parent_index < cursor->parent->ondisk->count);
  996         return(error);
  997 }
  998 
  999 /*
 1000  * PRIMAY B-TREE SEARCH SUPPORT PROCEDURE
 1001  *
 1002  * Search the filesystem B-Tree for cursor->key_beg, return the matching node.
 1003  *
 1004  * The search can begin ANYWHERE in the B-Tree.  As a first step the search
 1005  * iterates up the tree as necessary to properly position itself prior to
 1006  * actually doing the sarch.
 1007  * 
 1008  * INSERTIONS: The search will split full nodes and leaves on its way down
 1009  * and guarentee that the leaf it ends up on is not full.  If we run out
 1010  * of space the search continues to the leaf (to position the cursor for
 1011  * the spike), but ENOSPC is returned.
 1012  *
 1013  * The search is only guarenteed to end up on a leaf if an error code of 0
 1014  * is returned, or if inserting and an error code of ENOENT is returned.
 1015  * Otherwise it can stop at an internal node.  On success a search returns
 1016  * a leaf node.
 1017  *
 1018  * COMPLEXITY WARNING!  This is the core B-Tree search code for the entire
 1019  * filesystem, and it is not simple code.  Please note the following facts:
 1020  *
 1021  * - Internal node recursions have a boundary on the left AND right.  The
 1022  *   right boundary is non-inclusive.  The create_tid is a generic part
 1023  *   of the key for internal nodes.
 1024  *
 1025  * - Leaf nodes contain terminal elements only now.
 1026  *
 1027  * - Filesystem lookups typically set HAMMER_CURSOR_ASOF, indicating a
 1028  *   historical search.  ASOF and INSERT are mutually exclusive.  When
 1029  *   doing an as-of lookup btree_search() checks for a right-edge boundary
 1030  *   case.  If while recursing down the left-edge differs from the key
 1031  *   by ONLY its create_tid, HAMMER_CURSOR_CREATE_CHECK is set along
 1032  *   with cursor->create_check.  This is used by btree_lookup() to iterate.
 1033  *   The iteration backwards because as-of searches can wind up going
 1034  *   down the wrong branch of the B-Tree.
 1035  */
 1036 static 
 1037 int
 1038 btree_search(hammer_cursor_t cursor, int flags)
 1039 {
 1040         hammer_node_ondisk_t node;
 1041         hammer_btree_elm_t elm;
 1042         int error;
 1043         int enospc = 0;
 1044         int i;
 1045         int r;
 1046         int s;
 1047 
 1048         flags |= cursor->flags;
 1049         ++hammer_stats_btree_searches;
 1050 
 1051         if (hammer_debug_btree) {
 1052                 kprintf("SEARCH   %016llx[%d] %016llx %02x key=%016llx cre=%016llx lo=%02x (td = %p)\n",
 1053                         (long long)cursor->node->node_offset,
 1054                         cursor->index,
 1055                         (long long)cursor->key_beg.obj_id,
 1056                         cursor->key_beg.rec_type,
 1057                         (long long)cursor->key_beg.key,
 1058                         (long long)cursor->key_beg.create_tid,
 1059                         cursor->key_beg.localization, 
 1060                         curthread
 1061                 );
 1062                 if (cursor->parent)
 1063                     kprintf("SEARCHP %016llx[%d] (%016llx/%016llx %016llx/%016llx) (%p/%p %p/%p)\n",
 1064                         (long long)cursor->parent->node_offset,
 1065                         cursor->parent_index,
 1066                         (long long)cursor->left_bound->obj_id,
 1067                         (long long)cursor->parent->ondisk->elms[cursor->parent_index].internal.base.obj_id,
 1068                         (long long)cursor->right_bound->obj_id,
 1069                         (long long)cursor->parent->ondisk->elms[cursor->parent_index+1].internal.base.obj_id,
 1070                         cursor->left_bound,
 1071                         &cursor->parent->ondisk->elms[cursor->parent_index],
 1072                         cursor->right_bound,
 1073                         &cursor->parent->ondisk->elms[cursor->parent_index+1]
 1074                     );
 1075         }
 1076 
 1077         /*
 1078          * Move our cursor up the tree until we find a node whos range covers
 1079          * the key we are trying to locate.
 1080          *
 1081          * The left bound is inclusive, the right bound is non-inclusive.
 1082          * It is ok to cursor up too far.
 1083          */
 1084         for (;;) {
 1085                 r = hammer_btree_cmp(&cursor->key_beg, cursor->left_bound);
 1086                 s = hammer_btree_cmp(&cursor->key_beg, cursor->right_bound);
 1087                 if (r >= 0 && s < 0)
 1088                         break;
 1089                 KKASSERT(cursor->parent);
 1090                 ++hammer_stats_btree_iterations;
 1091                 error = hammer_cursor_up(cursor);
 1092                 if (error)
 1093                         goto done;
 1094         }
 1095 
 1096         /*
 1097          * The delete-checks below are based on node, not parent.  Set the
 1098          * initial delete-check based on the parent.
 1099          */
 1100         if (r == 1) {
 1101                 KKASSERT(cursor->left_bound->create_tid != 1);
 1102                 cursor->create_check = cursor->left_bound->create_tid - 1;
 1103                 cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
 1104         }
 1105 
 1106         /*
 1107          * We better have ended up with a node somewhere.
 1108          */
 1109         KKASSERT(cursor->node != NULL);
 1110 
 1111         /*
 1112          * If we are inserting we can't start at a full node if the parent
 1113          * is also full (because there is no way to split the node),
 1114          * continue running up the tree until the requirement is satisfied
 1115          * or we hit the root of the filesystem.
 1116          *
 1117          * (If inserting we aren't doing an as-of search so we don't have
 1118          *  to worry about create_check).
 1119          */
 1120         while ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
 1121                 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
 1122                         if (btree_node_is_full(cursor->node->ondisk) == 0)
 1123                                 break;
 1124                 } else {
 1125                         if (btree_node_is_full(cursor->node->ondisk) ==0)
 1126                                 break;
 1127                 }
 1128                 if (cursor->node->ondisk->parent == 0 ||
 1129                     cursor->parent->ondisk->count != HAMMER_BTREE_INT_ELMS) {
 1130                         break;
 1131                 }
 1132                 ++hammer_stats_btree_iterations;
 1133                 error = hammer_cursor_up(cursor);
 1134                 /* node may have become stale */
 1135                 if (error)
 1136                         goto done;
 1137         }
 1138 
 1139         /*
 1140          * Push down through internal nodes to locate the requested key.
 1141          */
 1142         node = cursor->node->ondisk;
 1143         while (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
 1144                 /*
 1145                  * Scan the node to find the subtree index to push down into.
 1146                  * We go one-past, then back-up.
 1147                  *
 1148                  * We must proactively remove deleted elements which may
 1149                  * have been left over from a deadlocked btree_remove().
 1150                  *
 1151                  * The left and right boundaries are included in the loop
 1152                  * in order to detect edge cases.
 1153                  *
 1154                  * If the separator only differs by create_tid (r == 1)
 1155                  * and we are doing an as-of search, we may end up going
 1156                  * down a branch to the left of the one containing the
 1157                  * desired key.  This requires numerous special cases.
 1158                  */
 1159                 ++hammer_stats_btree_iterations;
 1160                 if (hammer_debug_btree) {
 1161                         kprintf("SEARCH-I %016llx count=%d\n",
 1162                                 (long long)cursor->node->node_offset,
 1163                                 node->count);
 1164                 }
 1165 
 1166                 /*
 1167                  * Try to shortcut the search before dropping into the
 1168                  * linear loop.  Locate the first node where r <= 1.
 1169                  */
 1170                 i = hammer_btree_search_node(&cursor->key_beg, node);
 1171                 while (i <= node->count) {
 1172                         ++hammer_stats_btree_elements;
 1173                         elm = &node->elms[i];
 1174                         r = hammer_btree_cmp(&cursor->key_beg, &elm->base);
 1175                         if (hammer_debug_btree > 2) {
 1176                                 kprintf(" IELM %p %d r=%d\n",
 1177                                         &node->elms[i], i, r);
 1178                         }
 1179                         if (r < 0)
 1180                                 break;
 1181                         if (r == 1) {
 1182                                 KKASSERT(elm->base.create_tid != 1);
 1183                                 cursor->create_check = elm->base.create_tid - 1;
 1184                                 cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
 1185                         }
 1186                         ++i;
 1187                 }
 1188                 if (hammer_debug_btree) {
 1189                         kprintf("SEARCH-I preI=%d/%d r=%d\n",
 1190                                 i, node->count, r);
 1191                 }
 1192 
 1193                 /*
 1194                  * These cases occur when the parent's idea of the boundary
 1195                  * is wider then the child's idea of the boundary, and
 1196                  * require special handling.  If not inserting we can
 1197                  * terminate the search early for these cases but the
 1198                  * child's boundaries cannot be unconditionally modified.
 1199                  */
 1200                 if (i == 0) {
 1201                         /*
 1202                          * If i == 0 the search terminated to the LEFT of the
 1203                          * left_boundary but to the RIGHT of the parent's left
 1204                          * boundary.
 1205                          */
 1206                         u_int8_t save;
 1207 
 1208                         elm = &node->elms[0];
 1209 
 1210                         /*
 1211                          * If we aren't inserting we can stop here.
 1212                          */
 1213                         if ((flags & (HAMMER_CURSOR_INSERT |
 1214                                       HAMMER_CURSOR_PRUNING)) == 0) {
 1215                                 cursor->index = 0;
 1216                                 return(ENOENT);
 1217                         }
 1218 
 1219                         /*
 1220                          * Correct a left-hand boundary mismatch.
 1221                          *
 1222                          * We can only do this if we can upgrade the lock,
 1223                          * and synchronized as a background cursor (i.e.
 1224                          * inserting or pruning).
 1225                          *
 1226                          * WARNING: We can only do this if inserting, i.e.
 1227                          * we are running on the backend.
 1228                          */
 1229                         if ((error = hammer_cursor_upgrade(cursor)) != 0)
 1230                                 return(error);
 1231                         KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
 1232                         hammer_modify_node_field(cursor->trans, cursor->node,
 1233                                                  elms[0]);
 1234                         save = node->elms[0].base.btype;
 1235                         node->elms[0].base = *cursor->left_bound;
 1236                         node->elms[0].base.btype = save;
 1237                         hammer_modify_node_done(cursor->node);
 1238                 } else if (i == node->count + 1) {
 1239                         /*
 1240                          * If i == node->count + 1 the search terminated to
 1241                          * the RIGHT of the right boundary but to the LEFT
 1242                          * of the parent's right boundary.  If we aren't
 1243                          * inserting we can stop here.
 1244                          *
 1245                          * Note that the last element in this case is
 1246                          * elms[i-2] prior to adjustments to 'i'.
 1247                          */
 1248                         --i;
 1249                         if ((flags & (HAMMER_CURSOR_INSERT |
 1250                                       HAMMER_CURSOR_PRUNING)) == 0) {
 1251                                 cursor->index = i;
 1252                                 return (ENOENT);
 1253                         }
 1254 
 1255                         /*
 1256                          * Correct a right-hand boundary mismatch.
 1257                          * (actual push-down record is i-2 prior to
 1258                          * adjustments to i).
 1259                          *
 1260                          * We can only do this if we can upgrade the lock,
 1261                          * and synchronized as a background cursor (i.e.
 1262                          * inserting or pruning).
 1263                          *
 1264                          * WARNING: We can only do this if inserting, i.e.
 1265                          * we are running on the backend.
 1266                          */
 1267                         if ((error = hammer_cursor_upgrade(cursor)) != 0)
 1268                                 return(error);
 1269                         elm = &node->elms[i];
 1270                         KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
 1271                         hammer_modify_node(cursor->trans, cursor->node,
 1272                                            &elm->base, sizeof(elm->base));
 1273                         elm->base = *cursor->right_bound;
 1274                         hammer_modify_node_done(cursor->node);
 1275                         --i;
 1276                 } else {
 1277                         /*
 1278                          * The push-down index is now i - 1.  If we had
 1279                          * terminated on the right boundary this will point
 1280                          * us at the last element.
 1281                          */
 1282                         --i;
 1283                 }
 1284                 cursor->index = i;
 1285                 elm = &node->elms[i];
 1286 
 1287                 if (hammer_debug_btree) {
 1288                         kprintf("RESULT-I %016llx[%d] %016llx %02x "
 1289                                 "key=%016llx cre=%016llx lo=%02x\n",
 1290                                 (long long)cursor->node->node_offset,
 1291                                 i,
 1292                                 (long long)elm->internal.base.obj_id,
 1293                                 elm->internal.base.rec_type,
 1294                                 (long long)elm->internal.base.key,
 1295                                 (long long)elm->internal.base.create_tid,
 1296                                 elm->internal.base.localization
 1297                         );
 1298                 }
 1299 
 1300                 /*
 1301                  * We better have a valid subtree offset.
 1302                  */
 1303                 KKASSERT(elm->internal.subtree_offset != 0);
 1304 
 1305                 /*
 1306                  * Handle insertion and deletion requirements.
 1307                  *
 1308                  * If inserting split full nodes.  The split code will
 1309                  * adjust cursor->node and cursor->index if the current
 1310                  * index winds up in the new node.
 1311                  *
 1312                  * If inserting and a left or right edge case was detected,
 1313                  * we cannot correct the left or right boundary and must
 1314                  * prepend and append an empty leaf node in order to make
 1315                  * the boundary correction.
 1316                  *
 1317                  * If we run out of space we set enospc and continue on
 1318                  * to a leaf to provide the spike code with a good point
 1319                  * of entry.
 1320                  */
 1321                 if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
 1322                         if (btree_node_is_full(node)) {
 1323                                 error = btree_split_internal(cursor);
 1324                                 if (error) {
 1325                                         if (error != ENOSPC)
 1326                                                 goto done;
 1327                                         enospc = 1;
 1328                                 }
 1329                                 /*
 1330                                  * reload stale pointers
 1331                                  */
 1332                                 i = cursor->index;
 1333                                 node = cursor->node->ondisk;
 1334                         }
 1335                 }
 1336 
 1337                 /*
 1338                  * Push down (push into new node, existing node becomes
 1339                  * the parent) and continue the search.
 1340                  */
 1341                 error = hammer_cursor_down(cursor);
 1342                 /* node may have become stale */
 1343                 if (error)
 1344                         goto done;
 1345                 node = cursor->node->ondisk;
 1346         }
 1347 
 1348         /*
 1349          * We are at a leaf, do a linear search of the key array.
 1350          *
 1351          * On success the index is set to the matching element and 0
 1352          * is returned.
 1353          *
 1354          * On failure the index is set to the insertion point and ENOENT
 1355          * is returned.
 1356          *
 1357          * Boundaries are not stored in leaf nodes, so the index can wind
 1358          * up to the left of element 0 (index == 0) or past the end of
 1359          * the array (index == node->count).  It is also possible that the
 1360          * leaf might be empty.
 1361          */
 1362         ++hammer_stats_btree_iterations;
 1363         KKASSERT (node->type == HAMMER_BTREE_TYPE_LEAF);
 1364         KKASSERT(node->count <= HAMMER_BTREE_LEAF_ELMS);
 1365         if (hammer_debug_btree) {
 1366                 kprintf("SEARCH-L %016llx count=%d\n",
 1367                         (long long)cursor->node->node_offset,
 1368                         node->count);
 1369         }
 1370 
 1371         /*
 1372          * Try to shortcut the search before dropping into the
 1373          * linear loop.  Locate the first node where r <= 1.
 1374          */
 1375         i = hammer_btree_search_node(&cursor->key_beg, node);
 1376         while (i < node->count) {
 1377                 ++hammer_stats_btree_elements;
 1378                 elm = &node->elms[i];
 1379 
 1380                 r = hammer_btree_cmp(&cursor->key_beg, &elm->leaf.base);
 1381 
 1382                 if (hammer_debug_btree > 1)
 1383                         kprintf("  ELM %p %d r=%d\n", &node->elms[i], i, r);
 1384 
 1385                 /*
 1386                  * We are at a record element.  Stop if we've flipped past
 1387                  * key_beg, not counting the create_tid test.  Allow the
 1388                  * r == 1 case (key_beg > element but differs only by its
 1389                  * create_tid) to fall through to the AS-OF check.
 1390                  */
 1391                 KKASSERT (elm->leaf.base.btype == HAMMER_BTREE_TYPE_RECORD);
 1392 
 1393                 if (r < 0)
 1394                         goto failed;
 1395                 if (r > 1) {
 1396                         ++i;
 1397                         continue;
 1398                 }
 1399 
 1400                 /*
 1401                  * Check our as-of timestamp against the element.
 1402                  */
 1403                 if (flags & HAMMER_CURSOR_ASOF) {
 1404                         if (hammer_btree_chkts(cursor->asof,
 1405                                                &node->elms[i].base) != 0) {
 1406                                 ++i;
 1407                                 continue;
 1408                         }
 1409                         /* success */
 1410                 } else {
 1411                         if (r > 0) {    /* can only be +1 */
 1412                                 ++i;
 1413                                 continue;
 1414                         }
 1415                         /* success */
 1416                 }
 1417                 cursor->index = i;
 1418                 error = 0;
 1419                 if (hammer_debug_btree) {
 1420                         kprintf("RESULT-L %016llx[%d] (SUCCESS)\n",
 1421                                 (long long)cursor->node->node_offset, i);
 1422                 }
 1423                 goto done;
 1424         }
 1425 
 1426         /*
 1427          * The search of the leaf node failed.  i is the insertion point.
 1428          */
 1429 failed:
 1430         if (hammer_debug_btree) {
 1431                 kprintf("RESULT-L %016llx[%d] (FAILED)\n",
 1432                         (long long)cursor->node->node_offset, i);
 1433         }
 1434 
 1435         /*
 1436          * No exact match was found, i is now at the insertion point.
 1437          *
 1438          * If inserting split a full leaf before returning.  This
 1439          * may have the side effect of adjusting cursor->node and
 1440          * cursor->index.
 1441          */
 1442         cursor->index = i;
 1443         if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0 &&
 1444              btree_node_is_full(node)) {
 1445                 error = btree_split_leaf(cursor);
 1446                 if (error) {
 1447                         if (error != ENOSPC)
 1448                                 goto done;
 1449                         enospc = 1;
 1450                 }
 1451                 /*
 1452                  * reload stale pointers
 1453                  */
 1454                 /* NOT USED
 1455                 i = cursor->index;
 1456                 node = &cursor->node->internal;
 1457                 */
 1458         }
 1459 
 1460         /*
 1461          * We reached a leaf but did not find the key we were looking for.
 1462          * If this is an insert we will be properly positioned for an insert
 1463          * (ENOENT) or spike (ENOSPC) operation.
 1464          */
 1465         error = enospc ? ENOSPC : ENOENT;
 1466 done:
 1467         return(error);
 1468 }
 1469 
 1470 /*
 1471  * Heuristical search for the first element whos comparison is <= 1.  May
 1472  * return an index whos compare result is > 1 but may only return an index
 1473  * whos compare result is <= 1 if it is the first element with that result.
 1474  */
 1475 int
 1476 hammer_btree_search_node(hammer_base_elm_t elm, hammer_node_ondisk_t node)
 1477 {
 1478         int b;
 1479         int s;
 1480         int i;
 1481         int r;
 1482 
 1483         /*
 1484          * Don't bother if the node does not have very many elements
 1485          */
 1486         b = 0;
 1487         s = node->count;
 1488         while (s - b > 4) {
 1489                 i = b + (s - b) / 2;
 1490                 ++hammer_stats_btree_elements;
 1491                 r = hammer_btree_cmp(elm, &node->elms[i].leaf.base);
 1492                 if (r <= 1) {
 1493                         s = i;
 1494                 } else {
 1495                         b = i;
 1496                 }
 1497         }
 1498         return(b);
 1499 }
 1500 
 1501 
 1502 /************************************************************************
 1503  *                         SPLITTING AND MERGING                        *
 1504  ************************************************************************
 1505  *
 1506  * These routines do all the dirty work required to split and merge nodes.
 1507  */
 1508 
 1509 /*
 1510  * Split an internal node into two nodes and move the separator at the split
 1511  * point to the parent.
 1512  *
 1513  * (cursor->node, cursor->index) indicates the element the caller intends
 1514  * to push into.  We will adjust node and index if that element winds
 1515  * up in the split node.
 1516  *
 1517  * If we are at the root of the filesystem a new root must be created with
 1518  * two elements, one pointing to the original root and one pointing to the
 1519  * newly allocated split node.
 1520  */
 1521 static
 1522 int
 1523 btree_split_internal(hammer_cursor_t cursor)
 1524 {
 1525         hammer_node_ondisk_t ondisk;
 1526         hammer_node_t node;
 1527         hammer_node_t parent;
 1528         hammer_node_t new_node;
 1529         hammer_btree_elm_t elm;
 1530         hammer_btree_elm_t parent_elm;
 1531         struct hammer_node_lock lockroot;
 1532         hammer_mount_t hmp = cursor->trans->hmp;
 1533         int parent_index;
 1534         int made_root;
 1535         int split;
 1536         int error;
 1537         int i;
 1538         const int esize = sizeof(*elm);
 1539 
 1540         hammer_node_lock_init(&lockroot, cursor->node);
 1541         error = hammer_btree_lock_children(cursor, 1, &lockroot, NULL);
 1542         if (error)
 1543                 goto done;
 1544         if ((error = hammer_cursor_upgrade(cursor)) != 0)
 1545                 goto done;
 1546         ++hammer_stats_btree_splits;
 1547 
 1548         /* 
 1549          * Calculate the split point.  If the insertion point is at the
 1550          * end of the leaf we adjust the split point significantly to the
 1551          * right to try to optimize node fill and flag it.  If we hit
 1552          * that same leaf again our heuristic failed and we don't try
 1553          * to optimize node fill (it could lead to a degenerate case).
 1554          */
 1555         node = cursor->node;
 1556         ondisk = node->ondisk;
 1557         KKASSERT(ondisk->count > 4);
 1558         if (cursor->index == ondisk->count &&
 1559             (node->flags & HAMMER_NODE_NONLINEAR) == 0) {
 1560                 split = (ondisk->count + 1) * 3 / 4;
 1561                 node->flags |= HAMMER_NODE_NONLINEAR;
 1562         } else {
 1563                 /*
 1564                  * We are splitting but elms[split] will be promoted to
 1565                  * the parent, leaving the right hand node with one less
 1566                  * element.  If the insertion point will be on the
 1567                  * left-hand side adjust the split point to give the
 1568                  * right hand side one additional node.
 1569                  */
 1570                 split = (ondisk->count + 1) / 2;
 1571                 if (cursor->index <= split)
 1572                         --split;
 1573         }
 1574 
 1575         /*
 1576          * If we are at the root of the filesystem, create a new root node
 1577          * with 1 element and split normally.  Avoid making major
 1578          * modifications until we know the whole operation will work.
 1579          */
 1580         if (ondisk->parent == 0) {
 1581                 parent = hammer_alloc_btree(cursor->trans, 0, &error);
 1582                 if (parent == NULL)
 1583                         goto done;
 1584                 hammer_lock_ex(&parent->lock);
 1585                 hammer_modify_node_noundo(cursor->trans, parent);
 1586                 ondisk = parent->ondisk;
 1587                 ondisk->count = 1;
 1588                 ondisk->parent = 0;
 1589                 ondisk->mirror_tid = node->ondisk->mirror_tid;
 1590                 ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
 1591                 ondisk->elms[0].base = hmp->root_btree_beg;
 1592                 ondisk->elms[0].base.btype = node->ondisk->type;
 1593                 ondisk->elms[0].internal.subtree_offset = node->node_offset;
 1594                 ondisk->elms[1].base = hmp->root_btree_end;
 1595                 hammer_modify_node_done(parent);
 1596                 /* ondisk->elms[1].base.btype - not used */
 1597                 made_root = 1;
 1598                 parent_index = 0;       /* index of current node in parent */
 1599         } else {
 1600                 made_root = 0;
 1601                 parent = cursor->parent;
 1602                 parent_index = cursor->parent_index;
 1603         }
 1604 
 1605         /*
 1606          * Split node into new_node at the split point.
 1607          *
 1608          *  B O O O P N N B     <-- P = node->elms[split] (index 4)
 1609          *   0 1 2 3 4 5 6      <-- subtree indices
 1610          *
 1611          *       x x P x x
 1612          *        s S S s  
 1613          *         /   \
 1614          *  B O O O B    B N N B        <--- inner boundary points are 'P'
 1615          *   0 1 2 3      4 5 6  
 1616          */
 1617         new_node = hammer_alloc_btree(cursor->trans, 0, &error);
 1618         if (new_node == NULL) {
 1619                 if (made_root) {
 1620                         hammer_unlock(&parent->lock);
 1621                         hammer_delete_node(cursor->trans, parent);
 1622                         hammer_rel_node(parent);
 1623                 }
 1624                 goto done;
 1625         }
 1626         hammer_lock_ex(&new_node->lock);
 1627 
 1628         /*
 1629          * Create the new node.  P becomes the left-hand boundary in the
 1630          * new node.  Copy the right-hand boundary as well.
 1631          *
 1632          * elm is the new separator.
 1633          */
 1634         hammer_modify_node_noundo(cursor->trans, new_node);
 1635         hammer_modify_node_all(cursor->trans, node);
 1636         ondisk = node->ondisk;
 1637         elm = &ondisk->elms[split];
 1638         bcopy(elm, &new_node->ondisk->elms[0],
 1639               (ondisk->count - split + 1) * esize);
 1640         new_node->ondisk->count = ondisk->count - split;
 1641         new_node->ondisk->parent = parent->node_offset;
 1642         new_node->ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
 1643         new_node->ondisk->mirror_tid = ondisk->mirror_tid;
 1644         KKASSERT(ondisk->type == new_node->ondisk->type);
 1645         hammer_cursor_split_node(node, new_node, split);
 1646 
 1647         /*
 1648          * Cleanup the original node.  Elm (P) becomes the new boundary,
 1649          * its subtree_offset was moved to the new node.  If we had created
 1650          * a new root its parent pointer may have changed.
 1651          */
 1652         elm->internal.subtree_offset = 0;
 1653         ondisk->count = split;
 1654 
 1655         /*
 1656          * Insert the separator into the parent, fixup the parent's
 1657          * reference to the original node, and reference the new node.
 1658          * The separator is P.
 1659          *
 1660          * Remember that base.count does not include the right-hand boundary.
 1661          */
 1662         hammer_modify_node_all(cursor->trans, parent);
 1663         ondisk = parent->ondisk;
 1664         KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
 1665         parent_elm = &ondisk->elms[parent_index+1];
 1666         bcopy(parent_elm, parent_elm + 1,
 1667               (ondisk->count - parent_index) * esize);
 1668         parent_elm->internal.base = elm->base;  /* separator P */
 1669         parent_elm->internal.base.btype = new_node->ondisk->type;
 1670         parent_elm->internal.subtree_offset = new_node->node_offset;
 1671         parent_elm->internal.mirror_tid = new_node->ondisk->mirror_tid;
 1672         ++ondisk->count;
 1673         hammer_modify_node_done(parent);
 1674         hammer_cursor_inserted_element(parent, parent_index + 1);
 1675 
 1676         /*
 1677          * The children of new_node need their parent pointer set to new_node.
 1678          * The children have already been locked by
 1679          * hammer_btree_lock_children().
 1680          */
 1681         for (i = 0; i < new_node->ondisk->count; ++i) {
 1682                 elm = &new_node->ondisk->elms[i];
 1683                 error = btree_set_parent(cursor->trans, new_node, elm);
 1684                 if (error) {
 1685                         panic("btree_split_internal: btree-fixup problem");
 1686                 }
 1687         }
 1688         hammer_modify_node_done(new_node);
 1689 
 1690         /*
 1691          * The filesystem's root B-Tree pointer may have to be updated.
 1692          */
 1693         if (made_root) {
 1694                 hammer_volume_t volume;
 1695 
 1696                 volume = hammer_get_root_volume(hmp, &error);
 1697                 KKASSERT(error == 0);
 1698 
 1699                 hammer_modify_volume_field(cursor->trans, volume,
 1700                                            vol0_btree_root);
 1701                 volume->ondisk->vol0_btree_root = parent->node_offset;
 1702                 hammer_modify_volume_done(volume);
 1703                 node->ondisk->parent = parent->node_offset;
 1704                 if (cursor->parent) {
 1705                         hammer_unlock(&cursor->parent->lock);
 1706                         hammer_rel_node(cursor->parent);
 1707                 }
 1708                 cursor->parent = parent;        /* lock'd and ref'd */
 1709                 hammer_rel_volume(volume, 0);
 1710         }
 1711         hammer_modify_node_done(node);
 1712 
 1713         /*
 1714          * Ok, now adjust the cursor depending on which element the original
 1715          * index was pointing at.  If we are >= the split point the push node
 1716          * is now in the new node.
 1717          *
 1718          * NOTE: If we are at the split point itself we cannot stay with the
 1719          * original node because the push index will point at the right-hand
 1720          * boundary, which is illegal.
 1721          *
 1722          * NOTE: The cursor's parent or parent_index must be adjusted for
 1723          * the case where a new parent (new root) was created, and the case
 1724          * where the cursor is now pointing at the split node.
 1725          */
 1726         if (cursor->index >= split) {
 1727                 cursor->parent_index = parent_index + 1;
 1728                 cursor->index -= split;
 1729                 hammer_unlock(&cursor->node->lock);
 1730                 hammer_rel_node(cursor->node);
 1731                 cursor->node = new_node;        /* locked and ref'd */
 1732         } else {
 1733                 cursor->parent_index = parent_index;
 1734                 hammer_unlock(&new_node->lock);
 1735                 hammer_rel_node(new_node);
 1736         }
 1737 
 1738         /*
 1739          * Fixup left and right bounds
 1740          */
 1741         parent_elm = &parent->ondisk->elms[cursor->parent_index];
 1742         cursor->left_bound = &parent_elm[0].internal.base;
 1743         cursor->right_bound = &parent_elm[1].internal.base;
 1744         KKASSERT(hammer_btree_cmp(cursor->left_bound,
 1745                  &cursor->node->ondisk->elms[0].internal.base) <= 0);
 1746         KKASSERT(hammer_btree_cmp(cursor->right_bound,
 1747                  &cursor->node->ondisk->elms[cursor->node->ondisk->count].internal.base) >= 0);
 1748 
 1749 done:
 1750         hammer_btree_unlock_children(cursor->trans->hmp, &lockroot, NULL);
 1751         hammer_cursor_downgrade(cursor);
 1752         return (error);
 1753 }
 1754 
 1755 /*
 1756  * Same as the above, but splits a full leaf node.
 1757  *
 1758  * This function
 1759  */
 1760 static
 1761 int
 1762 btree_split_leaf(hammer_cursor_t cursor)
 1763 {
 1764         hammer_node_ondisk_t ondisk;
 1765         hammer_node_t parent;
 1766         hammer_node_t leaf;
 1767         hammer_mount_t hmp;
 1768         hammer_node_t new_leaf;
 1769         hammer_btree_elm_t elm;
 1770         hammer_btree_elm_t parent_elm;
 1771         hammer_base_elm_t mid_boundary;
 1772         int parent_index;
 1773         int made_root;
 1774         int split;
 1775         int error;
 1776         const size_t esize = sizeof(*elm);
 1777 
 1778         if ((error = hammer_cursor_upgrade(cursor)) != 0)
 1779                 return(error);
 1780         ++hammer_stats_btree_splits;
 1781 
 1782         KKASSERT(hammer_btree_cmp(cursor->left_bound,
 1783                  &cursor->node->ondisk->elms[0].leaf.base) <= 0);
 1784         KKASSERT(hammer_btree_cmp(cursor->right_bound,
 1785                  &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
 1786 
 1787         /* 
 1788          * Calculate the split point.  If the insertion point is at the
 1789          * end of the leaf we adjust the split point significantly to the
 1790          * right to try to optimize node fill and flag it.  If we hit
 1791          * that same leaf again our heuristic failed and we don't try
 1792          * to optimize node fill (it could lead to a degenerate case).
 1793          *
 1794          * Spikes are made up of two leaf elements which cannot be
 1795          * safely split.
 1796          */
 1797         leaf = cursor->node;
 1798         ondisk = leaf->ondisk;
 1799         KKASSERT(ondisk->count > 4);
 1800         if (cursor->index == ondisk->count &&
 1801             (leaf->flags & HAMMER_NODE_NONLINEAR) == 0) {
 1802                 split = (ondisk->count + 1) * 3 / 4;
 1803                 leaf->flags |= HAMMER_NODE_NONLINEAR;
 1804         } else {
 1805                 split = (ondisk->count + 1) / 2;
 1806         }
 1807 
 1808 #if 0
 1809         /*
 1810          * If the insertion point is at the split point shift the
 1811          * split point left so we don't have to worry about
 1812          */
 1813         if (cursor->index == split)
 1814                 --split;
 1815 #endif
 1816         KKASSERT(split > 0 && split < ondisk->count);
 1817 
 1818         error = 0;
 1819         hmp = leaf->hmp;
 1820 
 1821         elm = &ondisk->elms[split];
 1822 
 1823         KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm[-1].leaf.base) <= 0);
 1824         KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->leaf.base) <= 0);
 1825         KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->leaf.base) > 0);
 1826         KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm[1].leaf.base) > 0);
 1827 
 1828         /*
 1829          * If we are at the root of the tree, create a new root node with
 1830          * 1 element and split normally.  Avoid making major modifications
 1831          * until we know the whole operation will work.
 1832          */
 1833         if (ondisk->parent == 0) {
 1834                 parent = hammer_alloc_btree(cursor->trans, 0, &error);
 1835                 if (parent == NULL)
 1836                         goto done;
 1837                 hammer_lock_ex(&parent->lock);
 1838                 hammer_modify_node_noundo(cursor->trans, parent);
 1839                 ondisk = parent->ondisk;
 1840                 ondisk->count = 1;
 1841                 ondisk->parent = 0;
 1842                 ondisk->mirror_tid = leaf->ondisk->mirror_tid;
 1843                 ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
 1844                 ondisk->elms[0].base = hmp->root_btree_beg;
 1845                 ondisk->elms[0].base.btype = leaf->ondisk->type;
 1846                 ondisk->elms[0].internal.subtree_offset = leaf->node_offset;
 1847                 ondisk->elms[1].base = hmp->root_btree_end;
 1848                 /* ondisk->elms[1].base.btype = not used */
 1849                 hammer_modify_node_done(parent);
 1850                 made_root = 1;
 1851                 parent_index = 0;       /* insertion point in parent */
 1852         } else {
 1853                 made_root = 0;
 1854                 parent = cursor->parent;
 1855                 parent_index = cursor->parent_index;
 1856         }
 1857 
 1858         /*
 1859          * Split leaf into new_leaf at the split point.  Select a separator
 1860          * value in-between the two leafs but with a bent towards the right
 1861          * leaf since comparisons use an 'elm >= separator' inequality.
 1862          *
 1863          *  L L L L L L L L
 1864          *
 1865          *       x x P x x
 1866          *        s S S s  
 1867          *         /   \
 1868          *  L L L L     L L L L
 1869          */
 1870         new_leaf = hammer_alloc_btree(cursor->trans, 0, &error);
 1871         if (new_leaf == NULL) {
 1872                 if (made_root) {
 1873                         hammer_unlock(&parent->lock);
 1874                         hammer_delete_node(cursor->trans, parent);
 1875                         hammer_rel_node(parent);
 1876                 }
 1877                 goto done;
 1878         }
 1879         hammer_lock_ex(&new_leaf->lock);
 1880 
 1881         /*
 1882          * Create the new node and copy the leaf elements from the split 
 1883          * point on to the new node.
 1884          */
 1885         hammer_modify_node_all(cursor->trans, leaf);
 1886         hammer_modify_node_noundo(cursor->trans, new_leaf);
 1887         ondisk = leaf->ondisk;
 1888         elm = &ondisk->elms[split];
 1889         bcopy(elm, &new_leaf->ondisk->elms[0], (ondisk->count - split) * esize);
 1890         new_leaf->ondisk->count = ondisk->count - split;
 1891         new_leaf->ondisk->parent = parent->node_offset;
 1892         new_leaf->ondisk->type = HAMMER_BTREE_TYPE_LEAF;
 1893         new_leaf->ondisk->mirror_tid = ondisk->mirror_tid;
 1894         KKASSERT(ondisk->type == new_leaf->ondisk->type);
 1895         hammer_modify_node_done(new_leaf);
 1896         hammer_cursor_split_node(leaf, new_leaf, split);
 1897 
 1898         /*
 1899          * Cleanup the original node.  Because this is a leaf node and
 1900          * leaf nodes do not have a right-hand boundary, there
 1901          * aren't any special edge cases to clean up.  We just fixup the
 1902          * count.
 1903          */
 1904         ondisk->count = split;
 1905 
 1906         /*
 1907          * Insert the separator into the parent, fixup the parent's
 1908          * reference to the original node, and reference the new node.
 1909          * The separator is P.
 1910          *
 1911          * Remember that base.count does not include the right-hand boundary.
 1912          * We are copying parent_index+1 to parent_index+2, not +0 to +1.
 1913          */
 1914         hammer_modify_node_all(cursor->trans, parent);
 1915         ondisk = parent->ondisk;
 1916         KKASSERT(split != 0);
 1917         KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
 1918         parent_elm = &ondisk->elms[parent_index+1];
 1919         bcopy(parent_elm, parent_elm + 1,
 1920               (ondisk->count - parent_index) * esize);
 1921 
 1922         hammer_make_separator(&elm[-1].base, &elm[0].base, &parent_elm->base);
 1923         parent_elm->internal.base.btype = new_leaf->ondisk->type;
 1924         parent_elm->internal.subtree_offset = new_leaf->node_offset;
 1925         parent_elm->internal.mirror_tid = new_leaf->ondisk->mirror_tid;
 1926         mid_boundary = &parent_elm->base;
 1927         ++ondisk->count;
 1928         hammer_modify_node_done(parent);
 1929         hammer_cursor_inserted_element(parent, parent_index + 1);
 1930 
 1931         /*
 1932          * The filesystem's root B-Tree pointer may have to be updated.
 1933          */
 1934         if (made_root) {
 1935                 hammer_volume_t volume;
 1936 
 1937                 volume = hammer_get_root_volume(hmp, &error);
 1938                 KKASSERT(error == 0);
 1939 
 1940                 hammer_modify_volume_field(cursor->trans, volume,
 1941                                            vol0_btree_root);
 1942                 volume->ondisk->vol0_btree_root = parent->node_offset;
 1943                 hammer_modify_volume_done(volume);
 1944                 leaf->ondisk->parent = parent->node_offset;
 1945                 if (cursor->parent) {
 1946                         hammer_unlock(&cursor->parent->lock);
 1947                         hammer_rel_node(cursor->parent);
 1948                 }
 1949                 cursor->parent = parent;        /* lock'd and ref'd */
 1950                 hammer_rel_volume(volume, 0);
 1951         }
 1952         hammer_modify_node_done(leaf);
 1953 
 1954         /*
 1955          * Ok, now adjust the cursor depending on which element the original
 1956          * index was pointing at.  If we are >= the split point the push node
 1957          * is now in the new node.
 1958          *
 1959          * NOTE: If we are at the split point itself we need to select the
 1960          * old or new node based on where key_beg's insertion point will be.
 1961          * If we pick the wrong side the inserted element will wind up in
 1962          * the wrong leaf node and outside that node's bounds.
 1963          */
 1964         if (cursor->index > split ||
 1965             (cursor->index == split &&
 1966              hammer_btree_cmp(&cursor->key_beg, mid_boundary) >= 0)) {
 1967                 cursor->parent_index = parent_index + 1;
 1968                 cursor->index -= split;
 1969                 hammer_unlock(&cursor->node->lock);
 1970                 hammer_rel_node(cursor->node);
 1971                 cursor->node = new_leaf;
 1972         } else {
 1973                 cursor->parent_index = parent_index;
 1974                 hammer_unlock(&new_leaf->lock);
 1975                 hammer_rel_node(new_leaf);
 1976         }
 1977 
 1978         /*
 1979          * Fixup left and right bounds
 1980          */
 1981         parent_elm = &parent->ondisk->elms[cursor->parent_index];
 1982         cursor->left_bound = &parent_elm[0].internal.base;
 1983         cursor->right_bound = &parent_elm[1].internal.base;
 1984 
 1985         /*
 1986          * Assert that the bounds are correct.
 1987          */
 1988         KKASSERT(hammer_btree_cmp(cursor->left_bound,
 1989                  &cursor->node->ondisk->elms[0].leaf.base) <= 0);
 1990         KKASSERT(hammer_btree_cmp(cursor->right_bound,
 1991                  &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
 1992         KKASSERT(hammer_btree_cmp(cursor->left_bound, &cursor->key_beg) <= 0);
 1993         KKASSERT(hammer_btree_cmp(cursor->right_bound, &cursor->key_beg) > 0);
 1994 
 1995 done:
 1996         hammer_cursor_downgrade(cursor);
 1997         return (error);
 1998 }
 1999 
 2000 #if 0
 2001 
 2002 /*
 2003  * Recursively correct the right-hand boundary's create_tid to (tid) as
 2004  * long as the rest of the key matches.  We have to recurse upward in
 2005  * the tree as well as down the left side of each parent's right node.
 2006  *
 2007  * Return EDEADLK if we were only partially successful, forcing the caller
 2008  * to try again.  The original cursor is not modified.  This routine can
 2009  * also fail with EDEADLK if it is forced to throw away a portion of its
 2010  * record history.
 2011  *
 2012  * The caller must pass a downgraded cursor to us (otherwise we can't dup it).
 2013  */
 2014 struct hammer_rhb {
 2015         TAILQ_ENTRY(hammer_rhb) entry;
 2016         hammer_node_t   node;
 2017         int             index;
 2018 };
 2019 
 2020 TAILQ_HEAD(hammer_rhb_list, hammer_rhb);
 2021 
 2022 int
 2023 hammer_btree_correct_rhb(hammer_cursor_t cursor, hammer_tid_t tid)
 2024 {
 2025         struct hammer_mount *hmp;
 2026         struct hammer_rhb_list rhb_list;
 2027         hammer_base_elm_t elm;
 2028         hammer_node_t orig_node;
 2029         struct hammer_rhb *rhb;
 2030         int orig_index;
 2031         int error;
 2032 
 2033         TAILQ_INIT(&rhb_list);
 2034         hmp = cursor->trans->hmp;
 2035 
 2036         /*
 2037          * Save our position so we can restore it on return.  This also
 2038          * gives us a stable 'elm'.
 2039          */
 2040         orig_node = cursor->node;
 2041         hammer_ref_node(orig_node);
 2042         hammer_lock_sh(&orig_node->lock);
 2043         orig_index = cursor->index;
 2044         elm = &orig_node->ondisk->elms[orig_index].base;
 2045 
 2046         /*
 2047          * Now build a list of parents going up, allocating a rhb
 2048          * structure for each one.
 2049          */
 2050         while (cursor->parent) {
 2051                 /*
 2052                  * Stop if we no longer have any right-bounds to fix up
 2053                  */
 2054                 if (elm->obj_id != cursor->right_bound->obj_id ||
 2055                     elm->rec_type != cursor->right_bound->rec_type ||
 2056                     elm->key != cursor->right_bound->key) {
 2057                         break;
 2058                 }
 2059 
 2060                 /*
 2061                  * Stop if the right-hand bound's create_tid does not
 2062                  * need to be corrected.
 2063                  */
 2064                 if (cursor->right_bound->create_tid >= tid)
 2065                         break;
 2066 
 2067                 rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
 2068                 rhb->node = cursor->parent;
 2069                 rhb->index = cursor->parent_index;
 2070                 hammer_ref_node(rhb->node);
 2071                 hammer_lock_sh(&rhb->node->lock);
 2072                 TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
 2073 
 2074                 hammer_cursor_up(cursor);
 2075         }
 2076 
 2077         /*
 2078          * now safely adjust the right hand bound for each rhb.  This may
 2079          * also require taking the right side of the tree and iterating down
 2080          * ITS left side.
 2081          */
 2082         error = 0;
 2083         while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
 2084                 error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
 2085                 if (error)
 2086                         break;
 2087                 TAILQ_REMOVE(&rhb_list, rhb, entry);
 2088                 hammer_unlock(&rhb->node->lock);
 2089                 hammer_rel_node(rhb->node);
 2090                 kfree(rhb, hmp->m_misc);
 2091 
 2092                 switch (cursor->node->ondisk->type) {
 2093                 case HAMMER_BTREE_TYPE_INTERNAL:
 2094                         /*
 2095                          * Right-boundary for parent at internal node
 2096                          * is one element to the right of the element whos
 2097                          * right boundary needs adjusting.  We must then
 2098                          * traverse down the left side correcting any left
 2099                          * bounds (which may now be too far to the left).
 2100                          */
 2101                         ++cursor->index;
 2102                         error = hammer_btree_correct_lhb(cursor, tid);
 2103                         break;
 2104                 default:
 2105                         panic("hammer_btree_correct_rhb(): Bad node type");
 2106                         error = EINVAL;
 2107                         break;
 2108                 }
 2109         }
 2110 
 2111         /*
 2112          * Cleanup
 2113          */
 2114         while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
 2115                 TAILQ_REMOVE(&rhb_list, rhb, entry);
 2116                 hammer_unlock(&rhb->node->lock);
 2117                 hammer_rel_node(rhb->node);
 2118                 kfree(rhb, hmp->m_misc);
 2119         }
 2120         error = hammer_cursor_seek(cursor, orig_node, orig_index);
 2121         hammer_unlock(&orig_node->lock);
 2122         hammer_rel_node(orig_node);
 2123         return (error);
 2124 }
 2125 
 2126 /*
 2127  * Similar to rhb (in fact, rhb calls lhb), but corrects the left hand
 2128  * bound going downward starting at the current cursor position.
 2129  *
 2130  * This function does not restore the cursor after use.
 2131  */
 2132 int
 2133 hammer_btree_correct_lhb(hammer_cursor_t cursor, hammer_tid_t tid)
 2134 {
 2135         struct hammer_rhb_list rhb_list;
 2136         hammer_base_elm_t elm;
 2137         hammer_base_elm_t cmp;
 2138         struct hammer_rhb *rhb;
 2139         struct hammer_mount *hmp;
 2140         int error;
 2141 
 2142         TAILQ_INIT(&rhb_list);
 2143         hmp = cursor->trans->hmp;
 2144 
 2145         cmp = &cursor->node->ondisk->elms[cursor->index].base;
 2146 
 2147         /*
 2148          * Record the node and traverse down the left-hand side for all
 2149          * matching records needing a boundary correction.
 2150          */
 2151         error = 0;
 2152         for (;;) {
 2153                 rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
 2154                 rhb->node = cursor->node;
 2155                 rhb->index = cursor->index;
 2156                 hammer_ref_node(rhb->node);
 2157                 hammer_lock_sh(&rhb->node->lock);
 2158                 TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
 2159 
 2160                 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
 2161                         /*
 2162                          * Nothing to traverse down if we are at the right
 2163                          * boundary of an internal node.
 2164                          */
 2165                         if (cursor->index == cursor->node->ondisk->count)
 2166                                 break;
 2167                 } else {
 2168                         elm = &cursor->node->ondisk->elms[cursor->index].base;
 2169                         if (elm->btype == HAMMER_BTREE_TYPE_RECORD)
 2170                                 break;
 2171                         panic("Illegal leaf record type %02x", elm->btype);
 2172                 }
 2173                 error = hammer_cursor_down(cursor);
 2174                 if (error)
 2175                         break;
 2176 
 2177                 elm = &cursor->node->ondisk->elms[cursor->index].base;
 2178                 if (elm->obj_id != cmp->obj_id ||
 2179                     elm->rec_type != cmp->rec_type ||
 2180                     elm->key != cmp->key) {
 2181                         break;
 2182                 }
 2183                 if (elm->create_tid >= tid)
 2184                         break;
 2185 
 2186         }
 2187 
 2188         /*
 2189          * Now we can safely adjust the left-hand boundary from the bottom-up.
 2190          * The last element we remove from the list is the caller's right hand
 2191          * boundary, which must also be adjusted.
 2192          */
 2193         while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
 2194                 error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
 2195                 if (error)
 2196                         break;
 2197                 TAILQ_REMOVE(&rhb_list, rhb, entry);
 2198                 hammer_unlock(&rhb->node->lock);
 2199                 hammer_rel_node(rhb->node);
 2200                 kfree(rhb, hmp->m_misc);
 2201 
 2202                 elm = &cursor->node->ondisk->elms[cursor->index].base;
 2203                 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
 2204                         hammer_modify_node(cursor->trans, cursor->node,
 2205                                            &elm->create_tid,
 2206                                            sizeof(elm->create_tid));
 2207                         elm->create_tid = tid;
 2208                         hammer_modify_node_done(cursor->node);
 2209                 } else {
 2210                         panic("hammer_btree_correct_lhb(): Bad element type");
 2211                 }
 2212         }
 2213 
 2214         /*
 2215          * Cleanup
 2216          */
 2217         while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
 2218                 TAILQ_REMOVE(&rhb_list, rhb, entry);
 2219                 hammer_unlock(&rhb->node->lock);
 2220                 hammer_rel_node(rhb->node);
 2221                 kfree(rhb, hmp->m_misc);
 2222         }
 2223         return (error);
 2224 }
 2225 
 2226 #endif
 2227 
 2228 /*
 2229  * Attempt to remove the locked, empty or want-to-be-empty B-Tree node at
 2230  * (cursor->node).  Returns 0 on success, EDEADLK if we could not complete
 2231  * the operation due to a deadlock, or some other error.
 2232  *
 2233  * This routine is initially called with an empty leaf and may be
 2234  * recursively called with single-element internal nodes.
 2235  *
 2236  * It should also be noted that when removing empty leaves we must be sure
 2237  * to test and update mirror_tid because another thread may have deadlocked
 2238  * against us (or someone) trying to propagate it up and cannot retry once
 2239  * the node has been deleted.
 2240  *
 2241  * On return the cursor may end up pointing to an internal node, suitable
 2242  * for further iteration but not for an immediate insertion or deletion.
 2243  */
 2244 static int
 2245 btree_remove(hammer_cursor_t cursor)
 2246 {
 2247         hammer_node_ondisk_t ondisk;
 2248         hammer_btree_elm_t elm;
 2249         hammer_node_t node;
 2250         hammer_node_t parent;
 2251         const int esize = sizeof(*elm);
 2252         int error;
 2253 
 2254         node = cursor->node;
 2255 
 2256         /*
 2257          * When deleting the root of the filesystem convert it to
 2258          * an empty leaf node.  Internal nodes cannot be empty.
 2259          */
 2260         ondisk = node->ondisk;
 2261         if (ondisk->parent == 0) {
 2262                 KKASSERT(cursor->parent == NULL);
 2263                 hammer_modify_node_all(cursor->trans, node);
 2264                 KKASSERT(ondisk == node->ondisk);
 2265                 ondisk->type = HAMMER_BTREE_TYPE_LEAF;
 2266                 ondisk->count = 0;
 2267                 hammer_modify_node_done(node);
 2268                 cursor->index = 0;
 2269                 return(0);
 2270         }
 2271 
 2272         parent = cursor->parent;
 2273 
 2274         /*
 2275          * Attempt to remove the parent's reference to the child.  If the
 2276          * parent would become empty we have to recurse.  If we fail we 
 2277          * leave the parent pointing to an empty leaf node.
 2278          *
 2279          * We have to recurse successfully before we can delete the internal
 2280          * node as it is illegal to have empty internal nodes.  Even though
 2281          * the operation may be aborted we must still fixup any unlocked
 2282          * cursors as if we had deleted the element prior to recursing
 2283          * (by calling hammer_cursor_deleted_element()) so those cursors
 2284          * are properly forced up the chain by the recursion.
 2285          */
 2286         if (parent->ondisk->count == 1) {
 2287                 /*
 2288                  * This special cursor_up_locked() call leaves the original
 2289                  * node exclusively locked and referenced, leaves the
 2290                  * original parent locked (as the new node), and locks the
 2291                  * new parent.  It can return EDEADLK.
 2292                  *
 2293                  * We cannot call hammer_cursor_removed_node() until we are
 2294                  * actually able to remove the node.  If we did then tracked
 2295                  * cursors in the middle of iterations could be repointed
 2296                  * to a parent node.  If this occurs they could end up
 2297                  * scanning newly inserted records into the node (that could
 2298                  * not be deleted) when they push down again.
 2299                  *
 2300                  * Due to the way the recursion works the final parent is left
 2301                  * in cursor->parent after the recursion returns.  Each
 2302                  * layer on the way back up is thus able to call
 2303                  * hammer_cursor_removed_node() and 'jump' the node up to
 2304                  * the (same) final parent.
 2305                  *
 2306                  * NOTE!  The local variable 'parent' is invalid after we
 2307                  *        call hammer_cursor_up_locked().
 2308                  */
 2309                 error = hammer_cursor_up_locked(cursor);
 2310                 parent = NULL;
 2311 
 2312                 if (error == 0) {
 2313                         hammer_cursor_deleted_element(cursor->node, 0);
 2314                         error = btree_remove(cursor);
 2315                         if (error == 0) {
 2316                                 KKASSERT(node != cursor->node);
 2317                                 hammer_cursor_removed_node(
 2318                                         node, cursor->node,
 2319                                         cursor->index);
 2320                                 hammer_modify_node_all(cursor->trans, node);
 2321                                 ondisk = node->ondisk;
 2322                                 ondisk->type = HAMMER_BTREE_TYPE_DELETED;
 2323                                 ondisk->count = 0;
 2324                                 hammer_modify_node_done(node);
 2325                                 hammer_flush_node(node, 0);
 2326                                 hammer_delete_node(cursor->trans, node);
 2327                         } else {
 2328                                 /*
 2329                                  * Defer parent removal because we could not
 2330                                  * get the lock, just let the leaf remain
 2331                                  * empty.
 2332                                  */
 2333                                 /**/
 2334                         }
 2335                         hammer_unlock(&node->lock);
 2336                         hammer_rel_node(node);
 2337                 } else {
 2338                         /*
 2339                          * Defer parent removal because we could not
 2340                          * get the lock, just let the leaf remain
 2341                          * empty.
 2342                          */
 2343                         /**/
 2344                 }
 2345         } else {
 2346                 KKASSERT(parent->ondisk->count > 1);
 2347 
 2348                 hammer_modify_node_all(cursor->trans, parent);
 2349                 ondisk = parent->ondisk;
 2350                 KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
 2351 
 2352                 elm = &ondisk->elms[cursor->parent_index];
 2353                 KKASSERT(elm->internal.subtree_offset == node->node_offset);
 2354                 KKASSERT(ondisk->count > 0);
 2355 
 2356                 /*
 2357                  * We must retain the highest mirror_tid.  The deleted
 2358                  * range is now encompassed by the element to the left.
 2359                  * If we are already at the left edge the new left edge
 2360                  * inherits mirror_tid.
 2361                  *
 2362                  * Note that bounds of the parent to our parent may create
 2363                  * a gap to the left of our left-most node or to the right
 2364                  * of our right-most node.  The gap is silently included
 2365                  * in the mirror_tid's area of effect from the point of view
 2366                  * of the scan.
 2367                  */
 2368                 if (cursor->parent_index) {
 2369                         if (elm[-1].internal.mirror_tid <
 2370                             elm[0].internal.mirror_tid) {
 2371                                 elm[-1].internal.mirror_tid =
 2372                                     elm[0].internal.mirror_tid;
 2373                         }
 2374                 } else {
 2375                         if (elm[1].internal.mirror_tid <
 2376                             elm[0].internal.mirror_tid) {
 2377                                 elm[1].internal.mirror_tid =
 2378                                     elm[0].internal.mirror_tid;
 2379                         }
 2380                 }
 2381 
 2382                 /*
 2383                  * Delete the subtree reference in the parent.  Include
 2384                  * boundary element at end.
 2385                  */
 2386                 bcopy(&elm[1], &elm[0],
 2387                       (ondisk->count - cursor->parent_index) * esize);
 2388                 --ondisk->count;
 2389                 hammer_modify_node_done(parent);
 2390                 hammer_cursor_removed_node(node, parent, cursor->parent_index);
 2391                 hammer_cursor_deleted_element(parent, cursor->parent_index);
 2392                 hammer_flush_node(node, 0);
 2393                 hammer_delete_node(cursor->trans, node);
 2394 
 2395                 /*
 2396                  * cursor->node is invalid, cursor up to make the cursor
 2397                  * valid again.  We have to flag the condition in case
 2398                  * another thread wiggles an insertion in during an
 2399                  * iteration.
 2400                  */
 2401                 cursor->flags |= HAMMER_CURSOR_ITERATE_CHECK;
 2402                 error = hammer_cursor_up(cursor);
 2403         }
 2404         return (error);
 2405 }
 2406 
 2407 /*
 2408  * Propagate cursor->trans->tid up the B-Tree starting at the current
 2409  * cursor position using pseudofs info gleaned from the passed inode.
 2410  *
 2411  * The passed inode has no relationship to the cursor position other
 2412  * then being in the same pseudofs as the insertion or deletion we
 2413  * are propagating the mirror_tid for.
 2414  *
 2415  * WARNING!  Because we push and pop the passed cursor, it may be
 2416  *           modified by other B-Tree operations while it is unlocked
 2417  *           and things like the node & leaf pointers, and indexes might
 2418  *           change.
 2419  */
 2420 void
 2421 hammer_btree_do_propagation(hammer_cursor_t cursor,
 2422                             hammer_pseudofs_inmem_t pfsm,
 2423                             hammer_btree_leaf_elm_t leaf)
 2424 {
 2425         hammer_cursor_t ncursor;
 2426         hammer_tid_t mirror_tid;
 2427         int error __debugvar;
 2428 
 2429         /*
 2430          * We do not propagate a mirror_tid if the filesystem was mounted
 2431          * in no-mirror mode.
 2432          */
 2433         if (cursor->trans->hmp->master_id < 0)
 2434                 return;
 2435 
 2436         /*
 2437          * This is a bit of a hack because we cannot deadlock or return
 2438          * EDEADLK here.  The related operation has already completed and
 2439          * we must propagate the mirror_tid now regardless.
 2440          *
 2441          * Generate a new cursor which inherits the original's locks and
 2442          * unlock the original.  Use the new cursor to propagate the
 2443          * mirror_tid.  Then clean up the new cursor and reacquire locks
 2444          * on the original.
 2445          *
 2446          * hammer_dup_cursor() cannot dup locks.  The dup inherits the
 2447          * original's locks and the original is tracked and must be
 2448          * re-locked.
 2449          */
 2450         mirror_tid = cursor->node->ondisk->mirror_tid;
 2451         KKASSERT(mirror_tid != 0);
 2452         ncursor = hammer_push_cursor(cursor);
 2453         error = hammer_btree_mirror_propagate(ncursor, mirror_tid);
 2454         KKASSERT(error == 0);
 2455         hammer_pop_cursor(cursor, ncursor);
 2456         /* WARNING: cursor's leaf pointer may change after pop */
 2457 }
 2458 
 2459 
 2460 /*
 2461  * Propagate a mirror TID update upwards through the B-Tree to the root.
 2462  *
 2463  * A locked internal node must be passed in.  The node will remain locked
 2464  * on return.
 2465  *
 2466  * This function syncs mirror_tid at the specified internal node's element,
 2467  * adjusts the node's aggregation mirror_tid, and then recurses upwards.
 2468  */
 2469 static int
 2470 hammer_btree_mirror_propagate(hammer_cursor_t cursor, hammer_tid_t mirror_tid)
 2471 {
 2472         hammer_btree_internal_elm_t elm;
 2473         hammer_node_t node;
 2474         int error;
 2475 
 2476         for (;;) {
 2477                 error = hammer_cursor_up(cursor);
 2478                 if (error == 0)
 2479                         error = hammer_cursor_upgrade(cursor);
 2480 
 2481                 /*
 2482                  * We can ignore HAMMER_CURSOR_ITERATE_CHECK, the
 2483                  * cursor will still be properly positioned for
 2484                  * mirror propagation, just not for iterations.
 2485                  */
 2486                 while (error == EDEADLK) {
 2487                         hammer_recover_cursor(cursor);
 2488                         error = hammer_cursor_upgrade(cursor);
 2489                 }
 2490                 if (error)
 2491                         break;
 2492 
 2493                 /*
 2494                  * If the cursor deadlocked it could end up at a leaf
 2495                  * after we lost the lock.
 2496                  */
 2497                 node = cursor->node;
 2498                 if (node->ondisk->type != HAMMER_BTREE_TYPE_INTERNAL)
 2499                         continue;
 2500 
 2501                 /*
 2502                  * Adjust the node's element
 2503                  */
 2504                 elm = &node->ondisk->elms[cursor->index].internal;
 2505                 if (elm->mirror_tid >= mirror_tid)
 2506                         break;
 2507                 hammer_modify_node(cursor->trans, node, &elm->mirror_tid,
 2508                                    sizeof(elm->mirror_tid));
 2509                 elm->mirror_tid = mirror_tid;
 2510                 hammer_modify_node_done(node);
 2511                 if (hammer_debug_general & 0x0002) {
 2512                         kprintf("mirror_propagate: propagate "
 2513                                 "%016llx @%016llx:%d\n",
 2514                                 (long long)mirror_tid,
 2515                                 (long long)node->node_offset,
 2516                                 cursor->index);
 2517                 }
 2518 
 2519 
 2520                 /*
 2521                  * Adjust the node's mirror_tid aggregator
 2522                  */
 2523                 if (node->ondisk->mirror_tid >= mirror_tid)
 2524                         return(0);
 2525                 hammer_modify_node_field(cursor->trans, node, mirror_tid);
 2526                 node->ondisk->mirror_tid = mirror_tid;
 2527                 hammer_modify_node_done(node);
 2528                 if (hammer_debug_general & 0x0002) {
 2529                         kprintf("mirror_propagate: propagate "
 2530                                 "%016llx @%016llx\n",
 2531                                 (long long)mirror_tid,
 2532                                 (long long)node->node_offset);
 2533                 }
 2534         }
 2535         if (error == ENOENT)
 2536                 error = 0;
 2537         return(error);
 2538 }
 2539 
 2540 hammer_node_t
 2541 hammer_btree_get_parent(hammer_transaction_t trans, hammer_node_t node,
 2542                         int *parent_indexp, int *errorp, int try_exclusive)
 2543 {
 2544         hammer_node_t parent;
 2545         hammer_btree_elm_t elm;
 2546         int i;
 2547 
 2548         /*
 2549          * Get the node
 2550          */
 2551         parent = hammer_get_node(trans, node->ondisk->parent, 0, errorp);
 2552         if (*errorp) {
 2553                 KKASSERT(parent == NULL);
 2554                 return(NULL);
 2555         }
 2556         KKASSERT ((parent->flags & HAMMER_NODE_DELETED) == 0);
 2557 
 2558         /*
 2559          * Lock the node
 2560          */
 2561         if (try_exclusive) {
 2562                 if (hammer_lock_ex_try(&parent->lock)) {
 2563                         hammer_rel_node(parent);
 2564                         *errorp = EDEADLK;
 2565                         return(NULL);
 2566                 }
 2567         } else {
 2568                 hammer_lock_sh(&parent->lock);
 2569         }
 2570 
 2571         /*
 2572          * Figure out which element in the parent is pointing to the
 2573          * child.
 2574          */
 2575         if (node->ondisk->count) {
 2576                 i = hammer_btree_search_node(&node->ondisk->elms[0].base,
 2577                                              parent->ondisk);
 2578         } else {
 2579                 i = 0;
 2580         }
 2581         while (i < parent->ondisk->count) {
 2582                 elm = &parent->ondisk->elms[i];
 2583                 if (elm->internal.subtree_offset == node->node_offset)
 2584                         break;
 2585                 ++i;
 2586         }
 2587         if (i == parent->ondisk->count) {
 2588                 hammer_unlock(&parent->lock);
 2589                 panic("Bad B-Tree link: parent %p node %p", parent, node);
 2590         }
 2591         *parent_indexp = i;
 2592         KKASSERT(*errorp == 0);
 2593         return(parent);
 2594 }
 2595 
 2596 /*
 2597  * The element (elm) has been moved to a new internal node (node).
 2598  *
 2599  * If the element represents a pointer to an internal node that node's
 2600  * parent must be adjusted to the element's new location.
 2601  *
 2602  * XXX deadlock potential here with our exclusive locks
 2603  */
 2604 int
 2605 btree_set_parent(hammer_transaction_t trans, hammer_node_t node,
 2606                  hammer_btree_elm_t elm)
 2607 {
 2608         hammer_node_t child;
 2609         int error;
 2610 
 2611         error = 0;
 2612 
 2613         switch(elm->base.btype) {
 2614         case HAMMER_BTREE_TYPE_INTERNAL:
 2615         case HAMMER_BTREE_TYPE_LEAF:
 2616                 child = hammer_get_node(trans, elm->internal.subtree_offset,
 2617                                         0, &error);
 2618                 if (error == 0) {
 2619                         hammer_modify_node_field(trans, child, parent);
 2620                         child->ondisk->parent = node->node_offset;
 2621                         hammer_modify_node_done(child);
 2622                         hammer_rel_node(child);
 2623                 }
 2624                 break;
 2625         default:
 2626                 break;
 2627         }
 2628         return(error);
 2629 }
 2630 
 2631 /*
 2632  * Initialize the root of a recursive B-Tree node lock list structure.
 2633  */
 2634 void
 2635 hammer_node_lock_init(hammer_node_lock_t parent, hammer_node_t node)
 2636 {
 2637         TAILQ_INIT(&parent->list);
 2638         parent->parent = NULL;
 2639         parent->node = node;
 2640         parent->index = -1;
 2641         parent->count = node->ondisk->count;
 2642         parent->copy = NULL;
 2643         parent->flags = 0;
 2644 }
 2645 
 2646 /*
 2647  * Initialize a cache of hammer_node_lock's including space allocated
 2648  * for node copies.
 2649  *
 2650  * This is used by the rebalancing code to preallocate the copy space
 2651  * for ~4096 B-Tree nodes (16MB of data) prior to acquiring any HAMMER
 2652  * locks, otherwise we can blow out the pageout daemon's emergency
 2653  * reserve and deadlock it.
 2654  *
 2655  * NOTE: HAMMER_NODE_LOCK_LCACHE is not set on items cached in the lcache.
 2656  *       The flag is set when the item is pulled off the cache for use.
 2657  */
 2658 void
 2659 hammer_btree_lcache_init(hammer_mount_t hmp, hammer_node_lock_t lcache,
 2660                          int depth)
 2661 {
 2662         hammer_node_lock_t item;
 2663         int count;
 2664 
 2665         for (count = 1; depth; --depth)
 2666                 count *= HAMMER_BTREE_LEAF_ELMS;
 2667         bzero(lcache, sizeof(*lcache));
 2668         TAILQ_INIT(&lcache->list);
 2669         while (count) {
 2670                 item = kmalloc(sizeof(*item), hmp->m_misc, M_WAITOK|M_ZERO);
 2671                 item->copy = kmalloc(sizeof(*item->copy),
 2672                                      hmp->m_misc, M_WAITOK);
 2673                 TAILQ_INIT(&item->list);
 2674                 TAILQ_INSERT_TAIL(&lcache->list, item, entry);
 2675                 --count;
 2676         }
 2677 }
 2678 
 2679 void
 2680 hammer_btree_lcache_free(hammer_mount_t hmp, hammer_node_lock_t lcache)
 2681 {
 2682         hammer_node_lock_t item;
 2683 
 2684         while ((item = TAILQ_FIRST(&lcache->list)) != NULL) {
 2685                 TAILQ_REMOVE(&lcache->list, item, entry);
 2686                 KKASSERT(item->copy);
 2687                 KKASSERT(TAILQ_EMPTY(&item->list));
 2688                 kfree(item->copy, hmp->m_misc);
 2689                 kfree(item, hmp->m_misc);
 2690         }
 2691         KKASSERT(lcache->copy == NULL);
 2692 }
 2693 
 2694 /*
 2695  * Exclusively lock all the children of node.  This is used by the split
 2696  * code to prevent anyone from accessing the children of a cursor node
 2697  * while we fix-up its parent offset.
 2698  *
 2699  * If we don't lock the children we can really mess up cursors which block
 2700  * trying to cursor-up into our node.
 2701  *
 2702  * On failure EDEADLK (or some other error) is returned.  If a deadlock
 2703  * error is returned the cursor is adjusted to block on termination.
 2704  *
 2705  * The caller is responsible for managing parent->node, the root's node
 2706  * is usually aliased from a cursor.
 2707  */
 2708 int
 2709 hammer_btree_lock_children(hammer_cursor_t cursor, int depth,
 2710                            hammer_node_lock_t parent,
 2711                            hammer_node_lock_t lcache)
 2712 {
 2713         hammer_node_t node;
 2714         hammer_node_lock_t item;
 2715         hammer_node_ondisk_t ondisk;
 2716         hammer_btree_elm_t elm;
 2717         hammer_node_t child;
 2718         struct hammer_mount *hmp;
 2719         int error;
 2720         int i;
 2721 
 2722         node = parent->node;
 2723         ondisk = node->ondisk;
 2724         error = 0;
 2725         hmp = cursor->trans->hmp;
 2726 
 2727         /*
 2728          * We really do not want to block on I/O with exclusive locks held,
 2729          * pre-get the children before trying to lock the mess.  This is
 2730          * only done one-level deep for now.
 2731          */
 2732         for (i = 0; i < ondisk->count; ++i) {
 2733                 ++hammer_stats_btree_elements;
 2734                 elm = &ondisk->elms[i];
 2735                 if (elm->base.btype != HAMMER_BTREE_TYPE_LEAF &&
 2736                     elm->base.btype != HAMMER_BTREE_TYPE_INTERNAL) {
 2737                         continue;
 2738                 }
 2739                 child = hammer_get_node(cursor->trans,
 2740                                         elm->internal.subtree_offset,
 2741                                         0, &error);
 2742                 if (child)
 2743                         hammer_rel_node(child);
 2744         }
 2745 
 2746         /*
 2747          * Do it for real
 2748          */
 2749         for (i = 0; error == 0 && i < ondisk->count; ++i) {
 2750                 ++hammer_stats_btree_elements;
 2751                 elm = &ondisk->elms[i];
 2752 
 2753                 switch(elm->base.btype) {
 2754                 case HAMMER_BTREE_TYPE_INTERNAL:
 2755                 case HAMMER_BTREE_TYPE_LEAF:
 2756                         KKASSERT(elm->internal.subtree_offset != 0);
 2757                         child = hammer_get_node(cursor->trans,
 2758                                                 elm->internal.subtree_offset,
 2759                                                 0, &error);
 2760                         break;
 2761                 default:
 2762                         child = NULL;
 2763                         break;
 2764                 }
 2765                 if (child) {
 2766                         if (hammer_lock_ex_try(&child->lock) != 0) {
 2767                                 if (cursor->deadlk_node == NULL) {
 2768                                         cursor->deadlk_node = child;
 2769                                         hammer_ref_node(cursor->deadlk_node);
 2770                                 }
 2771                                 error = EDEADLK;
 2772                                 hammer_rel_node(child);
 2773                         } else {
 2774                                 if (lcache) {
 2775                                         item = TAILQ_FIRST(&lcache->list);
 2776                                         KKASSERT(item != NULL);
 2777                                         item->flags |= HAMMER_NODE_LOCK_LCACHE;
 2778                                         TAILQ_REMOVE(&lcache->list,
 2779                                                      item, entry);
 2780                                 } else {
 2781                                         item = kmalloc(sizeof(*item),
 2782                                                        hmp->m_misc,
 2783                                                        M_WAITOK|M_ZERO);
 2784                                         TAILQ_INIT(&item->list);
 2785                                 }
 2786 
 2787                                 TAILQ_INSERT_TAIL(&parent->list, item, entry);
 2788                                 item->parent = parent;
 2789                                 item->node = child;
 2790                                 item->index = i;
 2791                                 item->count = child->ondisk->count;
 2792 
 2793                                 /*
 2794                                  * Recurse (used by the rebalancing code)
 2795                                  */
 2796                                 if (depth > 1 && elm->base.btype == HAMMER_BTREE_TYPE_INTERNAL) {
 2797                                         error = hammer_btree_lock_children(
 2798                                                         cursor,
 2799                                                         depth - 1,
 2800                                                         item,
 2801                                                         lcache);
 2802                                 }
 2803                         }
 2804                 }
 2805         }
 2806         if (error)
 2807                 hammer_btree_unlock_children(hmp, parent, lcache);
 2808         return(error);
 2809 }
 2810 
 2811 /*
 2812  * Create an in-memory copy of all B-Tree nodes listed, recursively,
 2813  * including the parent.
 2814  */
 2815 void
 2816 hammer_btree_lock_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
 2817 {
 2818         hammer_mount_t hmp = cursor->trans->hmp;
 2819         hammer_node_lock_t item;
 2820 
 2821         if (parent->copy == NULL) {
 2822                 KKASSERT((parent->flags & HAMMER_NODE_LOCK_LCACHE) == 0);
 2823                 parent->copy = kmalloc(sizeof(*parent->copy),
 2824                                        hmp->m_misc, M_WAITOK);
 2825         }
 2826         KKASSERT((parent->flags & HAMMER_NODE_LOCK_UPDATED) == 0);
 2827         *parent->copy = *parent->node->ondisk;
 2828         TAILQ_FOREACH(item, &parent->list, entry) {
 2829                 hammer_btree_lock_copy(cursor, item);
 2830         }
 2831 }
 2832 
 2833 /*
 2834  * Recursively sync modified copies to the media.
 2835  */
 2836 int
 2837 hammer_btree_sync_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
 2838 {
 2839         hammer_node_lock_t item;
 2840         int count = 0;
 2841 
 2842         if (parent->flags & HAMMER_NODE_LOCK_UPDATED) {
 2843                 ++count;
 2844                 hammer_modify_node_all(cursor->trans, parent->node);
 2845                 *parent->node->ondisk = *parent->copy;
 2846                 hammer_modify_node_done(parent->node);
 2847                 if (parent->copy->type == HAMMER_BTREE_TYPE_DELETED) {
 2848                         hammer_flush_node(parent->node, 0);
 2849                         hammer_delete_node(cursor->trans, parent->node);
 2850                 }
 2851         }
 2852         TAILQ_FOREACH(item, &parent->list, entry) {
 2853                 count += hammer_btree_sync_copy(cursor, item);
 2854         }
 2855         return(count);
 2856 }
 2857 
 2858 /*
 2859  * Release previously obtained node locks.  The caller is responsible for
 2860  * cleaning up parent->node itself (its usually just aliased from a cursor),
 2861  * but this function will take care of the copies.
 2862  *
 2863  * NOTE: The root node is not placed in the lcache and node->copy is not
 2864  *       deallocated when lcache != NULL.
 2865  */
 2866 void
 2867 hammer_btree_unlock_children(hammer_mount_t hmp, hammer_node_lock_t parent,
 2868                              hammer_node_lock_t lcache)
 2869 {
 2870         hammer_node_lock_t item;
 2871         hammer_node_ondisk_t copy;
 2872 
 2873         while ((item = TAILQ_FIRST(&parent->list)) != NULL) {
 2874                 TAILQ_REMOVE(&parent->list, item, entry);
 2875                 hammer_btree_unlock_children(hmp, item, lcache);
 2876                 hammer_unlock(&item->node->lock);
 2877                 hammer_rel_node(item->node);
 2878                 if (lcache) {
 2879                         /*
 2880                          * NOTE: When placing the item back in the lcache
 2881                          *       the flag is cleared by the bzero().
 2882                          *       Remaining fields are cleared as a safety
 2883                          *       measure.
 2884                          */
 2885                         KKASSERT(item->flags & HAMMER_NODE_LOCK_LCACHE);
 2886                         KKASSERT(TAILQ_EMPTY(&item->list));
 2887                         copy = item->copy;
 2888                         bzero(item, sizeof(*item));
 2889                         TAILQ_INIT(&item->list);
 2890                         item->copy = copy;
 2891                         if (copy)
 2892                                 bzero(copy, sizeof(*copy));
 2893                         TAILQ_INSERT_TAIL(&lcache->list, item, entry);
 2894                 } else {
 2895                         kfree(item, hmp->m_misc);
 2896                 }
 2897         }
 2898         if (parent->copy && (parent->flags & HAMMER_NODE_LOCK_LCACHE) == 0) {
 2899                 kfree(parent->copy, hmp->m_misc);
 2900                 parent->copy = NULL;    /* safety */
 2901         }
 2902 }
 2903 
 2904 /************************************************************************
 2905  *                         MISCELLANIOUS SUPPORT                        *
 2906  ************************************************************************/
 2907 
 2908 /*
 2909  * Compare two B-Tree elements, return -N, 0, or +N (e.g. similar to strcmp).
 2910  *
 2911  * Note that for this particular function a return value of -1, 0, or +1
 2912  * can denote a match if create_tid is otherwise discounted.  A create_tid
 2913  * of zero is considered to be 'infinity' in comparisons.
 2914  *
 2915  * See also hammer_rec_rb_compare() and hammer_rec_cmp() in hammer_object.c.
 2916  */
 2917 int
 2918 hammer_btree_cmp(hammer_base_elm_t key1, hammer_base_elm_t key2)
 2919 {
 2920         if (key1->localization < key2->localization)
 2921                 return(-5);
 2922         if (key1->localization > key2->localization)
 2923                 return(5);
 2924 
 2925         if (key1->obj_id < key2->obj_id)
 2926                 return(-4);
 2927         if (key1->obj_id > key2->obj_id)
 2928                 return(4);
 2929 
 2930         if (key1->rec_type < key2->rec_type)
 2931                 return(-3);
 2932         if (key1->rec_type > key2->rec_type)
 2933                 return(3);
 2934 
 2935         if (key1->key < key2->key)
 2936                 return(-2);
 2937         if (key1->key > key2->key)
 2938                 return(2);
 2939 
 2940         /*
 2941          * A create_tid of zero indicates a record which is undeletable
 2942          * and must be considered to have a value of positive infinity.
 2943          */
 2944         if (key1->create_tid == 0) {
 2945                 if (key2->create_tid == 0)
 2946                         return(0);
 2947                 return(1);
 2948         }
 2949         if (key2->create_tid == 0)
 2950                 return(-1);
 2951         if (key1->create_tid < key2->create_tid)
 2952                 return(-1);
 2953         if (key1->create_tid > key2->create_tid)
 2954                 return(1);
 2955         return(0);
 2956 }
 2957 
 2958 /*
 2959  * Test a timestamp against an element to determine whether the
 2960  * element is visible.  A timestamp of 0 means 'infinity'.
 2961  */
 2962 int
 2963 hammer_btree_chkts(hammer_tid_t asof, hammer_base_elm_t base)
 2964 {
 2965         if (asof == 0) {
 2966                 if (base->delete_tid)
 2967                         return(1);
 2968                 return(0);
 2969         }
 2970         if (asof < base->create_tid)
 2971                 return(-1);
 2972         if (base->delete_tid && asof >= base->delete_tid)
 2973                 return(1);
 2974         return(0);
 2975 }
 2976 
 2977 /*
 2978  * Create a separator half way inbetween key1 and key2.  For fields just
 2979  * one unit apart, the separator will match key2.  key1 is on the left-hand
 2980  * side and key2 is on the right-hand side.
 2981  *
 2982  * key2 must be >= the separator.  It is ok for the separator to match key2.
 2983  *
 2984  * NOTE: Even if key1 does not match key2, the separator may wind up matching
 2985  * key2.
 2986  *
 2987  * NOTE: It might be beneficial to just scrap this whole mess and just
 2988  * set the separator to key2.
 2989  */
 2990 #define MAKE_SEPARATOR(key1, key2, dest, field) \
 2991         dest->field = key1->field + ((key2->field - key1->field + 1) >> 1);
 2992 
 2993 static void
 2994 hammer_make_separator(hammer_base_elm_t key1, hammer_base_elm_t key2,
 2995                       hammer_base_elm_t dest)
 2996 {
 2997         bzero(dest, sizeof(*dest));
 2998 
 2999         dest->rec_type = key2->rec_type;
 3000         dest->key = key2->key;
 3001         dest->obj_id = key2->obj_id;
 3002         dest->create_tid = key2->create_tid;
 3003 
 3004         MAKE_SEPARATOR(key1, key2, dest, localization);
 3005         if (key1->localization == key2->localization) {
 3006                 MAKE_SEPARATOR(key1, key2, dest, obj_id);
 3007                 if (key1->obj_id == key2->obj_id) {
 3008                         MAKE_SEPARATOR(key1, key2, dest, rec_type);
 3009                         if (key1->rec_type == key2->rec_type) {
 3010                                 MAKE_SEPARATOR(key1, key2, dest, key);
 3011                                 /*
 3012                                  * Don't bother creating a separator for
 3013                                  * create_tid, which also conveniently avoids
 3014                                  * having to handle the create_tid == 0
 3015                                  * (infinity) case.  Just leave create_tid
 3016                                  * set to key2.
 3017                                  *
 3018                                  * Worst case, dest matches key2 exactly,
 3019                                  * which is acceptable.
 3020                                  */
 3021                         }
 3022                 }
 3023         }
 3024 }
 3025 
 3026 #undef MAKE_SEPARATOR
 3027 
 3028 /*
 3029  * Return whether a generic internal or leaf node is full
 3030  */
 3031 static int
 3032 btree_node_is_full(hammer_node_ondisk_t node)
 3033 {
 3034         switch(node->type) {
 3035         case HAMMER_BTREE_TYPE_INTERNAL:
 3036                 if (node->count == HAMMER_BTREE_INT_ELMS)
 3037                         return(1);
 3038                 break;
 3039         case HAMMER_BTREE_TYPE_LEAF:
 3040                 if (node->count == HAMMER_BTREE_LEAF_ELMS)
 3041                         return(1);
 3042                 break;
 3043         default:
 3044                 panic("illegal btree subtype");
 3045         }
 3046         return(0);
 3047 }
 3048 
 3049 #if 0
 3050 static int
 3051 btree_max_elements(u_int8_t type)
 3052 {
 3053         if (type == HAMMER_BTREE_TYPE_LEAF)
 3054                 return(HAMMER_BTREE_LEAF_ELMS);
 3055         if (type == HAMMER_BTREE_TYPE_INTERNAL)
 3056                 return(HAMMER_BTREE_INT_ELMS);
 3057         panic("btree_max_elements: bad type %d", type);
 3058 }
 3059 #endif
 3060 
 3061 void
 3062 hammer_print_btree_node(hammer_node_ondisk_t ondisk)
 3063 {
 3064         hammer_btree_elm_t elm;
 3065         int i;
 3066 
 3067         kprintf("node %p count=%d parent=%016llx type=%c\n",
 3068                 ondisk, ondisk->count,
 3069                 (long long)ondisk->parent, ondisk->type);
 3070 
 3071         /*
 3072          * Dump both boundary elements if an internal node
 3073          */
 3074         if (ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
 3075                 for (i = 0; i <= ondisk->count; ++i) {
 3076                         elm = &ondisk->elms[i];
 3077                         hammer_print_btree_elm(elm, ondisk->type, i);
 3078                 }
 3079         } else {
 3080                 for (i = 0; i < ondisk->count; ++i) {
 3081                         elm = &ondisk->elms[i];
 3082                         hammer_print_btree_elm(elm, ondisk->type, i);
 3083                 }
 3084         }
 3085 }
 3086 
 3087 void
 3088 hammer_print_btree_elm(hammer_btree_elm_t elm, u_int8_t type, int i)
 3089 {
 3090         kprintf("  %2d", i);
 3091         kprintf("\tobj_id       = %016llx\n", (long long)elm->base.obj_id);
 3092         kprintf("\tkey          = %016llx\n", (long long)elm->base.key);
 3093         kprintf("\tcreate_tid   = %016llx\n", (long long)elm->base.create_tid);
 3094         kprintf("\tdelete_tid   = %016llx\n", (long long)elm->base.delete_tid);
 3095         kprintf("\trec_type     = %04x\n", elm->base.rec_type);
 3096         kprintf("\tobj_type     = %02x\n", elm->base.obj_type);
 3097         kprintf("\tbtype        = %02x (%c)\n",
 3098                 elm->base.btype,
 3099                 (elm->base.btype ? elm->base.btype : '?'));
 3100         kprintf("\tlocalization = %02x\n", elm->base.localization);
 3101 
 3102         switch(type) {
 3103         case HAMMER_BTREE_TYPE_INTERNAL:
 3104                 kprintf("\tsubtree_off  = %016llx\n",
 3105                         (long long)elm->internal.subtree_offset);
 3106                 break;
 3107         case HAMMER_BTREE_TYPE_RECORD:
 3108                 kprintf("\tdata_offset  = %016llx\n",
 3109                         (long long)elm->leaf.data_offset);
 3110                 kprintf("\tdata_len     = %08x\n", elm->leaf.data_len);
 3111                 kprintf("\tdata_crc     = %08x\n", elm->leaf.data_crc);
 3112                 break;
 3113         }
 3114 }

Cache object: 04de8ef20302a5ff1596fc8a4b133403


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.