The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/swap_pager.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-4-Clause
    3  *
    4  * Copyright (c) 1998 Matthew Dillon,
    5  * Copyright (c) 1994 John S. Dyson
    6  * Copyright (c) 1990 University of Utah.
    7  * Copyright (c) 1982, 1986, 1989, 1993
    8  *      The Regents of the University of California.  All rights reserved.
    9  *
   10  * This code is derived from software contributed to Berkeley by
   11  * the Systems Programming Group of the University of Utah Computer
   12  * Science Department.
   13  *
   14  * Redistribution and use in source and binary forms, with or without
   15  * modification, are permitted provided that the following conditions
   16  * are met:
   17  * 1. Redistributions of source code must retain the above copyright
   18  *    notice, this list of conditions and the following disclaimer.
   19  * 2. Redistributions in binary form must reproduce the above copyright
   20  *    notice, this list of conditions and the following disclaimer in the
   21  *    documentation and/or other materials provided with the distribution.
   22  * 3. All advertising materials mentioning features or use of this software
   23  *    must display the following acknowledgement:
   24  *      This product includes software developed by the University of
   25  *      California, Berkeley and its contributors.
   26  * 4. Neither the name of the University nor the names of its contributors
   27  *    may be used to endorse or promote products derived from this software
   28  *    without specific prior written permission.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   40  * SUCH DAMAGE.
   41  *
   42  *                              New Swap System
   43  *                              Matthew Dillon
   44  *
   45  * Radix Bitmap 'blists'.
   46  *
   47  *      - The new swapper uses the new radix bitmap code.  This should scale
   48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
   49  *        arbitrary degree of fragmentation.
   50  *
   51  * Features:
   52  *
   53  *      - on the fly reallocation of swap during putpages.  The new system
   54  *        does not try to keep previously allocated swap blocks for dirty
   55  *        pages.
   56  *
   57  *      - on the fly deallocation of swap
   58  *
   59  *      - No more garbage collection required.  Unnecessarily allocated swap
   60  *        blocks only exist for dirty vm_page_t's now and these are already
   61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
   62  *        removal of invalidated swap blocks when a page is destroyed
   63  *        or renamed.
   64  *
   65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
   66  *
   67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
   68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
   69  */
   70 
   71 #include <sys/cdefs.h>
   72 __FBSDID("$FreeBSD$");
   73 
   74 #include "opt_vm.h"
   75 
   76 #include <sys/param.h>
   77 #include <sys/bio.h>
   78 #include <sys/blist.h>
   79 #include <sys/buf.h>
   80 #include <sys/conf.h>
   81 #include <sys/disk.h>
   82 #include <sys/disklabel.h>
   83 #include <sys/eventhandler.h>
   84 #include <sys/fcntl.h>
   85 #include <sys/limits.h>
   86 #include <sys/lock.h>
   87 #include <sys/kernel.h>
   88 #include <sys/mount.h>
   89 #include <sys/namei.h>
   90 #include <sys/malloc.h>
   91 #include <sys/pctrie.h>
   92 #include <sys/priv.h>
   93 #include <sys/proc.h>
   94 #include <sys/racct.h>
   95 #include <sys/resource.h>
   96 #include <sys/resourcevar.h>
   97 #include <sys/rwlock.h>
   98 #include <sys/sbuf.h>
   99 #include <sys/sysctl.h>
  100 #include <sys/sysproto.h>
  101 #include <sys/systm.h>
  102 #include <sys/sx.h>
  103 #include <sys/unistd.h>
  104 #include <sys/user.h>
  105 #include <sys/vmmeter.h>
  106 #include <sys/vnode.h>
  107 
  108 #include <security/mac/mac_framework.h>
  109 
  110 #include <vm/vm.h>
  111 #include <vm/pmap.h>
  112 #include <vm/vm_map.h>
  113 #include <vm/vm_kern.h>
  114 #include <vm/vm_object.h>
  115 #include <vm/vm_page.h>
  116 #include <vm/vm_pager.h>
  117 #include <vm/vm_pageout.h>
  118 #include <vm/vm_param.h>
  119 #include <vm/swap_pager.h>
  120 #include <vm/vm_extern.h>
  121 #include <vm/uma.h>
  122 
  123 #include <geom/geom.h>
  124 
  125 /*
  126  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
  127  * The 64-page limit is due to the radix code (kern/subr_blist.c).
  128  */
  129 #ifndef MAX_PAGEOUT_CLUSTER
  130 #define MAX_PAGEOUT_CLUSTER     32
  131 #endif
  132 
  133 #if !defined(SWB_NPAGES)
  134 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
  135 #endif
  136 
  137 #define SWAP_META_PAGES         PCTRIE_COUNT
  138 
  139 /*
  140  * A swblk structure maps each page index within a
  141  * SWAP_META_PAGES-aligned and sized range to the address of an
  142  * on-disk swap block (or SWAPBLK_NONE). The collection of these
  143  * mappings for an entire vm object is implemented as a pc-trie.
  144  */
  145 struct swblk {
  146         vm_pindex_t     p;
  147         daddr_t         d[SWAP_META_PAGES];
  148 };
  149 
  150 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
  151 static struct mtx sw_dev_mtx;
  152 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
  153 static struct swdevt *swdevhd;  /* Allocate from here next */
  154 static int nswapdev;            /* Number of swap devices */
  155 int swap_pager_avail;
  156 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
  157 
  158 static __exclusive_cache_line u_long swap_reserved;
  159 static u_long swap_total;
  160 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
  161 
  162 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
  163     "VM swap stats");
  164 
  165 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
  166     &swap_reserved, 0, sysctl_page_shift, "QU",
  167     "Amount of swap storage needed to back all allocated anonymous memory.");
  168 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
  169     &swap_total, 0, sysctl_page_shift, "QU",
  170     "Total amount of available swap storage.");
  171 
  172 int vm_overcommit __read_mostly = 0;
  173 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &vm_overcommit, 0,
  174     "Configure virtual memory overcommit behavior. See tuning(7) "
  175     "for details.");
  176 static unsigned long swzone;
  177 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
  178     "Actual size of swap metadata zone");
  179 static unsigned long swap_maxpages;
  180 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
  181     "Maximum amount of swap supported");
  182 
  183 static COUNTER_U64_DEFINE_EARLY(swap_free_deferred);
  184 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
  185     CTLFLAG_RD, &swap_free_deferred,
  186     "Number of pages that deferred freeing swap space");
  187 
  188 static COUNTER_U64_DEFINE_EARLY(swap_free_completed);
  189 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
  190     CTLFLAG_RD, &swap_free_completed,
  191     "Number of deferred frees completed");
  192 
  193 static int
  194 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
  195 {
  196         uint64_t newval;
  197         u_long value = *(u_long *)arg1;
  198 
  199         newval = ((uint64_t)value) << PAGE_SHIFT;
  200         return (sysctl_handle_64(oidp, &newval, 0, req));
  201 }
  202 
  203 static bool
  204 swap_reserve_by_cred_rlimit(u_long pincr, struct ucred *cred, int oc)
  205 {
  206         struct uidinfo *uip;
  207         u_long prev;
  208 
  209         uip = cred->cr_ruidinfo;
  210 
  211         prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
  212         if ((oc & SWAP_RESERVE_RLIMIT_ON) != 0 &&
  213             prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
  214             priv_check(curthread, PRIV_VM_SWAP_NORLIMIT) != 0) {
  215                 prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
  216                 KASSERT(prev >= pincr,
  217                     ("negative vmsize for uid %d\n", uip->ui_uid));
  218                 return (false);
  219         }
  220         return (true);
  221 }
  222 
  223 static void
  224 swap_release_by_cred_rlimit(u_long pdecr, struct ucred *cred)
  225 {
  226         struct uidinfo *uip;
  227 #ifdef INVARIANTS
  228         u_long prev;
  229 #endif
  230 
  231         uip = cred->cr_ruidinfo;
  232 
  233 #ifdef INVARIANTS
  234         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
  235         KASSERT(prev >= pdecr,
  236             ("negative vmsize for uid %d\n", uip->ui_uid));
  237 #else
  238         atomic_subtract_long(&uip->ui_vmsize, pdecr);
  239 #endif
  240 }
  241 
  242 static void
  243 swap_reserve_force_rlimit(u_long pincr, struct ucred *cred)
  244 {
  245         struct uidinfo *uip;
  246 
  247         uip = cred->cr_ruidinfo;
  248         atomic_add_long(&uip->ui_vmsize, pincr);
  249 }
  250 
  251 bool
  252 swap_reserve(vm_ooffset_t incr)
  253 {
  254 
  255         return (swap_reserve_by_cred(incr, curthread->td_ucred));
  256 }
  257 
  258 bool
  259 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
  260 {
  261         u_long r, s, prev, pincr;
  262 #ifdef RACCT
  263         int error;
  264 #endif
  265         int oc;
  266         static int curfail;
  267         static struct timeval lastfail;
  268 
  269         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK",
  270             __func__, (uintmax_t)incr));
  271 
  272 #ifdef RACCT
  273         if (RACCT_ENABLED()) {
  274                 PROC_LOCK(curproc);
  275                 error = racct_add(curproc, RACCT_SWAP, incr);
  276                 PROC_UNLOCK(curproc);
  277                 if (error != 0)
  278                         return (false);
  279         }
  280 #endif
  281 
  282         pincr = atop(incr);
  283         prev = atomic_fetchadd_long(&swap_reserved, pincr);
  284         r = prev + pincr;
  285         s = swap_total;
  286         oc = atomic_load_int(&vm_overcommit);
  287         if (r > s && (oc & SWAP_RESERVE_ALLOW_NONWIRED) != 0) {
  288                 s += vm_cnt.v_page_count - vm_cnt.v_free_reserved -
  289                     vm_wire_count();
  290         }
  291         if ((oc & SWAP_RESERVE_FORCE_ON) != 0 && r > s &&
  292             priv_check(curthread, PRIV_VM_SWAP_NOQUOTA) != 0) {
  293                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
  294                 KASSERT(prev >= pincr,
  295                     ("swap_reserved < incr on overcommit fail"));
  296                 goto out_error;
  297         }
  298 
  299         if (!swap_reserve_by_cred_rlimit(pincr, cred, oc)) {
  300                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
  301                 KASSERT(prev >= pincr,
  302                     ("swap_reserved < incr on overcommit fail"));
  303                 goto out_error;
  304         }
  305 
  306         return (true);
  307 
  308 out_error:
  309         if (ppsratecheck(&lastfail, &curfail, 1)) {
  310                 printf("uid %d, pid %d: swap reservation "
  311                     "for %jd bytes failed\n",
  312                     cred->cr_ruidinfo->ui_uid, curproc->p_pid, incr);
  313         }
  314 #ifdef RACCT
  315         if (RACCT_ENABLED()) {
  316                 PROC_LOCK(curproc);
  317                 racct_sub(curproc, RACCT_SWAP, incr);
  318                 PROC_UNLOCK(curproc);
  319         }
  320 #endif
  321 
  322         return (false);
  323 }
  324 
  325 void
  326 swap_reserve_force(vm_ooffset_t incr)
  327 {
  328         u_long pincr;
  329 
  330         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK",
  331             __func__, (uintmax_t)incr));
  332 
  333 #ifdef RACCT
  334         if (RACCT_ENABLED()) {
  335                 PROC_LOCK(curproc);
  336                 racct_add_force(curproc, RACCT_SWAP, incr);
  337                 PROC_UNLOCK(curproc);
  338         }
  339 #endif
  340         pincr = atop(incr);
  341         atomic_add_long(&swap_reserved, pincr);
  342         swap_reserve_force_rlimit(pincr, curthread->td_ucred);
  343 }
  344 
  345 void
  346 swap_release(vm_ooffset_t decr)
  347 {
  348         struct ucred *cred;
  349 
  350         PROC_LOCK(curproc);
  351         cred = curproc->p_ucred;
  352         swap_release_by_cred(decr, cred);
  353         PROC_UNLOCK(curproc);
  354 }
  355 
  356 void
  357 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
  358 {
  359         u_long pdecr;
  360 #ifdef INVARIANTS
  361         u_long prev;
  362 #endif
  363 
  364         KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK",
  365             __func__, (uintmax_t)decr));
  366 
  367         pdecr = atop(decr);
  368 #ifdef INVARIANTS
  369         prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
  370         KASSERT(prev >= pdecr, ("swap_reserved < decr"));
  371 #else
  372         atomic_subtract_long(&swap_reserved, pdecr);
  373 #endif
  374 
  375         swap_release_by_cred_rlimit(pdecr, cred);
  376 #ifdef RACCT
  377         if (racct_enable)
  378                 racct_sub_cred(cred, RACCT_SWAP, decr);
  379 #endif
  380 }
  381 
  382 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
  383 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
  384 static struct mtx swbuf_mtx;    /* to sync nsw_wcount_async */
  385 static int nsw_wcount_async;    /* limit async write buffers */
  386 static int nsw_wcount_async_max;/* assigned maximum                     */
  387 int nsw_cluster_max;            /* maximum VOP I/O allowed              */
  388 
  389 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
  390 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
  391     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
  392     "Maximum running async swap ops");
  393 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
  394 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
  395     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
  396     "Swap Fragmentation Info");
  397 
  398 static struct sx sw_alloc_sx;
  399 
  400 /*
  401  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
  402  * of searching a named list by hashing it just a little.
  403  */
  404 
  405 #define NOBJLISTS               8
  406 
  407 #define NOBJLIST(handle)        \
  408         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
  409 
  410 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
  411 static uma_zone_t swwbuf_zone;
  412 static uma_zone_t swrbuf_zone;
  413 static uma_zone_t swblk_zone;
  414 static uma_zone_t swpctrie_zone;
  415 
  416 /*
  417  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
  418  * calls hooked from other parts of the VM system and do not appear here.
  419  * (see vm/swap_pager.h).
  420  */
  421 static vm_object_t
  422                 swap_pager_alloc(void *handle, vm_ooffset_t size,
  423                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
  424 static void     swap_pager_dealloc(vm_object_t object);
  425 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
  426     int *);
  427 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
  428     int *, pgo_getpages_iodone_t, void *);
  429 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
  430 static boolean_t
  431                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
  432 static void     swap_pager_init(void);
  433 static void     swap_pager_unswapped(vm_page_t);
  434 static void     swap_pager_swapoff(struct swdevt *sp);
  435 static void     swap_pager_update_writecount(vm_object_t object,
  436     vm_offset_t start, vm_offset_t end);
  437 static void     swap_pager_release_writecount(vm_object_t object,
  438     vm_offset_t start, vm_offset_t end);
  439 static void     swap_pager_freespace_pgo(vm_object_t object, vm_pindex_t start,
  440     vm_size_t size);
  441 
  442 const struct pagerops swappagerops = {
  443         .pgo_kvme_type = KVME_TYPE_SWAP,
  444         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
  445         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object */
  446         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object */
  447         .pgo_getpages = swap_pager_getpages,    /* pagein */
  448         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */
  449         .pgo_putpages = swap_pager_putpages,    /* pageout */
  450         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page */
  451         .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */
  452         .pgo_update_writecount = swap_pager_update_writecount,
  453         .pgo_release_writecount = swap_pager_release_writecount,
  454         .pgo_freespace = swap_pager_freespace_pgo,
  455 };
  456 
  457 /*
  458  * swap_*() routines are externally accessible.  swp_*() routines are
  459  * internal.
  460  */
  461 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
  462 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
  463 
  464 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
  465     "Maximum size of a swap block in pages");
  466 
  467 static void     swp_sizecheck(void);
  468 static void     swp_pager_async_iodone(struct buf *bp);
  469 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
  470 static void     swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
  471 static int      swapongeom(struct vnode *);
  472 static int      swaponvp(struct thread *, struct vnode *, u_long);
  473 static int      swapoff_one(struct swdevt *sp, struct ucred *cred,
  474                     u_int flags);
  475 
  476 /*
  477  * Swap bitmap functions
  478  */
  479 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
  480 static daddr_t  swp_pager_getswapspace(int *npages);
  481 
  482 /*
  483  * Metadata functions
  484  */
  485 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
  486 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t,
  487     vm_size_t *);
  488 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
  489     vm_pindex_t pindex, vm_pindex_t count, vm_size_t *freed);
  490 static void swp_pager_meta_free_all(vm_object_t);
  491 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
  492 
  493 static void
  494 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
  495 {
  496 
  497         *start = SWAPBLK_NONE;
  498         *num = 0;
  499 }
  500 
  501 static void
  502 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
  503 {
  504 
  505         if (*start + *num == addr) {
  506                 (*num)++;
  507         } else {
  508                 swp_pager_freeswapspace(*start, *num);
  509                 *start = addr;
  510                 *num = 1;
  511         }
  512 }
  513 
  514 static void *
  515 swblk_trie_alloc(struct pctrie *ptree)
  516 {
  517 
  518         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
  519             M_USE_RESERVE : 0)));
  520 }
  521 
  522 static void
  523 swblk_trie_free(struct pctrie *ptree, void *node)
  524 {
  525 
  526         uma_zfree(swpctrie_zone, node);
  527 }
  528 
  529 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
  530 
  531 /*
  532  * SWP_SIZECHECK() -    update swap_pager_full indication
  533  *
  534  *      update the swap_pager_almost_full indication and warn when we are
  535  *      about to run out of swap space, using lowat/hiwat hysteresis.
  536  *
  537  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
  538  *
  539  *      No restrictions on call
  540  *      This routine may not block.
  541  */
  542 static void
  543 swp_sizecheck(void)
  544 {
  545 
  546         if (swap_pager_avail < nswap_lowat) {
  547                 if (swap_pager_almost_full == 0) {
  548                         printf("swap_pager: out of swap space\n");
  549                         swap_pager_almost_full = 1;
  550                 }
  551         } else {
  552                 swap_pager_full = 0;
  553                 if (swap_pager_avail > nswap_hiwat)
  554                         swap_pager_almost_full = 0;
  555         }
  556 }
  557 
  558 /*
  559  * SWAP_PAGER_INIT() -  initialize the swap pager!
  560  *
  561  *      Expected to be started from system init.  NOTE:  This code is run
  562  *      before much else so be careful what you depend on.  Most of the VM
  563  *      system has yet to be initialized at this point.
  564  */
  565 static void
  566 swap_pager_init(void)
  567 {
  568         /*
  569          * Initialize object lists
  570          */
  571         int i;
  572 
  573         for (i = 0; i < NOBJLISTS; ++i)
  574                 TAILQ_INIT(&swap_pager_object_list[i]);
  575         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
  576         sx_init(&sw_alloc_sx, "swspsx");
  577         sx_init(&swdev_syscall_lock, "swsysc");
  578 
  579         /*
  580          * The nsw_cluster_max is constrained by the bp->b_pages[]
  581          * array, which has maxphys / PAGE_SIZE entries, and our locally
  582          * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
  583          * constrained by the swap device interleave stripe size.
  584          *
  585          * Initialized early so that GEOM_ELI can see it.
  586          */
  587         nsw_cluster_max = min(maxphys / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
  588 }
  589 
  590 /*
  591  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
  592  *
  593  *      Expected to be started from pageout process once, prior to entering
  594  *      its main loop.
  595  */
  596 void
  597 swap_pager_swap_init(void)
  598 {
  599         unsigned long n, n2;
  600 
  601         /*
  602          * Number of in-transit swap bp operations.  Don't
  603          * exhaust the pbufs completely.  Make sure we
  604          * initialize workable values (0 will work for hysteresis
  605          * but it isn't very efficient).
  606          *
  607          * Currently we hardwire nsw_wcount_async to 4.  This limit is
  608          * designed to prevent other I/O from having high latencies due to
  609          * our pageout I/O.  The value 4 works well for one or two active swap
  610          * devices but is probably a little low if you have more.  Even so,
  611          * a higher value would probably generate only a limited improvement
  612          * with three or four active swap devices since the system does not
  613          * typically have to pageout at extreme bandwidths.   We will want
  614          * at least 2 per swap devices, and 4 is a pretty good value if you
  615          * have one NFS swap device due to the command/ack latency over NFS.
  616          * So it all works out pretty well.
  617          *
  618          * nsw_cluster_max is initialized in swap_pager_init().
  619          */
  620 
  621         nsw_wcount_async = 4;
  622         nsw_wcount_async_max = nsw_wcount_async;
  623         mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
  624 
  625         swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
  626         swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
  627 
  628         /*
  629          * Initialize our zone, taking the user's requested size or
  630          * estimating the number we need based on the number of pages
  631          * in the system.
  632          */
  633         n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
  634             vm_cnt.v_page_count / 2;
  635         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
  636             pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
  637         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
  638             NULL, NULL, _Alignof(struct swblk) - 1, 0);
  639         n2 = n;
  640         do {
  641                 if (uma_zone_reserve_kva(swblk_zone, n))
  642                         break;
  643                 /*
  644                  * if the allocation failed, try a zone two thirds the
  645                  * size of the previous attempt.
  646                  */
  647                 n -= ((n + 2) / 3);
  648         } while (n > 0);
  649 
  650         /*
  651          * Often uma_zone_reserve_kva() cannot reserve exactly the
  652          * requested size.  Account for the difference when
  653          * calculating swap_maxpages.
  654          */
  655         n = uma_zone_get_max(swblk_zone);
  656 
  657         if (n < n2)
  658                 printf("Swap blk zone entries changed from %lu to %lu.\n",
  659                     n2, n);
  660         /* absolute maximum we can handle assuming 100% efficiency */
  661         swap_maxpages = n * SWAP_META_PAGES;
  662         swzone = n * sizeof(struct swblk);
  663         if (!uma_zone_reserve_kva(swpctrie_zone, n))
  664                 printf("Cannot reserve swap pctrie zone, "
  665                     "reduce kern.maxswzone.\n");
  666 }
  667 
  668 bool
  669 swap_pager_init_object(vm_object_t object, void *handle, struct ucred *cred,
  670     vm_ooffset_t size, vm_ooffset_t offset)
  671 {
  672         if (cred != NULL) {
  673                 if (!swap_reserve_by_cred(size, cred))
  674                         return (false);
  675                 crhold(cred);
  676         }
  677 
  678         object->un_pager.swp.writemappings = 0;
  679         object->handle = handle;
  680         if (cred != NULL) {
  681                 object->cred = cred;
  682                 object->charge = size;
  683         }
  684         return (true);
  685 }
  686 
  687 static vm_object_t
  688 swap_pager_alloc_init(objtype_t otype, void *handle, struct ucred *cred,
  689     vm_ooffset_t size, vm_ooffset_t offset)
  690 {
  691         vm_object_t object;
  692 
  693         /*
  694          * The un_pager.swp.swp_blks trie is initialized by
  695          * vm_object_allocate() to ensure the correct order of
  696          * visibility to other threads.
  697          */
  698         object = vm_object_allocate(otype, OFF_TO_IDX(offset +
  699             PAGE_MASK + size));
  700 
  701         if (!swap_pager_init_object(object, handle, cred, size, offset)) {
  702                 vm_object_deallocate(object);
  703                 return (NULL);
  704         }
  705         return (object);
  706 }
  707 
  708 /*
  709  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
  710  *                      its metadata structures.
  711  *
  712  *      This routine is called from the mmap and fork code to create a new
  713  *      OBJT_SWAP object.
  714  *
  715  *      This routine must ensure that no live duplicate is created for
  716  *      the named object request, which is protected against by
  717  *      holding the sw_alloc_sx lock in case handle != NULL.
  718  */
  719 static vm_object_t
  720 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
  721     vm_ooffset_t offset, struct ucred *cred)
  722 {
  723         vm_object_t object;
  724 
  725         if (handle != NULL) {
  726                 /*
  727                  * Reference existing named region or allocate new one.  There
  728                  * should not be a race here against swp_pager_meta_build()
  729                  * as called from vm_page_remove() in regards to the lookup
  730                  * of the handle.
  731                  */
  732                 sx_xlock(&sw_alloc_sx);
  733                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
  734                 if (object == NULL) {
  735                         object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
  736                             size, offset);
  737                         if (object != NULL) {
  738                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
  739                                     object, pager_object_list);
  740                         }
  741                 }
  742                 sx_xunlock(&sw_alloc_sx);
  743         } else {
  744                 object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
  745                     size, offset);
  746         }
  747         return (object);
  748 }
  749 
  750 /*
  751  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
  752  *
  753  *      The swap backing for the object is destroyed.  The code is
  754  *      designed such that we can reinstantiate it later, but this
  755  *      routine is typically called only when the entire object is
  756  *      about to be destroyed.
  757  *
  758  *      The object must be locked.
  759  */
  760 static void
  761 swap_pager_dealloc(vm_object_t object)
  762 {
  763 
  764         VM_OBJECT_ASSERT_WLOCKED(object);
  765         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
  766 
  767         /*
  768          * Remove from list right away so lookups will fail if we block for
  769          * pageout completion.
  770          */
  771         if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
  772                 VM_OBJECT_WUNLOCK(object);
  773                 sx_xlock(&sw_alloc_sx);
  774                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
  775                     pager_object_list);
  776                 sx_xunlock(&sw_alloc_sx);
  777                 VM_OBJECT_WLOCK(object);
  778         }
  779 
  780         vm_object_pip_wait(object, "swpdea");
  781 
  782         /*
  783          * Free all remaining metadata.  We only bother to free it from
  784          * the swap meta data.  We do not attempt to free swapblk's still
  785          * associated with vm_page_t's for this object.  We do not care
  786          * if paging is still in progress on some objects.
  787          */
  788         swp_pager_meta_free_all(object);
  789         object->handle = NULL;
  790         object->type = OBJT_DEAD;
  791 
  792         /*
  793          * Release the allocation charge.
  794          */
  795         if (object->cred != NULL) {
  796                 swap_release_by_cred(object->charge, object->cred);
  797                 object->charge = 0;
  798                 crfree(object->cred);
  799                 object->cred = NULL;
  800         }
  801 
  802         /*
  803          * Hide the object from swap_pager_swapoff().
  804          */
  805         vm_object_clear_flag(object, OBJ_SWAP);
  806 }
  807 
  808 /************************************************************************
  809  *                      SWAP PAGER BITMAP ROUTINES                      *
  810  ************************************************************************/
  811 
  812 /*
  813  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
  814  *
  815  *      Allocate swap for up to the requested number of pages.  The
  816  *      starting swap block number (a page index) is returned or
  817  *      SWAPBLK_NONE if the allocation failed.
  818  *
  819  *      Also has the side effect of advising that somebody made a mistake
  820  *      when they configured swap and didn't configure enough.
  821  *
  822  *      This routine may not sleep.
  823  *
  824  *      We allocate in round-robin fashion from the configured devices.
  825  */
  826 static daddr_t
  827 swp_pager_getswapspace(int *io_npages)
  828 {
  829         daddr_t blk;
  830         struct swdevt *sp;
  831         int mpages, npages;
  832 
  833         KASSERT(*io_npages >= 1,
  834             ("%s: npages not positive", __func__));
  835         blk = SWAPBLK_NONE;
  836         mpages = *io_npages;
  837         npages = imin(BLIST_MAX_ALLOC, mpages);
  838         mtx_lock(&sw_dev_mtx);
  839         sp = swdevhd;
  840         while (!TAILQ_EMPTY(&swtailq)) {
  841                 if (sp == NULL)
  842                         sp = TAILQ_FIRST(&swtailq);
  843                 if ((sp->sw_flags & SW_CLOSING) == 0)
  844                         blk = blist_alloc(sp->sw_blist, &npages, mpages);
  845                 if (blk != SWAPBLK_NONE)
  846                         break;
  847                 sp = TAILQ_NEXT(sp, sw_list);
  848                 if (swdevhd == sp) {
  849                         if (npages == 1)
  850                                 break;
  851                         mpages = npages - 1;
  852                         npages >>= 1;
  853                 }
  854         }
  855         if (blk != SWAPBLK_NONE) {
  856                 *io_npages = npages;
  857                 blk += sp->sw_first;
  858                 sp->sw_used += npages;
  859                 swap_pager_avail -= npages;
  860                 swp_sizecheck();
  861                 swdevhd = TAILQ_NEXT(sp, sw_list);
  862         } else {
  863                 if (swap_pager_full != 2) {
  864                         printf("swp_pager_getswapspace(%d): failed\n",
  865                             *io_npages);
  866                         swap_pager_full = 2;
  867                         swap_pager_almost_full = 1;
  868                 }
  869                 swdevhd = NULL;
  870         }
  871         mtx_unlock(&sw_dev_mtx);
  872         return (blk);
  873 }
  874 
  875 static bool
  876 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
  877 {
  878 
  879         return (blk >= sp->sw_first && blk < sp->sw_end);
  880 }
  881 
  882 static void
  883 swp_pager_strategy(struct buf *bp)
  884 {
  885         struct swdevt *sp;
  886 
  887         mtx_lock(&sw_dev_mtx);
  888         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  889                 if (swp_pager_isondev(bp->b_blkno, sp)) {
  890                         mtx_unlock(&sw_dev_mtx);
  891                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
  892                             unmapped_buf_allowed) {
  893                                 bp->b_data = unmapped_buf;
  894                                 bp->b_offset = 0;
  895                         } else {
  896                                 pmap_qenter((vm_offset_t)bp->b_data,
  897                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
  898                         }
  899                         sp->sw_strategy(bp, sp);
  900                         return;
  901                 }
  902         }
  903         panic("Swapdev not found");
  904 }
  905 
  906 /*
  907  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
  908  *
  909  *      This routine returns the specified swap blocks back to the bitmap.
  910  *
  911  *      This routine may not sleep.
  912  */
  913 static void
  914 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
  915 {
  916         struct swdevt *sp;
  917 
  918         if (npages == 0)
  919                 return;
  920         mtx_lock(&sw_dev_mtx);
  921         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  922                 if (swp_pager_isondev(blk, sp)) {
  923                         sp->sw_used -= npages;
  924                         /*
  925                          * If we are attempting to stop swapping on
  926                          * this device, we don't want to mark any
  927                          * blocks free lest they be reused.
  928                          */
  929                         if ((sp->sw_flags & SW_CLOSING) == 0) {
  930                                 blist_free(sp->sw_blist, blk - sp->sw_first,
  931                                     npages);
  932                                 swap_pager_avail += npages;
  933                                 swp_sizecheck();
  934                         }
  935                         mtx_unlock(&sw_dev_mtx);
  936                         return;
  937                 }
  938         }
  939         panic("Swapdev not found");
  940 }
  941 
  942 /*
  943  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
  944  */
  945 static int
  946 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
  947 {
  948         struct sbuf sbuf;
  949         struct swdevt *sp;
  950         const char *devname;
  951         int error;
  952 
  953         error = sysctl_wire_old_buffer(req, 0);
  954         if (error != 0)
  955                 return (error);
  956         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
  957         mtx_lock(&sw_dev_mtx);
  958         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  959                 if (vn_isdisk(sp->sw_vp))
  960                         devname = devtoname(sp->sw_vp->v_rdev);
  961                 else
  962                         devname = "[file]";
  963                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
  964                 blist_stats(sp->sw_blist, &sbuf);
  965         }
  966         mtx_unlock(&sw_dev_mtx);
  967         error = sbuf_finish(&sbuf);
  968         sbuf_delete(&sbuf);
  969         return (error);
  970 }
  971 
  972 /*
  973  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
  974  *                              range within an object.
  975  *
  976  *      This routine removes swapblk assignments from swap metadata.
  977  *
  978  *      The external callers of this routine typically have already destroyed
  979  *      or renamed vm_page_t's associated with this range in the object so
  980  *      we should be ok.
  981  *
  982  *      The object must be locked.
  983  */
  984 void
  985 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size,
  986     vm_size_t *freed)
  987 {
  988         MPASS((object->flags & OBJ_SWAP) != 0);
  989 
  990         swp_pager_meta_free(object, start, size, freed);
  991 }
  992 
  993 static void
  994 swap_pager_freespace_pgo(vm_object_t object, vm_pindex_t start, vm_size_t size)
  995 {
  996         MPASS((object->flags & OBJ_SWAP) != 0);
  997 
  998         swp_pager_meta_free(object, start, size, NULL);
  999 }
 1000 
 1001 /*
 1002  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
 1003  *
 1004  *      Assigns swap blocks to the specified range within the object.  The
 1005  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
 1006  *
 1007  *      Returns 0 on success, -1 on failure.
 1008  */
 1009 int
 1010 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
 1011 {
 1012         daddr_t addr, blk, n_free, s_free;
 1013         vm_pindex_t i, j;
 1014         int n;
 1015 
 1016         swp_pager_init_freerange(&s_free, &n_free);
 1017         VM_OBJECT_WLOCK(object);
 1018         for (i = 0; i < size; i += n) {
 1019                 n = MIN(size - i, INT_MAX);
 1020                 blk = swp_pager_getswapspace(&n);
 1021                 if (blk == SWAPBLK_NONE) {
 1022                         swp_pager_meta_free(object, start, i, NULL);
 1023                         VM_OBJECT_WUNLOCK(object);
 1024                         return (-1);
 1025                 }
 1026                 for (j = 0; j < n; ++j) {
 1027                         addr = swp_pager_meta_build(object,
 1028                             start + i + j, blk + j);
 1029                         if (addr != SWAPBLK_NONE)
 1030                                 swp_pager_update_freerange(&s_free, &n_free,
 1031                                     addr);
 1032                 }
 1033         }
 1034         swp_pager_freeswapspace(s_free, n_free);
 1035         VM_OBJECT_WUNLOCK(object);
 1036         return (0);
 1037 }
 1038 
 1039 static bool
 1040 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
 1041     vm_pindex_t pindex, daddr_t addr)
 1042 {
 1043         daddr_t dstaddr __diagused;
 1044 
 1045         KASSERT((srcobject->flags & OBJ_SWAP) != 0,
 1046             ("%s: srcobject not swappable", __func__));
 1047         KASSERT((dstobject->flags & OBJ_SWAP) != 0,
 1048             ("%s: dstobject not swappable", __func__));
 1049 
 1050         if (swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
 1051                 /* Caller should destroy the source block. */
 1052                 return (false);
 1053         }
 1054 
 1055         /*
 1056          * Destination has no swapblk and is not resident, transfer source.
 1057          * swp_pager_meta_build() can sleep.
 1058          */
 1059         VM_OBJECT_WUNLOCK(srcobject);
 1060         dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
 1061         KASSERT(dstaddr == SWAPBLK_NONE,
 1062             ("Unexpected destination swapblk"));
 1063         VM_OBJECT_WLOCK(srcobject);
 1064 
 1065         return (true);
 1066 }
 1067 
 1068 /*
 1069  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
 1070  *                      and destroy the source.
 1071  *
 1072  *      Copy any valid swapblks from the source to the destination.  In
 1073  *      cases where both the source and destination have a valid swapblk,
 1074  *      we keep the destination's.
 1075  *
 1076  *      This routine is allowed to sleep.  It may sleep allocating metadata
 1077  *      indirectly through swp_pager_meta_build().
 1078  *
 1079  *      The source object contains no vm_page_t's (which is just as well)
 1080  *
 1081  *      The source and destination objects must be locked.
 1082  *      Both object locks may temporarily be released.
 1083  */
 1084 void
 1085 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
 1086     vm_pindex_t offset, int destroysource)
 1087 {
 1088         VM_OBJECT_ASSERT_WLOCKED(srcobject);
 1089         VM_OBJECT_ASSERT_WLOCKED(dstobject);
 1090 
 1091         /*
 1092          * If destroysource is set, we remove the source object from the
 1093          * swap_pager internal queue now.
 1094          */
 1095         if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
 1096             srcobject->handle != NULL) {
 1097                 VM_OBJECT_WUNLOCK(srcobject);
 1098                 VM_OBJECT_WUNLOCK(dstobject);
 1099                 sx_xlock(&sw_alloc_sx);
 1100                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
 1101                     pager_object_list);
 1102                 sx_xunlock(&sw_alloc_sx);
 1103                 VM_OBJECT_WLOCK(dstobject);
 1104                 VM_OBJECT_WLOCK(srcobject);
 1105         }
 1106 
 1107         /*
 1108          * Transfer source to destination.
 1109          */
 1110         swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size,
 1111             NULL);
 1112 
 1113         /*
 1114          * Free left over swap blocks in source.
 1115          */
 1116         if (destroysource)
 1117                 swp_pager_meta_free_all(srcobject);
 1118 }
 1119 
 1120 /*
 1121  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
 1122  *                              the requested page.
 1123  *
 1124  *      We determine whether good backing store exists for the requested
 1125  *      page and return TRUE if it does, FALSE if it doesn't.
 1126  *
 1127  *      If TRUE, we also try to determine how much valid, contiguous backing
 1128  *      store exists before and after the requested page.
 1129  */
 1130 static boolean_t
 1131 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
 1132     int *after)
 1133 {
 1134         daddr_t blk, blk0;
 1135         int i;
 1136 
 1137         VM_OBJECT_ASSERT_LOCKED(object);
 1138         KASSERT((object->flags & OBJ_SWAP) != 0,
 1139             ("%s: object not swappable", __func__));
 1140 
 1141         /*
 1142          * do we have good backing store at the requested index ?
 1143          */
 1144         blk0 = swp_pager_meta_lookup(object, pindex);
 1145         if (blk0 == SWAPBLK_NONE) {
 1146                 if (before)
 1147                         *before = 0;
 1148                 if (after)
 1149                         *after = 0;
 1150                 return (FALSE);
 1151         }
 1152 
 1153         /*
 1154          * find backwards-looking contiguous good backing store
 1155          */
 1156         if (before != NULL) {
 1157                 for (i = 1; i < SWB_NPAGES; i++) {
 1158                         if (i > pindex)
 1159                                 break;
 1160                         blk = swp_pager_meta_lookup(object, pindex - i);
 1161                         if (blk != blk0 - i)
 1162                                 break;
 1163                 }
 1164                 *before = i - 1;
 1165         }
 1166 
 1167         /*
 1168          * find forward-looking contiguous good backing store
 1169          */
 1170         if (after != NULL) {
 1171                 for (i = 1; i < SWB_NPAGES; i++) {
 1172                         blk = swp_pager_meta_lookup(object, pindex + i);
 1173                         if (blk != blk0 + i)
 1174                                 break;
 1175                 }
 1176                 *after = i - 1;
 1177         }
 1178         return (TRUE);
 1179 }
 1180 
 1181 /*
 1182  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
 1183  *
 1184  *      This removes any associated swap backing store, whether valid or
 1185  *      not, from the page.
 1186  *
 1187  *      This routine is typically called when a page is made dirty, at
 1188  *      which point any associated swap can be freed.  MADV_FREE also
 1189  *      calls us in a special-case situation
 1190  *
 1191  *      NOTE!!!  If the page is clean and the swap was valid, the caller
 1192  *      should make the page dirty before calling this routine.  This routine
 1193  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
 1194  *      depends on it.
 1195  *
 1196  *      This routine may not sleep.
 1197  *
 1198  *      The object containing the page may be locked.
 1199  */
 1200 static void
 1201 swap_pager_unswapped(vm_page_t m)
 1202 {
 1203         struct swblk *sb;
 1204         vm_object_t obj;
 1205 
 1206         /*
 1207          * Handle enqueing deferred frees first.  If we do not have the
 1208          * object lock we wait for the page daemon to clear the space.
 1209          */
 1210         obj = m->object;
 1211         if (!VM_OBJECT_WOWNED(obj)) {
 1212                 VM_PAGE_OBJECT_BUSY_ASSERT(m);
 1213                 /*
 1214                  * The caller is responsible for synchronization but we
 1215                  * will harmlessly handle races.  This is typically provided
 1216                  * by only calling unswapped() when a page transitions from
 1217                  * clean to dirty.
 1218                  */
 1219                 if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
 1220                     PGA_SWAP_SPACE) {
 1221                         vm_page_aflag_set(m, PGA_SWAP_FREE);
 1222                         counter_u64_add(swap_free_deferred, 1);
 1223                 }
 1224                 return;
 1225         }
 1226         if ((m->a.flags & PGA_SWAP_FREE) != 0)
 1227                 counter_u64_add(swap_free_completed, 1);
 1228         vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
 1229 
 1230         /*
 1231          * The meta data only exists if the object is OBJT_SWAP
 1232          * and even then might not be allocated yet.
 1233          */
 1234         KASSERT((m->object->flags & OBJ_SWAP) != 0,
 1235             ("Free object not swappable"));
 1236 
 1237         sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
 1238             rounddown(m->pindex, SWAP_META_PAGES));
 1239         if (sb == NULL)
 1240                 return;
 1241         if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
 1242                 return;
 1243         swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
 1244         sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
 1245         swp_pager_free_empty_swblk(m->object, sb);
 1246 }
 1247 
 1248 /*
 1249  * swap_pager_getpages() - bring pages in from swap
 1250  *
 1251  *      Attempt to page in the pages in array "ma" of length "count".  The
 1252  *      caller may optionally specify that additional pages preceding and
 1253  *      succeeding the specified range be paged in.  The number of such pages
 1254  *      is returned in the "rbehind" and "rahead" parameters, and they will
 1255  *      be in the inactive queue upon return.
 1256  *
 1257  *      The pages in "ma" must be busied and will remain busied upon return.
 1258  */
 1259 static int
 1260 swap_pager_getpages_locked(vm_object_t object, vm_page_t *ma, int count,
 1261     int *rbehind, int *rahead)
 1262 {
 1263         struct buf *bp;
 1264         vm_page_t bm, mpred, msucc, p;
 1265         vm_pindex_t pindex;
 1266         daddr_t blk;
 1267         int i, maxahead, maxbehind, reqcount;
 1268 
 1269         VM_OBJECT_ASSERT_WLOCKED(object);
 1270         reqcount = count;
 1271 
 1272         KASSERT((object->flags & OBJ_SWAP) != 0,
 1273             ("%s: object not swappable", __func__));
 1274         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
 1275                 VM_OBJECT_WUNLOCK(object);
 1276                 return (VM_PAGER_FAIL);
 1277         }
 1278 
 1279         KASSERT(reqcount - 1 <= maxahead,
 1280             ("page count %d extends beyond swap block", reqcount));
 1281 
 1282         /*
 1283          * Do not transfer any pages other than those that are xbusied
 1284          * when running during a split or collapse operation.  This
 1285          * prevents clustering from re-creating pages which are being
 1286          * moved into another object.
 1287          */
 1288         if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
 1289                 maxahead = reqcount - 1;
 1290                 maxbehind = 0;
 1291         }
 1292 
 1293         /*
 1294          * Clip the readahead and readbehind ranges to exclude resident pages.
 1295          */
 1296         if (rahead != NULL) {
 1297                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
 1298                 pindex = ma[reqcount - 1]->pindex;
 1299                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
 1300                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
 1301                         *rahead = msucc->pindex - pindex - 1;
 1302         }
 1303         if (rbehind != NULL) {
 1304                 *rbehind = imin(*rbehind, maxbehind);
 1305                 pindex = ma[0]->pindex;
 1306                 mpred = TAILQ_PREV(ma[0], pglist, listq);
 1307                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
 1308                         *rbehind = pindex - mpred->pindex - 1;
 1309         }
 1310 
 1311         bm = ma[0];
 1312         for (i = 0; i < count; i++)
 1313                 ma[i]->oflags |= VPO_SWAPINPROG;
 1314 
 1315         /*
 1316          * Allocate readahead and readbehind pages.
 1317          */
 1318         if (rbehind != NULL) {
 1319                 for (i = 1; i <= *rbehind; i++) {
 1320                         p = vm_page_alloc(object, ma[0]->pindex - i,
 1321                             VM_ALLOC_NORMAL);
 1322                         if (p == NULL)
 1323                                 break;
 1324                         p->oflags |= VPO_SWAPINPROG;
 1325                         bm = p;
 1326                 }
 1327                 *rbehind = i - 1;
 1328         }
 1329         if (rahead != NULL) {
 1330                 for (i = 0; i < *rahead; i++) {
 1331                         p = vm_page_alloc(object,
 1332                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
 1333                         if (p == NULL)
 1334                                 break;
 1335                         p->oflags |= VPO_SWAPINPROG;
 1336                 }
 1337                 *rahead = i;
 1338         }
 1339         if (rbehind != NULL)
 1340                 count += *rbehind;
 1341         if (rahead != NULL)
 1342                 count += *rahead;
 1343 
 1344         vm_object_pip_add(object, count);
 1345 
 1346         pindex = bm->pindex;
 1347         blk = swp_pager_meta_lookup(object, pindex);
 1348         KASSERT(blk != SWAPBLK_NONE,
 1349             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
 1350 
 1351         VM_OBJECT_WUNLOCK(object);
 1352         bp = uma_zalloc(swrbuf_zone, M_WAITOK);
 1353         MPASS((bp->b_flags & B_MAXPHYS) != 0);
 1354         /* Pages cannot leave the object while busy. */
 1355         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
 1356                 MPASS(p->pindex == bm->pindex + i);
 1357                 bp->b_pages[i] = p;
 1358         }
 1359 
 1360         bp->b_flags |= B_PAGING;
 1361         bp->b_iocmd = BIO_READ;
 1362         bp->b_iodone = swp_pager_async_iodone;
 1363         bp->b_rcred = crhold(thread0.td_ucred);
 1364         bp->b_wcred = crhold(thread0.td_ucred);
 1365         bp->b_blkno = blk;
 1366         bp->b_bcount = PAGE_SIZE * count;
 1367         bp->b_bufsize = PAGE_SIZE * count;
 1368         bp->b_npages = count;
 1369         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
 1370         bp->b_pgafter = rahead != NULL ? *rahead : 0;
 1371 
 1372         VM_CNT_INC(v_swapin);
 1373         VM_CNT_ADD(v_swappgsin, count);
 1374 
 1375         /*
 1376          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
 1377          * this point because we automatically release it on completion.
 1378          * Instead, we look at the one page we are interested in which we
 1379          * still hold a lock on even through the I/O completion.
 1380          *
 1381          * The other pages in our ma[] array are also released on completion,
 1382          * so we cannot assume they are valid anymore either.
 1383          *
 1384          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1385          */
 1386         BUF_KERNPROC(bp);
 1387         swp_pager_strategy(bp);
 1388 
 1389         /*
 1390          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
 1391          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
 1392          * is set in the metadata for each page in the request.
 1393          */
 1394         VM_OBJECT_WLOCK(object);
 1395         /* This could be implemented more efficiently with aflags */
 1396         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
 1397                 ma[0]->oflags |= VPO_SWAPSLEEP;
 1398                 VM_CNT_INC(v_intrans);
 1399                 if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
 1400                     "swread", hz * 20)) {
 1401                         printf(
 1402 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
 1403                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
 1404                 }
 1405         }
 1406         VM_OBJECT_WUNLOCK(object);
 1407 
 1408         /*
 1409          * If we had an unrecoverable read error pages will not be valid.
 1410          */
 1411         for (i = 0; i < reqcount; i++)
 1412                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
 1413                         return (VM_PAGER_ERROR);
 1414 
 1415         return (VM_PAGER_OK);
 1416 
 1417         /*
 1418          * A final note: in a low swap situation, we cannot deallocate swap
 1419          * and mark a page dirty here because the caller is likely to mark
 1420          * the page clean when we return, causing the page to possibly revert
 1421          * to all-zero's later.
 1422          */
 1423 }
 1424 
 1425 static int
 1426 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
 1427     int *rbehind, int *rahead)
 1428 {
 1429 
 1430         VM_OBJECT_WLOCK(object);
 1431         return (swap_pager_getpages_locked(object, ma, count, rbehind, rahead));
 1432 }
 1433 
 1434 /*
 1435  *      swap_pager_getpages_async():
 1436  *
 1437  *      Right now this is emulation of asynchronous operation on top of
 1438  *      swap_pager_getpages().
 1439  */
 1440 static int
 1441 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
 1442     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
 1443 {
 1444         int r, error;
 1445 
 1446         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
 1447         switch (r) {
 1448         case VM_PAGER_OK:
 1449                 error = 0;
 1450                 break;
 1451         case VM_PAGER_ERROR:
 1452                 error = EIO;
 1453                 break;
 1454         case VM_PAGER_FAIL:
 1455                 error = EINVAL;
 1456                 break;
 1457         default:
 1458                 panic("unhandled swap_pager_getpages() error %d", r);
 1459         }
 1460         (iodone)(arg, ma, count, error);
 1461 
 1462         return (r);
 1463 }
 1464 
 1465 /*
 1466  *      swap_pager_putpages:
 1467  *
 1468  *      Assign swap (if necessary) and initiate I/O on the specified pages.
 1469  *
 1470  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
 1471  *      vm_page reservation system coupled with properly written VFS devices
 1472  *      should ensure that no low-memory deadlock occurs.  This is an area
 1473  *      which needs work.
 1474  *
 1475  *      The parent has N vm_object_pip_add() references prior to
 1476  *      calling us and will remove references for rtvals[] that are
 1477  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
 1478  *      completion.
 1479  *
 1480  *      The parent has soft-busy'd the pages it passes us and will unbusy
 1481  *      those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
 1482  *      We need to unbusy the rest on I/O completion.
 1483  */
 1484 static void
 1485 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
 1486     int flags, int *rtvals)
 1487 {
 1488         struct buf *bp;
 1489         daddr_t addr, blk, n_free, s_free;
 1490         vm_page_t mreq;
 1491         int i, j, n;
 1492         bool async;
 1493 
 1494         KASSERT(count == 0 || ma[0]->object == object,
 1495             ("%s: object mismatch %p/%p",
 1496             __func__, object, ma[0]->object));
 1497 
 1498         VM_OBJECT_WUNLOCK(object);
 1499         async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
 1500         swp_pager_init_freerange(&s_free, &n_free);
 1501 
 1502         /*
 1503          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
 1504          * The page is left dirty until the pageout operation completes
 1505          * successfully.
 1506          */
 1507         for (i = 0; i < count; i += n) {
 1508                 /* Maximum I/O size is limited by maximum swap block size. */
 1509                 n = min(count - i, nsw_cluster_max);
 1510 
 1511                 if (async) {
 1512                         mtx_lock(&swbuf_mtx);
 1513                         while (nsw_wcount_async == 0)
 1514                                 msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
 1515                                     "swbufa", 0);
 1516                         nsw_wcount_async--;
 1517                         mtx_unlock(&swbuf_mtx);
 1518                 }
 1519 
 1520                 /* Get a block of swap of size up to size n. */
 1521                 blk = swp_pager_getswapspace(&n);
 1522                 if (blk == SWAPBLK_NONE) {
 1523                         mtx_lock(&swbuf_mtx);
 1524                         if (++nsw_wcount_async == 1)
 1525                                 wakeup(&nsw_wcount_async);
 1526                         mtx_unlock(&swbuf_mtx);
 1527                         for (j = 0; j < n; ++j)
 1528                                 rtvals[i + j] = VM_PAGER_FAIL;
 1529                         continue;
 1530                 }
 1531                 VM_OBJECT_WLOCK(object);
 1532                 for (j = 0; j < n; ++j) {
 1533                         mreq = ma[i + j];
 1534                         vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
 1535                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
 1536                             blk + j);
 1537                         if (addr != SWAPBLK_NONE)
 1538                                 swp_pager_update_freerange(&s_free, &n_free,
 1539                                     addr);
 1540                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
 1541                         mreq->oflags |= VPO_SWAPINPROG;
 1542                 }
 1543                 VM_OBJECT_WUNLOCK(object);
 1544 
 1545                 bp = uma_zalloc(swwbuf_zone, M_WAITOK);
 1546                 MPASS((bp->b_flags & B_MAXPHYS) != 0);
 1547                 if (async)
 1548                         bp->b_flags |= B_ASYNC;
 1549                 bp->b_flags |= B_PAGING;
 1550                 bp->b_iocmd = BIO_WRITE;
 1551 
 1552                 bp->b_rcred = crhold(thread0.td_ucred);
 1553                 bp->b_wcred = crhold(thread0.td_ucred);
 1554                 bp->b_bcount = PAGE_SIZE * n;
 1555                 bp->b_bufsize = PAGE_SIZE * n;
 1556                 bp->b_blkno = blk;
 1557                 for (j = 0; j < n; j++)
 1558                         bp->b_pages[j] = ma[i + j];
 1559                 bp->b_npages = n;
 1560 
 1561                 /*
 1562                  * Must set dirty range for NFS to work.
 1563                  */
 1564                 bp->b_dirtyoff = 0;
 1565                 bp->b_dirtyend = bp->b_bcount;
 1566 
 1567                 VM_CNT_INC(v_swapout);
 1568                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
 1569 
 1570                 /*
 1571                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
 1572                  * can call the async completion routine at the end of a
 1573                  * synchronous I/O operation.  Otherwise, our caller would
 1574                  * perform duplicate unbusy and wakeup operations on the page
 1575                  * and object, respectively.
 1576                  */
 1577                 for (j = 0; j < n; j++)
 1578                         rtvals[i + j] = VM_PAGER_PEND;
 1579 
 1580                 /*
 1581                  * asynchronous
 1582                  *
 1583                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
 1584                  */
 1585                 if (async) {
 1586                         bp->b_iodone = swp_pager_async_iodone;
 1587                         BUF_KERNPROC(bp);
 1588                         swp_pager_strategy(bp);
 1589                         continue;
 1590                 }
 1591 
 1592                 /*
 1593                  * synchronous
 1594                  *
 1595                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
 1596                  */
 1597                 bp->b_iodone = bdone;
 1598                 swp_pager_strategy(bp);
 1599 
 1600                 /*
 1601                  * Wait for the sync I/O to complete.
 1602                  */
 1603                 bwait(bp, PVM, "swwrt");
 1604 
 1605                 /*
 1606                  * Now that we are through with the bp, we can call the
 1607                  * normal async completion, which frees everything up.
 1608                  */
 1609                 swp_pager_async_iodone(bp);
 1610         }
 1611         swp_pager_freeswapspace(s_free, n_free);
 1612         VM_OBJECT_WLOCK(object);
 1613 }
 1614 
 1615 /*
 1616  *      swp_pager_async_iodone:
 1617  *
 1618  *      Completion routine for asynchronous reads and writes from/to swap.
 1619  *      Also called manually by synchronous code to finish up a bp.
 1620  *
 1621  *      This routine may not sleep.
 1622  */
 1623 static void
 1624 swp_pager_async_iodone(struct buf *bp)
 1625 {
 1626         int i;
 1627         vm_object_t object = NULL;
 1628 
 1629         /*
 1630          * Report error - unless we ran out of memory, in which case
 1631          * we've already logged it in swapgeom_strategy().
 1632          */
 1633         if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
 1634                 printf(
 1635                     "swap_pager: I/O error - %s failed; blkno %ld,"
 1636                         "size %ld, error %d\n",
 1637                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
 1638                     (long)bp->b_blkno,
 1639                     (long)bp->b_bcount,
 1640                     bp->b_error
 1641                 );
 1642         }
 1643 
 1644         /*
 1645          * remove the mapping for kernel virtual
 1646          */
 1647         if (buf_mapped(bp))
 1648                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
 1649         else
 1650                 bp->b_data = bp->b_kvabase;
 1651 
 1652         if (bp->b_npages) {
 1653                 object = bp->b_pages[0]->object;
 1654                 VM_OBJECT_WLOCK(object);
 1655         }
 1656 
 1657         /*
 1658          * cleanup pages.  If an error occurs writing to swap, we are in
 1659          * very serious trouble.  If it happens to be a disk error, though,
 1660          * we may be able to recover by reassigning the swap later on.  So
 1661          * in this case we remove the m->swapblk assignment for the page
 1662          * but do not free it in the rlist.  The errornous block(s) are thus
 1663          * never reallocated as swap.  Redirty the page and continue.
 1664          */
 1665         for (i = 0; i < bp->b_npages; ++i) {
 1666                 vm_page_t m = bp->b_pages[i];
 1667 
 1668                 m->oflags &= ~VPO_SWAPINPROG;
 1669                 if (m->oflags & VPO_SWAPSLEEP) {
 1670                         m->oflags &= ~VPO_SWAPSLEEP;
 1671                         wakeup(&object->handle);
 1672                 }
 1673 
 1674                 /* We always have space after I/O, successful or not. */
 1675                 vm_page_aflag_set(m, PGA_SWAP_SPACE);
 1676 
 1677                 if (bp->b_ioflags & BIO_ERROR) {
 1678                         /*
 1679                          * If an error occurs I'd love to throw the swapblk
 1680                          * away without freeing it back to swapspace, so it
 1681                          * can never be used again.  But I can't from an
 1682                          * interrupt.
 1683                          */
 1684                         if (bp->b_iocmd == BIO_READ) {
 1685                                 /*
 1686                                  * NOTE: for reads, m->dirty will probably
 1687                                  * be overridden by the original caller of
 1688                                  * getpages so don't play cute tricks here.
 1689                                  */
 1690                                 vm_page_invalid(m);
 1691                         } else {
 1692                                 /*
 1693                                  * If a write error occurs, reactivate page
 1694                                  * so it doesn't clog the inactive list,
 1695                                  * then finish the I/O.
 1696                                  */
 1697                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
 1698 
 1699                                 /* PQ_UNSWAPPABLE? */
 1700                                 vm_page_activate(m);
 1701                                 vm_page_sunbusy(m);
 1702                         }
 1703                 } else if (bp->b_iocmd == BIO_READ) {
 1704                         /*
 1705                          * NOTE: for reads, m->dirty will probably be
 1706                          * overridden by the original caller of getpages so
 1707                          * we cannot set them in order to free the underlying
 1708                          * swap in a low-swap situation.  I don't think we'd
 1709                          * want to do that anyway, but it was an optimization
 1710                          * that existed in the old swapper for a time before
 1711                          * it got ripped out due to precisely this problem.
 1712                          */
 1713                         KASSERT(!pmap_page_is_mapped(m),
 1714                             ("swp_pager_async_iodone: page %p is mapped", m));
 1715                         KASSERT(m->dirty == 0,
 1716                             ("swp_pager_async_iodone: page %p is dirty", m));
 1717 
 1718                         vm_page_valid(m);
 1719                         if (i < bp->b_pgbefore ||
 1720                             i >= bp->b_npages - bp->b_pgafter)
 1721                                 vm_page_readahead_finish(m);
 1722                 } else {
 1723                         /*
 1724                          * For write success, clear the dirty
 1725                          * status, then finish the I/O ( which decrements the
 1726                          * busy count and possibly wakes waiter's up ).
 1727                          * A page is only written to swap after a period of
 1728                          * inactivity.  Therefore, we do not expect it to be
 1729                          * reused.
 1730                          */
 1731                         KASSERT(!pmap_page_is_write_mapped(m),
 1732                             ("swp_pager_async_iodone: page %p is not write"
 1733                             " protected", m));
 1734                         vm_page_undirty(m);
 1735                         vm_page_deactivate_noreuse(m);
 1736                         vm_page_sunbusy(m);
 1737                 }
 1738         }
 1739 
 1740         /*
 1741          * adjust pip.  NOTE: the original parent may still have its own
 1742          * pip refs on the object.
 1743          */
 1744         if (object != NULL) {
 1745                 vm_object_pip_wakeupn(object, bp->b_npages);
 1746                 VM_OBJECT_WUNLOCK(object);
 1747         }
 1748 
 1749         /*
 1750          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
 1751          * bstrategy(). Set them back to NULL now we're done with it, or we'll
 1752          * trigger a KASSERT in relpbuf().
 1753          */
 1754         if (bp->b_vp) {
 1755                     bp->b_vp = NULL;
 1756                     bp->b_bufobj = NULL;
 1757         }
 1758         /*
 1759          * release the physical I/O buffer
 1760          */
 1761         if (bp->b_flags & B_ASYNC) {
 1762                 mtx_lock(&swbuf_mtx);
 1763                 if (++nsw_wcount_async == 1)
 1764                         wakeup(&nsw_wcount_async);
 1765                 mtx_unlock(&swbuf_mtx);
 1766         }
 1767         uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
 1768 }
 1769 
 1770 int
 1771 swap_pager_nswapdev(void)
 1772 {
 1773 
 1774         return (nswapdev);
 1775 }
 1776 
 1777 static void
 1778 swp_pager_force_dirty(vm_page_t m)
 1779 {
 1780 
 1781         vm_page_dirty(m);
 1782         swap_pager_unswapped(m);
 1783         vm_page_launder(m);
 1784 }
 1785 
 1786 u_long
 1787 swap_pager_swapped_pages(vm_object_t object)
 1788 {
 1789         struct swblk *sb;
 1790         vm_pindex_t pi;
 1791         u_long res;
 1792         int i;
 1793 
 1794         VM_OBJECT_ASSERT_LOCKED(object);
 1795 
 1796         if (pctrie_is_empty(&object->un_pager.swp.swp_blks))
 1797                 return (0);
 1798 
 1799         for (res = 0, pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
 1800             &object->un_pager.swp.swp_blks, pi)) != NULL;
 1801             pi = sb->p + SWAP_META_PAGES) {
 1802                 for (i = 0; i < SWAP_META_PAGES; i++) {
 1803                         if (sb->d[i] != SWAPBLK_NONE)
 1804                                 res++;
 1805                 }
 1806         }
 1807         return (res);
 1808 }
 1809 
 1810 /*
 1811  *      swap_pager_swapoff_object:
 1812  *
 1813  *      Page in all of the pages that have been paged out for an object
 1814  *      to a swap device.
 1815  */
 1816 static void
 1817 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
 1818 {
 1819         struct swblk *sb;
 1820         vm_page_t m;
 1821         vm_pindex_t pi;
 1822         daddr_t blk;
 1823         int i, nv, rahead, rv;
 1824 
 1825         KASSERT((object->flags & OBJ_SWAP) != 0,
 1826             ("%s: Object not swappable", __func__));
 1827 
 1828         for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
 1829             &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
 1830                 if ((object->flags & OBJ_DEAD) != 0) {
 1831                         /*
 1832                          * Make sure that pending writes finish before
 1833                          * returning.
 1834                          */
 1835                         vm_object_pip_wait(object, "swpoff");
 1836                         swp_pager_meta_free_all(object);
 1837                         break;
 1838                 }
 1839                 for (i = 0; i < SWAP_META_PAGES; i++) {
 1840                         /*
 1841                          * Count the number of contiguous valid blocks.
 1842                          */
 1843                         for (nv = 0; nv < SWAP_META_PAGES - i; nv++) {
 1844                                 blk = sb->d[i + nv];
 1845                                 if (!swp_pager_isondev(blk, sp) ||
 1846                                     blk == SWAPBLK_NONE)
 1847                                         break;
 1848                         }
 1849                         if (nv == 0)
 1850                                 continue;
 1851 
 1852                         /*
 1853                          * Look for a page corresponding to the first
 1854                          * valid block and ensure that any pending paging
 1855                          * operations on it are complete.  If the page is valid,
 1856                          * mark it dirty and free the swap block.  Try to batch
 1857                          * this operation since it may cause sp to be freed,
 1858                          * meaning that we must restart the scan.  Avoid busying
 1859                          * valid pages since we may block forever on kernel
 1860                          * stack pages.
 1861                          */
 1862                         m = vm_page_lookup(object, sb->p + i);
 1863                         if (m == NULL) {
 1864                                 m = vm_page_alloc(object, sb->p + i,
 1865                                     VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
 1866                                 if (m == NULL)
 1867                                         break;
 1868                         } else {
 1869                                 if ((m->oflags & VPO_SWAPINPROG) != 0) {
 1870                                         m->oflags |= VPO_SWAPSLEEP;
 1871                                         VM_OBJECT_SLEEP(object, &object->handle,
 1872                                             PSWP, "swpoff", 0);
 1873                                         break;
 1874                                 }
 1875                                 if (vm_page_all_valid(m)) {
 1876                                         do {
 1877                                                 swp_pager_force_dirty(m);
 1878                                         } while (--nv > 0 &&
 1879                                             (m = vm_page_next(m)) != NULL &&
 1880                                             vm_page_all_valid(m) &&
 1881                                             (m->oflags & VPO_SWAPINPROG) == 0);
 1882                                         break;
 1883                                 }
 1884                                 if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
 1885                                         break;
 1886                         }
 1887 
 1888                         vm_object_pip_add(object, 1);
 1889                         rahead = SWAP_META_PAGES;
 1890                         rv = swap_pager_getpages_locked(object, &m, 1, NULL,
 1891                             &rahead);
 1892                         if (rv != VM_PAGER_OK)
 1893                                 panic("%s: read from swap failed: %d",
 1894                                     __func__, rv);
 1895                         vm_object_pip_wakeupn(object, 1);
 1896                         VM_OBJECT_WLOCK(object);
 1897                         vm_page_xunbusy(m);
 1898 
 1899                         /*
 1900                          * The object lock was dropped so we must restart the
 1901                          * scan of this swap block.  Pages paged in during this
 1902                          * iteration will be marked dirty in a future iteration.
 1903                          */
 1904                         break;
 1905                 }
 1906                 if (i == SWAP_META_PAGES)
 1907                         pi = sb->p + SWAP_META_PAGES;
 1908         }
 1909 }
 1910 
 1911 /*
 1912  *      swap_pager_swapoff:
 1913  *
 1914  *      Page in all of the pages that have been paged out to the
 1915  *      given device.  The corresponding blocks in the bitmap must be
 1916  *      marked as allocated and the device must be flagged SW_CLOSING.
 1917  *      There may be no processes swapped out to the device.
 1918  *
 1919  *      This routine may block.
 1920  */
 1921 static void
 1922 swap_pager_swapoff(struct swdevt *sp)
 1923 {
 1924         vm_object_t object;
 1925         int retries;
 1926 
 1927         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
 1928 
 1929         retries = 0;
 1930 full_rescan:
 1931         mtx_lock(&vm_object_list_mtx);
 1932         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 1933                 if ((object->flags & OBJ_SWAP) == 0)
 1934                         continue;
 1935                 mtx_unlock(&vm_object_list_mtx);
 1936                 /* Depends on type-stability. */
 1937                 VM_OBJECT_WLOCK(object);
 1938 
 1939                 /*
 1940                  * Dead objects are eventually terminated on their own.
 1941                  */
 1942                 if ((object->flags & OBJ_DEAD) != 0)
 1943                         goto next_obj;
 1944 
 1945                 /*
 1946                  * Sync with fences placed after pctrie
 1947                  * initialization.  We must not access pctrie below
 1948                  * unless we checked that our object is swap and not
 1949                  * dead.
 1950                  */
 1951                 atomic_thread_fence_acq();
 1952                 if ((object->flags & OBJ_SWAP) == 0)
 1953                         goto next_obj;
 1954 
 1955                 swap_pager_swapoff_object(sp, object);
 1956 next_obj:
 1957                 VM_OBJECT_WUNLOCK(object);
 1958                 mtx_lock(&vm_object_list_mtx);
 1959         }
 1960         mtx_unlock(&vm_object_list_mtx);
 1961 
 1962         if (sp->sw_used) {
 1963                 /*
 1964                  * Objects may be locked or paging to the device being
 1965                  * removed, so we will miss their pages and need to
 1966                  * make another pass.  We have marked this device as
 1967                  * SW_CLOSING, so the activity should finish soon.
 1968                  */
 1969                 retries++;
 1970                 if (retries > 100) {
 1971                         panic("swapoff: failed to locate %d swap blocks",
 1972                             sp->sw_used);
 1973                 }
 1974                 pause("swpoff", hz / 20);
 1975                 goto full_rescan;
 1976         }
 1977         EVENTHANDLER_INVOKE(swapoff, sp);
 1978 }
 1979 
 1980 /************************************************************************
 1981  *                              SWAP META DATA                          *
 1982  ************************************************************************
 1983  *
 1984  *      These routines manipulate the swap metadata stored in the
 1985  *      OBJT_SWAP object.
 1986  *
 1987  *      Swap metadata is implemented with a global hash and not directly
 1988  *      linked into the object.  Instead the object simply contains
 1989  *      appropriate tracking counters.
 1990  */
 1991 
 1992 /*
 1993  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
 1994  */
 1995 static bool
 1996 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
 1997 {
 1998         int i;
 1999 
 2000         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
 2001         for (i = start; i < limit; i++) {
 2002                 if (sb->d[i] != SWAPBLK_NONE)
 2003                         return (false);
 2004         }
 2005         return (true);
 2006 }
 2007 
 2008 /*
 2009  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
 2010  *
 2011  *  Nothing is done if the block is still in use.
 2012  */
 2013 static void
 2014 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
 2015 {
 2016 
 2017         if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
 2018                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
 2019                 uma_zfree(swblk_zone, sb);
 2020         }
 2021 }
 2022    
 2023 /*
 2024  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
 2025  *
 2026  *      The specified swapblk is added to the object's swap metadata.  If
 2027  *      the swapblk is not valid, it is freed instead.  Any previously
 2028  *      assigned swapblk is returned.
 2029  */
 2030 static daddr_t
 2031 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
 2032 {
 2033         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
 2034         struct swblk *sb, *sb1;
 2035         vm_pindex_t modpi, rdpi;
 2036         daddr_t prev_swapblk;
 2037         int error, i;
 2038 
 2039         VM_OBJECT_ASSERT_WLOCKED(object);
 2040 
 2041         rdpi = rounddown(pindex, SWAP_META_PAGES);
 2042         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
 2043         if (sb == NULL) {
 2044                 if (swapblk == SWAPBLK_NONE)
 2045                         return (SWAPBLK_NONE);
 2046                 for (;;) {
 2047                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
 2048                             pageproc ? M_USE_RESERVE : 0));
 2049                         if (sb != NULL) {
 2050                                 sb->p = rdpi;
 2051                                 for (i = 0; i < SWAP_META_PAGES; i++)
 2052                                         sb->d[i] = SWAPBLK_NONE;
 2053                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
 2054                                     1, 0))
 2055                                         printf("swblk zone ok\n");
 2056                                 break;
 2057                         }
 2058                         VM_OBJECT_WUNLOCK(object);
 2059                         if (uma_zone_exhausted(swblk_zone)) {
 2060                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
 2061                                     0, 1))
 2062                                         printf("swap blk zone exhausted, "
 2063                                             "increase kern.maxswzone\n");
 2064                                 vm_pageout_oom(VM_OOM_SWAPZ);
 2065                                 pause("swzonxb", 10);
 2066                         } else
 2067                                 uma_zwait(swblk_zone);
 2068                         VM_OBJECT_WLOCK(object);
 2069                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
 2070                             rdpi);
 2071                         if (sb != NULL)
 2072                                 /*
 2073                                  * Somebody swapped out a nearby page,
 2074                                  * allocating swblk at the rdpi index,
 2075                                  * while we dropped the object lock.
 2076                                  */
 2077                                 goto allocated;
 2078                 }
 2079                 for (;;) {
 2080                         error = SWAP_PCTRIE_INSERT(
 2081                             &object->un_pager.swp.swp_blks, sb);
 2082                         if (error == 0) {
 2083                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
 2084                                     1, 0))
 2085                                         printf("swpctrie zone ok\n");
 2086                                 break;
 2087                         }
 2088                         VM_OBJECT_WUNLOCK(object);
 2089                         if (uma_zone_exhausted(swpctrie_zone)) {
 2090                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
 2091                                     0, 1))
 2092                                         printf("swap pctrie zone exhausted, "
 2093                                             "increase kern.maxswzone\n");
 2094                                 vm_pageout_oom(VM_OOM_SWAPZ);
 2095                                 pause("swzonxp", 10);
 2096                         } else
 2097                                 uma_zwait(swpctrie_zone);
 2098                         VM_OBJECT_WLOCK(object);
 2099                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
 2100                             rdpi);
 2101                         if (sb1 != NULL) {
 2102                                 uma_zfree(swblk_zone, sb);
 2103                                 sb = sb1;
 2104                                 goto allocated;
 2105                         }
 2106                 }
 2107         }
 2108 allocated:
 2109         MPASS(sb->p == rdpi);
 2110 
 2111         modpi = pindex % SWAP_META_PAGES;
 2112         /* Return prior contents of metadata. */
 2113         prev_swapblk = sb->d[modpi];
 2114         /* Enter block into metadata. */
 2115         sb->d[modpi] = swapblk;
 2116 
 2117         /*
 2118          * Free the swblk if we end up with the empty page run.
 2119          */
 2120         if (swapblk == SWAPBLK_NONE)
 2121                 swp_pager_free_empty_swblk(object, sb);
 2122         return (prev_swapblk);
 2123 }
 2124 
 2125 /*
 2126  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
 2127  * metadata, or transfer it into dstobject.
 2128  *
 2129  *      This routine will free swap metadata structures as they are cleaned
 2130  *      out.
 2131  */
 2132 static void
 2133 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
 2134     vm_pindex_t pindex, vm_pindex_t count, vm_size_t *moved)
 2135 {
 2136         struct swblk *sb;
 2137         vm_page_t m;
 2138         daddr_t n_free, s_free;
 2139         vm_pindex_t offset, last;
 2140         vm_size_t mc;
 2141         int i, limit, start;
 2142 
 2143         VM_OBJECT_ASSERT_WLOCKED(srcobject);
 2144         MPASS(moved == NULL || dstobject == NULL);
 2145 
 2146         mc = 0;
 2147         m = NULL;
 2148         if (count == 0 || pctrie_is_empty(&srcobject->un_pager.swp.swp_blks))
 2149                 goto out;
 2150 
 2151         swp_pager_init_freerange(&s_free, &n_free);
 2152         offset = pindex;
 2153         last = pindex + count;
 2154         for (;;) {
 2155                 sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
 2156                     rounddown(pindex, SWAP_META_PAGES));
 2157                 if (sb == NULL || sb->p >= last)
 2158                         break;
 2159                 start = pindex > sb->p ? pindex - sb->p : 0;
 2160                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
 2161                     SWAP_META_PAGES;
 2162                 for (i = start; i < limit; i++) {
 2163                         if (sb->d[i] == SWAPBLK_NONE)
 2164                                 continue;
 2165                         if (dstobject == NULL ||
 2166                             !swp_pager_xfer_source(srcobject, dstobject, 
 2167                             sb->p + i - offset, sb->d[i])) {
 2168                                 swp_pager_update_freerange(&s_free, &n_free,
 2169                                     sb->d[i]);
 2170                         }
 2171                         if (moved != NULL) {
 2172                                 if (m != NULL && m->pindex != pindex + i - 1)
 2173                                         m = NULL;
 2174                                 m = m != NULL ? vm_page_next(m) :
 2175                                     vm_page_lookup(srcobject, pindex + i);
 2176                                 if (m == NULL || vm_page_none_valid(m))
 2177                                         mc++;
 2178                         }
 2179                         sb->d[i] = SWAPBLK_NONE;
 2180                 }
 2181                 pindex = sb->p + SWAP_META_PAGES;
 2182                 if (swp_pager_swblk_empty(sb, 0, start) &&
 2183                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
 2184                         SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
 2185                             sb->p);
 2186                         uma_zfree(swblk_zone, sb);
 2187                 }
 2188         }
 2189         swp_pager_freeswapspace(s_free, n_free);
 2190 out:
 2191         if (moved != NULL)
 2192                 *moved = mc;
 2193 }
 2194 
 2195 /*
 2196  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
 2197  *
 2198  *      The requested range of blocks is freed, with any associated swap
 2199  *      returned to the swap bitmap.
 2200  *
 2201  *      This routine will free swap metadata structures as they are cleaned
 2202  *      out.  This routine does *NOT* operate on swap metadata associated
 2203  *      with resident pages.
 2204  */
 2205 static void
 2206 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count,
 2207     vm_size_t *freed)
 2208 {
 2209         swp_pager_meta_transfer(object, NULL, pindex, count, freed);
 2210 }
 2211 
 2212 /*
 2213  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
 2214  *
 2215  *      This routine locates and destroys all swap metadata associated with
 2216  *      an object.
 2217  */
 2218 static void
 2219 swp_pager_meta_free_all(vm_object_t object)
 2220 {
 2221         struct swblk *sb;
 2222         daddr_t n_free, s_free;
 2223         vm_pindex_t pindex;
 2224         int i;
 2225 
 2226         VM_OBJECT_ASSERT_WLOCKED(object);
 2227 
 2228         if (pctrie_is_empty(&object->un_pager.swp.swp_blks))
 2229                 return;
 2230 
 2231         swp_pager_init_freerange(&s_free, &n_free);
 2232         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
 2233             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
 2234                 pindex = sb->p + SWAP_META_PAGES;
 2235                 for (i = 0; i < SWAP_META_PAGES; i++) {
 2236                         if (sb->d[i] == SWAPBLK_NONE)
 2237                                 continue;
 2238                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
 2239                 }
 2240                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
 2241                 uma_zfree(swblk_zone, sb);
 2242         }
 2243         swp_pager_freeswapspace(s_free, n_free);
 2244 }
 2245 
 2246 /*
 2247  * SWP_PAGER_METACTL() -  misc control of swap meta data.
 2248  *
 2249  *      This routine is capable of looking up, or removing swapblk
 2250  *      assignments in the swap meta data.  It returns the swapblk being
 2251  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
 2252  *
 2253  *      When acting on a busy resident page and paging is in progress, we
 2254  *      have to wait until paging is complete but otherwise can act on the
 2255  *      busy page.
 2256  */
 2257 static daddr_t
 2258 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
 2259 {
 2260         struct swblk *sb;
 2261 
 2262         VM_OBJECT_ASSERT_LOCKED(object);
 2263 
 2264         /*
 2265          * The meta data only exists if the object is OBJT_SWAP
 2266          * and even then might not be allocated yet.
 2267          */
 2268         KASSERT((object->flags & OBJ_SWAP) != 0,
 2269             ("Lookup object not swappable"));
 2270 
 2271         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
 2272             rounddown(pindex, SWAP_META_PAGES));
 2273         if (sb == NULL)
 2274                 return (SWAPBLK_NONE);
 2275         return (sb->d[pindex % SWAP_META_PAGES]);
 2276 }
 2277 
 2278 /*
 2279  * Returns the least page index which is greater than or equal to the
 2280  * parameter pindex and for which there is a swap block allocated.
 2281  * Returns object's size if the object's type is not swap or if there
 2282  * are no allocated swap blocks for the object after the requested
 2283  * pindex.
 2284  */
 2285 vm_pindex_t
 2286 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
 2287 {
 2288         struct swblk *sb;
 2289         int i;
 2290 
 2291         VM_OBJECT_ASSERT_LOCKED(object);
 2292         MPASS((object->flags & OBJ_SWAP) != 0);
 2293 
 2294         if (pctrie_is_empty(&object->un_pager.swp.swp_blks))
 2295                 return (object->size);
 2296         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
 2297             rounddown(pindex, SWAP_META_PAGES));
 2298         if (sb == NULL)
 2299                 return (object->size);
 2300         if (sb->p < pindex) {
 2301                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
 2302                         if (sb->d[i] != SWAPBLK_NONE)
 2303                                 return (sb->p + i);
 2304                 }
 2305                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
 2306                     roundup(pindex, SWAP_META_PAGES));
 2307                 if (sb == NULL)
 2308                         return (object->size);
 2309         }
 2310         for (i = 0; i < SWAP_META_PAGES; i++) {
 2311                 if (sb->d[i] != SWAPBLK_NONE)
 2312                         return (sb->p + i);
 2313         }
 2314 
 2315         /*
 2316          * We get here if a swblk is present in the trie but it
 2317          * doesn't map any blocks.
 2318          */
 2319         MPASS(0);
 2320         return (object->size);
 2321 }
 2322 
 2323 /*
 2324  * System call swapon(name) enables swapping on device name,
 2325  * which must be in the swdevsw.  Return EBUSY
 2326  * if already swapping on this device.
 2327  */
 2328 #ifndef _SYS_SYSPROTO_H_
 2329 struct swapon_args {
 2330         char *name;
 2331 };
 2332 #endif
 2333 
 2334 int
 2335 sys_swapon(struct thread *td, struct swapon_args *uap)
 2336 {
 2337         struct vattr attr;
 2338         struct vnode *vp;
 2339         struct nameidata nd;
 2340         int error;
 2341 
 2342         error = priv_check(td, PRIV_SWAPON);
 2343         if (error)
 2344                 return (error);
 2345 
 2346         sx_xlock(&swdev_syscall_lock);
 2347 
 2348         /*
 2349          * Swap metadata may not fit in the KVM if we have physical
 2350          * memory of >1GB.
 2351          */
 2352         if (swblk_zone == NULL) {
 2353                 error = ENOMEM;
 2354                 goto done;
 2355         }
 2356 
 2357         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
 2358             UIO_USERSPACE, uap->name);
 2359         error = namei(&nd);
 2360         if (error)
 2361                 goto done;
 2362 
 2363         NDFREE_PNBUF(&nd);
 2364         vp = nd.ni_vp;
 2365 
 2366         if (vn_isdisk_error(vp, &error)) {
 2367                 error = swapongeom(vp);
 2368         } else if (vp->v_type == VREG &&
 2369             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 2370             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
 2371                 /*
 2372                  * Allow direct swapping to NFS regular files in the same
 2373                  * way that nfs_mountroot() sets up diskless swapping.
 2374                  */
 2375                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
 2376         }
 2377 
 2378         if (error != 0)
 2379                 vput(vp);
 2380         else
 2381                 VOP_UNLOCK(vp);
 2382 done:
 2383         sx_xunlock(&swdev_syscall_lock);
 2384         return (error);
 2385 }
 2386 
 2387 /*
 2388  * Check that the total amount of swap currently configured does not
 2389  * exceed half the theoretical maximum.  If it does, print a warning
 2390  * message.
 2391  */
 2392 static void
 2393 swapon_check_swzone(void)
 2394 {
 2395 
 2396         /* recommend using no more than half that amount */
 2397         if (swap_total > swap_maxpages / 2) {
 2398                 printf("warning: total configured swap (%lu pages) "
 2399                     "exceeds maximum recommended amount (%lu pages).\n",
 2400                     swap_total, swap_maxpages / 2);
 2401                 printf("warning: increase kern.maxswzone "
 2402                     "or reduce amount of swap.\n");
 2403         }
 2404 }
 2405 
 2406 static void
 2407 swaponsomething(struct vnode *vp, void *id, u_long nblks,
 2408     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
 2409 {
 2410         struct swdevt *sp, *tsp;
 2411         daddr_t dvbase;
 2412 
 2413         /*
 2414          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
 2415          * First chop nblks off to page-align it, then convert.
 2416          *
 2417          * sw->sw_nblks is in page-sized chunks now too.
 2418          */
 2419         nblks &= ~(ctodb(1) - 1);
 2420         nblks = dbtoc(nblks);
 2421 
 2422         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
 2423         sp->sw_blist = blist_create(nblks, M_WAITOK);
 2424         sp->sw_vp = vp;
 2425         sp->sw_id = id;
 2426         sp->sw_dev = dev;
 2427         sp->sw_nblks = nblks;
 2428         sp->sw_used = 0;
 2429         sp->sw_strategy = strategy;
 2430         sp->sw_close = close;
 2431         sp->sw_flags = flags;
 2432 
 2433         /*
 2434          * Do not free the first blocks in order to avoid overwriting
 2435          * any bsd label at the front of the partition
 2436          */
 2437         blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
 2438             nblks - howmany(BBSIZE, PAGE_SIZE));
 2439 
 2440         dvbase = 0;
 2441         mtx_lock(&sw_dev_mtx);
 2442         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
 2443                 if (tsp->sw_end >= dvbase) {
 2444                         /*
 2445                          * We put one uncovered page between the devices
 2446                          * in order to definitively prevent any cross-device
 2447                          * I/O requests
 2448                          */
 2449                         dvbase = tsp->sw_end + 1;
 2450                 }
 2451         }
 2452         sp->sw_first = dvbase;
 2453         sp->sw_end = dvbase + nblks;
 2454         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
 2455         nswapdev++;
 2456         swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
 2457         swap_total += nblks;
 2458         swapon_check_swzone();
 2459         swp_sizecheck();
 2460         mtx_unlock(&sw_dev_mtx);
 2461         EVENTHANDLER_INVOKE(swapon, sp);
 2462 }
 2463 
 2464 /*
 2465  * SYSCALL: swapoff(devname)
 2466  *
 2467  * Disable swapping on the given device.
 2468  *
 2469  * XXX: Badly designed system call: it should use a device index
 2470  * rather than filename as specification.  We keep sw_vp around
 2471  * only to make this work.
 2472  */
 2473 static int
 2474 kern_swapoff(struct thread *td, const char *name, enum uio_seg name_seg,
 2475     u_int flags)
 2476 {
 2477         struct vnode *vp;
 2478         struct nameidata nd;
 2479         struct swdevt *sp;
 2480         int error;
 2481 
 2482         error = priv_check(td, PRIV_SWAPOFF);
 2483         if (error != 0)
 2484                 return (error);
 2485         if ((flags & ~(SWAPOFF_FORCE)) != 0)
 2486                 return (EINVAL);
 2487 
 2488         sx_xlock(&swdev_syscall_lock);
 2489 
 2490         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, name_seg, name);
 2491         error = namei(&nd);
 2492         if (error)
 2493                 goto done;
 2494         NDFREE_PNBUF(&nd);
 2495         vp = nd.ni_vp;
 2496 
 2497         mtx_lock(&sw_dev_mtx);
 2498         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2499                 if (sp->sw_vp == vp)
 2500                         break;
 2501         }
 2502         mtx_unlock(&sw_dev_mtx);
 2503         if (sp == NULL) {
 2504                 error = EINVAL;
 2505                 goto done;
 2506         }
 2507         error = swapoff_one(sp, td->td_ucred, flags);
 2508 done:
 2509         sx_xunlock(&swdev_syscall_lock);
 2510         return (error);
 2511 }
 2512 
 2513 
 2514 #ifdef COMPAT_FREEBSD13
 2515 int
 2516 freebsd13_swapoff(struct thread *td, struct freebsd13_swapoff_args *uap)
 2517 {
 2518         return (kern_swapoff(td, uap->name, UIO_USERSPACE, 0));
 2519 }
 2520 #endif
 2521 
 2522 int
 2523 sys_swapoff(struct thread *td, struct swapoff_args *uap)
 2524 {
 2525         return (kern_swapoff(td, uap->name, UIO_USERSPACE, uap->flags));
 2526 }
 2527 
 2528 static int
 2529 swapoff_one(struct swdevt *sp, struct ucred *cred, u_int flags)
 2530 {
 2531         u_long nblks;
 2532 #ifdef MAC
 2533         int error;
 2534 #endif
 2535 
 2536         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
 2537 #ifdef MAC
 2538         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
 2539         error = mac_system_check_swapoff(cred, sp->sw_vp);
 2540         (void) VOP_UNLOCK(sp->sw_vp);
 2541         if (error != 0)
 2542                 return (error);
 2543 #endif
 2544         nblks = sp->sw_nblks;
 2545 
 2546         /*
 2547          * We can turn off this swap device safely only if the
 2548          * available virtual memory in the system will fit the amount
 2549          * of data we will have to page back in, plus an epsilon so
 2550          * the system doesn't become critically low on swap space.
 2551          * The vm_free_count() part does not account e.g. for clean
 2552          * pages that can be immediately reclaimed without paging, so
 2553          * this is a very rough estimation.
 2554          *
 2555          * On the other hand, not turning swap off on swapoff_all()
 2556          * means that we can lose swap data when filesystems go away,
 2557          * which is arguably worse.
 2558          */
 2559         if ((flags & SWAPOFF_FORCE) == 0 &&
 2560             vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
 2561                 return (ENOMEM);
 2562 
 2563         /*
 2564          * Prevent further allocations on this device.
 2565          */
 2566         mtx_lock(&sw_dev_mtx);
 2567         sp->sw_flags |= SW_CLOSING;
 2568         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
 2569         swap_total -= nblks;
 2570         mtx_unlock(&sw_dev_mtx);
 2571 
 2572         /*
 2573          * Page in the contents of the device and close it.
 2574          */
 2575         swap_pager_swapoff(sp);
 2576 
 2577         sp->sw_close(curthread, sp);
 2578         mtx_lock(&sw_dev_mtx);
 2579         sp->sw_id = NULL;
 2580         TAILQ_REMOVE(&swtailq, sp, sw_list);
 2581         nswapdev--;
 2582         if (nswapdev == 0) {
 2583                 swap_pager_full = 2;
 2584                 swap_pager_almost_full = 1;
 2585         }
 2586         if (swdevhd == sp)
 2587                 swdevhd = NULL;
 2588         mtx_unlock(&sw_dev_mtx);
 2589         blist_destroy(sp->sw_blist);
 2590         free(sp, M_VMPGDATA);
 2591         return (0);
 2592 }
 2593 
 2594 void
 2595 swapoff_all(void)
 2596 {
 2597         struct swdevt *sp, *spt;
 2598         const char *devname;
 2599         int error;
 2600 
 2601         sx_xlock(&swdev_syscall_lock);
 2602 
 2603         mtx_lock(&sw_dev_mtx);
 2604         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
 2605                 mtx_unlock(&sw_dev_mtx);
 2606                 if (vn_isdisk(sp->sw_vp))
 2607                         devname = devtoname(sp->sw_vp->v_rdev);
 2608                 else
 2609                         devname = "[file]";
 2610                 error = swapoff_one(sp, thread0.td_ucred, SWAPOFF_FORCE);
 2611                 if (error != 0) {
 2612                         printf("Cannot remove swap device %s (error=%d), "
 2613                             "skipping.\n", devname, error);
 2614                 } else if (bootverbose) {
 2615                         printf("Swap device %s removed.\n", devname);
 2616                 }
 2617                 mtx_lock(&sw_dev_mtx);
 2618         }
 2619         mtx_unlock(&sw_dev_mtx);
 2620 
 2621         sx_xunlock(&swdev_syscall_lock);
 2622 }
 2623 
 2624 void
 2625 swap_pager_status(int *total, int *used)
 2626 {
 2627 
 2628         *total = swap_total;
 2629         *used = swap_total - swap_pager_avail -
 2630             nswapdev * howmany(BBSIZE, PAGE_SIZE);
 2631 }
 2632 
 2633 int
 2634 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
 2635 {
 2636         struct swdevt *sp;
 2637         const char *tmp_devname;
 2638         int error, n;
 2639 
 2640         n = 0;
 2641         error = ENOENT;
 2642         mtx_lock(&sw_dev_mtx);
 2643         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2644                 if (n != name) {
 2645                         n++;
 2646                         continue;
 2647                 }
 2648                 xs->xsw_version = XSWDEV_VERSION;
 2649                 xs->xsw_dev = sp->sw_dev;
 2650                 xs->xsw_flags = sp->sw_flags;
 2651                 xs->xsw_nblks = sp->sw_nblks;
 2652                 xs->xsw_used = sp->sw_used;
 2653                 if (devname != NULL) {
 2654                         if (vn_isdisk(sp->sw_vp))
 2655                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
 2656                         else
 2657                                 tmp_devname = "[file]";
 2658                         strncpy(devname, tmp_devname, len);
 2659                 }
 2660                 error = 0;
 2661                 break;
 2662         }
 2663         mtx_unlock(&sw_dev_mtx);
 2664         return (error);
 2665 }
 2666 
 2667 #if defined(COMPAT_FREEBSD11)
 2668 #define XSWDEV_VERSION_11       1
 2669 struct xswdev11 {
 2670         u_int   xsw_version;
 2671         uint32_t xsw_dev;
 2672         int     xsw_flags;
 2673         int     xsw_nblks;
 2674         int     xsw_used;
 2675 };
 2676 #endif
 2677 
 2678 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
 2679 struct xswdev32 {
 2680         u_int   xsw_version;
 2681         u_int   xsw_dev1, xsw_dev2;
 2682         int     xsw_flags;
 2683         int     xsw_nblks;
 2684         int     xsw_used;
 2685 };
 2686 #endif
 2687 
 2688 static int
 2689 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
 2690 {
 2691         struct xswdev xs;
 2692 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
 2693         struct xswdev32 xs32;
 2694 #endif
 2695 #if defined(COMPAT_FREEBSD11)
 2696         struct xswdev11 xs11;
 2697 #endif
 2698         int error;
 2699 
 2700         if (arg2 != 1)                  /* name length */
 2701                 return (EINVAL);
 2702 
 2703         memset(&xs, 0, sizeof(xs));
 2704         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
 2705         if (error != 0)
 2706                 return (error);
 2707 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
 2708         if (req->oldlen == sizeof(xs32)) {
 2709                 memset(&xs32, 0, sizeof(xs32));
 2710                 xs32.xsw_version = XSWDEV_VERSION;
 2711                 xs32.xsw_dev1 = xs.xsw_dev;
 2712                 xs32.xsw_dev2 = xs.xsw_dev >> 32;
 2713                 xs32.xsw_flags = xs.xsw_flags;
 2714                 xs32.xsw_nblks = xs.xsw_nblks;
 2715                 xs32.xsw_used = xs.xsw_used;
 2716                 error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
 2717                 return (error);
 2718         }
 2719 #endif
 2720 #if defined(COMPAT_FREEBSD11)
 2721         if (req->oldlen == sizeof(xs11)) {
 2722                 memset(&xs11, 0, sizeof(xs11));
 2723                 xs11.xsw_version = XSWDEV_VERSION_11;
 2724                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
 2725                 xs11.xsw_flags = xs.xsw_flags;
 2726                 xs11.xsw_nblks = xs.xsw_nblks;
 2727                 xs11.xsw_used = xs.xsw_used;
 2728                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
 2729                 return (error);
 2730         }
 2731 #endif
 2732         error = SYSCTL_OUT(req, &xs, sizeof(xs));
 2733         return (error);
 2734 }
 2735 
 2736 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
 2737     "Number of swap devices");
 2738 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2739     sysctl_vm_swap_info,
 2740     "Swap statistics by device");
 2741 
 2742 /*
 2743  * Count the approximate swap usage in pages for a vmspace.  The
 2744  * shadowed or not yet copied on write swap blocks are not accounted.
 2745  * The map must be locked.
 2746  */
 2747 long
 2748 vmspace_swap_count(struct vmspace *vmspace)
 2749 {
 2750         vm_map_t map;
 2751         vm_map_entry_t cur;
 2752         vm_object_t object;
 2753         struct swblk *sb;
 2754         vm_pindex_t e, pi;
 2755         long count;
 2756         int i;
 2757 
 2758         map = &vmspace->vm_map;
 2759         count = 0;
 2760 
 2761         VM_MAP_ENTRY_FOREACH(cur, map) {
 2762                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
 2763                         continue;
 2764                 object = cur->object.vm_object;
 2765                 if (object == NULL || (object->flags & OBJ_SWAP) == 0)
 2766                         continue;
 2767                 VM_OBJECT_RLOCK(object);
 2768                 if ((object->flags & OBJ_SWAP) == 0)
 2769                         goto unlock;
 2770                 pi = OFF_TO_IDX(cur->offset);
 2771                 e = pi + OFF_TO_IDX(cur->end - cur->start);
 2772                 for (;; pi = sb->p + SWAP_META_PAGES) {
 2773                         sb = SWAP_PCTRIE_LOOKUP_GE(
 2774                             &object->un_pager.swp.swp_blks, pi);
 2775                         if (sb == NULL || sb->p >= e)
 2776                                 break;
 2777                         for (i = 0; i < SWAP_META_PAGES; i++) {
 2778                                 if (sb->p + i < e &&
 2779                                     sb->d[i] != SWAPBLK_NONE)
 2780                                         count++;
 2781                         }
 2782                 }
 2783 unlock:
 2784                 VM_OBJECT_RUNLOCK(object);
 2785         }
 2786         return (count);
 2787 }
 2788 
 2789 /*
 2790  * GEOM backend
 2791  *
 2792  * Swapping onto disk devices.
 2793  *
 2794  */
 2795 
 2796 static g_orphan_t swapgeom_orphan;
 2797 
 2798 static struct g_class g_swap_class = {
 2799         .name = "SWAP",
 2800         .version = G_VERSION,
 2801         .orphan = swapgeom_orphan,
 2802 };
 2803 
 2804 DECLARE_GEOM_CLASS(g_swap_class, g_class);
 2805 
 2806 static void
 2807 swapgeom_close_ev(void *arg, int flags)
 2808 {
 2809         struct g_consumer *cp;
 2810 
 2811         cp = arg;
 2812         g_access(cp, -1, -1, 0);
 2813         g_detach(cp);
 2814         g_destroy_consumer(cp);
 2815 }
 2816 
 2817 /*
 2818  * Add a reference to the g_consumer for an inflight transaction.
 2819  */
 2820 static void
 2821 swapgeom_acquire(struct g_consumer *cp)
 2822 {
 2823 
 2824         mtx_assert(&sw_dev_mtx, MA_OWNED);
 2825         cp->index++;
 2826 }
 2827 
 2828 /*
 2829  * Remove a reference from the g_consumer.  Post a close event if all
 2830  * references go away, since the function might be called from the
 2831  * biodone context.
 2832  */
 2833 static void
 2834 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
 2835 {
 2836 
 2837         mtx_assert(&sw_dev_mtx, MA_OWNED);
 2838         cp->index--;
 2839         if (cp->index == 0) {
 2840                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
 2841                         sp->sw_id = NULL;
 2842         }
 2843 }
 2844 
 2845 static void
 2846 swapgeom_done(struct bio *bp2)
 2847 {
 2848         struct swdevt *sp;
 2849         struct buf *bp;
 2850         struct g_consumer *cp;
 2851 
 2852         bp = bp2->bio_caller2;
 2853         cp = bp2->bio_from;
 2854         bp->b_ioflags = bp2->bio_flags;
 2855         if (bp2->bio_error)
 2856                 bp->b_ioflags |= BIO_ERROR;
 2857         bp->b_resid = bp->b_bcount - bp2->bio_completed;
 2858         bp->b_error = bp2->bio_error;
 2859         bp->b_caller1 = NULL;
 2860         bufdone(bp);
 2861         sp = bp2->bio_caller1;
 2862         mtx_lock(&sw_dev_mtx);
 2863         swapgeom_release(cp, sp);
 2864         mtx_unlock(&sw_dev_mtx);
 2865         g_destroy_bio(bp2);
 2866 }
 2867 
 2868 static void
 2869 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
 2870 {
 2871         struct bio *bio;
 2872         struct g_consumer *cp;
 2873 
 2874         mtx_lock(&sw_dev_mtx);
 2875         cp = sp->sw_id;
 2876         if (cp == NULL) {
 2877                 mtx_unlock(&sw_dev_mtx);
 2878                 bp->b_error = ENXIO;
 2879                 bp->b_ioflags |= BIO_ERROR;
 2880                 bufdone(bp);
 2881                 return;
 2882         }
 2883         swapgeom_acquire(cp);
 2884         mtx_unlock(&sw_dev_mtx);
 2885         if (bp->b_iocmd == BIO_WRITE)
 2886                 bio = g_new_bio();
 2887         else
 2888                 bio = g_alloc_bio();
 2889         if (bio == NULL) {
 2890                 mtx_lock(&sw_dev_mtx);
 2891                 swapgeom_release(cp, sp);
 2892                 mtx_unlock(&sw_dev_mtx);
 2893                 bp->b_error = ENOMEM;
 2894                 bp->b_ioflags |= BIO_ERROR;
 2895                 printf("swap_pager: cannot allocate bio\n");
 2896                 bufdone(bp);
 2897                 return;
 2898         }
 2899 
 2900         bp->b_caller1 = bio;
 2901         bio->bio_caller1 = sp;
 2902         bio->bio_caller2 = bp;
 2903         bio->bio_cmd = bp->b_iocmd;
 2904         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
 2905         bio->bio_length = bp->b_bcount;
 2906         bio->bio_done = swapgeom_done;
 2907         bio->bio_flags |= BIO_SWAP;
 2908         if (!buf_mapped(bp)) {
 2909                 bio->bio_ma = bp->b_pages;
 2910                 bio->bio_data = unmapped_buf;
 2911                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
 2912                 bio->bio_ma_n = bp->b_npages;
 2913                 bio->bio_flags |= BIO_UNMAPPED;
 2914         } else {
 2915                 bio->bio_data = bp->b_data;
 2916                 bio->bio_ma = NULL;
 2917         }
 2918         g_io_request(bio, cp);
 2919         return;
 2920 }
 2921 
 2922 static void
 2923 swapgeom_orphan(struct g_consumer *cp)
 2924 {
 2925         struct swdevt *sp;
 2926         int destroy;
 2927 
 2928         mtx_lock(&sw_dev_mtx);
 2929         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2930                 if (sp->sw_id == cp) {
 2931                         sp->sw_flags |= SW_CLOSING;
 2932                         break;
 2933                 }
 2934         }
 2935         /*
 2936          * Drop reference we were created with. Do directly since we're in a
 2937          * special context where we don't have to queue the call to
 2938          * swapgeom_close_ev().
 2939          */
 2940         cp->index--;
 2941         destroy = ((sp != NULL) && (cp->index == 0));
 2942         if (destroy)
 2943                 sp->sw_id = NULL;
 2944         mtx_unlock(&sw_dev_mtx);
 2945         if (destroy)
 2946                 swapgeom_close_ev(cp, 0);
 2947 }
 2948 
 2949 static void
 2950 swapgeom_close(struct thread *td, struct swdevt *sw)
 2951 {
 2952         struct g_consumer *cp;
 2953 
 2954         mtx_lock(&sw_dev_mtx);
 2955         cp = sw->sw_id;
 2956         sw->sw_id = NULL;
 2957         mtx_unlock(&sw_dev_mtx);
 2958 
 2959         /*
 2960          * swapgeom_close() may be called from the biodone context,
 2961          * where we cannot perform topology changes.  Delegate the
 2962          * work to the events thread.
 2963          */
 2964         if (cp != NULL)
 2965                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
 2966 }
 2967 
 2968 static int
 2969 swapongeom_locked(struct cdev *dev, struct vnode *vp)
 2970 {
 2971         struct g_provider *pp;
 2972         struct g_consumer *cp;
 2973         static struct g_geom *gp;
 2974         struct swdevt *sp;
 2975         u_long nblks;
 2976         int error;
 2977 
 2978         pp = g_dev_getprovider(dev);
 2979         if (pp == NULL)
 2980                 return (ENODEV);
 2981         mtx_lock(&sw_dev_mtx);
 2982         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2983                 cp = sp->sw_id;
 2984                 if (cp != NULL && cp->provider == pp) {
 2985                         mtx_unlock(&sw_dev_mtx);
 2986                         return (EBUSY);
 2987                 }
 2988         }
 2989         mtx_unlock(&sw_dev_mtx);
 2990         if (gp == NULL)
 2991                 gp = g_new_geomf(&g_swap_class, "swap");
 2992         cp = g_new_consumer(gp);
 2993         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
 2994         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
 2995         g_attach(cp, pp);
 2996         /*
 2997          * XXX: Every time you think you can improve the margin for
 2998          * footshooting, somebody depends on the ability to do so:
 2999          * savecore(8) wants to write to our swapdev so we cannot
 3000          * set an exclusive count :-(
 3001          */
 3002         error = g_access(cp, 1, 1, 0);
 3003         if (error != 0) {
 3004                 g_detach(cp);
 3005                 g_destroy_consumer(cp);
 3006                 return (error);
 3007         }
 3008         nblks = pp->mediasize / DEV_BSIZE;
 3009         swaponsomething(vp, cp, nblks, swapgeom_strategy,
 3010             swapgeom_close, dev2udev(dev),
 3011             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
 3012         return (0);
 3013 }
 3014 
 3015 static int
 3016 swapongeom(struct vnode *vp)
 3017 {
 3018         int error;
 3019 
 3020         ASSERT_VOP_ELOCKED(vp, "swapongeom");
 3021         if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
 3022                 error = ENOENT;
 3023         } else {
 3024                 g_topology_lock();
 3025                 error = swapongeom_locked(vp->v_rdev, vp);
 3026                 g_topology_unlock();
 3027         }
 3028         return (error);
 3029 }
 3030 
 3031 /*
 3032  * VNODE backend
 3033  *
 3034  * This is used mainly for network filesystem (read: probably only tested
 3035  * with NFS) swapfiles.
 3036  *
 3037  */
 3038 
 3039 static void
 3040 swapdev_strategy(struct buf *bp, struct swdevt *sp)
 3041 {
 3042         struct vnode *vp2;
 3043 
 3044         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
 3045 
 3046         vp2 = sp->sw_id;
 3047         vhold(vp2);
 3048         if (bp->b_iocmd == BIO_WRITE) {
 3049                 vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY);
 3050                 if (bp->b_bufobj)
 3051                         bufobj_wdrop(bp->b_bufobj);
 3052                 bufobj_wref(&vp2->v_bufobj);
 3053         } else {
 3054                 vn_lock(vp2, LK_SHARED | LK_RETRY);
 3055         }
 3056         if (bp->b_bufobj != &vp2->v_bufobj)
 3057                 bp->b_bufobj = &vp2->v_bufobj;
 3058         bp->b_vp = vp2;
 3059         bp->b_iooffset = dbtob(bp->b_blkno);
 3060         bstrategy(bp);
 3061         VOP_UNLOCK(vp2);
 3062 }
 3063 
 3064 static void
 3065 swapdev_close(struct thread *td, struct swdevt *sp)
 3066 {
 3067         struct vnode *vp;
 3068 
 3069         vp = sp->sw_vp;
 3070         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 3071         VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td);
 3072         vput(vp);
 3073 }
 3074 
 3075 static int
 3076 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
 3077 {
 3078         struct swdevt *sp;
 3079         int error;
 3080 
 3081         ASSERT_VOP_ELOCKED(vp, "swaponvp");
 3082         if (nblks == 0)
 3083                 return (ENXIO);
 3084         mtx_lock(&sw_dev_mtx);
 3085         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 3086                 if (sp->sw_id == vp) {
 3087                         mtx_unlock(&sw_dev_mtx);
 3088                         return (EBUSY);
 3089                 }
 3090         }
 3091         mtx_unlock(&sw_dev_mtx);
 3092 
 3093 #ifdef MAC
 3094         error = mac_system_check_swapon(td->td_ucred, vp);
 3095         if (error == 0)
 3096 #endif
 3097                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
 3098         if (error != 0)
 3099                 return (error);
 3100 
 3101         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
 3102             NODEV, 0);
 3103         return (0);
 3104 }
 3105 
 3106 static int
 3107 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
 3108 {
 3109         int error, new, n;
 3110 
 3111         new = nsw_wcount_async_max;
 3112         error = sysctl_handle_int(oidp, &new, 0, req);
 3113         if (error != 0 || req->newptr == NULL)
 3114                 return (error);
 3115 
 3116         if (new > nswbuf / 2 || new < 1)
 3117                 return (EINVAL);
 3118 
 3119         mtx_lock(&swbuf_mtx);
 3120         while (nsw_wcount_async_max != new) {
 3121                 /*
 3122                  * Adjust difference.  If the current async count is too low,
 3123                  * we will need to sqeeze our update slowly in.  Sleep with a
 3124                  * higher priority than getpbuf() to finish faster.
 3125                  */
 3126                 n = new - nsw_wcount_async_max;
 3127                 if (nsw_wcount_async + n >= 0) {
 3128                         nsw_wcount_async += n;
 3129                         nsw_wcount_async_max += n;
 3130                         wakeup(&nsw_wcount_async);
 3131                 } else {
 3132                         nsw_wcount_async_max -= nsw_wcount_async;
 3133                         nsw_wcount_async = 0;
 3134                         msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
 3135                             "swpsysctl", 0);
 3136                 }
 3137         }
 3138         mtx_unlock(&swbuf_mtx);
 3139 
 3140         return (0);
 3141 }
 3142 
 3143 static void
 3144 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
 3145     vm_offset_t end)
 3146 {
 3147 
 3148         VM_OBJECT_WLOCK(object);
 3149         KASSERT((object->flags & OBJ_ANON) == 0,
 3150             ("Splittable object with writecount"));
 3151         object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
 3152         VM_OBJECT_WUNLOCK(object);
 3153 }
 3154 
 3155 static void
 3156 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
 3157     vm_offset_t end)
 3158 {
 3159 
 3160         VM_OBJECT_WLOCK(object);
 3161         KASSERT((object->flags & OBJ_ANON) == 0,
 3162             ("Splittable object with writecount"));
 3163         object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
 3164         VM_OBJECT_WUNLOCK(object);
 3165 }

Cache object: ad1e051f6418f3437d74fedc76cfb3fa


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.