The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vfs/hammer/hammer_flusher.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2008 The DragonFly Project.  All rights reserved.
    3  * 
    4  * This code is derived from software contributed to The DragonFly Project
    5  * by Matthew Dillon <dillon@backplane.com>
    6  * 
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in
   15  *    the documentation and/or other materials provided with the
   16  *    distribution.
   17  * 3. Neither the name of The DragonFly Project nor the names of its
   18  *    contributors may be used to endorse or promote products derived
   19  *    from this software without specific, prior written permission.
   20  * 
   21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
   24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
   25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
   27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
   29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  * 
   34  * $DragonFly: src/sys/vfs/hammer/hammer_flusher.c,v 1.45 2008/07/31 04:42:04 dillon Exp $
   35  */
   36 /*
   37  * HAMMER dependancy flusher thread
   38  *
   39  * Meta data updates create buffer dependancies which are arranged as a
   40  * hierarchy of lists.
   41  */
   42 
   43 #include "hammer.h"
   44 
   45 static void hammer_flusher_master_thread(void *arg);
   46 static void hammer_flusher_slave_thread(void *arg);
   47 static int hammer_flusher_flush(hammer_mount_t hmp, int *nomorep);
   48 static int hammer_flusher_flush_inode(hammer_inode_t ip, void *data);
   49 
   50 RB_GENERATE(hammer_fls_rb_tree, hammer_inode, rb_flsnode,
   51               hammer_ino_rb_compare);
   52 
   53 /*
   54  * Support structures for the flusher threads.
   55  */
   56 struct hammer_flusher_info {
   57         TAILQ_ENTRY(hammer_flusher_info) entry;
   58         struct hammer_mount *hmp;
   59         thread_t        td;
   60         int             runstate;
   61         int             count;
   62         hammer_flush_group_t flg;
   63         struct hammer_transaction trans;        /* per-slave transaction */
   64 };
   65 
   66 typedef struct hammer_flusher_info *hammer_flusher_info_t;
   67 
   68 /*
   69  * Sync all inodes pending on the flusher.
   70  *
   71  * All flush groups will be flushed.  This does not queue dirty inodes
   72  * to the flush groups, it just flushes out what has already been queued!
   73  */
   74 void
   75 hammer_flusher_sync(hammer_mount_t hmp)
   76 {
   77         int seq;
   78 
   79         seq = hammer_flusher_async(hmp, NULL);
   80         hammer_flusher_wait(hmp, seq);
   81 }
   82 
   83 /*
   84  * Sync all flush groups through to close_flg - return immediately.
   85  * If close_flg is NULL all flush groups are synced.
   86  *
   87  * Returns the sequence number of the last closed flush group,
   88  * which may be close_flg.  When syncing to the end if there
   89  * are no flush groups pending we still cycle the flusher, and
   90  * must allocate a sequence number to placemark the spot even
   91  * though no flush group will ever be associated with it.
   92  */
   93 int
   94 hammer_flusher_async(hammer_mount_t hmp, hammer_flush_group_t close_flg)
   95 {
   96         hammer_flush_group_t flg;
   97         int seq;
   98 
   99         /*
  100          * Already closed
  101          */
  102         if (close_flg && close_flg->closed)
  103                 return(close_flg->seq);
  104 
  105         /*
  106          * Close flush groups until we hit the end of the list
  107          * or close_flg.
  108          */
  109         while ((flg = hmp->next_flush_group) != NULL) {
  110                 KKASSERT(flg->closed == 0 && flg->running == 0);
  111                 flg->closed = 1;
  112                 hmp->next_flush_group = TAILQ_NEXT(flg, flush_entry);
  113                 if (flg == close_flg)
  114                         break;
  115         }
  116 
  117         if (hmp->flusher.td) {
  118                 if (hmp->flusher.signal++ == 0)
  119                         wakeup(&hmp->flusher.signal);
  120                 if (flg) {
  121                         seq = flg->seq;
  122                 } else {
  123                         seq = hmp->flusher.next;
  124                         ++hmp->flusher.next;
  125                 }
  126         } else {
  127                 seq = hmp->flusher.done;
  128         }
  129         return(seq);
  130 }
  131 
  132 /*
  133  * Flush the current/next flushable flg.  This function is typically called
  134  * in a loop along with hammer_flusher_wait(hmp, returned_seq) to iterate
  135  * flush groups until specific conditions are met.
  136  *
  137  * If a flush is currently in progress its seq is returned.
  138  *
  139  * If no flush is currently in progress the next available flush group
  140  * will be flushed and its seq returned.
  141  *
  142  * If no flush groups are present a dummy seq will be allocated and
  143  * returned and the flusher will be activated (e.g. to flush the
  144  * undo/redo and the volume header).
  145  */
  146 int
  147 hammer_flusher_async_one(hammer_mount_t hmp)
  148 {
  149         hammer_flush_group_t flg;
  150         int seq;
  151 
  152         if (hmp->flusher.td) {
  153                 flg = TAILQ_FIRST(&hmp->flush_group_list);
  154                 seq = hammer_flusher_async(hmp, flg);
  155         } else {
  156                 seq = hmp->flusher.done;
  157         }
  158         return(seq);
  159 }
  160 
  161 /*
  162  * Wait for the flusher to finish flushing the specified sequence
  163  * number.  The flush is already running and will signal us on
  164  * each completion.
  165  */
  166 void
  167 hammer_flusher_wait(hammer_mount_t hmp, int seq)
  168 {
  169         while ((int)(seq - hmp->flusher.done) > 0)
  170                 tsleep(&hmp->flusher.done, 0, "hmrfls", 0);
  171 }
  172 
  173 /*
  174  * Returns non-zero if the flusher is currently running.  Used for
  175  * time-domain multiplexing of frontend operations in order to avoid
  176  * starving the backend flusher.
  177  */
  178 int
  179 hammer_flusher_running(hammer_mount_t hmp)
  180 {
  181         int seq = hmp->flusher.next - 1;
  182         if ((int)(seq - hmp->flusher.done) > 0)
  183                 return(1);
  184         return (0);
  185 }
  186 
  187 void
  188 hammer_flusher_wait_next(hammer_mount_t hmp)
  189 {
  190         int seq;
  191 
  192         seq = hammer_flusher_async_one(hmp);
  193         hammer_flusher_wait(hmp, seq);
  194 }
  195 
  196 void
  197 hammer_flusher_create(hammer_mount_t hmp)
  198 {
  199         hammer_flusher_info_t info;
  200         int i;
  201 
  202         hmp->flusher.signal = 0;
  203         hmp->flusher.done = 0;
  204         hmp->flusher.next = 1;
  205         hammer_ref(&hmp->flusher.finalize_lock);
  206         TAILQ_INIT(&hmp->flusher.run_list);
  207         TAILQ_INIT(&hmp->flusher.ready_list);
  208 
  209         lwkt_create(hammer_flusher_master_thread, hmp,
  210                     &hmp->flusher.td, NULL, 0, -1, "hammer-M");
  211         for (i = 0; i < HAMMER_MAX_FLUSHERS; ++i) {
  212                 info = kmalloc(sizeof(*info), hmp->m_misc, M_WAITOK|M_ZERO);
  213                 info->hmp = hmp;
  214                 TAILQ_INSERT_TAIL(&hmp->flusher.ready_list, info, entry);
  215                 lwkt_create(hammer_flusher_slave_thread, info,
  216                             &info->td, NULL, 0, -1, "hammer-S%d", i);
  217         }
  218 }
  219 
  220 void
  221 hammer_flusher_destroy(hammer_mount_t hmp)
  222 {
  223         hammer_flusher_info_t info;
  224 
  225         /*
  226          * Kill the master
  227          */
  228         hmp->flusher.exiting = 1;
  229         while (hmp->flusher.td) {
  230                 ++hmp->flusher.signal;
  231                 wakeup(&hmp->flusher.signal);
  232                 tsleep(&hmp->flusher.exiting, 0, "hmrwex", hz);
  233         }
  234 
  235         /*
  236          * Kill the slaves
  237          */
  238         while ((info = TAILQ_FIRST(&hmp->flusher.ready_list)) != NULL) {
  239                 KKASSERT(info->runstate == 0);
  240                 TAILQ_REMOVE(&hmp->flusher.ready_list, info, entry);
  241                 info->runstate = -1;
  242                 wakeup(&info->runstate);
  243                 while (info->td)
  244                         tsleep(&info->td, 0, "hmrwwc", 0);
  245                 kfree(info, hmp->m_misc);
  246         }
  247 }
  248 
  249 /*
  250  * The master flusher thread manages the flusher sequence id and
  251  * synchronization with the slave work threads.
  252  */
  253 static void
  254 hammer_flusher_master_thread(void *arg)
  255 {
  256         hammer_mount_t hmp;
  257         int seq;
  258         int nomore;
  259 
  260         hmp = arg;
  261 
  262         lwkt_gettoken(&hmp->fs_token);
  263 
  264         for (;;) {
  265                 /*
  266                  * Flush all sequence numbers up to but not including .next,
  267                  * or until an open flush group is encountered.
  268                  */
  269                 for (;;) {
  270                         while (hmp->flusher.group_lock)
  271                                 tsleep(&hmp->flusher.group_lock, 0, "hmrhld",0);
  272                         hammer_flusher_clean_loose_ios(hmp);
  273 
  274                         seq = hammer_flusher_flush(hmp, &nomore);
  275                         hmp->flusher.done = seq;
  276                         wakeup(&hmp->flusher.done);
  277 
  278                         if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
  279                                 break;
  280                         if (nomore)
  281                                 break;
  282                 }
  283 
  284                 /*
  285                  * Wait for activity.
  286                  */
  287                 if (hmp->flusher.exiting && TAILQ_EMPTY(&hmp->flush_group_list))
  288                         break;
  289                 while (hmp->flusher.signal == 0)
  290                         tsleep(&hmp->flusher.signal, 0, "hmrwwa", 0);
  291                 hmp->flusher.signal = 0;
  292         }
  293 
  294         /*
  295          * And we are done.
  296          */
  297         hmp->flusher.td = NULL;
  298         wakeup(&hmp->flusher.exiting);
  299         lwkt_reltoken(&hmp->fs_token);
  300         lwkt_exit();
  301 }
  302 
  303 /*
  304  * Flush the next sequence number until an open flush group is encountered
  305  * or we reach (next).  Not all sequence numbers will have flush groups
  306  * associated with them.  These require that the UNDO/REDO FIFO still be
  307  * flushed since it can take at least one additional run to synchronize
  308  * the FIFO, and more to also synchronize the reserve structures.
  309  */
  310 static int
  311 hammer_flusher_flush(hammer_mount_t hmp, int *nomorep)
  312 {
  313         hammer_flusher_info_t info;
  314         hammer_flush_group_t flg;
  315         hammer_reserve_t resv;
  316         int count;
  317         int seq;
  318 
  319         /*
  320          * Just in-case there's a flush race on mount.  Seq number
  321          * does not change.
  322          */
  323         if (TAILQ_FIRST(&hmp->flusher.ready_list) == NULL) {
  324                 *nomorep = 1;
  325                 return (hmp->flusher.done);
  326         }
  327         *nomorep = 0;
  328 
  329         /*
  330          * Flush the next sequence number.  Sequence numbers can exist
  331          * without an assigned flush group, indicating that just a FIFO flush
  332          * should occur.
  333          */
  334         seq = hmp->flusher.done + 1;
  335         flg = TAILQ_FIRST(&hmp->flush_group_list);
  336         if (flg == NULL) {
  337                 if (seq == hmp->flusher.next) {
  338                         *nomorep = 1;
  339                         return (hmp->flusher.done);
  340                 }
  341         } else if (seq == flg->seq) {
  342                 if (flg->closed) {
  343                         KKASSERT(flg->running == 0);
  344                         flg->running = 1;
  345                         if (hmp->fill_flush_group == flg) {
  346                                 hmp->fill_flush_group =
  347                                         TAILQ_NEXT(flg, flush_entry);
  348                         }
  349                 } else {
  350                         *nomorep = 1;
  351                         return (hmp->flusher.done);
  352                 }
  353         } else {
  354                 KKASSERT((int)(flg->seq - seq) > 0);
  355                 flg = NULL;
  356         }
  357 
  358         /*
  359          * We only do one flg but we may have to loop/retry.
  360          *
  361          * Due to various races it is possible to come across a flush
  362          * group which as not yet been closed.
  363          */
  364         count = 0;
  365         while (flg && flg->running) {
  366                 ++count;
  367                 if (hammer_debug_general & 0x0001) {
  368                         kprintf("hammer_flush %d ttl=%d recs=%d\n",
  369                                 flg->seq, flg->total_count, flg->refs);
  370                 }
  371                 if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
  372                         break;
  373                 hammer_start_transaction_fls(&hmp->flusher.trans, hmp);
  374 
  375                 /*
  376                  * If the previous flush cycle just about exhausted our
  377                  * UNDO space we may have to do a dummy cycle to move the
  378                  * first_offset up before actually digging into a new cycle,
  379                  * or the new cycle will not have sufficient undo space.
  380                  */
  381                 if (hammer_flusher_undo_exhausted(&hmp->flusher.trans, 3))
  382                         hammer_flusher_finalize(&hmp->flusher.trans, 0);
  383 
  384                 KKASSERT(hmp->next_flush_group != flg);
  385 
  386                 /*
  387                  * Place the flg in the flusher structure and start the
  388                  * slaves running.  The slaves will compete for inodes
  389                  * to flush.
  390                  *
  391                  * Make a per-thread copy of the transaction.
  392                  */
  393                 while ((info = TAILQ_FIRST(&hmp->flusher.ready_list)) != NULL) {
  394                         TAILQ_REMOVE(&hmp->flusher.ready_list, info, entry);
  395                         info->flg = flg;
  396                         info->runstate = 1;
  397                         info->trans = hmp->flusher.trans;
  398                         TAILQ_INSERT_TAIL(&hmp->flusher.run_list, info, entry);
  399                         wakeup(&info->runstate);
  400                 }
  401 
  402                 /*
  403                  * Wait for all slaves to finish running
  404                  */
  405                 while (TAILQ_FIRST(&hmp->flusher.run_list) != NULL)
  406                         tsleep(&hmp->flusher.ready_list, 0, "hmrfcc", 0);
  407 
  408                 /*
  409                  * Do the final finalization, clean up
  410                  */
  411                 hammer_flusher_finalize(&hmp->flusher.trans, 1);
  412                 hmp->flusher.tid = hmp->flusher.trans.tid;
  413 
  414                 hammer_done_transaction(&hmp->flusher.trans);
  415 
  416                 /*
  417                  * Loop up on the same flg.  If the flg is done clean it up
  418                  * and break out.  We only flush one flg.
  419                  */
  420                 if (RB_EMPTY(&flg->flush_tree)) {
  421                         KKASSERT(flg->refs == 0);
  422                         TAILQ_REMOVE(&hmp->flush_group_list, flg, flush_entry);
  423                         kfree(flg, hmp->m_misc);
  424                         break;
  425                 }
  426                 KKASSERT(TAILQ_FIRST(&hmp->flush_group_list) == flg);
  427         }
  428 
  429         /*
  430          * We may have pure meta-data to flush, or we may have to finish
  431          * cycling the UNDO FIFO, even if there were no flush groups.
  432          */
  433         if (count == 0 && hammer_flusher_haswork(hmp)) {
  434                 hammer_start_transaction_fls(&hmp->flusher.trans, hmp);
  435                 hammer_flusher_finalize(&hmp->flusher.trans, 1);
  436                 hammer_done_transaction(&hmp->flusher.trans);
  437         }
  438 
  439         /*
  440          * Clean up any freed big-blocks (typically zone-2). 
  441          * resv->flush_group is typically set several flush groups ahead
  442          * of the free to ensure that the freed block is not reused until
  443          * it can no longer be reused.
  444          */
  445         while ((resv = TAILQ_FIRST(&hmp->delay_list)) != NULL) {
  446                 if ((int)(resv->flush_group - seq) > 0)
  447                         break;
  448                 hammer_reserve_clrdelay(hmp, resv);
  449         }
  450         return (seq);
  451 }
  452 
  453 
  454 /*
  455  * The slave flusher thread pulls work off the master flush list until no
  456  * work is left.
  457  */
  458 static void
  459 hammer_flusher_slave_thread(void *arg)
  460 {
  461         hammer_flush_group_t flg;
  462         hammer_flusher_info_t info;
  463         hammer_mount_t hmp;
  464 
  465         info = arg;
  466         hmp = info->hmp;
  467         lwkt_gettoken(&hmp->fs_token);
  468 
  469         for (;;) {
  470                 while (info->runstate == 0)
  471                         tsleep(&info->runstate, 0, "hmrssw", 0);
  472                 if (info->runstate < 0)
  473                         break;
  474                 flg = info->flg;
  475 
  476                 RB_SCAN(hammer_fls_rb_tree, &flg->flush_tree, NULL,
  477                         hammer_flusher_flush_inode, info);
  478 
  479                 info->count = 0;
  480                 info->runstate = 0;
  481                 info->flg = NULL;
  482                 TAILQ_REMOVE(&hmp->flusher.run_list, info, entry);
  483                 TAILQ_INSERT_TAIL(&hmp->flusher.ready_list, info, entry);
  484                 wakeup(&hmp->flusher.ready_list);
  485         }
  486         info->td = NULL;
  487         wakeup(&info->td);
  488         lwkt_reltoken(&hmp->fs_token);
  489         lwkt_exit();
  490 }
  491 
  492 void
  493 hammer_flusher_clean_loose_ios(hammer_mount_t hmp)
  494 {
  495         hammer_buffer_t buffer;
  496         hammer_io_t io;
  497 
  498         /*
  499          * loose ends - buffers without bp's aren't tracked by the kernel
  500          * and can build up, so clean them out.  This can occur when an
  501          * IO completes on a buffer with no references left.
  502          *
  503          * The io_token is needed to protect the list.
  504          */
  505         if ((io = RB_ROOT(&hmp->lose_root)) != NULL) {
  506                 lwkt_gettoken(&hmp->io_token);
  507                 while ((io = RB_ROOT(&hmp->lose_root)) != NULL) {
  508                         KKASSERT(io->mod_root == &hmp->lose_root);
  509                         RB_REMOVE(hammer_mod_rb_tree, io->mod_root, io);
  510                         io->mod_root = NULL;
  511                         hammer_ref(&io->lock);
  512                         buffer = (void *)io;
  513                         hammer_rel_buffer(buffer, 0);
  514                 }
  515                 lwkt_reltoken(&hmp->io_token);
  516         }
  517 }
  518 
  519 /*
  520  * Flush a single inode that is part of a flush group.
  521  *
  522  * Flusher errors are extremely serious, even ENOSPC shouldn't occur because
  523  * the front-end should have reserved sufficient space on the media.  Any
  524  * error other then EWOULDBLOCK will force the mount to be read-only.
  525  */
  526 static
  527 int
  528 hammer_flusher_flush_inode(hammer_inode_t ip, void *data)
  529 {
  530         hammer_flusher_info_t info = data;
  531         hammer_mount_t hmp = info->hmp;
  532         hammer_transaction_t trans = &info->trans;
  533         int error;
  534 
  535         /*
  536          * Several slaves are operating on the same flush group concurrently.
  537          * The SLAVEFLUSH flag prevents them from tripping over each other.
  538          *
  539          * NOTE: It is possible for a EWOULDBLOCK'd ip returned by one slave
  540          *       to be resynced by another, but normally such inodes are not
  541          *       revisited until the master loop gets to them.
  542          */
  543         if (ip->flags & HAMMER_INODE_SLAVEFLUSH)
  544                 return(0);
  545         ip->flags |= HAMMER_INODE_SLAVEFLUSH;
  546         ++hammer_stats_inode_flushes;
  547 
  548         hammer_flusher_clean_loose_ios(hmp);
  549         vm_wait_nominal();
  550         error = hammer_sync_inode(trans, ip);
  551 
  552         /*
  553          * EWOULDBLOCK can happen under normal operation, all other errors
  554          * are considered extremely serious.  We must set WOULDBLOCK
  555          * mechanics to deal with the mess left over from the abort of the
  556          * previous flush.
  557          */
  558         if (error) {
  559                 ip->flags |= HAMMER_INODE_WOULDBLOCK;
  560                 if (error == EWOULDBLOCK)
  561                         error = 0;
  562         }
  563         hammer_flush_inode_done(ip, error);
  564         /* ip invalid */
  565 
  566         while (hmp->flusher.finalize_want)
  567                 tsleep(&hmp->flusher.finalize_want, 0, "hmrsxx", 0);
  568         if (hammer_flusher_undo_exhausted(trans, 1)) {
  569                 kprintf("HAMMER: Warning: UNDO area too small!\n");
  570                 hammer_flusher_finalize(trans, 1);
  571         } else if (hammer_flusher_meta_limit(trans->hmp)) {
  572                 hammer_flusher_finalize(trans, 0);
  573         }
  574         return (0);
  575 }
  576 
  577 /*
  578  * Return non-zero if the UNDO area has less then (QUARTER / 4) of its
  579  * space left.
  580  *
  581  * 1/4 - Emergency free undo space level.  Below this point the flusher
  582  *       will finalize even if directory dependancies have not been resolved.
  583  *
  584  * 2/4 - Used by the pruning and reblocking code.  These functions may be
  585  *       running in parallel with a flush and cannot be allowed to drop
  586  *       available undo space to emergency levels.
  587  *
  588  * 3/4 - Used at the beginning of a flush to force-sync the volume header
  589  *       to give the flush plenty of runway to work in.
  590  */
  591 int
  592 hammer_flusher_undo_exhausted(hammer_transaction_t trans, int quarter)
  593 {
  594         if (hammer_undo_space(trans) <
  595             hammer_undo_max(trans->hmp) * quarter / 4) {
  596                 return(1);
  597         } else {
  598                 return(0);
  599         }
  600 }
  601 
  602 /*
  603  * Flush all pending UNDOs, wait for write completion, update the volume
  604  * header with the new UNDO end position, and flush it.  Then
  605  * asynchronously flush the meta-data.
  606  *
  607  * If this is the last finalization in a flush group we also synchronize
  608  * our cached blockmap and set hmp->flusher_undo_start and our cached undo
  609  * fifo first_offset so the next flush resets the FIFO pointers.
  610  *
  611  * If this is not final it is being called because too many dirty meta-data
  612  * buffers have built up and must be flushed with UNDO synchronization to
  613  * avoid a buffer cache deadlock.
  614  */
  615 void
  616 hammer_flusher_finalize(hammer_transaction_t trans, int final)
  617 {
  618         hammer_volume_t root_volume;
  619         hammer_blockmap_t cundomap, dundomap;
  620         hammer_mount_t hmp;
  621         hammer_io_t io;
  622         hammer_off_t save_undo_next_offset;
  623         int count;
  624         int i;
  625 
  626         hmp = trans->hmp;
  627         root_volume = trans->rootvol;
  628 
  629         /*
  630          * Exclusively lock the flusher.  This guarantees that all dirty
  631          * buffers will be idled (have a mod-count of 0).
  632          */
  633         ++hmp->flusher.finalize_want;
  634         hammer_lock_ex(&hmp->flusher.finalize_lock);
  635 
  636         /*
  637          * If this isn't the final sync several threads may have hit the
  638          * meta-limit at the same time and raced.  Only sync if we really
  639          * have to, after acquiring the lock.
  640          */
  641         if (final == 0 && !hammer_flusher_meta_limit(hmp))
  642                 goto done;
  643 
  644         if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
  645                 goto done;
  646 
  647         /*
  648          * Flush data buffers.  This can occur asynchronously and at any
  649          * time.  We must interlock against the frontend direct-data write
  650          * but do not have to acquire the sync-lock yet.
  651          *
  652          * These data buffers have already been collected prior to the
  653          * related inode(s) getting queued to the flush group.
  654          */
  655         count = 0;
  656         while ((io = RB_FIRST(hammer_mod_rb_tree, &hmp->data_root)) != NULL) {
  657                 if (io->ioerror)
  658                         break;
  659                 hammer_ref(&io->lock);
  660                 hammer_io_write_interlock(io);
  661                 KKASSERT(io->type != HAMMER_STRUCTURE_VOLUME);
  662                 hammer_io_flush(io, 0);
  663                 hammer_io_done_interlock(io);
  664                 hammer_rel_buffer((hammer_buffer_t)io, 0);
  665                 hammer_io_limit_backlog(hmp);
  666                 ++count;
  667         }
  668 
  669         /*
  670          * The sync-lock is required for the remaining sequence.  This lock
  671          * prevents meta-data from being modified.
  672          */
  673         hammer_sync_lock_ex(trans);
  674 
  675         /*
  676          * If we have been asked to finalize the volume header sync the
  677          * cached blockmap to the on-disk blockmap.  Generate an UNDO
  678          * record for the update.
  679          */
  680         if (final) {
  681                 cundomap = &hmp->blockmap[0];
  682                 dundomap = &root_volume->ondisk->vol0_blockmap[0];
  683                 if (root_volume->io.modified) {
  684                         hammer_modify_volume(trans, root_volume,
  685                                              dundomap, sizeof(hmp->blockmap));
  686                         for (i = 0; i < HAMMER_MAX_ZONES; ++i)
  687                                 hammer_crc_set_blockmap(&cundomap[i]);
  688                         bcopy(cundomap, dundomap, sizeof(hmp->blockmap));
  689                         hammer_modify_volume_done(root_volume);
  690                 }
  691         }
  692 
  693         /*
  694          * Flush UNDOs.  This can occur concurrently with the data flush
  695          * because data writes never overwrite.
  696          *
  697          * This also waits for I/Os to complete and flushes the cache on
  698          * the target disk.
  699          *
  700          * Record the UNDO append point as this can continue to change
  701          * after we have flushed the UNDOs.
  702          */
  703         cundomap = &hmp->blockmap[HAMMER_ZONE_UNDO_INDEX];
  704         hammer_lock_ex(&hmp->undo_lock);
  705         save_undo_next_offset = cundomap->next_offset;
  706         hammer_unlock(&hmp->undo_lock);
  707         hammer_flusher_flush_undos(hmp, HAMMER_FLUSH_UNDOS_FORCED);
  708 
  709         if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
  710                 goto failed;
  711 
  712         /*
  713          * HAMMER VERSION < 4:
  714          *      Update the on-disk volume header with new UNDO FIFO end
  715          *      position (do not generate new UNDO records for this change).
  716          *      We have to do this for the UNDO FIFO whether (final) is
  717          *      set or not in order for the UNDOs to be recognized on
  718          *      recovery.
  719          *
  720          * HAMMER VERSION >= 4:
  721          *      The UNDO FIFO data written above will be recognized on
  722          *      recovery without us having to sync the volume header.
  723          *
  724          * Also update the on-disk next_tid field.  This does not require
  725          * an UNDO.  However, because our TID is generated before we get
  726          * the sync lock another sync may have beat us to the punch.
  727          *
  728          * This also has the side effect of updating first_offset based on
  729          * a prior finalization when the first finalization of the next flush
  730          * cycle occurs, removing any undo info from the prior finalization
  731          * from consideration.
  732          *
  733          * The volume header will be flushed out synchronously.
  734          */
  735         dundomap = &root_volume->ondisk->vol0_blockmap[HAMMER_ZONE_UNDO_INDEX];
  736         cundomap = &hmp->blockmap[HAMMER_ZONE_UNDO_INDEX];
  737 
  738         if (dundomap->first_offset != cundomap->first_offset ||
  739                    dundomap->next_offset != save_undo_next_offset) {
  740                 hammer_modify_volume(NULL, root_volume, NULL, 0);
  741                 dundomap->first_offset = cundomap->first_offset;
  742                 dundomap->next_offset = save_undo_next_offset;
  743                 hammer_crc_set_blockmap(dundomap);
  744                 hammer_modify_volume_done(root_volume);
  745         }
  746 
  747         /*
  748          * vol0_next_tid is used for TID selection and is updated without
  749          * an UNDO so we do not reuse a TID that may have been rolled-back.
  750          *
  751          * vol0_last_tid is the highest fully-synchronized TID.  It is
  752          * set-up when the UNDO fifo is fully synced, later on (not here).
  753          *
  754          * The root volume can be open for modification by other threads
  755          * generating UNDO or REDO records.  For example, reblocking,
  756          * pruning, REDO mode fast-fsyncs, so the write interlock is
  757          * mandatory.
  758          */
  759         if (root_volume->io.modified) {
  760                 hammer_modify_volume(NULL, root_volume, NULL, 0);
  761                 if (root_volume->ondisk->vol0_next_tid < trans->tid)
  762                         root_volume->ondisk->vol0_next_tid = trans->tid;
  763                 hammer_crc_set_volume(root_volume->ondisk);
  764                 hammer_modify_volume_done(root_volume);
  765                 hammer_io_write_interlock(&root_volume->io);
  766                 hammer_io_flush(&root_volume->io, 0);
  767                 hammer_io_done_interlock(&root_volume->io);
  768         }
  769 
  770         /*
  771          * Wait for I/Os to complete.
  772          *
  773          * For HAMMER VERSION 4+ filesystems we do not have to wait for
  774          * the I/O to complete as the new UNDO FIFO entries are recognized
  775          * even without the volume header update.  This allows the volume
  776          * header to flushed along with meta-data, significantly reducing
  777          * flush overheads.
  778          */
  779         hammer_flusher_clean_loose_ios(hmp);
  780         if (hmp->version < HAMMER_VOL_VERSION_FOUR)
  781                 hammer_io_wait_all(hmp, "hmrfl3", 1);
  782 
  783         if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
  784                 goto failed;
  785 
  786         /*
  787          * Flush meta-data.  The meta-data will be undone if we crash
  788          * so we can safely flush it asynchronously.  There is no need
  789          * to wait for I/O to complete (or issue a synchronous disk flush).
  790          *
  791          * In fact, even if we did wait the meta-data will still be undone
  792          * by a crash up until the next flush cycle due to the first_offset
  793          * in the volume header for the UNDO FIFO not being adjusted until
  794          * the following flush cycle.
  795          *
  796          * No io interlock is needed, bioops callbacks will not mess with
  797          * meta data buffers.
  798          */
  799         count = 0;
  800         while ((io = RB_FIRST(hammer_mod_rb_tree, &hmp->meta_root)) != NULL) {
  801                 if (io->ioerror)
  802                         break;
  803                 KKASSERT(io->modify_refs == 0);
  804                 hammer_ref(&io->lock);
  805                 KKASSERT(io->type != HAMMER_STRUCTURE_VOLUME);
  806                 hammer_io_flush(io, 0);
  807                 hammer_rel_buffer((hammer_buffer_t)io, 0);
  808                 hammer_io_limit_backlog(hmp);
  809                 ++count;
  810         }
  811 
  812         /*
  813          * If this is the final finalization for the flush group set
  814          * up for the next sequence by setting a new first_offset in
  815          * our cached blockmap and clearing the undo history.
  816          *
  817          * Even though we have updated our cached first_offset, the on-disk
  818          * first_offset still governs available-undo-space calculations.
  819          *
  820          * We synchronize to save_undo_next_offset rather than
  821          * cundomap->next_offset because that is what we flushed out
  822          * above.
  823          *
  824          * NOTE! UNDOs can only be added with the sync_lock held
  825          *       so we can clear the undo history without racing.
  826          *       REDOs can be added at any time which is why we
  827          *       have to be careful and use save_undo_next_offset
  828          *       when setting the new first_offset.
  829          */
  830         if (final) {
  831                 cundomap = &hmp->blockmap[HAMMER_ZONE_UNDO_INDEX];
  832                 if (cundomap->first_offset != save_undo_next_offset) {
  833                         cundomap->first_offset = save_undo_next_offset;
  834                         hmp->hflags |= HMNT_UNDO_DIRTY;
  835                 } else if (cundomap->first_offset != cundomap->next_offset) {
  836                         hmp->hflags |= HMNT_UNDO_DIRTY;
  837                 } else {
  838                         hmp->hflags &= ~HMNT_UNDO_DIRTY;
  839                 }
  840                 hammer_clear_undo_history(hmp);
  841 
  842                 /*
  843                  * Flush tid sequencing.  flush_tid1 is fully synchronized,
  844                  * meaning a crash will not roll it back.  flush_tid2 has
  845                  * been written out asynchronously and a crash will roll
  846                  * it back.  flush_tid1 is used for all mirroring masters.
  847                  */
  848                 if (hmp->flush_tid1 != hmp->flush_tid2) {
  849                         hmp->flush_tid1 = hmp->flush_tid2;
  850                         wakeup(&hmp->flush_tid1);
  851                 }
  852                 hmp->flush_tid2 = trans->tid;
  853 
  854                 /*
  855                  * Clear the REDO SYNC flag.  This flag is used to ensure
  856                  * that the recovery span in the UNDO/REDO FIFO contains
  857                  * at least one REDO SYNC record.
  858                  */
  859                 hmp->flags &= ~HAMMER_MOUNT_REDO_SYNC;
  860         }
  861 
  862         /*
  863          * Cleanup.  Report any critical errors.
  864          */
  865 failed:
  866         hammer_sync_unlock(trans);
  867 
  868         if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) {
  869                 kprintf("HAMMER(%s): Critical write error during flush, "
  870                         "refusing to sync UNDO FIFO\n",
  871                         root_volume->ondisk->vol_name);
  872         }
  873 
  874 done:
  875         hammer_unlock(&hmp->flusher.finalize_lock);
  876 
  877         if (--hmp->flusher.finalize_want == 0)
  878                 wakeup(&hmp->flusher.finalize_want);
  879         hammer_stats_commits += final;
  880 }
  881 
  882 /*
  883  * Flush UNDOs.
  884  */
  885 void
  886 hammer_flusher_flush_undos(hammer_mount_t hmp, int mode)
  887 {
  888         hammer_io_t io;
  889         int count;
  890 
  891         count = 0;
  892         while ((io = RB_FIRST(hammer_mod_rb_tree, &hmp->undo_root)) != NULL) {
  893                 if (io->ioerror)
  894                         break;
  895                 hammer_ref(&io->lock);
  896                 KKASSERT(io->type != HAMMER_STRUCTURE_VOLUME);
  897                 hammer_io_write_interlock(io);
  898                 hammer_io_flush(io, hammer_undo_reclaim(io));
  899                 hammer_io_done_interlock(io);
  900                 hammer_rel_buffer((hammer_buffer_t)io, 0);
  901                 hammer_io_limit_backlog(hmp);
  902                 ++count;
  903         }
  904         hammer_flusher_clean_loose_ios(hmp);
  905         if (mode == HAMMER_FLUSH_UNDOS_FORCED ||
  906             (mode == HAMMER_FLUSH_UNDOS_AUTO && count)) {
  907                 hammer_io_wait_all(hmp, "hmrfl1", 1);
  908         } else {
  909                 hammer_io_wait_all(hmp, "hmrfl2", 0);
  910         }
  911 }
  912 
  913 /*
  914  * Return non-zero if too many dirty meta-data buffers have built up.
  915  *
  916  * Since we cannot allow such buffers to flush until we have dealt with
  917  * the UNDOs, we risk deadlocking the kernel's buffer cache.
  918  */
  919 int
  920 hammer_flusher_meta_limit(hammer_mount_t hmp)
  921 {
  922         if (hmp->locked_dirty_space + hmp->io_running_space >
  923             hammer_limit_dirtybufspace) {
  924                 return(1);
  925         }
  926         return(0);
  927 }
  928 
  929 /*
  930  * Return non-zero if too many dirty meta-data buffers have built up.
  931  *
  932  * This version is used by background operations (mirror, prune, reblock)
  933  * to leave room for foreground operations.
  934  */
  935 int
  936 hammer_flusher_meta_halflimit(hammer_mount_t hmp)
  937 {
  938         if (hmp->locked_dirty_space + hmp->io_running_space >
  939             hammer_limit_dirtybufspace / 2) {
  940                 return(1);
  941         }
  942         return(0);
  943 }
  944 
  945 /*
  946  * Return non-zero if the flusher still has something to flush.
  947  */
  948 int
  949 hammer_flusher_haswork(hammer_mount_t hmp)
  950 {
  951         if (hmp->ronly)
  952                 return(0);
  953         if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
  954                 return(0);
  955         if (TAILQ_FIRST(&hmp->flush_group_list) ||      /* dirty inodes */
  956             RB_ROOT(&hmp->volu_root) ||                 /* dirty buffers */
  957             RB_ROOT(&hmp->undo_root) ||
  958             RB_ROOT(&hmp->data_root) ||
  959             RB_ROOT(&hmp->meta_root) ||
  960             (hmp->hflags & HMNT_UNDO_DIRTY)             /* UNDO FIFO sync */
  961         ) {
  962                 return(1);
  963         }
  964         return(0);
  965 }
  966 

Cache object: c9157457792cb910511e760a55bd4f6c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.