FreeBSD/Linux Kernel Cross Reference
sys/vm/memguard.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2005, Bosko Milekic <bmilekic@FreeBSD.org>.
5 * Copyright (c) 2010 Isilon Systems, Inc. (http://www.isilon.com/)
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 /*
34 * MemGuard is a simple replacement allocator for debugging only
35 * which provides ElectricFence-style memory barrier protection on
36 * objects being allocated, and is used to detect tampering-after-free
37 * scenarios.
38 *
39 * See the memguard(9) man page for more information on using MemGuard.
40 */
41
42 #include "opt_vm.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/types.h>
48 #include <sys/queue.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/malloc.h>
52 #include <sys/sysctl.h>
53 #include <sys/vmem.h>
54 #include <sys/vmmeter.h>
55
56 #include <vm/vm.h>
57 #include <vm/uma.h>
58 #include <vm/vm_param.h>
59 #include <vm/vm_page.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_object.h>
62 #include <vm/vm_kern.h>
63 #include <vm/vm_extern.h>
64 #include <vm/uma_int.h>
65 #include <vm/memguard.h>
66
67 static SYSCTL_NODE(_vm, OID_AUTO, memguard, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
68 "MemGuard data");
69 /*
70 * The vm_memguard_divisor variable controls how much of kernel_arena should be
71 * reserved for MemGuard.
72 */
73 static u_int vm_memguard_divisor;
74 SYSCTL_UINT(_vm_memguard, OID_AUTO, divisor, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
75 &vm_memguard_divisor,
76 0, "(kmem_size/memguard_divisor) == memguard submap size");
77
78 /*
79 * Short description (ks_shortdesc) of memory type to monitor.
80 */
81 static char vm_memguard_desc[128] = "";
82 static struct malloc_type *vm_memguard_mtype = NULL;
83 TUNABLE_STR("vm.memguard.desc", vm_memguard_desc, sizeof(vm_memguard_desc));
84 static int
85 memguard_sysctl_desc(SYSCTL_HANDLER_ARGS)
86 {
87 char desc[sizeof(vm_memguard_desc)];
88 int error;
89
90 strlcpy(desc, vm_memguard_desc, sizeof(desc));
91 error = sysctl_handle_string(oidp, desc, sizeof(desc), req);
92 if (error != 0 || req->newptr == NULL)
93 return (error);
94
95 mtx_lock(&malloc_mtx);
96 /* If mtp is NULL, it will be initialized in memguard_cmp() */
97 vm_memguard_mtype = malloc_desc2type(desc);
98 strlcpy(vm_memguard_desc, desc, sizeof(vm_memguard_desc));
99 mtx_unlock(&malloc_mtx);
100 return (error);
101 }
102 SYSCTL_PROC(_vm_memguard, OID_AUTO, desc,
103 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
104 memguard_sysctl_desc, "A", "Short description of memory type to monitor");
105
106 static int
107 memguard_sysctl_mapused(SYSCTL_HANDLER_ARGS)
108 {
109 vmem_size_t size;
110
111 size = vmem_size(memguard_arena, VMEM_ALLOC);
112 return (sysctl_handle_long(oidp, &size, sizeof(size), req));
113 }
114
115 static vm_offset_t memguard_base;
116 static vm_size_t memguard_mapsize;
117 static vm_size_t memguard_physlimit;
118 static u_long memguard_wasted;
119 static u_long memguard_succ;
120 static u_long memguard_fail_kva;
121 static u_long memguard_fail_pgs;
122
123 SYSCTL_ULONG(_vm_memguard, OID_AUTO, mapsize, CTLFLAG_RD,
124 &memguard_mapsize, 0, "MemGuard private arena size");
125 SYSCTL_ULONG(_vm_memguard, OID_AUTO, phys_limit, CTLFLAG_RD,
126 &memguard_physlimit, 0, "Limit on MemGuard memory consumption");
127 SYSCTL_ULONG(_vm_memguard, OID_AUTO, wasted, CTLFLAG_RD,
128 &memguard_wasted, 0, "Excess memory used through page promotion");
129 SYSCTL_ULONG(_vm_memguard, OID_AUTO, numalloc, CTLFLAG_RD,
130 &memguard_succ, 0, "Count of successful MemGuard allocations");
131 SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_kva, CTLFLAG_RD,
132 &memguard_fail_kva, 0, "MemGuard failures due to lack of KVA");
133 SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_pgs, CTLFLAG_RD,
134 &memguard_fail_pgs, 0, "MemGuard failures due to lack of pages");
135
136 #define MG_GUARD_AROUND 0x001
137 #define MG_GUARD_ALLLARGE 0x002
138 #define MG_GUARD_NOFREE 0x004
139 static int memguard_options = MG_GUARD_AROUND;
140 SYSCTL_INT(_vm_memguard, OID_AUTO, options, CTLFLAG_RWTUN,
141 &memguard_options, 0,
142 "MemGuard options:\n"
143 "\t0x001 - add guard pages around each allocation\n"
144 "\t0x002 - always use MemGuard for allocations over a page\n"
145 "\t0x004 - guard uma(9) zones with UMA_ZONE_NOFREE flag");
146
147 static u_int memguard_minsize;
148 static u_long memguard_minsize_reject;
149 SYSCTL_UINT(_vm_memguard, OID_AUTO, minsize, CTLFLAG_RW,
150 &memguard_minsize, 0, "Minimum size for page promotion");
151 SYSCTL_ULONG(_vm_memguard, OID_AUTO, minsize_reject, CTLFLAG_RD,
152 &memguard_minsize_reject, 0, "# times rejected for size");
153
154 static u_int memguard_frequency;
155 static u_long memguard_frequency_hits;
156 SYSCTL_UINT(_vm_memguard, OID_AUTO, frequency, CTLFLAG_RWTUN,
157 &memguard_frequency, 0, "Times in 100000 that MemGuard will randomly run");
158 SYSCTL_ULONG(_vm_memguard, OID_AUTO, frequency_hits, CTLFLAG_RD,
159 &memguard_frequency_hits, 0, "# times MemGuard randomly chose");
160
161 /*
162 * Return a fudged value to be used for vm_kmem_size for allocating
163 * the kernel_arena.
164 */
165 unsigned long
166 memguard_fudge(unsigned long km_size, const struct vm_map *parent_map)
167 {
168 u_long mem_pgs, parent_size;
169
170 vm_memguard_divisor = 10;
171 /* CTFLAG_RDTUN doesn't work during the early boot process. */
172 TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor);
173
174 parent_size = vm_map_max(parent_map) - vm_map_min(parent_map) +
175 PAGE_SIZE;
176 /* Pick a conservative value if provided value sucks. */
177 if ((vm_memguard_divisor <= 0) ||
178 ((parent_size / vm_memguard_divisor) == 0))
179 vm_memguard_divisor = 10;
180 /*
181 * Limit consumption of physical pages to
182 * 1/vm_memguard_divisor of system memory. If the KVA is
183 * smaller than this then the KVA limit comes into play first.
184 * This prevents memguard's page promotions from completely
185 * using up memory, since most malloc(9) calls are sub-page.
186 */
187 mem_pgs = vm_cnt.v_page_count;
188 memguard_physlimit = (mem_pgs / vm_memguard_divisor) * PAGE_SIZE;
189 /*
190 * We want as much KVA as we can take safely. Use at most our
191 * allotted fraction of the parent map's size. Limit this to
192 * twice the physical memory to avoid using too much memory as
193 * pagetable pages (size must be multiple of PAGE_SIZE).
194 */
195 memguard_mapsize = round_page(parent_size / vm_memguard_divisor);
196 if (memguard_mapsize / (2 * PAGE_SIZE) > mem_pgs)
197 memguard_mapsize = mem_pgs * 2 * PAGE_SIZE;
198 if (km_size + memguard_mapsize > parent_size)
199 memguard_mapsize = 0;
200 return (km_size + memguard_mapsize);
201 }
202
203 /*
204 * Initialize the MemGuard mock allocator. All objects from MemGuard come
205 * out of a single contiguous chunk of kernel address space that is managed
206 * by a vmem arena.
207 */
208 void
209 memguard_init(vmem_t *parent)
210 {
211 vm_offset_t base;
212
213 vmem_alloc(parent, memguard_mapsize, M_BESTFIT | M_WAITOK, &base);
214 vmem_init(memguard_arena, "memguard arena", base, memguard_mapsize,
215 PAGE_SIZE, 0, M_WAITOK);
216 memguard_base = base;
217
218 printf("MEMGUARD DEBUGGING ALLOCATOR INITIALIZED:\n");
219 printf("\tMEMGUARD map base: 0x%lx\n", (u_long)base);
220 printf("\tMEMGUARD map size: %jd KBytes\n",
221 (uintmax_t)memguard_mapsize >> 10);
222 }
223
224 /*
225 * Run things that can't be done as early as memguard_init().
226 */
227 static void
228 memguard_sysinit(void)
229 {
230 struct sysctl_oid_list *parent;
231
232 parent = SYSCTL_STATIC_CHILDREN(_vm_memguard);
233 SYSCTL_ADD_UAUTO(NULL, parent, OID_AUTO, "mapstart",
234 CTLFLAG_RD, &memguard_base,
235 "MemGuard KVA base");
236 SYSCTL_ADD_UAUTO(NULL, parent, OID_AUTO, "maplimit",
237 CTLFLAG_RD, &memguard_mapsize,
238 "MemGuard KVA size");
239 SYSCTL_ADD_PROC(NULL, parent, OID_AUTO, "mapused",
240 CTLFLAG_RD | CTLFLAG_MPSAFE | CTLTYPE_ULONG, NULL, 0, memguard_sysctl_mapused, "LU",
241 "MemGuard KVA used");
242 }
243 SYSINIT(memguard, SI_SUB_KLD, SI_ORDER_ANY, memguard_sysinit, NULL);
244
245 /*
246 * v2sizep() converts a virtual address of the first page allocated for
247 * an item to a pointer to u_long recording the size of the original
248 * allocation request.
249 *
250 * This routine is very similar to those defined by UMA in uma_int.h.
251 * The difference is that this routine stores the originally allocated
252 * size in one of the page's fields that is unused when the page is
253 * wired rather than the object field, which is used.
254 */
255 static u_long *
256 v2sizep(vm_offset_t va)
257 {
258 vm_paddr_t pa;
259 struct vm_page *p;
260
261 pa = pmap_kextract(va);
262 if (pa == 0)
263 panic("MemGuard detected double-free of %p", (void *)va);
264 p = PHYS_TO_VM_PAGE(pa);
265 KASSERT(vm_page_wired(p) && p->a.queue == PQ_NONE,
266 ("MEMGUARD: Expected wired page %p in vtomgfifo!", p));
267 return (&p->plinks.memguard.p);
268 }
269
270 static u_long *
271 v2sizev(vm_offset_t va)
272 {
273 vm_paddr_t pa;
274 struct vm_page *p;
275
276 pa = pmap_kextract(va);
277 if (pa == 0)
278 panic("MemGuard detected double-free of %p", (void *)va);
279 p = PHYS_TO_VM_PAGE(pa);
280 KASSERT(vm_page_wired(p) && p->a.queue == PQ_NONE,
281 ("MEMGUARD: Expected wired page %p in vtomgfifo!", p));
282 return (&p->plinks.memguard.v);
283 }
284
285 /*
286 * Allocate a single object of specified size with specified flags
287 * (either M_WAITOK or M_NOWAIT).
288 */
289 void *
290 memguard_alloc(unsigned long req_size, int flags)
291 {
292 vm_offset_t addr, origaddr;
293 u_long size_p, size_v;
294 int do_guard, error, rv;
295
296 size_p = round_page(req_size);
297 if (size_p == 0)
298 return (NULL);
299
300 /*
301 * To ensure there are holes on both sides of the allocation,
302 * request 2 extra pages of KVA. Save the value of memguard_options
303 * so that we use a consistent value throughout this function.
304 */
305 size_v = size_p;
306 do_guard = (memguard_options & MG_GUARD_AROUND) != 0;
307 if (do_guard)
308 size_v += 2 * PAGE_SIZE;
309
310 /*
311 * When we pass our memory limit, reject sub-page allocations.
312 * Page-size and larger allocations will use the same amount
313 * of physical memory whether we allocate or hand off to
314 * malloc_large(), so keep those.
315 */
316 if (vmem_size(memguard_arena, VMEM_ALLOC) >= memguard_physlimit &&
317 req_size < PAGE_SIZE) {
318 addr = (vm_offset_t)NULL;
319 memguard_fail_pgs++;
320 goto out;
321 }
322
323 /*
324 * Attempt to avoid address reuse for as long as possible, to increase
325 * the likelihood of catching a use-after-free.
326 */
327 error = vmem_alloc(memguard_arena, size_v, M_NEXTFIT | M_NOWAIT,
328 &origaddr);
329 if (error != 0) {
330 memguard_fail_kva++;
331 addr = (vm_offset_t)NULL;
332 goto out;
333 }
334 addr = origaddr;
335 if (do_guard)
336 addr += PAGE_SIZE;
337 rv = kmem_back(kernel_object, addr, size_p, flags);
338 if (rv != KERN_SUCCESS) {
339 vmem_xfree(memguard_arena, origaddr, size_v);
340 memguard_fail_pgs++;
341 addr = (vm_offset_t)NULL;
342 goto out;
343 }
344 *v2sizep(trunc_page(addr)) = req_size;
345 *v2sizev(trunc_page(addr)) = size_v;
346 memguard_succ++;
347 if (req_size < PAGE_SIZE) {
348 memguard_wasted += (PAGE_SIZE - req_size);
349 if (do_guard) {
350 /*
351 * Align the request to 16 bytes, and return
352 * an address near the end of the page, to
353 * better detect array overrun.
354 */
355 req_size = roundup2(req_size, 16);
356 addr += (PAGE_SIZE - req_size);
357 }
358 }
359 out:
360 return ((void *)addr);
361 }
362
363 int
364 is_memguard_addr(void *addr)
365 {
366 vm_offset_t a = (vm_offset_t)(uintptr_t)addr;
367
368 return (a >= memguard_base && a < memguard_base + memguard_mapsize);
369 }
370
371 /*
372 * Free specified single object.
373 */
374 void
375 memguard_free(void *ptr)
376 {
377 vm_offset_t addr;
378 u_long req_size, size, sizev;
379 char *temp;
380 int i;
381
382 addr = trunc_page((uintptr_t)ptr);
383 req_size = *v2sizep(addr);
384 sizev = *v2sizev(addr);
385 size = round_page(req_size);
386
387 /*
388 * Page should not be guarded right now, so force a write.
389 * The purpose of this is to increase the likelihood of
390 * catching a double-free, but not necessarily a
391 * tamper-after-free (the second thread freeing might not
392 * write before freeing, so this forces it to and,
393 * subsequently, trigger a fault).
394 */
395 temp = ptr;
396 for (i = 0; i < size; i += PAGE_SIZE)
397 temp[i] = 'M';
398
399 /*
400 * This requires carnal knowledge of the implementation of
401 * kmem_free(), but since we've already replaced kmem_malloc()
402 * above, it's not really any worse. We want to use the
403 * vm_map lock to serialize updates to memguard_wasted, since
404 * we had the lock at increment.
405 */
406 kmem_unback(kernel_object, addr, size);
407 if (sizev > size)
408 addr -= PAGE_SIZE;
409 vmem_xfree(memguard_arena, addr, sizev);
410 if (req_size < PAGE_SIZE)
411 memguard_wasted -= (PAGE_SIZE - req_size);
412 }
413
414 /*
415 * Re-allocate an allocation that was originally guarded.
416 */
417 void *
418 memguard_realloc(void *addr, unsigned long size, struct malloc_type *mtp,
419 int flags)
420 {
421 void *newaddr;
422 u_long old_size;
423
424 /*
425 * Allocate the new block. Force the allocation to be guarded
426 * as the original may have been guarded through random
427 * chance, and that should be preserved.
428 */
429 if ((newaddr = memguard_alloc(size, flags)) == NULL)
430 return (NULL);
431
432 /* Copy over original contents. */
433 old_size = *v2sizep(trunc_page((uintptr_t)addr));
434 bcopy(addr, newaddr, min(size, old_size));
435 memguard_free(addr);
436 return (newaddr);
437 }
438
439 static int
440 memguard_cmp(unsigned long size)
441 {
442
443 if (size < memguard_minsize) {
444 memguard_minsize_reject++;
445 return (0);
446 }
447 if ((memguard_options & MG_GUARD_ALLLARGE) != 0 && size >= PAGE_SIZE)
448 return (1);
449 if (memguard_frequency > 0 &&
450 (random() % 100000) < memguard_frequency) {
451 memguard_frequency_hits++;
452 return (1);
453 }
454
455 return (0);
456 }
457
458 int
459 memguard_cmp_mtp(struct malloc_type *mtp, unsigned long size)
460 {
461
462 if (memguard_cmp(size))
463 return(1);
464
465 #if 1
466 /*
467 * The safest way of comparsion is to always compare short description
468 * string of memory type, but it is also the slowest way.
469 */
470 return (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0);
471 #else
472 /*
473 * If we compare pointers, there are two possible problems:
474 * 1. Memory type was unloaded and new memory type was allocated at the
475 * same address.
476 * 2. Memory type was unloaded and loaded again, but allocated at a
477 * different address.
478 */
479 if (vm_memguard_mtype != NULL)
480 return (mtp == vm_memguard_mtype);
481 if (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0) {
482 vm_memguard_mtype = mtp;
483 return (1);
484 }
485 return (0);
486 #endif
487 }
488
489 int
490 memguard_cmp_zone(uma_zone_t zone)
491 {
492
493 if ((memguard_options & MG_GUARD_NOFREE) == 0 &&
494 zone->uz_flags & UMA_ZONE_NOFREE)
495 return (0);
496
497 if (memguard_cmp(zone->uz_size))
498 return (1);
499
500 /*
501 * The safest way of comparsion is to always compare zone name,
502 * but it is also the slowest way.
503 */
504 return (strcmp(zone->uz_name, vm_memguard_desc) == 0);
505 }
506
507 unsigned long
508 memguard_get_req_size(const void *addr)
509 {
510 return (*v2sizep(trunc_page((uintptr_t)addr)));
511 }
Cache object: a862dfd6578b656f2b202ea154a5eb35
|