The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/memguard.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2005, Bosko Milekic <bmilekic@FreeBSD.org>.
    3  * Copyright (c) 2010 Isilon Systems, Inc. (http://www.isilon.com/)
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice unmodified, this list of conditions, and the following
   11  *    disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD: releng/10.0/sys/vm/memguard.c 254307 2013-08-13 22:40:43Z jeff $");
   30 
   31 /*
   32  * MemGuard is a simple replacement allocator for debugging only
   33  * which provides ElectricFence-style memory barrier protection on
   34  * objects being allocated, and is used to detect tampering-after-free
   35  * scenarios.
   36  *
   37  * See the memguard(9) man page for more information on using MemGuard.
   38  */
   39 
   40 #include "opt_vm.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/kernel.h>
   45 #include <sys/types.h>
   46 #include <sys/queue.h>
   47 #include <sys/lock.h>
   48 #include <sys/mutex.h>
   49 #include <sys/malloc.h>
   50 #include <sys/sysctl.h>
   51 #include <sys/vmem.h>
   52 
   53 #include <vm/vm.h>
   54 #include <vm/uma.h>
   55 #include <vm/vm_param.h>
   56 #include <vm/vm_page.h>
   57 #include <vm/vm_map.h>
   58 #include <vm/vm_object.h>
   59 #include <vm/vm_kern.h>
   60 #include <vm/vm_extern.h>
   61 #include <vm/uma_int.h>
   62 #include <vm/memguard.h>
   63 
   64 static SYSCTL_NODE(_vm, OID_AUTO, memguard, CTLFLAG_RW, NULL, "MemGuard data");
   65 /*
   66  * The vm_memguard_divisor variable controls how much of kmem_map should be
   67  * reserved for MemGuard.
   68  */
   69 static u_int vm_memguard_divisor;
   70 SYSCTL_UINT(_vm_memguard, OID_AUTO, divisor, CTLFLAG_RDTUN,
   71     &vm_memguard_divisor,
   72     0, "(kmem_size/memguard_divisor) == memguard submap size");     
   73 
   74 /*
   75  * Short description (ks_shortdesc) of memory type to monitor.
   76  */
   77 static char vm_memguard_desc[128] = "";
   78 static struct malloc_type *vm_memguard_mtype = NULL;
   79 TUNABLE_STR("vm.memguard.desc", vm_memguard_desc, sizeof(vm_memguard_desc));
   80 static int
   81 memguard_sysctl_desc(SYSCTL_HANDLER_ARGS)
   82 {
   83         char desc[sizeof(vm_memguard_desc)];
   84         int error;
   85 
   86         strlcpy(desc, vm_memguard_desc, sizeof(desc));
   87         error = sysctl_handle_string(oidp, desc, sizeof(desc), req);
   88         if (error != 0 || req->newptr == NULL)
   89                 return (error);
   90 
   91         mtx_lock(&malloc_mtx);
   92         /*
   93          * If mtp is NULL, it will be initialized in memguard_cmp().
   94          */
   95         vm_memguard_mtype = malloc_desc2type(desc);
   96         strlcpy(vm_memguard_desc, desc, sizeof(vm_memguard_desc));
   97         mtx_unlock(&malloc_mtx);
   98         return (error);
   99 }
  100 SYSCTL_PROC(_vm_memguard, OID_AUTO, desc,
  101     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
  102     memguard_sysctl_desc, "A", "Short description of memory type to monitor");
  103 
  104 static vm_offset_t memguard_cursor;
  105 static vm_offset_t memguard_base;
  106 static vm_size_t memguard_mapsize;
  107 static vm_size_t memguard_physlimit;
  108 static u_long memguard_wasted;
  109 static u_long memguard_wrap;
  110 static u_long memguard_succ;
  111 static u_long memguard_fail_kva;
  112 static u_long memguard_fail_pgs;
  113 
  114 SYSCTL_ULONG(_vm_memguard, OID_AUTO, cursor, CTLFLAG_RD,
  115     &memguard_cursor, 0, "MemGuard cursor");
  116 SYSCTL_ULONG(_vm_memguard, OID_AUTO, mapsize, CTLFLAG_RD,
  117     &memguard_mapsize, 0, "MemGuard private arena size");
  118 SYSCTL_ULONG(_vm_memguard, OID_AUTO, phys_limit, CTLFLAG_RD,
  119     &memguard_physlimit, 0, "Limit on MemGuard memory consumption");
  120 SYSCTL_ULONG(_vm_memguard, OID_AUTO, wasted, CTLFLAG_RD,
  121     &memguard_wasted, 0, "Excess memory used through page promotion");
  122 SYSCTL_ULONG(_vm_memguard, OID_AUTO, wrapcnt, CTLFLAG_RD,
  123     &memguard_wrap, 0, "MemGuard cursor wrap count");
  124 SYSCTL_ULONG(_vm_memguard, OID_AUTO, numalloc, CTLFLAG_RD,
  125     &memguard_succ, 0, "Count of successful MemGuard allocations");
  126 SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_kva, CTLFLAG_RD,
  127     &memguard_fail_kva, 0, "MemGuard failures due to lack of KVA");
  128 SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_pgs, CTLFLAG_RD,
  129     &memguard_fail_pgs, 0, "MemGuard failures due to lack of pages");
  130 
  131 #define MG_GUARD_AROUND         0x001
  132 #define MG_GUARD_ALLLARGE       0x002
  133 #define MG_GUARD_NOFREE         0x004
  134 static int memguard_options = MG_GUARD_AROUND;
  135 TUNABLE_INT("vm.memguard.options", &memguard_options);
  136 SYSCTL_INT(_vm_memguard, OID_AUTO, options, CTLFLAG_RW,
  137     &memguard_options, 0,
  138     "MemGuard options:\n"
  139     "\t0x001 - add guard pages around each allocation\n"
  140     "\t0x002 - always use MemGuard for allocations over a page\n"
  141     "\t0x004 - guard uma(9) zones with UMA_ZONE_NOFREE flag");
  142 
  143 static u_int memguard_minsize;
  144 static u_long memguard_minsize_reject;
  145 SYSCTL_UINT(_vm_memguard, OID_AUTO, minsize, CTLFLAG_RW,
  146     &memguard_minsize, 0, "Minimum size for page promotion");
  147 SYSCTL_ULONG(_vm_memguard, OID_AUTO, minsize_reject, CTLFLAG_RD,
  148     &memguard_minsize_reject, 0, "# times rejected for size");
  149 
  150 static u_int memguard_frequency;
  151 static u_long memguard_frequency_hits;
  152 TUNABLE_INT("vm.memguard.frequency", &memguard_frequency);
  153 SYSCTL_UINT(_vm_memguard, OID_AUTO, frequency, CTLFLAG_RW,
  154     &memguard_frequency, 0, "Times in 100000 that MemGuard will randomly run");
  155 SYSCTL_ULONG(_vm_memguard, OID_AUTO, frequency_hits, CTLFLAG_RD,
  156     &memguard_frequency_hits, 0, "# times MemGuard randomly chose");
  157 
  158 
  159 /*
  160  * Return a fudged value to be used for vm_kmem_size for allocating
  161  * the kmem_map.  The memguard memory will be a submap.
  162  */
  163 unsigned long
  164 memguard_fudge(unsigned long km_size, const struct vm_map *parent_map)
  165 {
  166         u_long mem_pgs, parent_size;
  167 
  168         vm_memguard_divisor = 10;
  169         TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor);
  170 
  171         parent_size = vm_map_max(parent_map) - vm_map_min(parent_map) +
  172             PAGE_SIZE;
  173         /* Pick a conservative value if provided value sucks. */
  174         if ((vm_memguard_divisor <= 0) ||
  175             ((parent_size / vm_memguard_divisor) == 0))
  176                 vm_memguard_divisor = 10;
  177         /*
  178          * Limit consumption of physical pages to
  179          * 1/vm_memguard_divisor of system memory.  If the KVA is
  180          * smaller than this then the KVA limit comes into play first.
  181          * This prevents memguard's page promotions from completely
  182          * using up memory, since most malloc(9) calls are sub-page.
  183          */
  184         mem_pgs = cnt.v_page_count;
  185         memguard_physlimit = (mem_pgs / vm_memguard_divisor) * PAGE_SIZE;
  186         /*
  187          * We want as much KVA as we can take safely.  Use at most our
  188          * allotted fraction of the parent map's size.  Limit this to
  189          * twice the physical memory to avoid using too much memory as
  190          * pagetable pages (size must be multiple of PAGE_SIZE).
  191          */
  192         memguard_mapsize = round_page(parent_size / vm_memguard_divisor);
  193         if (memguard_mapsize / (2 * PAGE_SIZE) > mem_pgs)
  194                 memguard_mapsize = mem_pgs * 2 * PAGE_SIZE;
  195         if (km_size + memguard_mapsize > parent_size)
  196                 memguard_mapsize = 0;
  197         return (km_size + memguard_mapsize);
  198 }
  199 
  200 /*
  201  * Initialize the MemGuard mock allocator.  All objects from MemGuard come
  202  * out of a single VM map (contiguous chunk of address space).
  203  */
  204 void
  205 memguard_init(vmem_t *parent)
  206 {
  207         vm_offset_t base;
  208 
  209         vmem_alloc(parent, memguard_mapsize, M_BESTFIT | M_WAITOK, &base);
  210         vmem_init(memguard_arena, "memguard arena", base, memguard_mapsize,
  211             PAGE_SIZE, 0, M_WAITOK);
  212         memguard_cursor = base;
  213         memguard_base = base;
  214 
  215         printf("MEMGUARD DEBUGGING ALLOCATOR INITIALIZED:\n");
  216         printf("\tMEMGUARD map base: 0x%lx\n", (u_long)base);
  217         printf("\tMEMGUARD map size: %jd KBytes\n",
  218             (uintmax_t)memguard_mapsize >> 10);
  219 }
  220 
  221 /*
  222  * Run things that can't be done as early as memguard_init().
  223  */
  224 static void
  225 memguard_sysinit(void)
  226 {
  227         struct sysctl_oid_list *parent;
  228 
  229         parent = SYSCTL_STATIC_CHILDREN(_vm_memguard);
  230 
  231         SYSCTL_ADD_ULONG(NULL, parent, OID_AUTO, "mapstart", CTLFLAG_RD,
  232             &memguard_base, "MemGuard KVA base");
  233         SYSCTL_ADD_ULONG(NULL, parent, OID_AUTO, "maplimit", CTLFLAG_RD,
  234             &memguard_mapsize, "MemGuard KVA size");
  235 #if 0
  236         SYSCTL_ADD_ULONG(NULL, parent, OID_AUTO, "mapused", CTLFLAG_RD,
  237             &memguard_map->size, "MemGuard KVA used");
  238 #endif
  239 }
  240 SYSINIT(memguard, SI_SUB_KLD, SI_ORDER_ANY, memguard_sysinit, NULL);
  241 
  242 /*
  243  * v2sizep() converts a virtual address of the first page allocated for
  244  * an item to a pointer to u_long recording the size of the original
  245  * allocation request.
  246  *
  247  * This routine is very similar to those defined by UMA in uma_int.h.
  248  * The difference is that this routine stores the originally allocated
  249  * size in one of the page's fields that is unused when the page is
  250  * wired rather than the object field, which is used.
  251  */
  252 static u_long *
  253 v2sizep(vm_offset_t va)
  254 {
  255         vm_paddr_t pa;
  256         struct vm_page *p;
  257 
  258         pa = pmap_kextract(va);
  259         if (pa == 0)
  260                 panic("MemGuard detected double-free of %p", (void *)va);
  261         p = PHYS_TO_VM_PAGE(pa);
  262         KASSERT(p->wire_count != 0 && p->queue == PQ_NONE,
  263             ("MEMGUARD: Expected wired page %p in vtomgfifo!", p));
  264         return (&p->plinks.memguard.p);
  265 }
  266 
  267 static u_long *
  268 v2sizev(vm_offset_t va)
  269 {
  270         vm_paddr_t pa;
  271         struct vm_page *p;
  272 
  273         pa = pmap_kextract(va);
  274         if (pa == 0)
  275                 panic("MemGuard detected double-free of %p", (void *)va);
  276         p = PHYS_TO_VM_PAGE(pa);
  277         KASSERT(p->wire_count != 0 && p->queue == PQ_NONE,
  278             ("MEMGUARD: Expected wired page %p in vtomgfifo!", p));
  279         return (&p->plinks.memguard.v);
  280 }
  281 
  282 /*
  283  * Allocate a single object of specified size with specified flags
  284  * (either M_WAITOK or M_NOWAIT).
  285  */
  286 void *
  287 memguard_alloc(unsigned long req_size, int flags)
  288 {
  289         vm_offset_t addr;
  290         u_long size_p, size_v;
  291         int do_guard, rv;
  292 
  293         size_p = round_page(req_size);
  294         if (size_p == 0)
  295                 return (NULL);
  296         /*
  297          * To ensure there are holes on both sides of the allocation,
  298          * request 2 extra pages of KVA.  We will only actually add a
  299          * vm_map_entry and get pages for the original request.  Save
  300          * the value of memguard_options so we have a consistent
  301          * value.
  302          */
  303         size_v = size_p;
  304         do_guard = (memguard_options & MG_GUARD_AROUND) != 0;
  305         if (do_guard)
  306                 size_v += 2 * PAGE_SIZE;
  307 
  308         /*
  309          * When we pass our memory limit, reject sub-page allocations.
  310          * Page-size and larger allocations will use the same amount
  311          * of physical memory whether we allocate or hand off to
  312          * uma_large_alloc(), so keep those.
  313          */
  314         if (vmem_size(memguard_arena, VMEM_ALLOC) >= memguard_physlimit &&
  315             req_size < PAGE_SIZE) {
  316                 addr = (vm_offset_t)NULL;
  317                 memguard_fail_pgs++;
  318                 goto out;
  319         }
  320         /*
  321          * Keep a moving cursor so we don't recycle KVA as long as
  322          * possible.  It's not perfect, since we don't know in what
  323          * order previous allocations will be free'd, but it's simple
  324          * and fast, and requires O(1) additional storage if guard
  325          * pages are not used.
  326          *
  327          * XXX This scheme will lead to greater fragmentation of the
  328          * map, unless vm_map_findspace() is tweaked.
  329          */
  330         for (;;) {
  331                 if (vmem_xalloc(memguard_arena, size_v, 0, 0, 0,
  332                     memguard_cursor, VMEM_ADDR_MAX,
  333                     M_BESTFIT | M_NOWAIT, &addr) == 0)
  334                         break;
  335                 /*
  336                  * The map has no space.  This may be due to
  337                  * fragmentation, or because the cursor is near the
  338                  * end of the map.
  339                  */
  340                 if (memguard_cursor == memguard_base) {
  341                         memguard_fail_kva++;
  342                         addr = (vm_offset_t)NULL;
  343                         goto out;
  344                 }
  345                 memguard_wrap++;
  346                 memguard_cursor = memguard_base;
  347         }
  348         if (do_guard)
  349                 addr += PAGE_SIZE;
  350         rv = kmem_back(kmem_object, addr, size_p, flags);
  351         if (rv != KERN_SUCCESS) {
  352                 vmem_xfree(memguard_arena, addr, size_v);
  353                 memguard_fail_pgs++;
  354                 addr = (vm_offset_t)NULL;
  355                 goto out;
  356         }
  357         memguard_cursor = addr + size_v;
  358         *v2sizep(trunc_page(addr)) = req_size;
  359         *v2sizev(trunc_page(addr)) = size_v;
  360         memguard_succ++;
  361         if (req_size < PAGE_SIZE) {
  362                 memguard_wasted += (PAGE_SIZE - req_size);
  363                 if (do_guard) {
  364                         /*
  365                          * Align the request to 16 bytes, and return
  366                          * an address near the end of the page, to
  367                          * better detect array overrun.
  368                          */
  369                         req_size = roundup2(req_size, 16);
  370                         addr += (PAGE_SIZE - req_size);
  371                 }
  372         }
  373 out:
  374         return ((void *)addr);
  375 }
  376 
  377 int
  378 is_memguard_addr(void *addr)
  379 {
  380         vm_offset_t a = (vm_offset_t)(uintptr_t)addr;
  381 
  382         return (a >= memguard_base && a < memguard_base + memguard_mapsize);
  383 }
  384 
  385 /*
  386  * Free specified single object.
  387  */
  388 void
  389 memguard_free(void *ptr)
  390 {
  391         vm_offset_t addr;
  392         u_long req_size, size, sizev;
  393         char *temp;
  394         int i;
  395 
  396         addr = trunc_page((uintptr_t)ptr);
  397         req_size = *v2sizep(addr);
  398         sizev = *v2sizev(addr);
  399         size = round_page(req_size);
  400 
  401         /*
  402          * Page should not be guarded right now, so force a write.
  403          * The purpose of this is to increase the likelihood of
  404          * catching a double-free, but not necessarily a
  405          * tamper-after-free (the second thread freeing might not
  406          * write before freeing, so this forces it to and,
  407          * subsequently, trigger a fault).
  408          */
  409         temp = ptr;
  410         for (i = 0; i < size; i += PAGE_SIZE)
  411                 temp[i] = 'M';
  412 
  413         /*
  414          * This requires carnal knowledge of the implementation of
  415          * kmem_free(), but since we've already replaced kmem_malloc()
  416          * above, it's not really any worse.  We want to use the
  417          * vm_map lock to serialize updates to memguard_wasted, since
  418          * we had the lock at increment.
  419          */
  420         kmem_unback(kmem_object, addr, size);
  421         if (sizev > size)
  422                 addr -= PAGE_SIZE;
  423         vmem_xfree(memguard_arena, addr, sizev);
  424         if (req_size < PAGE_SIZE)
  425                 memguard_wasted -= (PAGE_SIZE - req_size);
  426 }
  427 
  428 /*
  429  * Re-allocate an allocation that was originally guarded.
  430  */
  431 void *
  432 memguard_realloc(void *addr, unsigned long size, struct malloc_type *mtp,
  433     int flags)
  434 {
  435         void *newaddr;
  436         u_long old_size;
  437 
  438         /*
  439          * Allocate the new block.  Force the allocation to be guarded
  440          * as the original may have been guarded through random
  441          * chance, and that should be preserved.
  442          */
  443         if ((newaddr = memguard_alloc(size, flags)) == NULL)
  444                 return (NULL);
  445 
  446         /* Copy over original contents. */
  447         old_size = *v2sizep(trunc_page((uintptr_t)addr));
  448         bcopy(addr, newaddr, min(size, old_size));
  449         memguard_free(addr);
  450         return (newaddr);
  451 }
  452 
  453 static int
  454 memguard_cmp(unsigned long size)
  455 {
  456 
  457         if (size < memguard_minsize) {
  458                 memguard_minsize_reject++;
  459                 return (0);
  460         }
  461         if ((memguard_options & MG_GUARD_ALLLARGE) != 0 && size >= PAGE_SIZE)
  462                 return (1);
  463         if (memguard_frequency > 0 &&
  464             (random() % 100000) < memguard_frequency) {
  465                 memguard_frequency_hits++;
  466                 return (1);
  467         }
  468 
  469         return (0);
  470 }
  471 
  472 int
  473 memguard_cmp_mtp(struct malloc_type *mtp, unsigned long size)
  474 {
  475 
  476         if (memguard_cmp(size))
  477                 return(1);
  478 
  479 #if 1
  480         /*
  481          * The safest way of comparsion is to always compare short description
  482          * string of memory type, but it is also the slowest way.
  483          */
  484         return (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0);
  485 #else
  486         /*
  487          * If we compare pointers, there are two possible problems:
  488          * 1. Memory type was unloaded and new memory type was allocated at the
  489          *    same address.
  490          * 2. Memory type was unloaded and loaded again, but allocated at a
  491          *    different address.
  492          */
  493         if (vm_memguard_mtype != NULL)
  494                 return (mtp == vm_memguard_mtype);
  495         if (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0) {
  496                 vm_memguard_mtype = mtp;
  497                 return (1);
  498         }
  499         return (0);
  500 #endif
  501 }
  502 
  503 int
  504 memguard_cmp_zone(uma_zone_t zone)
  505 {
  506 
  507          if ((memguard_options & MG_GUARD_NOFREE) == 0 &&
  508             zone->uz_flags & UMA_ZONE_NOFREE)
  509                 return (0);
  510 
  511         if (memguard_cmp(zone->uz_size))
  512                 return (1);
  513 
  514         /*
  515          * The safest way of comparsion is to always compare zone name,
  516          * but it is also the slowest way.
  517          */
  518         return (strcmp(zone->uz_name, vm_memguard_desc) == 0);
  519 }

Cache object: f9613abce9096f874b940beb17560817


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.