The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/memguard.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2005, Bosko Milekic <bmilekic@FreeBSD.org>.
    5  * Copyright (c) 2010 Isilon Systems, Inc. (http://www.isilon.com/)
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice unmodified, this list of conditions, and the following
   13  *    disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD$");
   32 
   33 /*
   34  * MemGuard is a simple replacement allocator for debugging only
   35  * which provides ElectricFence-style memory barrier protection on
   36  * objects being allocated, and is used to detect tampering-after-free
   37  * scenarios.
   38  *
   39  * See the memguard(9) man page for more information on using MemGuard.
   40  */
   41 
   42 #include "opt_vm.h"
   43 
   44 #include <sys/param.h>
   45 #include <sys/systm.h>
   46 #include <sys/kernel.h>
   47 #include <sys/types.h>
   48 #include <sys/queue.h>
   49 #include <sys/lock.h>
   50 #include <sys/mutex.h>
   51 #include <sys/malloc.h>
   52 #include <sys/sysctl.h>
   53 #include <sys/vmem.h>
   54 #include <sys/vmmeter.h>
   55 
   56 #include <vm/vm.h>
   57 #include <vm/uma.h>
   58 #include <vm/vm_param.h>
   59 #include <vm/vm_page.h>
   60 #include <vm/vm_map.h>
   61 #include <vm/vm_object.h>
   62 #include <vm/vm_kern.h>
   63 #include <vm/vm_extern.h>
   64 #include <vm/uma_int.h>
   65 #include <vm/memguard.h>
   66 
   67 static SYSCTL_NODE(_vm, OID_AUTO, memguard, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
   68     "MemGuard data");
   69 /*
   70  * The vm_memguard_divisor variable controls how much of kernel_arena should be
   71  * reserved for MemGuard.
   72  */
   73 static u_int vm_memguard_divisor;
   74 SYSCTL_UINT(_vm_memguard, OID_AUTO, divisor, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
   75     &vm_memguard_divisor,
   76     0, "(kmem_size/memguard_divisor) == memguard submap size");
   77 
   78 /*
   79  * Short description (ks_shortdesc) of memory type to monitor.
   80  */
   81 static char vm_memguard_desc[128] = "";
   82 static struct malloc_type *vm_memguard_mtype = NULL;
   83 TUNABLE_STR("vm.memguard.desc", vm_memguard_desc, sizeof(vm_memguard_desc));
   84 static int
   85 memguard_sysctl_desc(SYSCTL_HANDLER_ARGS)
   86 {
   87         char desc[sizeof(vm_memguard_desc)];
   88         int error;
   89 
   90         strlcpy(desc, vm_memguard_desc, sizeof(desc));
   91         error = sysctl_handle_string(oidp, desc, sizeof(desc), req);
   92         if (error != 0 || req->newptr == NULL)
   93                 return (error);
   94 
   95         mtx_lock(&malloc_mtx);
   96         /* If mtp is NULL, it will be initialized in memguard_cmp() */
   97         vm_memguard_mtype = malloc_desc2type(desc);
   98         strlcpy(vm_memguard_desc, desc, sizeof(vm_memguard_desc));
   99         mtx_unlock(&malloc_mtx);
  100         return (error);
  101 }
  102 SYSCTL_PROC(_vm_memguard, OID_AUTO, desc,
  103     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
  104     memguard_sysctl_desc, "A", "Short description of memory type to monitor");
  105 
  106 static int
  107 memguard_sysctl_mapused(SYSCTL_HANDLER_ARGS)
  108 {
  109         vmem_size_t size;
  110 
  111         size = vmem_size(memguard_arena, VMEM_ALLOC);
  112         return (sysctl_handle_long(oidp, &size, sizeof(size), req));
  113 }
  114 
  115 static vm_offset_t memguard_base;
  116 static vm_size_t memguard_mapsize;
  117 static vm_size_t memguard_physlimit;
  118 static u_long memguard_wasted;
  119 static u_long memguard_succ;
  120 static u_long memguard_fail_kva;
  121 static u_long memguard_fail_pgs;
  122 
  123 SYSCTL_ULONG(_vm_memguard, OID_AUTO, mapsize, CTLFLAG_RD,
  124     &memguard_mapsize, 0, "MemGuard private arena size");
  125 SYSCTL_ULONG(_vm_memguard, OID_AUTO, phys_limit, CTLFLAG_RD,
  126     &memguard_physlimit, 0, "Limit on MemGuard memory consumption");
  127 SYSCTL_ULONG(_vm_memguard, OID_AUTO, wasted, CTLFLAG_RD,
  128     &memguard_wasted, 0, "Excess memory used through page promotion");
  129 SYSCTL_ULONG(_vm_memguard, OID_AUTO, numalloc, CTLFLAG_RD,
  130     &memguard_succ, 0, "Count of successful MemGuard allocations");
  131 SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_kva, CTLFLAG_RD,
  132     &memguard_fail_kva, 0, "MemGuard failures due to lack of KVA");
  133 SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_pgs, CTLFLAG_RD,
  134     &memguard_fail_pgs, 0, "MemGuard failures due to lack of pages");
  135 
  136 #define MG_GUARD_AROUND         0x001
  137 #define MG_GUARD_ALLLARGE       0x002
  138 #define MG_GUARD_NOFREE         0x004
  139 static int memguard_options = MG_GUARD_AROUND;
  140 SYSCTL_INT(_vm_memguard, OID_AUTO, options, CTLFLAG_RWTUN,
  141     &memguard_options, 0,
  142     "MemGuard options:\n"
  143     "\t0x001 - add guard pages around each allocation\n"
  144     "\t0x002 - always use MemGuard for allocations over a page\n"
  145     "\t0x004 - guard uma(9) zones with UMA_ZONE_NOFREE flag");
  146 
  147 static u_int memguard_minsize;
  148 static u_long memguard_minsize_reject;
  149 SYSCTL_UINT(_vm_memguard, OID_AUTO, minsize, CTLFLAG_RW,
  150     &memguard_minsize, 0, "Minimum size for page promotion");
  151 SYSCTL_ULONG(_vm_memguard, OID_AUTO, minsize_reject, CTLFLAG_RD,
  152     &memguard_minsize_reject, 0, "# times rejected for size");
  153 
  154 static u_int memguard_frequency;
  155 static u_long memguard_frequency_hits;
  156 SYSCTL_UINT(_vm_memguard, OID_AUTO, frequency, CTLFLAG_RWTUN,
  157     &memguard_frequency, 0, "Times in 100000 that MemGuard will randomly run");
  158 SYSCTL_ULONG(_vm_memguard, OID_AUTO, frequency_hits, CTLFLAG_RD,
  159     &memguard_frequency_hits, 0, "# times MemGuard randomly chose");
  160 
  161 /*
  162  * Return a fudged value to be used for vm_kmem_size for allocating
  163  * the kernel_arena.
  164  */
  165 unsigned long
  166 memguard_fudge(unsigned long km_size, const struct vm_map *parent_map)
  167 {
  168         u_long mem_pgs, parent_size;
  169 
  170         vm_memguard_divisor = 10;
  171         /* CTFLAG_RDTUN doesn't work during the early boot process. */
  172         TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor);
  173 
  174         parent_size = vm_map_max(parent_map) - vm_map_min(parent_map) +
  175             PAGE_SIZE;
  176         /* Pick a conservative value if provided value sucks. */
  177         if ((vm_memguard_divisor <= 0) ||
  178             ((parent_size / vm_memguard_divisor) == 0))
  179                 vm_memguard_divisor = 10;
  180         /*
  181          * Limit consumption of physical pages to
  182          * 1/vm_memguard_divisor of system memory.  If the KVA is
  183          * smaller than this then the KVA limit comes into play first.
  184          * This prevents memguard's page promotions from completely
  185          * using up memory, since most malloc(9) calls are sub-page.
  186          */
  187         mem_pgs = vm_cnt.v_page_count;
  188         memguard_physlimit = (mem_pgs / vm_memguard_divisor) * PAGE_SIZE;
  189         /*
  190          * We want as much KVA as we can take safely.  Use at most our
  191          * allotted fraction of the parent map's size.  Limit this to
  192          * twice the physical memory to avoid using too much memory as
  193          * pagetable pages (size must be multiple of PAGE_SIZE).
  194          */
  195         memguard_mapsize = round_page(parent_size / vm_memguard_divisor);
  196         if (memguard_mapsize / (2 * PAGE_SIZE) > mem_pgs)
  197                 memguard_mapsize = mem_pgs * 2 * PAGE_SIZE;
  198         if (km_size + memguard_mapsize > parent_size)
  199                 memguard_mapsize = 0;
  200         return (km_size + memguard_mapsize);
  201 }
  202 
  203 /*
  204  * Initialize the MemGuard mock allocator.  All objects from MemGuard come
  205  * out of a single contiguous chunk of kernel address space that is managed
  206  * by a vmem arena.
  207  */
  208 void
  209 memguard_init(vmem_t *parent)
  210 {
  211         vm_offset_t base;
  212 
  213         vmem_alloc(parent, memguard_mapsize, M_BESTFIT | M_WAITOK, &base);
  214         vmem_init(memguard_arena, "memguard arena", base, memguard_mapsize,
  215             PAGE_SIZE, 0, M_WAITOK);
  216         memguard_base = base;
  217 
  218         printf("MEMGUARD DEBUGGING ALLOCATOR INITIALIZED:\n");
  219         printf("\tMEMGUARD map base: 0x%lx\n", (u_long)base);
  220         printf("\tMEMGUARD map size: %jd KBytes\n",
  221             (uintmax_t)memguard_mapsize >> 10);
  222 }
  223 
  224 /*
  225  * Run things that can't be done as early as memguard_init().
  226  */
  227 static void
  228 memguard_sysinit(void)
  229 {
  230         struct sysctl_oid_list *parent;
  231 
  232         parent = SYSCTL_STATIC_CHILDREN(_vm_memguard);
  233         SYSCTL_ADD_UAUTO(NULL, parent, OID_AUTO, "mapstart",
  234             CTLFLAG_RD, &memguard_base,
  235             "MemGuard KVA base");
  236         SYSCTL_ADD_UAUTO(NULL, parent, OID_AUTO, "maplimit",
  237             CTLFLAG_RD, &memguard_mapsize,
  238             "MemGuard KVA size");
  239         SYSCTL_ADD_PROC(NULL, parent, OID_AUTO, "mapused",
  240             CTLFLAG_RD | CTLFLAG_MPSAFE | CTLTYPE_ULONG, NULL, 0, memguard_sysctl_mapused, "LU",
  241             "MemGuard KVA used");
  242 }
  243 SYSINIT(memguard, SI_SUB_KLD, SI_ORDER_ANY, memguard_sysinit, NULL);
  244 
  245 /*
  246  * v2sizep() converts a virtual address of the first page allocated for
  247  * an item to a pointer to u_long recording the size of the original
  248  * allocation request.
  249  *
  250  * This routine is very similar to those defined by UMA in uma_int.h.
  251  * The difference is that this routine stores the originally allocated
  252  * size in one of the page's fields that is unused when the page is
  253  * wired rather than the object field, which is used.
  254  */
  255 static u_long *
  256 v2sizep(vm_offset_t va)
  257 {
  258         vm_paddr_t pa;
  259         struct vm_page *p;
  260 
  261         pa = pmap_kextract(va);
  262         if (pa == 0)
  263                 panic("MemGuard detected double-free of %p", (void *)va);
  264         p = PHYS_TO_VM_PAGE(pa);
  265         KASSERT(vm_page_wired(p) && p->a.queue == PQ_NONE,
  266             ("MEMGUARD: Expected wired page %p in vtomgfifo!", p));
  267         return (&p->plinks.memguard.p);
  268 }
  269 
  270 static u_long *
  271 v2sizev(vm_offset_t va)
  272 {
  273         vm_paddr_t pa;
  274         struct vm_page *p;
  275 
  276         pa = pmap_kextract(va);
  277         if (pa == 0)
  278                 panic("MemGuard detected double-free of %p", (void *)va);
  279         p = PHYS_TO_VM_PAGE(pa);
  280         KASSERT(vm_page_wired(p) && p->a.queue == PQ_NONE,
  281             ("MEMGUARD: Expected wired page %p in vtomgfifo!", p));
  282         return (&p->plinks.memguard.v);
  283 }
  284 
  285 /*
  286  * Allocate a single object of specified size with specified flags
  287  * (either M_WAITOK or M_NOWAIT).
  288  */
  289 void *
  290 memguard_alloc(unsigned long req_size, int flags)
  291 {
  292         vm_offset_t addr, origaddr;
  293         u_long size_p, size_v;
  294         int do_guard, error, rv;
  295 
  296         size_p = round_page(req_size);
  297         if (size_p == 0)
  298                 return (NULL);
  299 
  300         /*
  301          * To ensure there are holes on both sides of the allocation,
  302          * request 2 extra pages of KVA.  Save the value of memguard_options
  303          * so that we use a consistent value throughout this function.
  304          */
  305         size_v = size_p;
  306         do_guard = (memguard_options & MG_GUARD_AROUND) != 0;
  307         if (do_guard)
  308                 size_v += 2 * PAGE_SIZE;
  309 
  310         /*
  311          * When we pass our memory limit, reject sub-page allocations.
  312          * Page-size and larger allocations will use the same amount
  313          * of physical memory whether we allocate or hand off to
  314          * malloc_large(), so keep those.
  315          */
  316         if (vmem_size(memguard_arena, VMEM_ALLOC) >= memguard_physlimit &&
  317             req_size < PAGE_SIZE) {
  318                 addr = (vm_offset_t)NULL;
  319                 memguard_fail_pgs++;
  320                 goto out;
  321         }
  322 
  323         /*
  324          * Attempt to avoid address reuse for as long as possible, to increase
  325          * the likelihood of catching a use-after-free.
  326          */
  327         error = vmem_alloc(memguard_arena, size_v, M_NEXTFIT | M_NOWAIT,
  328             &origaddr);
  329         if (error != 0) {
  330                 memguard_fail_kva++;
  331                 addr = (vm_offset_t)NULL;
  332                 goto out;
  333         }
  334         addr = origaddr;
  335         if (do_guard)
  336                 addr += PAGE_SIZE;
  337         rv = kmem_back(kernel_object, addr, size_p, flags);
  338         if (rv != KERN_SUCCESS) {
  339                 vmem_xfree(memguard_arena, origaddr, size_v);
  340                 memguard_fail_pgs++;
  341                 addr = (vm_offset_t)NULL;
  342                 goto out;
  343         }
  344         *v2sizep(trunc_page(addr)) = req_size;
  345         *v2sizev(trunc_page(addr)) = size_v;
  346         memguard_succ++;
  347         if (req_size < PAGE_SIZE) {
  348                 memguard_wasted += (PAGE_SIZE - req_size);
  349                 if (do_guard) {
  350                         /*
  351                          * Align the request to 16 bytes, and return
  352                          * an address near the end of the page, to
  353                          * better detect array overrun.
  354                          */
  355                         req_size = roundup2(req_size, 16);
  356                         addr += (PAGE_SIZE - req_size);
  357                 }
  358         }
  359 out:
  360         return ((void *)addr);
  361 }
  362 
  363 int
  364 is_memguard_addr(void *addr)
  365 {
  366         vm_offset_t a = (vm_offset_t)(uintptr_t)addr;
  367 
  368         return (a >= memguard_base && a < memguard_base + memguard_mapsize);
  369 }
  370 
  371 /*
  372  * Free specified single object.
  373  */
  374 void
  375 memguard_free(void *ptr)
  376 {
  377         vm_offset_t addr;
  378         u_long req_size, size, sizev;
  379         char *temp;
  380         int i;
  381 
  382         addr = trunc_page((uintptr_t)ptr);
  383         req_size = *v2sizep(addr);
  384         sizev = *v2sizev(addr);
  385         size = round_page(req_size);
  386 
  387         /*
  388          * Page should not be guarded right now, so force a write.
  389          * The purpose of this is to increase the likelihood of
  390          * catching a double-free, but not necessarily a
  391          * tamper-after-free (the second thread freeing might not
  392          * write before freeing, so this forces it to and,
  393          * subsequently, trigger a fault).
  394          */
  395         temp = ptr;
  396         for (i = 0; i < size; i += PAGE_SIZE)
  397                 temp[i] = 'M';
  398 
  399         /*
  400          * This requires carnal knowledge of the implementation of
  401          * kmem_free(), but since we've already replaced kmem_malloc()
  402          * above, it's not really any worse.  We want to use the
  403          * vm_map lock to serialize updates to memguard_wasted, since
  404          * we had the lock at increment.
  405          */
  406         kmem_unback(kernel_object, addr, size);
  407         if (sizev > size)
  408                 addr -= PAGE_SIZE;
  409         vmem_xfree(memguard_arena, addr, sizev);
  410         if (req_size < PAGE_SIZE)
  411                 memguard_wasted -= (PAGE_SIZE - req_size);
  412 }
  413 
  414 /*
  415  * Re-allocate an allocation that was originally guarded.
  416  */
  417 void *
  418 memguard_realloc(void *addr, unsigned long size, struct malloc_type *mtp,
  419     int flags)
  420 {
  421         void *newaddr;
  422         u_long old_size;
  423 
  424         /*
  425          * Allocate the new block.  Force the allocation to be guarded
  426          * as the original may have been guarded through random
  427          * chance, and that should be preserved.
  428          */
  429         if ((newaddr = memguard_alloc(size, flags)) == NULL)
  430                 return (NULL);
  431 
  432         /* Copy over original contents. */
  433         old_size = *v2sizep(trunc_page((uintptr_t)addr));
  434         bcopy(addr, newaddr, min(size, old_size));
  435         memguard_free(addr);
  436         return (newaddr);
  437 }
  438 
  439 static int
  440 memguard_cmp(unsigned long size)
  441 {
  442 
  443         if (size < memguard_minsize) {
  444                 memguard_minsize_reject++;
  445                 return (0);
  446         }
  447         if ((memguard_options & MG_GUARD_ALLLARGE) != 0 && size >= PAGE_SIZE)
  448                 return (1);
  449         if (memguard_frequency > 0 &&
  450             (random() % 100000) < memguard_frequency) {
  451                 memguard_frequency_hits++;
  452                 return (1);
  453         }
  454 
  455         return (0);
  456 }
  457 
  458 int
  459 memguard_cmp_mtp(struct malloc_type *mtp, unsigned long size)
  460 {
  461 
  462         if (memguard_cmp(size))
  463                 return(1);
  464 
  465 #if 1
  466         /*
  467          * The safest way of comparsion is to always compare short description
  468          * string of memory type, but it is also the slowest way.
  469          */
  470         return (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0);
  471 #else
  472         /*
  473          * If we compare pointers, there are two possible problems:
  474          * 1. Memory type was unloaded and new memory type was allocated at the
  475          *    same address.
  476          * 2. Memory type was unloaded and loaded again, but allocated at a
  477          *    different address.
  478          */
  479         if (vm_memguard_mtype != NULL)
  480                 return (mtp == vm_memguard_mtype);
  481         if (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0) {
  482                 vm_memguard_mtype = mtp;
  483                 return (1);
  484         }
  485         return (0);
  486 #endif
  487 }
  488 
  489 int
  490 memguard_cmp_zone(uma_zone_t zone)
  491 {
  492 
  493         if ((memguard_options & MG_GUARD_NOFREE) == 0 &&
  494             zone->uz_flags & UMA_ZONE_NOFREE)
  495                 return (0);
  496 
  497         if (memguard_cmp(zone->uz_size))
  498                 return (1);
  499 
  500         /*
  501          * The safest way of comparsion is to always compare zone name,
  502          * but it is also the slowest way.
  503          */
  504         return (strcmp(zone->uz_name, vm_memguard_desc) == 0);
  505 }
  506 
  507 unsigned long
  508 memguard_get_req_size(const void *addr)
  509 {
  510         return (*v2sizep(trunc_page((uintptr_t)addr)));
  511 }

Cache object: a862dfd6578b656f2b202ea154a5eb35


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.