FreeBSD/Linux Kernel Cross Reference
sys/vm/swap_pager.c
1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1998 Matthew Dillon,
5 * Copyright (c) 1994 John S. Dyson
6 * Copyright (c) 1990 University of Utah.
7 * Copyright (c) 1982, 1986, 1989, 1993
8 * The Regents of the University of California. All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * the Systems Programming Group of the University of Utah Computer
12 * Science Department.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * New Swap System
43 * Matthew Dillon
44 *
45 * Radix Bitmap 'blists'.
46 *
47 * - The new swapper uses the new radix bitmap code. This should scale
48 * to arbitrarily small or arbitrarily large swap spaces and an almost
49 * arbitrary degree of fragmentation.
50 *
51 * Features:
52 *
53 * - on the fly reallocation of swap during putpages. The new system
54 * does not try to keep previously allocated swap blocks for dirty
55 * pages.
56 *
57 * - on the fly deallocation of swap
58 *
59 * - No more garbage collection required. Unnecessarily allocated swap
60 * blocks only exist for dirty vm_page_t's now and these are already
61 * cycled (in a high-load system) by the pager. We also do on-the-fly
62 * removal of invalidated swap blocks when a page is destroyed
63 * or renamed.
64 *
65 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66 *
67 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94
68 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94
69 */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_vm.h"
75
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/limits.h>
86 #include <sys/lock.h>
87 #include <sys/kernel.h>
88 #include <sys/mount.h>
89 #include <sys/namei.h>
90 #include <sys/malloc.h>
91 #include <sys/pctrie.h>
92 #include <sys/priv.h>
93 #include <sys/proc.h>
94 #include <sys/racct.h>
95 #include <sys/resource.h>
96 #include <sys/resourcevar.h>
97 #include <sys/rwlock.h>
98 #include <sys/sbuf.h>
99 #include <sys/sysctl.h>
100 #include <sys/sysproto.h>
101 #include <sys/systm.h>
102 #include <sys/sx.h>
103 #include <sys/unistd.h>
104 #include <sys/user.h>
105 #include <sys/vmmeter.h>
106 #include <sys/vnode.h>
107
108 #include <security/mac/mac_framework.h>
109
110 #include <vm/vm.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_map.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
116 #include <vm/vm_pager.h>
117 #include <vm/vm_pageout.h>
118 #include <vm/vm_param.h>
119 #include <vm/swap_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122
123 #include <geom/geom.h>
124
125 /*
126 * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
127 * The 64-page limit is due to the radix code (kern/subr_blist.c).
128 */
129 #ifndef MAX_PAGEOUT_CLUSTER
130 #define MAX_PAGEOUT_CLUSTER 32
131 #endif
132
133 #if !defined(SWB_NPAGES)
134 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER
135 #endif
136
137 #define SWAP_META_PAGES PCTRIE_COUNT
138
139 /*
140 * A swblk structure maps each page index within a
141 * SWAP_META_PAGES-aligned and sized range to the address of an
142 * on-disk swap block (or SWAPBLK_NONE). The collection of these
143 * mappings for an entire vm object is implemented as a pc-trie.
144 */
145 struct swblk {
146 vm_pindex_t p;
147 daddr_t d[SWAP_META_PAGES];
148 };
149
150 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
151 static struct mtx sw_dev_mtx;
152 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
153 static struct swdevt *swdevhd; /* Allocate from here next */
154 static int nswapdev; /* Number of swap devices */
155 int swap_pager_avail;
156 static struct sx swdev_syscall_lock; /* serialize swap(on|off) */
157
158 static __exclusive_cache_line u_long swap_reserved;
159 static u_long swap_total;
160 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
161
162 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
163 "VM swap stats");
164
165 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
166 &swap_reserved, 0, sysctl_page_shift, "QU",
167 "Amount of swap storage needed to back all allocated anonymous memory.");
168 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
169 &swap_total, 0, sysctl_page_shift, "QU",
170 "Total amount of available swap storage.");
171
172 int vm_overcommit __read_mostly = 0;
173 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &vm_overcommit, 0,
174 "Configure virtual memory overcommit behavior. See tuning(7) "
175 "for details.");
176 static unsigned long swzone;
177 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
178 "Actual size of swap metadata zone");
179 static unsigned long swap_maxpages;
180 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
181 "Maximum amount of swap supported");
182
183 static COUNTER_U64_DEFINE_EARLY(swap_free_deferred);
184 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
185 CTLFLAG_RD, &swap_free_deferred,
186 "Number of pages that deferred freeing swap space");
187
188 static COUNTER_U64_DEFINE_EARLY(swap_free_completed);
189 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
190 CTLFLAG_RD, &swap_free_completed,
191 "Number of deferred frees completed");
192
193 static int
194 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
195 {
196 uint64_t newval;
197 u_long value = *(u_long *)arg1;
198
199 newval = ((uint64_t)value) << PAGE_SHIFT;
200 return (sysctl_handle_64(oidp, &newval, 0, req));
201 }
202
203 static bool
204 swap_reserve_by_cred_rlimit(u_long pincr, struct ucred *cred, int oc)
205 {
206 struct uidinfo *uip;
207 u_long prev;
208
209 uip = cred->cr_ruidinfo;
210
211 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
212 if ((oc & SWAP_RESERVE_RLIMIT_ON) != 0 &&
213 prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
214 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT) != 0) {
215 prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
216 KASSERT(prev >= pincr,
217 ("negative vmsize for uid %d\n", uip->ui_uid));
218 return (false);
219 }
220 return (true);
221 }
222
223 static void
224 swap_release_by_cred_rlimit(u_long pdecr, struct ucred *cred)
225 {
226 struct uidinfo *uip;
227 #ifdef INVARIANTS
228 u_long prev;
229 #endif
230
231 uip = cred->cr_ruidinfo;
232
233 #ifdef INVARIANTS
234 prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
235 KASSERT(prev >= pdecr,
236 ("negative vmsize for uid %d\n", uip->ui_uid));
237 #else
238 atomic_subtract_long(&uip->ui_vmsize, pdecr);
239 #endif
240 }
241
242 static void
243 swap_reserve_force_rlimit(u_long pincr, struct ucred *cred)
244 {
245 struct uidinfo *uip;
246
247 uip = cred->cr_ruidinfo;
248 atomic_add_long(&uip->ui_vmsize, pincr);
249 }
250
251 bool
252 swap_reserve(vm_ooffset_t incr)
253 {
254
255 return (swap_reserve_by_cred(incr, curthread->td_ucred));
256 }
257
258 bool
259 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
260 {
261 u_long r, s, prev, pincr;
262 #ifdef RACCT
263 int error;
264 #endif
265 int oc;
266 static int curfail;
267 static struct timeval lastfail;
268
269 KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK",
270 __func__, (uintmax_t)incr));
271
272 #ifdef RACCT
273 if (RACCT_ENABLED()) {
274 PROC_LOCK(curproc);
275 error = racct_add(curproc, RACCT_SWAP, incr);
276 PROC_UNLOCK(curproc);
277 if (error != 0)
278 return (false);
279 }
280 #endif
281
282 pincr = atop(incr);
283 prev = atomic_fetchadd_long(&swap_reserved, pincr);
284 r = prev + pincr;
285 s = swap_total;
286 oc = atomic_load_int(&vm_overcommit);
287 if (r > s && (oc & SWAP_RESERVE_ALLOW_NONWIRED) != 0) {
288 s += vm_cnt.v_page_count - vm_cnt.v_free_reserved -
289 vm_wire_count();
290 }
291 if ((oc & SWAP_RESERVE_FORCE_ON) != 0 && r > s &&
292 priv_check(curthread, PRIV_VM_SWAP_NOQUOTA) != 0) {
293 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
294 KASSERT(prev >= pincr,
295 ("swap_reserved < incr on overcommit fail"));
296 goto out_error;
297 }
298
299 if (!swap_reserve_by_cred_rlimit(pincr, cred, oc)) {
300 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
301 KASSERT(prev >= pincr,
302 ("swap_reserved < incr on overcommit fail"));
303 goto out_error;
304 }
305
306 return (true);
307
308 out_error:
309 if (ppsratecheck(&lastfail, &curfail, 1)) {
310 printf("uid %d, pid %d: swap reservation "
311 "for %jd bytes failed\n",
312 cred->cr_ruidinfo->ui_uid, curproc->p_pid, incr);
313 }
314 #ifdef RACCT
315 if (RACCT_ENABLED()) {
316 PROC_LOCK(curproc);
317 racct_sub(curproc, RACCT_SWAP, incr);
318 PROC_UNLOCK(curproc);
319 }
320 #endif
321
322 return (false);
323 }
324
325 void
326 swap_reserve_force(vm_ooffset_t incr)
327 {
328 u_long pincr;
329
330 KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK",
331 __func__, (uintmax_t)incr));
332
333 #ifdef RACCT
334 if (RACCT_ENABLED()) {
335 PROC_LOCK(curproc);
336 racct_add_force(curproc, RACCT_SWAP, incr);
337 PROC_UNLOCK(curproc);
338 }
339 #endif
340 pincr = atop(incr);
341 atomic_add_long(&swap_reserved, pincr);
342 swap_reserve_force_rlimit(pincr, curthread->td_ucred);
343 }
344
345 void
346 swap_release(vm_ooffset_t decr)
347 {
348 struct ucred *cred;
349
350 PROC_LOCK(curproc);
351 cred = curproc->p_ucred;
352 swap_release_by_cred(decr, cred);
353 PROC_UNLOCK(curproc);
354 }
355
356 void
357 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
358 {
359 u_long pdecr;
360 #ifdef INVARIANTS
361 u_long prev;
362 #endif
363
364 KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK",
365 __func__, (uintmax_t)decr));
366
367 pdecr = atop(decr);
368 #ifdef INVARIANTS
369 prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
370 KASSERT(prev >= pdecr, ("swap_reserved < decr"));
371 #else
372 atomic_subtract_long(&swap_reserved, pdecr);
373 #endif
374
375 swap_release_by_cred_rlimit(pdecr, cred);
376 #ifdef RACCT
377 if (racct_enable)
378 racct_sub_cred(cred, RACCT_SWAP, decr);
379 #endif
380 }
381
382 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
383 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
384 static struct mtx swbuf_mtx; /* to sync nsw_wcount_async */
385 static int nsw_wcount_async; /* limit async write buffers */
386 static int nsw_wcount_async_max;/* assigned maximum */
387 int nsw_cluster_max; /* maximum VOP I/O allowed */
388
389 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
390 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
391 CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
392 "Maximum running async swap ops");
393 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
394 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
395 CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
396 "Swap Fragmentation Info");
397
398 static struct sx sw_alloc_sx;
399
400 /*
401 * "named" and "unnamed" anon region objects. Try to reduce the overhead
402 * of searching a named list by hashing it just a little.
403 */
404
405 #define NOBJLISTS 8
406
407 #define NOBJLIST(handle) \
408 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
409
410 static struct pagerlst swap_pager_object_list[NOBJLISTS];
411 static uma_zone_t swwbuf_zone;
412 static uma_zone_t swrbuf_zone;
413 static uma_zone_t swblk_zone;
414 static uma_zone_t swpctrie_zone;
415
416 /*
417 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure
418 * calls hooked from other parts of the VM system and do not appear here.
419 * (see vm/swap_pager.h).
420 */
421 static vm_object_t
422 swap_pager_alloc(void *handle, vm_ooffset_t size,
423 vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
424 static void swap_pager_dealloc(vm_object_t object);
425 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
426 int *);
427 static int swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
428 int *, pgo_getpages_iodone_t, void *);
429 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
430 static boolean_t
431 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
432 static void swap_pager_init(void);
433 static void swap_pager_unswapped(vm_page_t);
434 static void swap_pager_swapoff(struct swdevt *sp);
435 static void swap_pager_update_writecount(vm_object_t object,
436 vm_offset_t start, vm_offset_t end);
437 static void swap_pager_release_writecount(vm_object_t object,
438 vm_offset_t start, vm_offset_t end);
439 static void swap_pager_freespace_pgo(vm_object_t object, vm_pindex_t start,
440 vm_size_t size);
441
442 const struct pagerops swappagerops = {
443 .pgo_kvme_type = KVME_TYPE_SWAP,
444 .pgo_init = swap_pager_init, /* early system initialization of pager */
445 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */
446 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */
447 .pgo_getpages = swap_pager_getpages, /* pagein */
448 .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */
449 .pgo_putpages = swap_pager_putpages, /* pageout */
450 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */
451 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */
452 .pgo_update_writecount = swap_pager_update_writecount,
453 .pgo_release_writecount = swap_pager_release_writecount,
454 .pgo_freespace = swap_pager_freespace_pgo,
455 };
456
457 /*
458 * swap_*() routines are externally accessible. swp_*() routines are
459 * internal.
460 */
461 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */
462 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */
463
464 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
465 "Maximum size of a swap block in pages");
466
467 static void swp_sizecheck(void);
468 static void swp_pager_async_iodone(struct buf *bp);
469 static bool swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
470 static void swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
471 static int swapongeom(struct vnode *);
472 static int swaponvp(struct thread *, struct vnode *, u_long);
473 static int swapoff_one(struct swdevt *sp, struct ucred *cred,
474 u_int flags);
475
476 /*
477 * Swap bitmap functions
478 */
479 static void swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
480 static daddr_t swp_pager_getswapspace(int *npages);
481
482 /*
483 * Metadata functions
484 */
485 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
486 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t,
487 vm_size_t *);
488 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
489 vm_pindex_t pindex, vm_pindex_t count, vm_size_t *freed);
490 static void swp_pager_meta_free_all(vm_object_t);
491 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
492
493 static void
494 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
495 {
496
497 *start = SWAPBLK_NONE;
498 *num = 0;
499 }
500
501 static void
502 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
503 {
504
505 if (*start + *num == addr) {
506 (*num)++;
507 } else {
508 swp_pager_freeswapspace(*start, *num);
509 *start = addr;
510 *num = 1;
511 }
512 }
513
514 static void *
515 swblk_trie_alloc(struct pctrie *ptree)
516 {
517
518 return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
519 M_USE_RESERVE : 0)));
520 }
521
522 static void
523 swblk_trie_free(struct pctrie *ptree, void *node)
524 {
525
526 uma_zfree(swpctrie_zone, node);
527 }
528
529 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
530
531 /*
532 * SWP_SIZECHECK() - update swap_pager_full indication
533 *
534 * update the swap_pager_almost_full indication and warn when we are
535 * about to run out of swap space, using lowat/hiwat hysteresis.
536 *
537 * Clear swap_pager_full ( task killing ) indication when lowat is met.
538 *
539 * No restrictions on call
540 * This routine may not block.
541 */
542 static void
543 swp_sizecheck(void)
544 {
545
546 if (swap_pager_avail < nswap_lowat) {
547 if (swap_pager_almost_full == 0) {
548 printf("swap_pager: out of swap space\n");
549 swap_pager_almost_full = 1;
550 }
551 } else {
552 swap_pager_full = 0;
553 if (swap_pager_avail > nswap_hiwat)
554 swap_pager_almost_full = 0;
555 }
556 }
557
558 /*
559 * SWAP_PAGER_INIT() - initialize the swap pager!
560 *
561 * Expected to be started from system init. NOTE: This code is run
562 * before much else so be careful what you depend on. Most of the VM
563 * system has yet to be initialized at this point.
564 */
565 static void
566 swap_pager_init(void)
567 {
568 /*
569 * Initialize object lists
570 */
571 int i;
572
573 for (i = 0; i < NOBJLISTS; ++i)
574 TAILQ_INIT(&swap_pager_object_list[i]);
575 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
576 sx_init(&sw_alloc_sx, "swspsx");
577 sx_init(&swdev_syscall_lock, "swsysc");
578
579 /*
580 * The nsw_cluster_max is constrained by the bp->b_pages[]
581 * array, which has maxphys / PAGE_SIZE entries, and our locally
582 * defined MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are
583 * constrained by the swap device interleave stripe size.
584 *
585 * Initialized early so that GEOM_ELI can see it.
586 */
587 nsw_cluster_max = min(maxphys / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
588 }
589
590 /*
591 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
592 *
593 * Expected to be started from pageout process once, prior to entering
594 * its main loop.
595 */
596 void
597 swap_pager_swap_init(void)
598 {
599 unsigned long n, n2;
600
601 /*
602 * Number of in-transit swap bp operations. Don't
603 * exhaust the pbufs completely. Make sure we
604 * initialize workable values (0 will work for hysteresis
605 * but it isn't very efficient).
606 *
607 * Currently we hardwire nsw_wcount_async to 4. This limit is
608 * designed to prevent other I/O from having high latencies due to
609 * our pageout I/O. The value 4 works well for one or two active swap
610 * devices but is probably a little low if you have more. Even so,
611 * a higher value would probably generate only a limited improvement
612 * with three or four active swap devices since the system does not
613 * typically have to pageout at extreme bandwidths. We will want
614 * at least 2 per swap devices, and 4 is a pretty good value if you
615 * have one NFS swap device due to the command/ack latency over NFS.
616 * So it all works out pretty well.
617 *
618 * nsw_cluster_max is initialized in swap_pager_init().
619 */
620
621 nsw_wcount_async = 4;
622 nsw_wcount_async_max = nsw_wcount_async;
623 mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
624
625 swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
626 swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
627
628 /*
629 * Initialize our zone, taking the user's requested size or
630 * estimating the number we need based on the number of pages
631 * in the system.
632 */
633 n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
634 vm_cnt.v_page_count / 2;
635 swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
636 pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
637 swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
638 NULL, NULL, _Alignof(struct swblk) - 1, 0);
639 n2 = n;
640 do {
641 if (uma_zone_reserve_kva(swblk_zone, n))
642 break;
643 /*
644 * if the allocation failed, try a zone two thirds the
645 * size of the previous attempt.
646 */
647 n -= ((n + 2) / 3);
648 } while (n > 0);
649
650 /*
651 * Often uma_zone_reserve_kva() cannot reserve exactly the
652 * requested size. Account for the difference when
653 * calculating swap_maxpages.
654 */
655 n = uma_zone_get_max(swblk_zone);
656
657 if (n < n2)
658 printf("Swap blk zone entries changed from %lu to %lu.\n",
659 n2, n);
660 /* absolute maximum we can handle assuming 100% efficiency */
661 swap_maxpages = n * SWAP_META_PAGES;
662 swzone = n * sizeof(struct swblk);
663 if (!uma_zone_reserve_kva(swpctrie_zone, n))
664 printf("Cannot reserve swap pctrie zone, "
665 "reduce kern.maxswzone.\n");
666 }
667
668 bool
669 swap_pager_init_object(vm_object_t object, void *handle, struct ucred *cred,
670 vm_ooffset_t size, vm_ooffset_t offset)
671 {
672 if (cred != NULL) {
673 if (!swap_reserve_by_cred(size, cred))
674 return (false);
675 crhold(cred);
676 }
677
678 object->un_pager.swp.writemappings = 0;
679 object->handle = handle;
680 if (cred != NULL) {
681 object->cred = cred;
682 object->charge = size;
683 }
684 return (true);
685 }
686
687 static vm_object_t
688 swap_pager_alloc_init(objtype_t otype, void *handle, struct ucred *cred,
689 vm_ooffset_t size, vm_ooffset_t offset)
690 {
691 vm_object_t object;
692
693 /*
694 * The un_pager.swp.swp_blks trie is initialized by
695 * vm_object_allocate() to ensure the correct order of
696 * visibility to other threads.
697 */
698 object = vm_object_allocate(otype, OFF_TO_IDX(offset +
699 PAGE_MASK + size));
700
701 if (!swap_pager_init_object(object, handle, cred, size, offset)) {
702 vm_object_deallocate(object);
703 return (NULL);
704 }
705 return (object);
706 }
707
708 /*
709 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
710 * its metadata structures.
711 *
712 * This routine is called from the mmap and fork code to create a new
713 * OBJT_SWAP object.
714 *
715 * This routine must ensure that no live duplicate is created for
716 * the named object request, which is protected against by
717 * holding the sw_alloc_sx lock in case handle != NULL.
718 */
719 static vm_object_t
720 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
721 vm_ooffset_t offset, struct ucred *cred)
722 {
723 vm_object_t object;
724
725 if (handle != NULL) {
726 /*
727 * Reference existing named region or allocate new one. There
728 * should not be a race here against swp_pager_meta_build()
729 * as called from vm_page_remove() in regards to the lookup
730 * of the handle.
731 */
732 sx_xlock(&sw_alloc_sx);
733 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
734 if (object == NULL) {
735 object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
736 size, offset);
737 if (object != NULL) {
738 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
739 object, pager_object_list);
740 }
741 }
742 sx_xunlock(&sw_alloc_sx);
743 } else {
744 object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
745 size, offset);
746 }
747 return (object);
748 }
749
750 /*
751 * SWAP_PAGER_DEALLOC() - remove swap metadata from object
752 *
753 * The swap backing for the object is destroyed. The code is
754 * designed such that we can reinstantiate it later, but this
755 * routine is typically called only when the entire object is
756 * about to be destroyed.
757 *
758 * The object must be locked.
759 */
760 static void
761 swap_pager_dealloc(vm_object_t object)
762 {
763
764 VM_OBJECT_ASSERT_WLOCKED(object);
765 KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
766
767 /*
768 * Remove from list right away so lookups will fail if we block for
769 * pageout completion.
770 */
771 if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
772 VM_OBJECT_WUNLOCK(object);
773 sx_xlock(&sw_alloc_sx);
774 TAILQ_REMOVE(NOBJLIST(object->handle), object,
775 pager_object_list);
776 sx_xunlock(&sw_alloc_sx);
777 VM_OBJECT_WLOCK(object);
778 }
779
780 vm_object_pip_wait(object, "swpdea");
781
782 /*
783 * Free all remaining metadata. We only bother to free it from
784 * the swap meta data. We do not attempt to free swapblk's still
785 * associated with vm_page_t's for this object. We do not care
786 * if paging is still in progress on some objects.
787 */
788 swp_pager_meta_free_all(object);
789 object->handle = NULL;
790 object->type = OBJT_DEAD;
791
792 /*
793 * Release the allocation charge.
794 */
795 if (object->cred != NULL) {
796 swap_release_by_cred(object->charge, object->cred);
797 object->charge = 0;
798 crfree(object->cred);
799 object->cred = NULL;
800 }
801
802 /*
803 * Hide the object from swap_pager_swapoff().
804 */
805 vm_object_clear_flag(object, OBJ_SWAP);
806 }
807
808 /************************************************************************
809 * SWAP PAGER BITMAP ROUTINES *
810 ************************************************************************/
811
812 /*
813 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space
814 *
815 * Allocate swap for up to the requested number of pages. The
816 * starting swap block number (a page index) is returned or
817 * SWAPBLK_NONE if the allocation failed.
818 *
819 * Also has the side effect of advising that somebody made a mistake
820 * when they configured swap and didn't configure enough.
821 *
822 * This routine may not sleep.
823 *
824 * We allocate in round-robin fashion from the configured devices.
825 */
826 static daddr_t
827 swp_pager_getswapspace(int *io_npages)
828 {
829 daddr_t blk;
830 struct swdevt *sp;
831 int mpages, npages;
832
833 KASSERT(*io_npages >= 1,
834 ("%s: npages not positive", __func__));
835 blk = SWAPBLK_NONE;
836 mpages = *io_npages;
837 npages = imin(BLIST_MAX_ALLOC, mpages);
838 mtx_lock(&sw_dev_mtx);
839 sp = swdevhd;
840 while (!TAILQ_EMPTY(&swtailq)) {
841 if (sp == NULL)
842 sp = TAILQ_FIRST(&swtailq);
843 if ((sp->sw_flags & SW_CLOSING) == 0)
844 blk = blist_alloc(sp->sw_blist, &npages, mpages);
845 if (blk != SWAPBLK_NONE)
846 break;
847 sp = TAILQ_NEXT(sp, sw_list);
848 if (swdevhd == sp) {
849 if (npages == 1)
850 break;
851 mpages = npages - 1;
852 npages >>= 1;
853 }
854 }
855 if (blk != SWAPBLK_NONE) {
856 *io_npages = npages;
857 blk += sp->sw_first;
858 sp->sw_used += npages;
859 swap_pager_avail -= npages;
860 swp_sizecheck();
861 swdevhd = TAILQ_NEXT(sp, sw_list);
862 } else {
863 if (swap_pager_full != 2) {
864 printf("swp_pager_getswapspace(%d): failed\n",
865 *io_npages);
866 swap_pager_full = 2;
867 swap_pager_almost_full = 1;
868 }
869 swdevhd = NULL;
870 }
871 mtx_unlock(&sw_dev_mtx);
872 return (blk);
873 }
874
875 static bool
876 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
877 {
878
879 return (blk >= sp->sw_first && blk < sp->sw_end);
880 }
881
882 static void
883 swp_pager_strategy(struct buf *bp)
884 {
885 struct swdevt *sp;
886
887 mtx_lock(&sw_dev_mtx);
888 TAILQ_FOREACH(sp, &swtailq, sw_list) {
889 if (swp_pager_isondev(bp->b_blkno, sp)) {
890 mtx_unlock(&sw_dev_mtx);
891 if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
892 unmapped_buf_allowed) {
893 bp->b_data = unmapped_buf;
894 bp->b_offset = 0;
895 } else {
896 pmap_qenter((vm_offset_t)bp->b_data,
897 &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
898 }
899 sp->sw_strategy(bp, sp);
900 return;
901 }
902 }
903 panic("Swapdev not found");
904 }
905
906 /*
907 * SWP_PAGER_FREESWAPSPACE() - free raw swap space
908 *
909 * This routine returns the specified swap blocks back to the bitmap.
910 *
911 * This routine may not sleep.
912 */
913 static void
914 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
915 {
916 struct swdevt *sp;
917
918 if (npages == 0)
919 return;
920 mtx_lock(&sw_dev_mtx);
921 TAILQ_FOREACH(sp, &swtailq, sw_list) {
922 if (swp_pager_isondev(blk, sp)) {
923 sp->sw_used -= npages;
924 /*
925 * If we are attempting to stop swapping on
926 * this device, we don't want to mark any
927 * blocks free lest they be reused.
928 */
929 if ((sp->sw_flags & SW_CLOSING) == 0) {
930 blist_free(sp->sw_blist, blk - sp->sw_first,
931 npages);
932 swap_pager_avail += npages;
933 swp_sizecheck();
934 }
935 mtx_unlock(&sw_dev_mtx);
936 return;
937 }
938 }
939 panic("Swapdev not found");
940 }
941
942 /*
943 * SYSCTL_SWAP_FRAGMENTATION() - produce raw swap space stats
944 */
945 static int
946 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
947 {
948 struct sbuf sbuf;
949 struct swdevt *sp;
950 const char *devname;
951 int error;
952
953 error = sysctl_wire_old_buffer(req, 0);
954 if (error != 0)
955 return (error);
956 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
957 mtx_lock(&sw_dev_mtx);
958 TAILQ_FOREACH(sp, &swtailq, sw_list) {
959 if (vn_isdisk(sp->sw_vp))
960 devname = devtoname(sp->sw_vp->v_rdev);
961 else
962 devname = "[file]";
963 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
964 blist_stats(sp->sw_blist, &sbuf);
965 }
966 mtx_unlock(&sw_dev_mtx);
967 error = sbuf_finish(&sbuf);
968 sbuf_delete(&sbuf);
969 return (error);
970 }
971
972 /*
973 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page
974 * range within an object.
975 *
976 * This routine removes swapblk assignments from swap metadata.
977 *
978 * The external callers of this routine typically have already destroyed
979 * or renamed vm_page_t's associated with this range in the object so
980 * we should be ok.
981 *
982 * The object must be locked.
983 */
984 void
985 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size,
986 vm_size_t *freed)
987 {
988 MPASS((object->flags & OBJ_SWAP) != 0);
989
990 swp_pager_meta_free(object, start, size, freed);
991 }
992
993 static void
994 swap_pager_freespace_pgo(vm_object_t object, vm_pindex_t start, vm_size_t size)
995 {
996 MPASS((object->flags & OBJ_SWAP) != 0);
997
998 swp_pager_meta_free(object, start, size, NULL);
999 }
1000
1001 /*
1002 * SWAP_PAGER_RESERVE() - reserve swap blocks in object
1003 *
1004 * Assigns swap blocks to the specified range within the object. The
1005 * swap blocks are not zeroed. Any previous swap assignment is destroyed.
1006 *
1007 * Returns 0 on success, -1 on failure.
1008 */
1009 int
1010 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
1011 {
1012 daddr_t addr, blk, n_free, s_free;
1013 vm_pindex_t i, j;
1014 int n;
1015
1016 swp_pager_init_freerange(&s_free, &n_free);
1017 VM_OBJECT_WLOCK(object);
1018 for (i = 0; i < size; i += n) {
1019 n = MIN(size - i, INT_MAX);
1020 blk = swp_pager_getswapspace(&n);
1021 if (blk == SWAPBLK_NONE) {
1022 swp_pager_meta_free(object, start, i, NULL);
1023 VM_OBJECT_WUNLOCK(object);
1024 return (-1);
1025 }
1026 for (j = 0; j < n; ++j) {
1027 addr = swp_pager_meta_build(object,
1028 start + i + j, blk + j);
1029 if (addr != SWAPBLK_NONE)
1030 swp_pager_update_freerange(&s_free, &n_free,
1031 addr);
1032 }
1033 }
1034 swp_pager_freeswapspace(s_free, n_free);
1035 VM_OBJECT_WUNLOCK(object);
1036 return (0);
1037 }
1038
1039 static bool
1040 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
1041 vm_pindex_t pindex, daddr_t addr)
1042 {
1043 daddr_t dstaddr __diagused;
1044
1045 KASSERT((srcobject->flags & OBJ_SWAP) != 0,
1046 ("%s: srcobject not swappable", __func__));
1047 KASSERT((dstobject->flags & OBJ_SWAP) != 0,
1048 ("%s: dstobject not swappable", __func__));
1049
1050 if (swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
1051 /* Caller should destroy the source block. */
1052 return (false);
1053 }
1054
1055 /*
1056 * Destination has no swapblk and is not resident, transfer source.
1057 * swp_pager_meta_build() can sleep.
1058 */
1059 VM_OBJECT_WUNLOCK(srcobject);
1060 dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
1061 KASSERT(dstaddr == SWAPBLK_NONE,
1062 ("Unexpected destination swapblk"));
1063 VM_OBJECT_WLOCK(srcobject);
1064
1065 return (true);
1066 }
1067
1068 /*
1069 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager
1070 * and destroy the source.
1071 *
1072 * Copy any valid swapblks from the source to the destination. In
1073 * cases where both the source and destination have a valid swapblk,
1074 * we keep the destination's.
1075 *
1076 * This routine is allowed to sleep. It may sleep allocating metadata
1077 * indirectly through swp_pager_meta_build().
1078 *
1079 * The source object contains no vm_page_t's (which is just as well)
1080 *
1081 * The source and destination objects must be locked.
1082 * Both object locks may temporarily be released.
1083 */
1084 void
1085 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1086 vm_pindex_t offset, int destroysource)
1087 {
1088 VM_OBJECT_ASSERT_WLOCKED(srcobject);
1089 VM_OBJECT_ASSERT_WLOCKED(dstobject);
1090
1091 /*
1092 * If destroysource is set, we remove the source object from the
1093 * swap_pager internal queue now.
1094 */
1095 if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1096 srcobject->handle != NULL) {
1097 VM_OBJECT_WUNLOCK(srcobject);
1098 VM_OBJECT_WUNLOCK(dstobject);
1099 sx_xlock(&sw_alloc_sx);
1100 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1101 pager_object_list);
1102 sx_xunlock(&sw_alloc_sx);
1103 VM_OBJECT_WLOCK(dstobject);
1104 VM_OBJECT_WLOCK(srcobject);
1105 }
1106
1107 /*
1108 * Transfer source to destination.
1109 */
1110 swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size,
1111 NULL);
1112
1113 /*
1114 * Free left over swap blocks in source.
1115 */
1116 if (destroysource)
1117 swp_pager_meta_free_all(srcobject);
1118 }
1119
1120 /*
1121 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for
1122 * the requested page.
1123 *
1124 * We determine whether good backing store exists for the requested
1125 * page and return TRUE if it does, FALSE if it doesn't.
1126 *
1127 * If TRUE, we also try to determine how much valid, contiguous backing
1128 * store exists before and after the requested page.
1129 */
1130 static boolean_t
1131 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1132 int *after)
1133 {
1134 daddr_t blk, blk0;
1135 int i;
1136
1137 VM_OBJECT_ASSERT_LOCKED(object);
1138 KASSERT((object->flags & OBJ_SWAP) != 0,
1139 ("%s: object not swappable", __func__));
1140
1141 /*
1142 * do we have good backing store at the requested index ?
1143 */
1144 blk0 = swp_pager_meta_lookup(object, pindex);
1145 if (blk0 == SWAPBLK_NONE) {
1146 if (before)
1147 *before = 0;
1148 if (after)
1149 *after = 0;
1150 return (FALSE);
1151 }
1152
1153 /*
1154 * find backwards-looking contiguous good backing store
1155 */
1156 if (before != NULL) {
1157 for (i = 1; i < SWB_NPAGES; i++) {
1158 if (i > pindex)
1159 break;
1160 blk = swp_pager_meta_lookup(object, pindex - i);
1161 if (blk != blk0 - i)
1162 break;
1163 }
1164 *before = i - 1;
1165 }
1166
1167 /*
1168 * find forward-looking contiguous good backing store
1169 */
1170 if (after != NULL) {
1171 for (i = 1; i < SWB_NPAGES; i++) {
1172 blk = swp_pager_meta_lookup(object, pindex + i);
1173 if (blk != blk0 + i)
1174 break;
1175 }
1176 *after = i - 1;
1177 }
1178 return (TRUE);
1179 }
1180
1181 /*
1182 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1183 *
1184 * This removes any associated swap backing store, whether valid or
1185 * not, from the page.
1186 *
1187 * This routine is typically called when a page is made dirty, at
1188 * which point any associated swap can be freed. MADV_FREE also
1189 * calls us in a special-case situation
1190 *
1191 * NOTE!!! If the page is clean and the swap was valid, the caller
1192 * should make the page dirty before calling this routine. This routine
1193 * does NOT change the m->dirty status of the page. Also: MADV_FREE
1194 * depends on it.
1195 *
1196 * This routine may not sleep.
1197 *
1198 * The object containing the page may be locked.
1199 */
1200 static void
1201 swap_pager_unswapped(vm_page_t m)
1202 {
1203 struct swblk *sb;
1204 vm_object_t obj;
1205
1206 /*
1207 * Handle enqueing deferred frees first. If we do not have the
1208 * object lock we wait for the page daemon to clear the space.
1209 */
1210 obj = m->object;
1211 if (!VM_OBJECT_WOWNED(obj)) {
1212 VM_PAGE_OBJECT_BUSY_ASSERT(m);
1213 /*
1214 * The caller is responsible for synchronization but we
1215 * will harmlessly handle races. This is typically provided
1216 * by only calling unswapped() when a page transitions from
1217 * clean to dirty.
1218 */
1219 if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1220 PGA_SWAP_SPACE) {
1221 vm_page_aflag_set(m, PGA_SWAP_FREE);
1222 counter_u64_add(swap_free_deferred, 1);
1223 }
1224 return;
1225 }
1226 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1227 counter_u64_add(swap_free_completed, 1);
1228 vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1229
1230 /*
1231 * The meta data only exists if the object is OBJT_SWAP
1232 * and even then might not be allocated yet.
1233 */
1234 KASSERT((m->object->flags & OBJ_SWAP) != 0,
1235 ("Free object not swappable"));
1236
1237 sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1238 rounddown(m->pindex, SWAP_META_PAGES));
1239 if (sb == NULL)
1240 return;
1241 if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1242 return;
1243 swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1244 sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1245 swp_pager_free_empty_swblk(m->object, sb);
1246 }
1247
1248 /*
1249 * swap_pager_getpages() - bring pages in from swap
1250 *
1251 * Attempt to page in the pages in array "ma" of length "count". The
1252 * caller may optionally specify that additional pages preceding and
1253 * succeeding the specified range be paged in. The number of such pages
1254 * is returned in the "rbehind" and "rahead" parameters, and they will
1255 * be in the inactive queue upon return.
1256 *
1257 * The pages in "ma" must be busied and will remain busied upon return.
1258 */
1259 static int
1260 swap_pager_getpages_locked(vm_object_t object, vm_page_t *ma, int count,
1261 int *rbehind, int *rahead)
1262 {
1263 struct buf *bp;
1264 vm_page_t bm, mpred, msucc, p;
1265 vm_pindex_t pindex;
1266 daddr_t blk;
1267 int i, maxahead, maxbehind, reqcount;
1268
1269 VM_OBJECT_ASSERT_WLOCKED(object);
1270 reqcount = count;
1271
1272 KASSERT((object->flags & OBJ_SWAP) != 0,
1273 ("%s: object not swappable", __func__));
1274 if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1275 VM_OBJECT_WUNLOCK(object);
1276 return (VM_PAGER_FAIL);
1277 }
1278
1279 KASSERT(reqcount - 1 <= maxahead,
1280 ("page count %d extends beyond swap block", reqcount));
1281
1282 /*
1283 * Do not transfer any pages other than those that are xbusied
1284 * when running during a split or collapse operation. This
1285 * prevents clustering from re-creating pages which are being
1286 * moved into another object.
1287 */
1288 if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
1289 maxahead = reqcount - 1;
1290 maxbehind = 0;
1291 }
1292
1293 /*
1294 * Clip the readahead and readbehind ranges to exclude resident pages.
1295 */
1296 if (rahead != NULL) {
1297 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1298 pindex = ma[reqcount - 1]->pindex;
1299 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1300 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1301 *rahead = msucc->pindex - pindex - 1;
1302 }
1303 if (rbehind != NULL) {
1304 *rbehind = imin(*rbehind, maxbehind);
1305 pindex = ma[0]->pindex;
1306 mpred = TAILQ_PREV(ma[0], pglist, listq);
1307 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1308 *rbehind = pindex - mpred->pindex - 1;
1309 }
1310
1311 bm = ma[0];
1312 for (i = 0; i < count; i++)
1313 ma[i]->oflags |= VPO_SWAPINPROG;
1314
1315 /*
1316 * Allocate readahead and readbehind pages.
1317 */
1318 if (rbehind != NULL) {
1319 for (i = 1; i <= *rbehind; i++) {
1320 p = vm_page_alloc(object, ma[0]->pindex - i,
1321 VM_ALLOC_NORMAL);
1322 if (p == NULL)
1323 break;
1324 p->oflags |= VPO_SWAPINPROG;
1325 bm = p;
1326 }
1327 *rbehind = i - 1;
1328 }
1329 if (rahead != NULL) {
1330 for (i = 0; i < *rahead; i++) {
1331 p = vm_page_alloc(object,
1332 ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1333 if (p == NULL)
1334 break;
1335 p->oflags |= VPO_SWAPINPROG;
1336 }
1337 *rahead = i;
1338 }
1339 if (rbehind != NULL)
1340 count += *rbehind;
1341 if (rahead != NULL)
1342 count += *rahead;
1343
1344 vm_object_pip_add(object, count);
1345
1346 pindex = bm->pindex;
1347 blk = swp_pager_meta_lookup(object, pindex);
1348 KASSERT(blk != SWAPBLK_NONE,
1349 ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1350
1351 VM_OBJECT_WUNLOCK(object);
1352 bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1353 MPASS((bp->b_flags & B_MAXPHYS) != 0);
1354 /* Pages cannot leave the object while busy. */
1355 for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1356 MPASS(p->pindex == bm->pindex + i);
1357 bp->b_pages[i] = p;
1358 }
1359
1360 bp->b_flags |= B_PAGING;
1361 bp->b_iocmd = BIO_READ;
1362 bp->b_iodone = swp_pager_async_iodone;
1363 bp->b_rcred = crhold(thread0.td_ucred);
1364 bp->b_wcred = crhold(thread0.td_ucred);
1365 bp->b_blkno = blk;
1366 bp->b_bcount = PAGE_SIZE * count;
1367 bp->b_bufsize = PAGE_SIZE * count;
1368 bp->b_npages = count;
1369 bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1370 bp->b_pgafter = rahead != NULL ? *rahead : 0;
1371
1372 VM_CNT_INC(v_swapin);
1373 VM_CNT_ADD(v_swappgsin, count);
1374
1375 /*
1376 * perform the I/O. NOTE!!! bp cannot be considered valid after
1377 * this point because we automatically release it on completion.
1378 * Instead, we look at the one page we are interested in which we
1379 * still hold a lock on even through the I/O completion.
1380 *
1381 * The other pages in our ma[] array are also released on completion,
1382 * so we cannot assume they are valid anymore either.
1383 *
1384 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1385 */
1386 BUF_KERNPROC(bp);
1387 swp_pager_strategy(bp);
1388
1389 /*
1390 * Wait for the pages we want to complete. VPO_SWAPINPROG is always
1391 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE
1392 * is set in the metadata for each page in the request.
1393 */
1394 VM_OBJECT_WLOCK(object);
1395 /* This could be implemented more efficiently with aflags */
1396 while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1397 ma[0]->oflags |= VPO_SWAPSLEEP;
1398 VM_CNT_INC(v_intrans);
1399 if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1400 "swread", hz * 20)) {
1401 printf(
1402 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1403 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1404 }
1405 }
1406 VM_OBJECT_WUNLOCK(object);
1407
1408 /*
1409 * If we had an unrecoverable read error pages will not be valid.
1410 */
1411 for (i = 0; i < reqcount; i++)
1412 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1413 return (VM_PAGER_ERROR);
1414
1415 return (VM_PAGER_OK);
1416
1417 /*
1418 * A final note: in a low swap situation, we cannot deallocate swap
1419 * and mark a page dirty here because the caller is likely to mark
1420 * the page clean when we return, causing the page to possibly revert
1421 * to all-zero's later.
1422 */
1423 }
1424
1425 static int
1426 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
1427 int *rbehind, int *rahead)
1428 {
1429
1430 VM_OBJECT_WLOCK(object);
1431 return (swap_pager_getpages_locked(object, ma, count, rbehind, rahead));
1432 }
1433
1434 /*
1435 * swap_pager_getpages_async():
1436 *
1437 * Right now this is emulation of asynchronous operation on top of
1438 * swap_pager_getpages().
1439 */
1440 static int
1441 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1442 int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1443 {
1444 int r, error;
1445
1446 r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1447 switch (r) {
1448 case VM_PAGER_OK:
1449 error = 0;
1450 break;
1451 case VM_PAGER_ERROR:
1452 error = EIO;
1453 break;
1454 case VM_PAGER_FAIL:
1455 error = EINVAL;
1456 break;
1457 default:
1458 panic("unhandled swap_pager_getpages() error %d", r);
1459 }
1460 (iodone)(arg, ma, count, error);
1461
1462 return (r);
1463 }
1464
1465 /*
1466 * swap_pager_putpages:
1467 *
1468 * Assign swap (if necessary) and initiate I/O on the specified pages.
1469 *
1470 * In a low memory situation we may block in VOP_STRATEGY(), but the new
1471 * vm_page reservation system coupled with properly written VFS devices
1472 * should ensure that no low-memory deadlock occurs. This is an area
1473 * which needs work.
1474 *
1475 * The parent has N vm_object_pip_add() references prior to
1476 * calling us and will remove references for rtvals[] that are
1477 * not set to VM_PAGER_PEND. We need to remove the rest on I/O
1478 * completion.
1479 *
1480 * The parent has soft-busy'd the pages it passes us and will unbusy
1481 * those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1482 * We need to unbusy the rest on I/O completion.
1483 */
1484 static void
1485 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1486 int flags, int *rtvals)
1487 {
1488 struct buf *bp;
1489 daddr_t addr, blk, n_free, s_free;
1490 vm_page_t mreq;
1491 int i, j, n;
1492 bool async;
1493
1494 KASSERT(count == 0 || ma[0]->object == object,
1495 ("%s: object mismatch %p/%p",
1496 __func__, object, ma[0]->object));
1497
1498 VM_OBJECT_WUNLOCK(object);
1499 async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1500 swp_pager_init_freerange(&s_free, &n_free);
1501
1502 /*
1503 * Assign swap blocks and issue I/O. We reallocate swap on the fly.
1504 * The page is left dirty until the pageout operation completes
1505 * successfully.
1506 */
1507 for (i = 0; i < count; i += n) {
1508 /* Maximum I/O size is limited by maximum swap block size. */
1509 n = min(count - i, nsw_cluster_max);
1510
1511 if (async) {
1512 mtx_lock(&swbuf_mtx);
1513 while (nsw_wcount_async == 0)
1514 msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1515 "swbufa", 0);
1516 nsw_wcount_async--;
1517 mtx_unlock(&swbuf_mtx);
1518 }
1519
1520 /* Get a block of swap of size up to size n. */
1521 blk = swp_pager_getswapspace(&n);
1522 if (blk == SWAPBLK_NONE) {
1523 mtx_lock(&swbuf_mtx);
1524 if (++nsw_wcount_async == 1)
1525 wakeup(&nsw_wcount_async);
1526 mtx_unlock(&swbuf_mtx);
1527 for (j = 0; j < n; ++j)
1528 rtvals[i + j] = VM_PAGER_FAIL;
1529 continue;
1530 }
1531 VM_OBJECT_WLOCK(object);
1532 for (j = 0; j < n; ++j) {
1533 mreq = ma[i + j];
1534 vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1535 addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1536 blk + j);
1537 if (addr != SWAPBLK_NONE)
1538 swp_pager_update_freerange(&s_free, &n_free,
1539 addr);
1540 MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1541 mreq->oflags |= VPO_SWAPINPROG;
1542 }
1543 VM_OBJECT_WUNLOCK(object);
1544
1545 bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1546 MPASS((bp->b_flags & B_MAXPHYS) != 0);
1547 if (async)
1548 bp->b_flags |= B_ASYNC;
1549 bp->b_flags |= B_PAGING;
1550 bp->b_iocmd = BIO_WRITE;
1551
1552 bp->b_rcred = crhold(thread0.td_ucred);
1553 bp->b_wcred = crhold(thread0.td_ucred);
1554 bp->b_bcount = PAGE_SIZE * n;
1555 bp->b_bufsize = PAGE_SIZE * n;
1556 bp->b_blkno = blk;
1557 for (j = 0; j < n; j++)
1558 bp->b_pages[j] = ma[i + j];
1559 bp->b_npages = n;
1560
1561 /*
1562 * Must set dirty range for NFS to work.
1563 */
1564 bp->b_dirtyoff = 0;
1565 bp->b_dirtyend = bp->b_bcount;
1566
1567 VM_CNT_INC(v_swapout);
1568 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1569
1570 /*
1571 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1572 * can call the async completion routine at the end of a
1573 * synchronous I/O operation. Otherwise, our caller would
1574 * perform duplicate unbusy and wakeup operations on the page
1575 * and object, respectively.
1576 */
1577 for (j = 0; j < n; j++)
1578 rtvals[i + j] = VM_PAGER_PEND;
1579
1580 /*
1581 * asynchronous
1582 *
1583 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1584 */
1585 if (async) {
1586 bp->b_iodone = swp_pager_async_iodone;
1587 BUF_KERNPROC(bp);
1588 swp_pager_strategy(bp);
1589 continue;
1590 }
1591
1592 /*
1593 * synchronous
1594 *
1595 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1596 */
1597 bp->b_iodone = bdone;
1598 swp_pager_strategy(bp);
1599
1600 /*
1601 * Wait for the sync I/O to complete.
1602 */
1603 bwait(bp, PVM, "swwrt");
1604
1605 /*
1606 * Now that we are through with the bp, we can call the
1607 * normal async completion, which frees everything up.
1608 */
1609 swp_pager_async_iodone(bp);
1610 }
1611 swp_pager_freeswapspace(s_free, n_free);
1612 VM_OBJECT_WLOCK(object);
1613 }
1614
1615 /*
1616 * swp_pager_async_iodone:
1617 *
1618 * Completion routine for asynchronous reads and writes from/to swap.
1619 * Also called manually by synchronous code to finish up a bp.
1620 *
1621 * This routine may not sleep.
1622 */
1623 static void
1624 swp_pager_async_iodone(struct buf *bp)
1625 {
1626 int i;
1627 vm_object_t object = NULL;
1628
1629 /*
1630 * Report error - unless we ran out of memory, in which case
1631 * we've already logged it in swapgeom_strategy().
1632 */
1633 if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1634 printf(
1635 "swap_pager: I/O error - %s failed; blkno %ld,"
1636 "size %ld, error %d\n",
1637 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1638 (long)bp->b_blkno,
1639 (long)bp->b_bcount,
1640 bp->b_error
1641 );
1642 }
1643
1644 /*
1645 * remove the mapping for kernel virtual
1646 */
1647 if (buf_mapped(bp))
1648 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1649 else
1650 bp->b_data = bp->b_kvabase;
1651
1652 if (bp->b_npages) {
1653 object = bp->b_pages[0]->object;
1654 VM_OBJECT_WLOCK(object);
1655 }
1656
1657 /*
1658 * cleanup pages. If an error occurs writing to swap, we are in
1659 * very serious trouble. If it happens to be a disk error, though,
1660 * we may be able to recover by reassigning the swap later on. So
1661 * in this case we remove the m->swapblk assignment for the page
1662 * but do not free it in the rlist. The errornous block(s) are thus
1663 * never reallocated as swap. Redirty the page and continue.
1664 */
1665 for (i = 0; i < bp->b_npages; ++i) {
1666 vm_page_t m = bp->b_pages[i];
1667
1668 m->oflags &= ~VPO_SWAPINPROG;
1669 if (m->oflags & VPO_SWAPSLEEP) {
1670 m->oflags &= ~VPO_SWAPSLEEP;
1671 wakeup(&object->handle);
1672 }
1673
1674 /* We always have space after I/O, successful or not. */
1675 vm_page_aflag_set(m, PGA_SWAP_SPACE);
1676
1677 if (bp->b_ioflags & BIO_ERROR) {
1678 /*
1679 * If an error occurs I'd love to throw the swapblk
1680 * away without freeing it back to swapspace, so it
1681 * can never be used again. But I can't from an
1682 * interrupt.
1683 */
1684 if (bp->b_iocmd == BIO_READ) {
1685 /*
1686 * NOTE: for reads, m->dirty will probably
1687 * be overridden by the original caller of
1688 * getpages so don't play cute tricks here.
1689 */
1690 vm_page_invalid(m);
1691 } else {
1692 /*
1693 * If a write error occurs, reactivate page
1694 * so it doesn't clog the inactive list,
1695 * then finish the I/O.
1696 */
1697 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1698
1699 /* PQ_UNSWAPPABLE? */
1700 vm_page_activate(m);
1701 vm_page_sunbusy(m);
1702 }
1703 } else if (bp->b_iocmd == BIO_READ) {
1704 /*
1705 * NOTE: for reads, m->dirty will probably be
1706 * overridden by the original caller of getpages so
1707 * we cannot set them in order to free the underlying
1708 * swap in a low-swap situation. I don't think we'd
1709 * want to do that anyway, but it was an optimization
1710 * that existed in the old swapper for a time before
1711 * it got ripped out due to precisely this problem.
1712 */
1713 KASSERT(!pmap_page_is_mapped(m),
1714 ("swp_pager_async_iodone: page %p is mapped", m));
1715 KASSERT(m->dirty == 0,
1716 ("swp_pager_async_iodone: page %p is dirty", m));
1717
1718 vm_page_valid(m);
1719 if (i < bp->b_pgbefore ||
1720 i >= bp->b_npages - bp->b_pgafter)
1721 vm_page_readahead_finish(m);
1722 } else {
1723 /*
1724 * For write success, clear the dirty
1725 * status, then finish the I/O ( which decrements the
1726 * busy count and possibly wakes waiter's up ).
1727 * A page is only written to swap after a period of
1728 * inactivity. Therefore, we do not expect it to be
1729 * reused.
1730 */
1731 KASSERT(!pmap_page_is_write_mapped(m),
1732 ("swp_pager_async_iodone: page %p is not write"
1733 " protected", m));
1734 vm_page_undirty(m);
1735 vm_page_deactivate_noreuse(m);
1736 vm_page_sunbusy(m);
1737 }
1738 }
1739
1740 /*
1741 * adjust pip. NOTE: the original parent may still have its own
1742 * pip refs on the object.
1743 */
1744 if (object != NULL) {
1745 vm_object_pip_wakeupn(object, bp->b_npages);
1746 VM_OBJECT_WUNLOCK(object);
1747 }
1748
1749 /*
1750 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1751 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1752 * trigger a KASSERT in relpbuf().
1753 */
1754 if (bp->b_vp) {
1755 bp->b_vp = NULL;
1756 bp->b_bufobj = NULL;
1757 }
1758 /*
1759 * release the physical I/O buffer
1760 */
1761 if (bp->b_flags & B_ASYNC) {
1762 mtx_lock(&swbuf_mtx);
1763 if (++nsw_wcount_async == 1)
1764 wakeup(&nsw_wcount_async);
1765 mtx_unlock(&swbuf_mtx);
1766 }
1767 uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1768 }
1769
1770 int
1771 swap_pager_nswapdev(void)
1772 {
1773
1774 return (nswapdev);
1775 }
1776
1777 static void
1778 swp_pager_force_dirty(vm_page_t m)
1779 {
1780
1781 vm_page_dirty(m);
1782 swap_pager_unswapped(m);
1783 vm_page_launder(m);
1784 }
1785
1786 u_long
1787 swap_pager_swapped_pages(vm_object_t object)
1788 {
1789 struct swblk *sb;
1790 vm_pindex_t pi;
1791 u_long res;
1792 int i;
1793
1794 VM_OBJECT_ASSERT_LOCKED(object);
1795
1796 if (pctrie_is_empty(&object->un_pager.swp.swp_blks))
1797 return (0);
1798
1799 for (res = 0, pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1800 &object->un_pager.swp.swp_blks, pi)) != NULL;
1801 pi = sb->p + SWAP_META_PAGES) {
1802 for (i = 0; i < SWAP_META_PAGES; i++) {
1803 if (sb->d[i] != SWAPBLK_NONE)
1804 res++;
1805 }
1806 }
1807 return (res);
1808 }
1809
1810 /*
1811 * swap_pager_swapoff_object:
1812 *
1813 * Page in all of the pages that have been paged out for an object
1814 * to a swap device.
1815 */
1816 static void
1817 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1818 {
1819 struct swblk *sb;
1820 vm_page_t m;
1821 vm_pindex_t pi;
1822 daddr_t blk;
1823 int i, nv, rahead, rv;
1824
1825 KASSERT((object->flags & OBJ_SWAP) != 0,
1826 ("%s: Object not swappable", __func__));
1827
1828 for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1829 &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1830 if ((object->flags & OBJ_DEAD) != 0) {
1831 /*
1832 * Make sure that pending writes finish before
1833 * returning.
1834 */
1835 vm_object_pip_wait(object, "swpoff");
1836 swp_pager_meta_free_all(object);
1837 break;
1838 }
1839 for (i = 0; i < SWAP_META_PAGES; i++) {
1840 /*
1841 * Count the number of contiguous valid blocks.
1842 */
1843 for (nv = 0; nv < SWAP_META_PAGES - i; nv++) {
1844 blk = sb->d[i + nv];
1845 if (!swp_pager_isondev(blk, sp) ||
1846 blk == SWAPBLK_NONE)
1847 break;
1848 }
1849 if (nv == 0)
1850 continue;
1851
1852 /*
1853 * Look for a page corresponding to the first
1854 * valid block and ensure that any pending paging
1855 * operations on it are complete. If the page is valid,
1856 * mark it dirty and free the swap block. Try to batch
1857 * this operation since it may cause sp to be freed,
1858 * meaning that we must restart the scan. Avoid busying
1859 * valid pages since we may block forever on kernel
1860 * stack pages.
1861 */
1862 m = vm_page_lookup(object, sb->p + i);
1863 if (m == NULL) {
1864 m = vm_page_alloc(object, sb->p + i,
1865 VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
1866 if (m == NULL)
1867 break;
1868 } else {
1869 if ((m->oflags & VPO_SWAPINPROG) != 0) {
1870 m->oflags |= VPO_SWAPSLEEP;
1871 VM_OBJECT_SLEEP(object, &object->handle,
1872 PSWP, "swpoff", 0);
1873 break;
1874 }
1875 if (vm_page_all_valid(m)) {
1876 do {
1877 swp_pager_force_dirty(m);
1878 } while (--nv > 0 &&
1879 (m = vm_page_next(m)) != NULL &&
1880 vm_page_all_valid(m) &&
1881 (m->oflags & VPO_SWAPINPROG) == 0);
1882 break;
1883 }
1884 if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
1885 break;
1886 }
1887
1888 vm_object_pip_add(object, 1);
1889 rahead = SWAP_META_PAGES;
1890 rv = swap_pager_getpages_locked(object, &m, 1, NULL,
1891 &rahead);
1892 if (rv != VM_PAGER_OK)
1893 panic("%s: read from swap failed: %d",
1894 __func__, rv);
1895 vm_object_pip_wakeupn(object, 1);
1896 VM_OBJECT_WLOCK(object);
1897 vm_page_xunbusy(m);
1898
1899 /*
1900 * The object lock was dropped so we must restart the
1901 * scan of this swap block. Pages paged in during this
1902 * iteration will be marked dirty in a future iteration.
1903 */
1904 break;
1905 }
1906 if (i == SWAP_META_PAGES)
1907 pi = sb->p + SWAP_META_PAGES;
1908 }
1909 }
1910
1911 /*
1912 * swap_pager_swapoff:
1913 *
1914 * Page in all of the pages that have been paged out to the
1915 * given device. The corresponding blocks in the bitmap must be
1916 * marked as allocated and the device must be flagged SW_CLOSING.
1917 * There may be no processes swapped out to the device.
1918 *
1919 * This routine may block.
1920 */
1921 static void
1922 swap_pager_swapoff(struct swdevt *sp)
1923 {
1924 vm_object_t object;
1925 int retries;
1926
1927 sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1928
1929 retries = 0;
1930 full_rescan:
1931 mtx_lock(&vm_object_list_mtx);
1932 TAILQ_FOREACH(object, &vm_object_list, object_list) {
1933 if ((object->flags & OBJ_SWAP) == 0)
1934 continue;
1935 mtx_unlock(&vm_object_list_mtx);
1936 /* Depends on type-stability. */
1937 VM_OBJECT_WLOCK(object);
1938
1939 /*
1940 * Dead objects are eventually terminated on their own.
1941 */
1942 if ((object->flags & OBJ_DEAD) != 0)
1943 goto next_obj;
1944
1945 /*
1946 * Sync with fences placed after pctrie
1947 * initialization. We must not access pctrie below
1948 * unless we checked that our object is swap and not
1949 * dead.
1950 */
1951 atomic_thread_fence_acq();
1952 if ((object->flags & OBJ_SWAP) == 0)
1953 goto next_obj;
1954
1955 swap_pager_swapoff_object(sp, object);
1956 next_obj:
1957 VM_OBJECT_WUNLOCK(object);
1958 mtx_lock(&vm_object_list_mtx);
1959 }
1960 mtx_unlock(&vm_object_list_mtx);
1961
1962 if (sp->sw_used) {
1963 /*
1964 * Objects may be locked or paging to the device being
1965 * removed, so we will miss their pages and need to
1966 * make another pass. We have marked this device as
1967 * SW_CLOSING, so the activity should finish soon.
1968 */
1969 retries++;
1970 if (retries > 100) {
1971 panic("swapoff: failed to locate %d swap blocks",
1972 sp->sw_used);
1973 }
1974 pause("swpoff", hz / 20);
1975 goto full_rescan;
1976 }
1977 EVENTHANDLER_INVOKE(swapoff, sp);
1978 }
1979
1980 /************************************************************************
1981 * SWAP META DATA *
1982 ************************************************************************
1983 *
1984 * These routines manipulate the swap metadata stored in the
1985 * OBJT_SWAP object.
1986 *
1987 * Swap metadata is implemented with a global hash and not directly
1988 * linked into the object. Instead the object simply contains
1989 * appropriate tracking counters.
1990 */
1991
1992 /*
1993 * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1994 */
1995 static bool
1996 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1997 {
1998 int i;
1999
2000 MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
2001 for (i = start; i < limit; i++) {
2002 if (sb->d[i] != SWAPBLK_NONE)
2003 return (false);
2004 }
2005 return (true);
2006 }
2007
2008 /*
2009 * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
2010 *
2011 * Nothing is done if the block is still in use.
2012 */
2013 static void
2014 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
2015 {
2016
2017 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2018 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2019 uma_zfree(swblk_zone, sb);
2020 }
2021 }
2022
2023 /*
2024 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object
2025 *
2026 * The specified swapblk is added to the object's swap metadata. If
2027 * the swapblk is not valid, it is freed instead. Any previously
2028 * assigned swapblk is returned.
2029 */
2030 static daddr_t
2031 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
2032 {
2033 static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
2034 struct swblk *sb, *sb1;
2035 vm_pindex_t modpi, rdpi;
2036 daddr_t prev_swapblk;
2037 int error, i;
2038
2039 VM_OBJECT_ASSERT_WLOCKED(object);
2040
2041 rdpi = rounddown(pindex, SWAP_META_PAGES);
2042 sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
2043 if (sb == NULL) {
2044 if (swapblk == SWAPBLK_NONE)
2045 return (SWAPBLK_NONE);
2046 for (;;) {
2047 sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
2048 pageproc ? M_USE_RESERVE : 0));
2049 if (sb != NULL) {
2050 sb->p = rdpi;
2051 for (i = 0; i < SWAP_META_PAGES; i++)
2052 sb->d[i] = SWAPBLK_NONE;
2053 if (atomic_cmpset_int(&swblk_zone_exhausted,
2054 1, 0))
2055 printf("swblk zone ok\n");
2056 break;
2057 }
2058 VM_OBJECT_WUNLOCK(object);
2059 if (uma_zone_exhausted(swblk_zone)) {
2060 if (atomic_cmpset_int(&swblk_zone_exhausted,
2061 0, 1))
2062 printf("swap blk zone exhausted, "
2063 "increase kern.maxswzone\n");
2064 vm_pageout_oom(VM_OOM_SWAPZ);
2065 pause("swzonxb", 10);
2066 } else
2067 uma_zwait(swblk_zone);
2068 VM_OBJECT_WLOCK(object);
2069 sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2070 rdpi);
2071 if (sb != NULL)
2072 /*
2073 * Somebody swapped out a nearby page,
2074 * allocating swblk at the rdpi index,
2075 * while we dropped the object lock.
2076 */
2077 goto allocated;
2078 }
2079 for (;;) {
2080 error = SWAP_PCTRIE_INSERT(
2081 &object->un_pager.swp.swp_blks, sb);
2082 if (error == 0) {
2083 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2084 1, 0))
2085 printf("swpctrie zone ok\n");
2086 break;
2087 }
2088 VM_OBJECT_WUNLOCK(object);
2089 if (uma_zone_exhausted(swpctrie_zone)) {
2090 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2091 0, 1))
2092 printf("swap pctrie zone exhausted, "
2093 "increase kern.maxswzone\n");
2094 vm_pageout_oom(VM_OOM_SWAPZ);
2095 pause("swzonxp", 10);
2096 } else
2097 uma_zwait(swpctrie_zone);
2098 VM_OBJECT_WLOCK(object);
2099 sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2100 rdpi);
2101 if (sb1 != NULL) {
2102 uma_zfree(swblk_zone, sb);
2103 sb = sb1;
2104 goto allocated;
2105 }
2106 }
2107 }
2108 allocated:
2109 MPASS(sb->p == rdpi);
2110
2111 modpi = pindex % SWAP_META_PAGES;
2112 /* Return prior contents of metadata. */
2113 prev_swapblk = sb->d[modpi];
2114 /* Enter block into metadata. */
2115 sb->d[modpi] = swapblk;
2116
2117 /*
2118 * Free the swblk if we end up with the empty page run.
2119 */
2120 if (swapblk == SWAPBLK_NONE)
2121 swp_pager_free_empty_swblk(object, sb);
2122 return (prev_swapblk);
2123 }
2124
2125 /*
2126 * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2127 * metadata, or transfer it into dstobject.
2128 *
2129 * This routine will free swap metadata structures as they are cleaned
2130 * out.
2131 */
2132 static void
2133 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2134 vm_pindex_t pindex, vm_pindex_t count, vm_size_t *moved)
2135 {
2136 struct swblk *sb;
2137 vm_page_t m;
2138 daddr_t n_free, s_free;
2139 vm_pindex_t offset, last;
2140 vm_size_t mc;
2141 int i, limit, start;
2142
2143 VM_OBJECT_ASSERT_WLOCKED(srcobject);
2144 MPASS(moved == NULL || dstobject == NULL);
2145
2146 mc = 0;
2147 m = NULL;
2148 if (count == 0 || pctrie_is_empty(&srcobject->un_pager.swp.swp_blks))
2149 goto out;
2150
2151 swp_pager_init_freerange(&s_free, &n_free);
2152 offset = pindex;
2153 last = pindex + count;
2154 for (;;) {
2155 sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2156 rounddown(pindex, SWAP_META_PAGES));
2157 if (sb == NULL || sb->p >= last)
2158 break;
2159 start = pindex > sb->p ? pindex - sb->p : 0;
2160 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2161 SWAP_META_PAGES;
2162 for (i = start; i < limit; i++) {
2163 if (sb->d[i] == SWAPBLK_NONE)
2164 continue;
2165 if (dstobject == NULL ||
2166 !swp_pager_xfer_source(srcobject, dstobject,
2167 sb->p + i - offset, sb->d[i])) {
2168 swp_pager_update_freerange(&s_free, &n_free,
2169 sb->d[i]);
2170 }
2171 if (moved != NULL) {
2172 if (m != NULL && m->pindex != pindex + i - 1)
2173 m = NULL;
2174 m = m != NULL ? vm_page_next(m) :
2175 vm_page_lookup(srcobject, pindex + i);
2176 if (m == NULL || vm_page_none_valid(m))
2177 mc++;
2178 }
2179 sb->d[i] = SWAPBLK_NONE;
2180 }
2181 pindex = sb->p + SWAP_META_PAGES;
2182 if (swp_pager_swblk_empty(sb, 0, start) &&
2183 swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2184 SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2185 sb->p);
2186 uma_zfree(swblk_zone, sb);
2187 }
2188 }
2189 swp_pager_freeswapspace(s_free, n_free);
2190 out:
2191 if (moved != NULL)
2192 *moved = mc;
2193 }
2194
2195 /*
2196 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2197 *
2198 * The requested range of blocks is freed, with any associated swap
2199 * returned to the swap bitmap.
2200 *
2201 * This routine will free swap metadata structures as they are cleaned
2202 * out. This routine does *NOT* operate on swap metadata associated
2203 * with resident pages.
2204 */
2205 static void
2206 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count,
2207 vm_size_t *freed)
2208 {
2209 swp_pager_meta_transfer(object, NULL, pindex, count, freed);
2210 }
2211
2212 /*
2213 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2214 *
2215 * This routine locates and destroys all swap metadata associated with
2216 * an object.
2217 */
2218 static void
2219 swp_pager_meta_free_all(vm_object_t object)
2220 {
2221 struct swblk *sb;
2222 daddr_t n_free, s_free;
2223 vm_pindex_t pindex;
2224 int i;
2225
2226 VM_OBJECT_ASSERT_WLOCKED(object);
2227
2228 if (pctrie_is_empty(&object->un_pager.swp.swp_blks))
2229 return;
2230
2231 swp_pager_init_freerange(&s_free, &n_free);
2232 for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2233 &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2234 pindex = sb->p + SWAP_META_PAGES;
2235 for (i = 0; i < SWAP_META_PAGES; i++) {
2236 if (sb->d[i] == SWAPBLK_NONE)
2237 continue;
2238 swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2239 }
2240 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2241 uma_zfree(swblk_zone, sb);
2242 }
2243 swp_pager_freeswapspace(s_free, n_free);
2244 }
2245
2246 /*
2247 * SWP_PAGER_METACTL() - misc control of swap meta data.
2248 *
2249 * This routine is capable of looking up, or removing swapblk
2250 * assignments in the swap meta data. It returns the swapblk being
2251 * looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2252 *
2253 * When acting on a busy resident page and paging is in progress, we
2254 * have to wait until paging is complete but otherwise can act on the
2255 * busy page.
2256 */
2257 static daddr_t
2258 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2259 {
2260 struct swblk *sb;
2261
2262 VM_OBJECT_ASSERT_LOCKED(object);
2263
2264 /*
2265 * The meta data only exists if the object is OBJT_SWAP
2266 * and even then might not be allocated yet.
2267 */
2268 KASSERT((object->flags & OBJ_SWAP) != 0,
2269 ("Lookup object not swappable"));
2270
2271 sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2272 rounddown(pindex, SWAP_META_PAGES));
2273 if (sb == NULL)
2274 return (SWAPBLK_NONE);
2275 return (sb->d[pindex % SWAP_META_PAGES]);
2276 }
2277
2278 /*
2279 * Returns the least page index which is greater than or equal to the
2280 * parameter pindex and for which there is a swap block allocated.
2281 * Returns object's size if the object's type is not swap or if there
2282 * are no allocated swap blocks for the object after the requested
2283 * pindex.
2284 */
2285 vm_pindex_t
2286 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2287 {
2288 struct swblk *sb;
2289 int i;
2290
2291 VM_OBJECT_ASSERT_LOCKED(object);
2292 MPASS((object->flags & OBJ_SWAP) != 0);
2293
2294 if (pctrie_is_empty(&object->un_pager.swp.swp_blks))
2295 return (object->size);
2296 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2297 rounddown(pindex, SWAP_META_PAGES));
2298 if (sb == NULL)
2299 return (object->size);
2300 if (sb->p < pindex) {
2301 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2302 if (sb->d[i] != SWAPBLK_NONE)
2303 return (sb->p + i);
2304 }
2305 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2306 roundup(pindex, SWAP_META_PAGES));
2307 if (sb == NULL)
2308 return (object->size);
2309 }
2310 for (i = 0; i < SWAP_META_PAGES; i++) {
2311 if (sb->d[i] != SWAPBLK_NONE)
2312 return (sb->p + i);
2313 }
2314
2315 /*
2316 * We get here if a swblk is present in the trie but it
2317 * doesn't map any blocks.
2318 */
2319 MPASS(0);
2320 return (object->size);
2321 }
2322
2323 /*
2324 * System call swapon(name) enables swapping on device name,
2325 * which must be in the swdevsw. Return EBUSY
2326 * if already swapping on this device.
2327 */
2328 #ifndef _SYS_SYSPROTO_H_
2329 struct swapon_args {
2330 char *name;
2331 };
2332 #endif
2333
2334 int
2335 sys_swapon(struct thread *td, struct swapon_args *uap)
2336 {
2337 struct vattr attr;
2338 struct vnode *vp;
2339 struct nameidata nd;
2340 int error;
2341
2342 error = priv_check(td, PRIV_SWAPON);
2343 if (error)
2344 return (error);
2345
2346 sx_xlock(&swdev_syscall_lock);
2347
2348 /*
2349 * Swap metadata may not fit in the KVM if we have physical
2350 * memory of >1GB.
2351 */
2352 if (swblk_zone == NULL) {
2353 error = ENOMEM;
2354 goto done;
2355 }
2356
2357 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
2358 UIO_USERSPACE, uap->name);
2359 error = namei(&nd);
2360 if (error)
2361 goto done;
2362
2363 NDFREE_PNBUF(&nd);
2364 vp = nd.ni_vp;
2365
2366 if (vn_isdisk_error(vp, &error)) {
2367 error = swapongeom(vp);
2368 } else if (vp->v_type == VREG &&
2369 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2370 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2371 /*
2372 * Allow direct swapping to NFS regular files in the same
2373 * way that nfs_mountroot() sets up diskless swapping.
2374 */
2375 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2376 }
2377
2378 if (error != 0)
2379 vput(vp);
2380 else
2381 VOP_UNLOCK(vp);
2382 done:
2383 sx_xunlock(&swdev_syscall_lock);
2384 return (error);
2385 }
2386
2387 /*
2388 * Check that the total amount of swap currently configured does not
2389 * exceed half the theoretical maximum. If it does, print a warning
2390 * message.
2391 */
2392 static void
2393 swapon_check_swzone(void)
2394 {
2395
2396 /* recommend using no more than half that amount */
2397 if (swap_total > swap_maxpages / 2) {
2398 printf("warning: total configured swap (%lu pages) "
2399 "exceeds maximum recommended amount (%lu pages).\n",
2400 swap_total, swap_maxpages / 2);
2401 printf("warning: increase kern.maxswzone "
2402 "or reduce amount of swap.\n");
2403 }
2404 }
2405
2406 static void
2407 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2408 sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2409 {
2410 struct swdevt *sp, *tsp;
2411 daddr_t dvbase;
2412
2413 /*
2414 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2415 * First chop nblks off to page-align it, then convert.
2416 *
2417 * sw->sw_nblks is in page-sized chunks now too.
2418 */
2419 nblks &= ~(ctodb(1) - 1);
2420 nblks = dbtoc(nblks);
2421
2422 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2423 sp->sw_blist = blist_create(nblks, M_WAITOK);
2424 sp->sw_vp = vp;
2425 sp->sw_id = id;
2426 sp->sw_dev = dev;
2427 sp->sw_nblks = nblks;
2428 sp->sw_used = 0;
2429 sp->sw_strategy = strategy;
2430 sp->sw_close = close;
2431 sp->sw_flags = flags;
2432
2433 /*
2434 * Do not free the first blocks in order to avoid overwriting
2435 * any bsd label at the front of the partition
2436 */
2437 blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2438 nblks - howmany(BBSIZE, PAGE_SIZE));
2439
2440 dvbase = 0;
2441 mtx_lock(&sw_dev_mtx);
2442 TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2443 if (tsp->sw_end >= dvbase) {
2444 /*
2445 * We put one uncovered page between the devices
2446 * in order to definitively prevent any cross-device
2447 * I/O requests
2448 */
2449 dvbase = tsp->sw_end + 1;
2450 }
2451 }
2452 sp->sw_first = dvbase;
2453 sp->sw_end = dvbase + nblks;
2454 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2455 nswapdev++;
2456 swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2457 swap_total += nblks;
2458 swapon_check_swzone();
2459 swp_sizecheck();
2460 mtx_unlock(&sw_dev_mtx);
2461 EVENTHANDLER_INVOKE(swapon, sp);
2462 }
2463
2464 /*
2465 * SYSCALL: swapoff(devname)
2466 *
2467 * Disable swapping on the given device.
2468 *
2469 * XXX: Badly designed system call: it should use a device index
2470 * rather than filename as specification. We keep sw_vp around
2471 * only to make this work.
2472 */
2473 static int
2474 kern_swapoff(struct thread *td, const char *name, enum uio_seg name_seg,
2475 u_int flags)
2476 {
2477 struct vnode *vp;
2478 struct nameidata nd;
2479 struct swdevt *sp;
2480 int error;
2481
2482 error = priv_check(td, PRIV_SWAPOFF);
2483 if (error != 0)
2484 return (error);
2485 if ((flags & ~(SWAPOFF_FORCE)) != 0)
2486 return (EINVAL);
2487
2488 sx_xlock(&swdev_syscall_lock);
2489
2490 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, name_seg, name);
2491 error = namei(&nd);
2492 if (error)
2493 goto done;
2494 NDFREE_PNBUF(&nd);
2495 vp = nd.ni_vp;
2496
2497 mtx_lock(&sw_dev_mtx);
2498 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2499 if (sp->sw_vp == vp)
2500 break;
2501 }
2502 mtx_unlock(&sw_dev_mtx);
2503 if (sp == NULL) {
2504 error = EINVAL;
2505 goto done;
2506 }
2507 error = swapoff_one(sp, td->td_ucred, flags);
2508 done:
2509 sx_xunlock(&swdev_syscall_lock);
2510 return (error);
2511 }
2512
2513
2514 #ifdef COMPAT_FREEBSD13
2515 int
2516 freebsd13_swapoff(struct thread *td, struct freebsd13_swapoff_args *uap)
2517 {
2518 return (kern_swapoff(td, uap->name, UIO_USERSPACE, 0));
2519 }
2520 #endif
2521
2522 int
2523 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2524 {
2525 return (kern_swapoff(td, uap->name, UIO_USERSPACE, uap->flags));
2526 }
2527
2528 static int
2529 swapoff_one(struct swdevt *sp, struct ucred *cred, u_int flags)
2530 {
2531 u_long nblks;
2532 #ifdef MAC
2533 int error;
2534 #endif
2535
2536 sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2537 #ifdef MAC
2538 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2539 error = mac_system_check_swapoff(cred, sp->sw_vp);
2540 (void) VOP_UNLOCK(sp->sw_vp);
2541 if (error != 0)
2542 return (error);
2543 #endif
2544 nblks = sp->sw_nblks;
2545
2546 /*
2547 * We can turn off this swap device safely only if the
2548 * available virtual memory in the system will fit the amount
2549 * of data we will have to page back in, plus an epsilon so
2550 * the system doesn't become critically low on swap space.
2551 * The vm_free_count() part does not account e.g. for clean
2552 * pages that can be immediately reclaimed without paging, so
2553 * this is a very rough estimation.
2554 *
2555 * On the other hand, not turning swap off on swapoff_all()
2556 * means that we can lose swap data when filesystems go away,
2557 * which is arguably worse.
2558 */
2559 if ((flags & SWAPOFF_FORCE) == 0 &&
2560 vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2561 return (ENOMEM);
2562
2563 /*
2564 * Prevent further allocations on this device.
2565 */
2566 mtx_lock(&sw_dev_mtx);
2567 sp->sw_flags |= SW_CLOSING;
2568 swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2569 swap_total -= nblks;
2570 mtx_unlock(&sw_dev_mtx);
2571
2572 /*
2573 * Page in the contents of the device and close it.
2574 */
2575 swap_pager_swapoff(sp);
2576
2577 sp->sw_close(curthread, sp);
2578 mtx_lock(&sw_dev_mtx);
2579 sp->sw_id = NULL;
2580 TAILQ_REMOVE(&swtailq, sp, sw_list);
2581 nswapdev--;
2582 if (nswapdev == 0) {
2583 swap_pager_full = 2;
2584 swap_pager_almost_full = 1;
2585 }
2586 if (swdevhd == sp)
2587 swdevhd = NULL;
2588 mtx_unlock(&sw_dev_mtx);
2589 blist_destroy(sp->sw_blist);
2590 free(sp, M_VMPGDATA);
2591 return (0);
2592 }
2593
2594 void
2595 swapoff_all(void)
2596 {
2597 struct swdevt *sp, *spt;
2598 const char *devname;
2599 int error;
2600
2601 sx_xlock(&swdev_syscall_lock);
2602
2603 mtx_lock(&sw_dev_mtx);
2604 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2605 mtx_unlock(&sw_dev_mtx);
2606 if (vn_isdisk(sp->sw_vp))
2607 devname = devtoname(sp->sw_vp->v_rdev);
2608 else
2609 devname = "[file]";
2610 error = swapoff_one(sp, thread0.td_ucred, SWAPOFF_FORCE);
2611 if (error != 0) {
2612 printf("Cannot remove swap device %s (error=%d), "
2613 "skipping.\n", devname, error);
2614 } else if (bootverbose) {
2615 printf("Swap device %s removed.\n", devname);
2616 }
2617 mtx_lock(&sw_dev_mtx);
2618 }
2619 mtx_unlock(&sw_dev_mtx);
2620
2621 sx_xunlock(&swdev_syscall_lock);
2622 }
2623
2624 void
2625 swap_pager_status(int *total, int *used)
2626 {
2627
2628 *total = swap_total;
2629 *used = swap_total - swap_pager_avail -
2630 nswapdev * howmany(BBSIZE, PAGE_SIZE);
2631 }
2632
2633 int
2634 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2635 {
2636 struct swdevt *sp;
2637 const char *tmp_devname;
2638 int error, n;
2639
2640 n = 0;
2641 error = ENOENT;
2642 mtx_lock(&sw_dev_mtx);
2643 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2644 if (n != name) {
2645 n++;
2646 continue;
2647 }
2648 xs->xsw_version = XSWDEV_VERSION;
2649 xs->xsw_dev = sp->sw_dev;
2650 xs->xsw_flags = sp->sw_flags;
2651 xs->xsw_nblks = sp->sw_nblks;
2652 xs->xsw_used = sp->sw_used;
2653 if (devname != NULL) {
2654 if (vn_isdisk(sp->sw_vp))
2655 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2656 else
2657 tmp_devname = "[file]";
2658 strncpy(devname, tmp_devname, len);
2659 }
2660 error = 0;
2661 break;
2662 }
2663 mtx_unlock(&sw_dev_mtx);
2664 return (error);
2665 }
2666
2667 #if defined(COMPAT_FREEBSD11)
2668 #define XSWDEV_VERSION_11 1
2669 struct xswdev11 {
2670 u_int xsw_version;
2671 uint32_t xsw_dev;
2672 int xsw_flags;
2673 int xsw_nblks;
2674 int xsw_used;
2675 };
2676 #endif
2677
2678 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2679 struct xswdev32 {
2680 u_int xsw_version;
2681 u_int xsw_dev1, xsw_dev2;
2682 int xsw_flags;
2683 int xsw_nblks;
2684 int xsw_used;
2685 };
2686 #endif
2687
2688 static int
2689 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2690 {
2691 struct xswdev xs;
2692 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2693 struct xswdev32 xs32;
2694 #endif
2695 #if defined(COMPAT_FREEBSD11)
2696 struct xswdev11 xs11;
2697 #endif
2698 int error;
2699
2700 if (arg2 != 1) /* name length */
2701 return (EINVAL);
2702
2703 memset(&xs, 0, sizeof(xs));
2704 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2705 if (error != 0)
2706 return (error);
2707 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2708 if (req->oldlen == sizeof(xs32)) {
2709 memset(&xs32, 0, sizeof(xs32));
2710 xs32.xsw_version = XSWDEV_VERSION;
2711 xs32.xsw_dev1 = xs.xsw_dev;
2712 xs32.xsw_dev2 = xs.xsw_dev >> 32;
2713 xs32.xsw_flags = xs.xsw_flags;
2714 xs32.xsw_nblks = xs.xsw_nblks;
2715 xs32.xsw_used = xs.xsw_used;
2716 error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2717 return (error);
2718 }
2719 #endif
2720 #if defined(COMPAT_FREEBSD11)
2721 if (req->oldlen == sizeof(xs11)) {
2722 memset(&xs11, 0, sizeof(xs11));
2723 xs11.xsw_version = XSWDEV_VERSION_11;
2724 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2725 xs11.xsw_flags = xs.xsw_flags;
2726 xs11.xsw_nblks = xs.xsw_nblks;
2727 xs11.xsw_used = xs.xsw_used;
2728 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2729 return (error);
2730 }
2731 #endif
2732 error = SYSCTL_OUT(req, &xs, sizeof(xs));
2733 return (error);
2734 }
2735
2736 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2737 "Number of swap devices");
2738 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2739 sysctl_vm_swap_info,
2740 "Swap statistics by device");
2741
2742 /*
2743 * Count the approximate swap usage in pages for a vmspace. The
2744 * shadowed or not yet copied on write swap blocks are not accounted.
2745 * The map must be locked.
2746 */
2747 long
2748 vmspace_swap_count(struct vmspace *vmspace)
2749 {
2750 vm_map_t map;
2751 vm_map_entry_t cur;
2752 vm_object_t object;
2753 struct swblk *sb;
2754 vm_pindex_t e, pi;
2755 long count;
2756 int i;
2757
2758 map = &vmspace->vm_map;
2759 count = 0;
2760
2761 VM_MAP_ENTRY_FOREACH(cur, map) {
2762 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2763 continue;
2764 object = cur->object.vm_object;
2765 if (object == NULL || (object->flags & OBJ_SWAP) == 0)
2766 continue;
2767 VM_OBJECT_RLOCK(object);
2768 if ((object->flags & OBJ_SWAP) == 0)
2769 goto unlock;
2770 pi = OFF_TO_IDX(cur->offset);
2771 e = pi + OFF_TO_IDX(cur->end - cur->start);
2772 for (;; pi = sb->p + SWAP_META_PAGES) {
2773 sb = SWAP_PCTRIE_LOOKUP_GE(
2774 &object->un_pager.swp.swp_blks, pi);
2775 if (sb == NULL || sb->p >= e)
2776 break;
2777 for (i = 0; i < SWAP_META_PAGES; i++) {
2778 if (sb->p + i < e &&
2779 sb->d[i] != SWAPBLK_NONE)
2780 count++;
2781 }
2782 }
2783 unlock:
2784 VM_OBJECT_RUNLOCK(object);
2785 }
2786 return (count);
2787 }
2788
2789 /*
2790 * GEOM backend
2791 *
2792 * Swapping onto disk devices.
2793 *
2794 */
2795
2796 static g_orphan_t swapgeom_orphan;
2797
2798 static struct g_class g_swap_class = {
2799 .name = "SWAP",
2800 .version = G_VERSION,
2801 .orphan = swapgeom_orphan,
2802 };
2803
2804 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2805
2806 static void
2807 swapgeom_close_ev(void *arg, int flags)
2808 {
2809 struct g_consumer *cp;
2810
2811 cp = arg;
2812 g_access(cp, -1, -1, 0);
2813 g_detach(cp);
2814 g_destroy_consumer(cp);
2815 }
2816
2817 /*
2818 * Add a reference to the g_consumer for an inflight transaction.
2819 */
2820 static void
2821 swapgeom_acquire(struct g_consumer *cp)
2822 {
2823
2824 mtx_assert(&sw_dev_mtx, MA_OWNED);
2825 cp->index++;
2826 }
2827
2828 /*
2829 * Remove a reference from the g_consumer. Post a close event if all
2830 * references go away, since the function might be called from the
2831 * biodone context.
2832 */
2833 static void
2834 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2835 {
2836
2837 mtx_assert(&sw_dev_mtx, MA_OWNED);
2838 cp->index--;
2839 if (cp->index == 0) {
2840 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2841 sp->sw_id = NULL;
2842 }
2843 }
2844
2845 static void
2846 swapgeom_done(struct bio *bp2)
2847 {
2848 struct swdevt *sp;
2849 struct buf *bp;
2850 struct g_consumer *cp;
2851
2852 bp = bp2->bio_caller2;
2853 cp = bp2->bio_from;
2854 bp->b_ioflags = bp2->bio_flags;
2855 if (bp2->bio_error)
2856 bp->b_ioflags |= BIO_ERROR;
2857 bp->b_resid = bp->b_bcount - bp2->bio_completed;
2858 bp->b_error = bp2->bio_error;
2859 bp->b_caller1 = NULL;
2860 bufdone(bp);
2861 sp = bp2->bio_caller1;
2862 mtx_lock(&sw_dev_mtx);
2863 swapgeom_release(cp, sp);
2864 mtx_unlock(&sw_dev_mtx);
2865 g_destroy_bio(bp2);
2866 }
2867
2868 static void
2869 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2870 {
2871 struct bio *bio;
2872 struct g_consumer *cp;
2873
2874 mtx_lock(&sw_dev_mtx);
2875 cp = sp->sw_id;
2876 if (cp == NULL) {
2877 mtx_unlock(&sw_dev_mtx);
2878 bp->b_error = ENXIO;
2879 bp->b_ioflags |= BIO_ERROR;
2880 bufdone(bp);
2881 return;
2882 }
2883 swapgeom_acquire(cp);
2884 mtx_unlock(&sw_dev_mtx);
2885 if (bp->b_iocmd == BIO_WRITE)
2886 bio = g_new_bio();
2887 else
2888 bio = g_alloc_bio();
2889 if (bio == NULL) {
2890 mtx_lock(&sw_dev_mtx);
2891 swapgeom_release(cp, sp);
2892 mtx_unlock(&sw_dev_mtx);
2893 bp->b_error = ENOMEM;
2894 bp->b_ioflags |= BIO_ERROR;
2895 printf("swap_pager: cannot allocate bio\n");
2896 bufdone(bp);
2897 return;
2898 }
2899
2900 bp->b_caller1 = bio;
2901 bio->bio_caller1 = sp;
2902 bio->bio_caller2 = bp;
2903 bio->bio_cmd = bp->b_iocmd;
2904 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2905 bio->bio_length = bp->b_bcount;
2906 bio->bio_done = swapgeom_done;
2907 bio->bio_flags |= BIO_SWAP;
2908 if (!buf_mapped(bp)) {
2909 bio->bio_ma = bp->b_pages;
2910 bio->bio_data = unmapped_buf;
2911 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2912 bio->bio_ma_n = bp->b_npages;
2913 bio->bio_flags |= BIO_UNMAPPED;
2914 } else {
2915 bio->bio_data = bp->b_data;
2916 bio->bio_ma = NULL;
2917 }
2918 g_io_request(bio, cp);
2919 return;
2920 }
2921
2922 static void
2923 swapgeom_orphan(struct g_consumer *cp)
2924 {
2925 struct swdevt *sp;
2926 int destroy;
2927
2928 mtx_lock(&sw_dev_mtx);
2929 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2930 if (sp->sw_id == cp) {
2931 sp->sw_flags |= SW_CLOSING;
2932 break;
2933 }
2934 }
2935 /*
2936 * Drop reference we were created with. Do directly since we're in a
2937 * special context where we don't have to queue the call to
2938 * swapgeom_close_ev().
2939 */
2940 cp->index--;
2941 destroy = ((sp != NULL) && (cp->index == 0));
2942 if (destroy)
2943 sp->sw_id = NULL;
2944 mtx_unlock(&sw_dev_mtx);
2945 if (destroy)
2946 swapgeom_close_ev(cp, 0);
2947 }
2948
2949 static void
2950 swapgeom_close(struct thread *td, struct swdevt *sw)
2951 {
2952 struct g_consumer *cp;
2953
2954 mtx_lock(&sw_dev_mtx);
2955 cp = sw->sw_id;
2956 sw->sw_id = NULL;
2957 mtx_unlock(&sw_dev_mtx);
2958
2959 /*
2960 * swapgeom_close() may be called from the biodone context,
2961 * where we cannot perform topology changes. Delegate the
2962 * work to the events thread.
2963 */
2964 if (cp != NULL)
2965 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2966 }
2967
2968 static int
2969 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2970 {
2971 struct g_provider *pp;
2972 struct g_consumer *cp;
2973 static struct g_geom *gp;
2974 struct swdevt *sp;
2975 u_long nblks;
2976 int error;
2977
2978 pp = g_dev_getprovider(dev);
2979 if (pp == NULL)
2980 return (ENODEV);
2981 mtx_lock(&sw_dev_mtx);
2982 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2983 cp = sp->sw_id;
2984 if (cp != NULL && cp->provider == pp) {
2985 mtx_unlock(&sw_dev_mtx);
2986 return (EBUSY);
2987 }
2988 }
2989 mtx_unlock(&sw_dev_mtx);
2990 if (gp == NULL)
2991 gp = g_new_geomf(&g_swap_class, "swap");
2992 cp = g_new_consumer(gp);
2993 cp->index = 1; /* Number of active I/Os, plus one for being active. */
2994 cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2995 g_attach(cp, pp);
2996 /*
2997 * XXX: Every time you think you can improve the margin for
2998 * footshooting, somebody depends on the ability to do so:
2999 * savecore(8) wants to write to our swapdev so we cannot
3000 * set an exclusive count :-(
3001 */
3002 error = g_access(cp, 1, 1, 0);
3003 if (error != 0) {
3004 g_detach(cp);
3005 g_destroy_consumer(cp);
3006 return (error);
3007 }
3008 nblks = pp->mediasize / DEV_BSIZE;
3009 swaponsomething(vp, cp, nblks, swapgeom_strategy,
3010 swapgeom_close, dev2udev(dev),
3011 (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
3012 return (0);
3013 }
3014
3015 static int
3016 swapongeom(struct vnode *vp)
3017 {
3018 int error;
3019
3020 ASSERT_VOP_ELOCKED(vp, "swapongeom");
3021 if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
3022 error = ENOENT;
3023 } else {
3024 g_topology_lock();
3025 error = swapongeom_locked(vp->v_rdev, vp);
3026 g_topology_unlock();
3027 }
3028 return (error);
3029 }
3030
3031 /*
3032 * VNODE backend
3033 *
3034 * This is used mainly for network filesystem (read: probably only tested
3035 * with NFS) swapfiles.
3036 *
3037 */
3038
3039 static void
3040 swapdev_strategy(struct buf *bp, struct swdevt *sp)
3041 {
3042 struct vnode *vp2;
3043
3044 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
3045
3046 vp2 = sp->sw_id;
3047 vhold(vp2);
3048 if (bp->b_iocmd == BIO_WRITE) {
3049 vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY);
3050 if (bp->b_bufobj)
3051 bufobj_wdrop(bp->b_bufobj);
3052 bufobj_wref(&vp2->v_bufobj);
3053 } else {
3054 vn_lock(vp2, LK_SHARED | LK_RETRY);
3055 }
3056 if (bp->b_bufobj != &vp2->v_bufobj)
3057 bp->b_bufobj = &vp2->v_bufobj;
3058 bp->b_vp = vp2;
3059 bp->b_iooffset = dbtob(bp->b_blkno);
3060 bstrategy(bp);
3061 VOP_UNLOCK(vp2);
3062 }
3063
3064 static void
3065 swapdev_close(struct thread *td, struct swdevt *sp)
3066 {
3067 struct vnode *vp;
3068
3069 vp = sp->sw_vp;
3070 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3071 VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td);
3072 vput(vp);
3073 }
3074
3075 static int
3076 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3077 {
3078 struct swdevt *sp;
3079 int error;
3080
3081 ASSERT_VOP_ELOCKED(vp, "swaponvp");
3082 if (nblks == 0)
3083 return (ENXIO);
3084 mtx_lock(&sw_dev_mtx);
3085 TAILQ_FOREACH(sp, &swtailq, sw_list) {
3086 if (sp->sw_id == vp) {
3087 mtx_unlock(&sw_dev_mtx);
3088 return (EBUSY);
3089 }
3090 }
3091 mtx_unlock(&sw_dev_mtx);
3092
3093 #ifdef MAC
3094 error = mac_system_check_swapon(td->td_ucred, vp);
3095 if (error == 0)
3096 #endif
3097 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3098 if (error != 0)
3099 return (error);
3100
3101 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3102 NODEV, 0);
3103 return (0);
3104 }
3105
3106 static int
3107 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3108 {
3109 int error, new, n;
3110
3111 new = nsw_wcount_async_max;
3112 error = sysctl_handle_int(oidp, &new, 0, req);
3113 if (error != 0 || req->newptr == NULL)
3114 return (error);
3115
3116 if (new > nswbuf / 2 || new < 1)
3117 return (EINVAL);
3118
3119 mtx_lock(&swbuf_mtx);
3120 while (nsw_wcount_async_max != new) {
3121 /*
3122 * Adjust difference. If the current async count is too low,
3123 * we will need to sqeeze our update slowly in. Sleep with a
3124 * higher priority than getpbuf() to finish faster.
3125 */
3126 n = new - nsw_wcount_async_max;
3127 if (nsw_wcount_async + n >= 0) {
3128 nsw_wcount_async += n;
3129 nsw_wcount_async_max += n;
3130 wakeup(&nsw_wcount_async);
3131 } else {
3132 nsw_wcount_async_max -= nsw_wcount_async;
3133 nsw_wcount_async = 0;
3134 msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3135 "swpsysctl", 0);
3136 }
3137 }
3138 mtx_unlock(&swbuf_mtx);
3139
3140 return (0);
3141 }
3142
3143 static void
3144 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3145 vm_offset_t end)
3146 {
3147
3148 VM_OBJECT_WLOCK(object);
3149 KASSERT((object->flags & OBJ_ANON) == 0,
3150 ("Splittable object with writecount"));
3151 object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3152 VM_OBJECT_WUNLOCK(object);
3153 }
3154
3155 static void
3156 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3157 vm_offset_t end)
3158 {
3159
3160 VM_OBJECT_WLOCK(object);
3161 KASSERT((object->flags & OBJ_ANON) == 0,
3162 ("Splittable object with writecount"));
3163 object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3164 VM_OBJECT_WUNLOCK(object);
3165 }
Cache object: ad1e051f6418f3437d74fedc76cfb3fa
|