The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/memguard.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2005,
    3  *     Bosko Milekic <bmilekic@FreeBSD.org>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice unmodified, this list of conditions, and the following
   10  *    disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD$");
   29 
   30 /*
   31  * MemGuard is a simple replacement allocator for debugging only
   32  * which provides ElectricFence-style memory barrier protection on
   33  * objects being allocated, and is used to detect tampering-after-free
   34  * scenarios.
   35  *
   36  * See the memguard(9) man page for more information on using MemGuard.
   37  */
   38 
   39 #include <sys/param.h>
   40 #include <sys/systm.h>
   41 #include <sys/kernel.h>
   42 #include <sys/types.h>
   43 #include <sys/queue.h>
   44 #include <sys/lock.h>
   45 #include <sys/mutex.h>
   46 #include <sys/malloc.h>
   47 #include <sys/sysctl.h>
   48 
   49 #include <vm/vm.h>
   50 #include <vm/vm_param.h>
   51 #include <vm/vm_page.h>
   52 #include <vm/vm_map.h>
   53 #include <vm/vm_extern.h>
   54 #include <vm/memguard.h>
   55 
   56 /*
   57  * The maximum number of pages allowed per allocation.  If you're using
   58  * MemGuard to override very large items (> MAX_PAGES_PER_ITEM in size),
   59  * you need to increase MAX_PAGES_PER_ITEM.
   60  */
   61 #define MAX_PAGES_PER_ITEM      64
   62 
   63 SYSCTL_NODE(_vm, OID_AUTO, memguard, CTLFLAG_RW, NULL, "MemGuard data");
   64 /*
   65  * The vm_memguard_divisor variable controls how much of kmem_map should be
   66  * reserved for MemGuard.
   67  */
   68 u_int vm_memguard_divisor;
   69 SYSCTL_UINT(_vm_memguard, OID_AUTO, divisor, CTLFLAG_RD, &vm_memguard_divisor,
   70     0, "(kmem_size/memguard_divisor) == memguard submap size");     
   71 
   72 /*
   73  * Short description (ks_shortdesc) of memory type to monitor.
   74  */
   75 static char vm_memguard_desc[128] = "";
   76 static struct malloc_type *vm_memguard_mtype = NULL;
   77 TUNABLE_STR("vm.memguard.desc", vm_memguard_desc, sizeof(vm_memguard_desc));
   78 static int
   79 memguard_sysctl_desc(SYSCTL_HANDLER_ARGS)
   80 {
   81         struct malloc_type_internal *mtip;
   82         struct malloc_type_stats *mtsp;
   83         struct malloc_type *mtp;
   84         char desc[128];
   85         long bytes;
   86         int error, i;
   87 
   88         strlcpy(desc, vm_memguard_desc, sizeof(desc));
   89         error = sysctl_handle_string(oidp, desc, sizeof(desc), req);
   90         if (error != 0 || req->newptr == NULL)
   91                 return (error);
   92 
   93         /*
   94          * We can change memory type when no memory has been allocated for it
   95          * or when there is no such memory type yet (ie. it will be loaded with
   96          * kernel module).
   97          */
   98         bytes = 0;
   99         mtx_lock(&malloc_mtx);
  100         mtp = malloc_desc2type(desc);
  101         if (mtp != NULL) {
  102                 mtip = mtp->ks_handle;
  103                 for (i = 0; i < MAXCPU; i++) {
  104                         mtsp = &mtip->mti_stats[i];
  105                         bytes += mtsp->mts_memalloced;
  106                         bytes -= mtsp->mts_memfreed;
  107                 }
  108         }
  109         if (bytes > 0)
  110                 error = EBUSY;
  111         else {
  112                 /*
  113                  * If mtp is NULL, it will be initialized in memguard_cmp().
  114                  */
  115                 vm_memguard_mtype = mtp;
  116                 strlcpy(vm_memguard_desc, desc, sizeof(vm_memguard_desc));
  117         }
  118         mtx_unlock(&malloc_mtx);
  119         return (error);
  120 }
  121 SYSCTL_PROC(_vm_memguard, OID_AUTO, desc, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
  122     memguard_sysctl_desc, "A", "Short description of memory type to monitor");
  123 
  124 /*
  125  * Global MemGuard data.
  126  */
  127 static vm_map_t memguard_map;
  128 static unsigned long memguard_mapsize;
  129 static unsigned long memguard_mapused;
  130 struct memguard_entry {
  131         STAILQ_ENTRY(memguard_entry) entries;
  132         void *ptr;
  133 };
  134 static struct memguard_fifo {
  135         struct memguard_entry *stqh_first;
  136         struct memguard_entry **stqh_last;
  137         int index;
  138 } memguard_fifo_pool[MAX_PAGES_PER_ITEM];
  139 
  140 /*
  141  * Local prototypes.
  142  */
  143 static void memguard_guard(void *addr, int numpgs);
  144 static void memguard_unguard(void *addr, int numpgs);
  145 static struct memguard_fifo *vtomgfifo(vm_offset_t va);
  146 static void vsetmgfifo(vm_offset_t va, struct memguard_fifo *mgfifo);
  147 static void vclrmgfifo(vm_offset_t va);
  148 
  149 /*
  150  * Local macros.  MemGuard data is global, so replace these with whatever
  151  * your system uses to protect global data (if it is kernel-level
  152  * parallelized).  This is for porting among BSDs.
  153  */
  154 #define MEMGUARD_CRIT_SECTION_DECLARE   static struct mtx memguard_mtx
  155 #define MEMGUARD_CRIT_SECTION_INIT                              \
  156         mtx_init(&memguard_mtx, "MemGuard mtx", NULL, MTX_DEF)
  157 #define MEMGUARD_CRIT_SECTION_ENTER     mtx_lock(&memguard_mtx)
  158 #define MEMGUARD_CRIT_SECTION_EXIT      mtx_unlock(&memguard_mtx)
  159 MEMGUARD_CRIT_SECTION_DECLARE;
  160 
  161 /*
  162  * Initialize the MemGuard mock allocator.  All objects from MemGuard come
  163  * out of a single VM map (contiguous chunk of address space).
  164  */
  165 void
  166 memguard_init(vm_map_t parent_map, unsigned long size)
  167 {
  168         char *base, *limit;
  169         int i;
  170 
  171         /* size must be multiple of PAGE_SIZE */
  172         size /= PAGE_SIZE;
  173         size++;
  174         size *= PAGE_SIZE;
  175 
  176         memguard_map = kmem_suballoc(parent_map, (vm_offset_t *)&base,
  177             (vm_offset_t *)&limit, (vm_size_t)size);
  178         memguard_map->system_map = 1;
  179         memguard_mapsize = size;
  180         memguard_mapused = 0;
  181 
  182         MEMGUARD_CRIT_SECTION_INIT;
  183         MEMGUARD_CRIT_SECTION_ENTER;
  184         for (i = 0; i < MAX_PAGES_PER_ITEM; i++) {
  185                 STAILQ_INIT(&memguard_fifo_pool[i]);
  186                 memguard_fifo_pool[i].index = i;
  187         }
  188         MEMGUARD_CRIT_SECTION_EXIT;
  189 
  190         printf("MEMGUARD DEBUGGING ALLOCATOR INITIALIZED:\n");
  191         printf("\tMEMGUARD map base: %p\n", base);
  192         printf("\tMEMGUARD map limit: %p\n", limit);
  193         printf("\tMEMGUARD map size: %ld (Bytes)\n", size);
  194 }
  195 
  196 /*
  197  * Allocate a single object of specified size with specified flags (either
  198  * M_WAITOK or M_NOWAIT).
  199  */
  200 void *
  201 memguard_alloc(unsigned long size, int flags)
  202 {
  203         void *obj;
  204         struct memguard_entry *e = NULL;
  205         int numpgs;
  206 
  207         numpgs = size / PAGE_SIZE;
  208         if ((size % PAGE_SIZE) != 0)
  209                 numpgs++;
  210         if (numpgs > MAX_PAGES_PER_ITEM)
  211                 panic("MEMGUARD: You must increase MAX_PAGES_PER_ITEM " \
  212                     "in memguard.c (requested: %d pages)", numpgs);
  213         if (numpgs == 0)
  214                 return NULL;
  215 
  216         /*
  217          * If we haven't exhausted the memguard_map yet, allocate from
  218          * it and grab a new page, even if we have recycled pages in our
  219          * FIFO.  This is because we wish to allow recycled pages to live
  220          * guarded in the FIFO for as long as possible in order to catch
  221          * even very late tamper-after-frees, even though it means that
  222          * we end up wasting more memory, this is only a DEBUGGING allocator
  223          * after all.
  224          */
  225         MEMGUARD_CRIT_SECTION_ENTER;
  226         if (memguard_mapused >= memguard_mapsize) {
  227                 e = STAILQ_FIRST(&memguard_fifo_pool[numpgs - 1]);
  228                 if (e != NULL) {
  229                         STAILQ_REMOVE(&memguard_fifo_pool[numpgs - 1], e,
  230                             memguard_entry, entries);
  231                         MEMGUARD_CRIT_SECTION_EXIT;
  232                         obj = e->ptr;
  233                         free(e, M_TEMP);
  234                         memguard_unguard(obj, numpgs);
  235                         if (flags & M_ZERO)
  236                                 bzero(obj, PAGE_SIZE * numpgs);
  237                         return obj;
  238                 }
  239                 MEMGUARD_CRIT_SECTION_EXIT;
  240                 if (flags & M_WAITOK)
  241                         panic("MEMGUARD: Failed with M_WAITOK: " \
  242                             "memguard_map too small");
  243                 return NULL;
  244         }
  245         memguard_mapused += (PAGE_SIZE * numpgs);
  246         MEMGUARD_CRIT_SECTION_EXIT;
  247 
  248         obj = (void *)kmem_malloc(memguard_map, PAGE_SIZE * numpgs, flags);
  249         if (obj != NULL) {
  250                 vsetmgfifo((vm_offset_t)obj, &memguard_fifo_pool[numpgs - 1]);
  251                 if (flags & M_ZERO)
  252                         bzero(obj, PAGE_SIZE * numpgs);
  253         } else {
  254                 MEMGUARD_CRIT_SECTION_ENTER;
  255                 memguard_mapused -= (PAGE_SIZE * numpgs);
  256                 MEMGUARD_CRIT_SECTION_EXIT;
  257         }
  258         return obj;
  259 }
  260 
  261 /*
  262  * Free specified single object.
  263  */
  264 void
  265 memguard_free(void *addr)
  266 {
  267         struct memguard_entry *e;
  268         struct memguard_fifo *mgfifo;
  269         int idx;
  270         int *temp;
  271 
  272         addr = (void *)trunc_page((unsigned long)addr);
  273 
  274         /*
  275          * Page should not be guarded by now, so force a write.
  276          * The purpose of this is to increase the likelihood of catching a
  277          * double-free, but not necessarily a tamper-after-free (the second
  278          * thread freeing might not write before freeing, so this forces it
  279          * to and, subsequently, trigger a fault).
  280          */
  281         temp = (int *)((unsigned long)addr + (PAGE_SIZE/2));    /* in page */
  282         *temp = 0xd34dc0d3;
  283 
  284         mgfifo = vtomgfifo((vm_offset_t)addr);
  285         idx = mgfifo->index;
  286         memguard_guard(addr, idx + 1);
  287         e = malloc(sizeof(struct memguard_entry), M_TEMP, M_NOWAIT);
  288         if (e == NULL) {
  289                 MEMGUARD_CRIT_SECTION_ENTER;
  290                 memguard_mapused -= (PAGE_SIZE * (idx + 1));
  291                 MEMGUARD_CRIT_SECTION_EXIT;
  292                 memguard_unguard(addr, idx + 1);        /* just in case */
  293                 vclrmgfifo((vm_offset_t)addr);
  294                 kmem_free(memguard_map, (vm_offset_t)addr,
  295                     PAGE_SIZE * (idx + 1));
  296                 return;
  297         }
  298         e->ptr = addr;
  299         MEMGUARD_CRIT_SECTION_ENTER;
  300         STAILQ_INSERT_TAIL(mgfifo, e, entries);
  301         MEMGUARD_CRIT_SECTION_EXIT;
  302 }
  303 
  304 int
  305 memguard_cmp(struct malloc_type *mtp)
  306 {
  307 
  308 #if 1
  309         /*
  310          * The safest way of comparsion is to always compare short description
  311          * string of memory type, but it is also the slowest way.
  312          */
  313         return (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0);
  314 #else
  315         /*
  316          * If we compare pointers, there are two possible problems:
  317          * 1. Memory type was unloaded and new memory type was allocated at the
  318          *    same address.
  319          * 2. Memory type was unloaded and loaded again, but allocated at a
  320          *    different address.
  321          */
  322         if (vm_memguard_mtype != NULL)
  323                 return (mtp == vm_memguard_mtype);
  324         if (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0) {
  325                 vm_memguard_mtype = mtp;
  326                 return (1);
  327         }
  328         return (0);
  329 #endif
  330 }
  331 
  332 /*
  333  * Guard a page containing specified object (make it read-only so that
  334  * future writes to it fail).
  335  */
  336 static void
  337 memguard_guard(void *addr, int numpgs)
  338 {
  339         void *a = (void *)trunc_page((unsigned long)addr);
  340         if (vm_map_protect(memguard_map, (vm_offset_t)a,
  341             (vm_offset_t)((unsigned long)a + (PAGE_SIZE * numpgs)),
  342             VM_PROT_READ, FALSE) != KERN_SUCCESS)
  343                 panic("MEMGUARD: Unable to guard page!");
  344 }
  345 
  346 /*
  347  * Unguard a page containing specified object (make it read-and-write to
  348  * allow full data access).
  349  */
  350 static void
  351 memguard_unguard(void *addr, int numpgs)
  352 {
  353         void *a = (void *)trunc_page((unsigned long)addr);
  354         if (vm_map_protect(memguard_map, (vm_offset_t)a,
  355             (vm_offset_t)((unsigned long)a + (PAGE_SIZE * numpgs)),
  356             VM_PROT_DEFAULT, FALSE) != KERN_SUCCESS)
  357                 panic("MEMGUARD: Unable to unguard page!");
  358 }
  359 
  360 /*
  361  * vtomgfifo() converts a virtual address of the first page allocated for
  362  * an item to a memguard_fifo_pool reference for the corresponding item's
  363  * size.
  364  *
  365  * vsetmgfifo() sets a reference in an underlying page for the specified
  366  * virtual address to an appropriate memguard_fifo_pool.
  367  *
  368  * These routines are very similar to those defined by UMA in uma_int.h.
  369  * The difference is that these routines store the mgfifo in one of the
  370  * page's fields that is unused when the page is wired rather than the
  371  * object field, which is used.
  372  */
  373 static struct memguard_fifo *
  374 vtomgfifo(vm_offset_t va)
  375 {
  376         vm_page_t p;
  377         struct memguard_fifo *mgfifo;
  378 
  379         p = PHYS_TO_VM_PAGE(pmap_kextract(va));
  380         KASSERT(p->wire_count != 0 && p->queue == PQ_NONE,
  381             ("MEMGUARD: Expected wired page in vtomgfifo!"));
  382         mgfifo = (struct memguard_fifo *)p->pageq.tqe_next;
  383         return mgfifo;
  384 }
  385 
  386 static void
  387 vsetmgfifo(vm_offset_t va, struct memguard_fifo *mgfifo)
  388 {
  389         vm_page_t p;
  390 
  391         p = PHYS_TO_VM_PAGE(pmap_kextract(va));
  392         KASSERT(p->wire_count != 0 && p->queue == PQ_NONE,
  393             ("MEMGUARD: Expected wired page in vsetmgfifo!"));
  394         p->pageq.tqe_next = (vm_page_t)mgfifo;
  395 }
  396 
  397 static void vclrmgfifo(vm_offset_t va)
  398 {
  399         vm_page_t p;
  400 
  401         p = PHYS_TO_VM_PAGE(pmap_kextract(va));
  402         KASSERT(p->wire_count != 0 && p->queue == PQ_NONE,
  403             ("MEMGUARD: Expected wired page in vclrmgfifo!"));
  404         p->pageq.tqe_next = NULL;
  405 }

Cache object: 6526330bfddfb98f16319e14a44373f9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.