The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/swap_pager.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * (MPSAFE)
    3  *
    4  * Copyright (c) 1998-2010 The DragonFly Project.  All rights reserved.
    5  * 
    6  * This code is derived from software contributed to The DragonFly Project
    7  * by Matthew Dillon <dillon@backplane.com>
    8  * 
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in
   17  *    the documentation and/or other materials provided with the
   18  *    distribution.
   19  * 3. Neither the name of The DragonFly Project nor the names of its
   20  *    contributors may be used to endorse or promote products derived
   21  *    from this software without specific, prior written permission.
   22  * 
   23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
   26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
   27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
   29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
   31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  * 
   36  * Copyright (c) 1994 John S. Dyson
   37  * Copyright (c) 1990 University of Utah.
   38  * Copyright (c) 1991, 1993
   39  *      The Regents of the University of California.  All rights reserved.
   40  *
   41  * This code is derived from software contributed to Berkeley by
   42  * the Systems Programming Group of the University of Utah Computer
   43  * Science Department.
   44  *
   45  * Redistribution and use in source and binary forms, with or without
   46  * modification, are permitted provided that the following conditions
   47  * are met:
   48  * 1. Redistributions of source code must retain the above copyright
   49  *    notice, this list of conditions and the following disclaimer.
   50  * 2. Redistributions in binary form must reproduce the above copyright
   51  *    notice, this list of conditions and the following disclaimer in the
   52  *    documentation and/or other materials provided with the distribution.
   53  * 3. Neither the name of the University nor the names of its contributors
   54  *    may be used to endorse or promote products derived from this software
   55  *    without specific prior written permission.
   56  *
   57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   67  * SUCH DAMAGE.
   68  *
   69  *                              New Swap System
   70  *                              Matthew Dillon
   71  *
   72  * Radix Bitmap 'blists'.
   73  *
   74  *      - The new swapper uses the new radix bitmap code.  This should scale
   75  *        to arbitrarily small or arbitrarily large swap spaces and an almost
   76  *        arbitrary degree of fragmentation.
   77  *
   78  * Features:
   79  *
   80  *      - on the fly reallocation of swap during putpages.  The new system
   81  *        does not try to keep previously allocated swap blocks for dirty
   82  *        pages.  
   83  *
   84  *      - on the fly deallocation of swap
   85  *
   86  *      - No more garbage collection required.  Unnecessarily allocated swap
   87  *        blocks only exist for dirty vm_page_t's now and these are already
   88  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
   89  *        removal of invalidated swap blocks when a page is destroyed
   90  *        or renamed.
   91  *
   92  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
   93  * @(#)swap_pager.c     8.9 (Berkeley) 3/21/94
   94  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
   95  */
   96 
   97 #include <sys/param.h>
   98 #include <sys/systm.h>
   99 #include <sys/conf.h>
  100 #include <sys/kernel.h>
  101 #include <sys/proc.h>
  102 #include <sys/buf.h>
  103 #include <sys/vnode.h>
  104 #include <sys/malloc.h>
  105 #include <sys/vmmeter.h>
  106 #include <sys/sysctl.h>
  107 #include <sys/blist.h>
  108 #include <sys/lock.h>
  109 #include <sys/thread2.h>
  110 
  111 #include "opt_swap.h"
  112 #include <vm/vm.h>
  113 #include <vm/vm_object.h>
  114 #include <vm/vm_page.h>
  115 #include <vm/vm_pager.h>
  116 #include <vm/vm_pageout.h>
  117 #include <vm/swap_pager.h>
  118 #include <vm/vm_extern.h>
  119 #include <vm/vm_zone.h>
  120 #include <vm/vnode_pager.h>
  121 
  122 #include <sys/buf2.h>
  123 #include <vm/vm_page2.h>
  124 
  125 #ifndef MAX_PAGEOUT_CLUSTER
  126 #define MAX_PAGEOUT_CLUSTER     SWB_NPAGES
  127 #endif
  128 
  129 #define SWM_FREE        0x02    /* free, period                 */
  130 #define SWM_POP         0x04    /* pop out                      */
  131 
  132 #define SWBIO_READ      0x01
  133 #define SWBIO_WRITE     0x02
  134 #define SWBIO_SYNC      0x04
  135 
  136 struct swfreeinfo {
  137         vm_object_t     object;
  138         vm_pindex_t     basei;
  139         vm_pindex_t     begi;
  140         vm_pindex_t     endi;   /* inclusive */
  141 };
  142 
  143 struct swswapoffinfo {
  144         vm_object_t     object;
  145         int             devidx;
  146         int             shared;
  147 };
  148 
  149 /*
  150  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
  151  * in the old system.
  152  */
  153 
  154 int swap_pager_full;            /* swap space exhaustion (task killing) */
  155 int vm_swap_cache_use;
  156 int vm_swap_anon_use;
  157 static int vm_report_swap_allocs;
  158 
  159 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
  160 static int nsw_rcount;          /* free read buffers                    */
  161 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
  162 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
  163 static int nsw_wcount_async_max;/* assigned maximum                     */
  164 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
  165 
  166 struct blist *swapblist;
  167 static int swap_async_max = 4;  /* maximum in-progress async I/O's      */
  168 static int swap_burst_read = 0; /* allow burst reading */
  169 static swblk_t swapiterator;    /* linearize allocations */
  170 
  171 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin);
  172 
  173 /* from vm_swap.c */
  174 extern struct vnode *swapdev_vp;
  175 extern struct swdevt *swdevt;
  176 extern int nswdev;
  177 
  178 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
  179 
  180 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
  181         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
  182 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
  183         CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
  184 
  185 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
  186         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
  187 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
  188         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
  189 SYSCTL_INT(_vm, OID_AUTO, swap_size,
  190         CTLFLAG_RD, &vm_swap_size, 0, "");
  191 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
  192         CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
  193 
  194 vm_zone_t               swap_zone;
  195 
  196 /*
  197  * Red-Black tree for swblock entries
  198  *
  199  * The caller must hold vm_token
  200  */
  201 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
  202              vm_pindex_t, swb_index);
  203 
  204 int
  205 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
  206 {
  207         if (swb1->swb_index < swb2->swb_index)
  208                 return(-1);
  209         if (swb1->swb_index > swb2->swb_index)
  210                 return(1);
  211         return(0);
  212 }
  213 
  214 static
  215 int
  216 rb_swblock_scancmp(struct swblock *swb, void *data)
  217 {
  218         struct swfreeinfo *info = data;
  219 
  220         if (swb->swb_index < info->basei)
  221                 return(-1);
  222         if (swb->swb_index > info->endi)
  223                 return(1);
  224         return(0);
  225 }
  226 
  227 static
  228 int
  229 rb_swblock_condcmp(struct swblock *swb, void *data)
  230 {
  231         struct swfreeinfo *info = data;
  232 
  233         if (swb->swb_index < info->basei)
  234                 return(-1);
  235         return(0);
  236 }
  237 
  238 /*
  239  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
  240  * calls hooked from other parts of the VM system and do not appear here.
  241  * (see vm/swap_pager.h).
  242  */
  243 
  244 static void     swap_pager_dealloc (vm_object_t object);
  245 static int      swap_pager_getpage (vm_object_t, vm_page_t *, int);
  246 static void     swap_chain_iodone(struct bio *biox);
  247 
  248 struct pagerops swappagerops = {
  249         swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
  250         swap_pager_getpage,     /* pagein                               */
  251         swap_pager_putpages,    /* pageout                              */
  252         swap_pager_haspage      /* get backing store status for page    */
  253 };
  254 
  255 /*
  256  * dmmax is in page-sized chunks with the new swap system.  It was
  257  * dev-bsized chunks in the old.  dmmax is always a power of 2.
  258  *
  259  * swap_*() routines are externally accessible.  swp_*() routines are
  260  * internal.
  261  */
  262 
  263 int dmmax;
  264 static int dmmax_mask;
  265 int nswap_lowat = 128;          /* in pages, swap_pager_almost_full warn */
  266 int nswap_hiwat = 512;          /* in pages, swap_pager_almost_full warn */
  267 
  268 static __inline void    swp_sizecheck (void);
  269 static void     swp_pager_async_iodone (struct bio *bio);
  270 
  271 /*
  272  * Swap bitmap functions
  273  */
  274 
  275 static __inline void    swp_pager_freeswapspace(vm_object_t object,
  276                                                 swblk_t blk, int npages);
  277 static __inline swblk_t swp_pager_getswapspace(vm_object_t object, int npages);
  278 
  279 /*
  280  * Metadata functions
  281  */
  282 
  283 static void swp_pager_meta_convert(vm_object_t);
  284 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
  285 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
  286 static void swp_pager_meta_free_all(vm_object_t);
  287 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
  288 
  289 /*
  290  * SWP_SIZECHECK() -    update swap_pager_full indication
  291  *      
  292  *      update the swap_pager_almost_full indication and warn when we are
  293  *      about to run out of swap space, using lowat/hiwat hysteresis.
  294  *
  295  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
  296  *
  297  * No restrictions on call
  298  * This routine may not block.
  299  * SMP races are ok.
  300  */
  301 static __inline void
  302 swp_sizecheck(void)
  303 {
  304         if (vm_swap_size < nswap_lowat) {
  305                 if (swap_pager_almost_full == 0) {
  306                         kprintf("swap_pager: out of swap space\n");
  307                         swap_pager_almost_full = 1;
  308                 }
  309         } else {
  310                 swap_pager_full = 0;
  311                 if (vm_swap_size > nswap_hiwat)
  312                         swap_pager_almost_full = 0;
  313         }
  314 }
  315 
  316 /*
  317  * SWAP_PAGER_INIT() -  initialize the swap pager!
  318  *
  319  *      Expected to be started from system init.  NOTE:  This code is run 
  320  *      before much else so be careful what you depend on.  Most of the VM
  321  *      system has yet to be initialized at this point.
  322  *
  323  * Called from the low level boot code only.
  324  */
  325 static void
  326 swap_pager_init(void *arg __unused)
  327 {
  328         /*
  329          * Device Stripe, in PAGE_SIZE'd blocks
  330          */
  331         dmmax = SWB_NPAGES * 2;
  332         dmmax_mask = ~(dmmax - 1);
  333 }
  334 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL)
  335 
  336 /*
  337  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
  338  *
  339  *      Expected to be started from pageout process once, prior to entering
  340  *      its main loop.
  341  *
  342  * Called from the low level boot code only.
  343  */
  344 void
  345 swap_pager_swap_init(void)
  346 {
  347         int n, n2;
  348 
  349         /*
  350          * Number of in-transit swap bp operations.  Don't
  351          * exhaust the pbufs completely.  Make sure we
  352          * initialize workable values (0 will work for hysteresis
  353          * but it isn't very efficient).
  354          *
  355          * The nsw_cluster_max is constrained by the number of pages an XIO
  356          * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
  357          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
  358          * constrained by the swap device interleave stripe size.
  359          *
  360          * Currently we hardwire nsw_wcount_async to 4.  This limit is 
  361          * designed to prevent other I/O from having high latencies due to
  362          * our pageout I/O.  The value 4 works well for one or two active swap
  363          * devices but is probably a little low if you have more.  Even so,
  364          * a higher value would probably generate only a limited improvement
  365          * with three or four active swap devices since the system does not
  366          * typically have to pageout at extreme bandwidths.   We will want
  367          * at least 2 per swap devices, and 4 is a pretty good value if you
  368          * have one NFS swap device due to the command/ack latency over NFS.
  369          * So it all works out pretty well.
  370          */
  371 
  372         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
  373 
  374         nsw_rcount = (nswbuf + 1) / 2;
  375         nsw_wcount_sync = (nswbuf + 3) / 4;
  376         nsw_wcount_async = 4;
  377         nsw_wcount_async_max = nsw_wcount_async;
  378 
  379         /*
  380          * The zone is dynamically allocated so generally size it to
  381          * maxswzone (32MB to 512MB of KVM).  Set a minimum size based
  382          * on physical memory of around 8x (each swblock can hold 16 pages).
  383          *
  384          * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
  385          * has increased dramatically.
  386          */
  387         n = vmstats.v_page_count / 2;
  388         if (maxswzone && n < maxswzone / sizeof(struct swblock))
  389                 n = maxswzone / sizeof(struct swblock);
  390         n2 = n;
  391 
  392         do {
  393                 swap_zone = zinit(
  394                         "SWAPMETA", 
  395                         sizeof(struct swblock), 
  396                         n,
  397                         ZONE_INTERRUPT, 
  398                         1);
  399                 if (swap_zone != NULL)
  400                         break;
  401                 /*
  402                  * if the allocation failed, try a zone two thirds the
  403                  * size of the previous attempt.
  404                  */
  405                 n -= ((n + 2) / 3);
  406         } while (n > 0);
  407 
  408         if (swap_zone == NULL)
  409                 panic("swap_pager_swap_init: swap_zone == NULL");
  410         if (n2 != n)
  411                 kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
  412 }
  413 
  414 /*
  415  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
  416  *                      its metadata structures.
  417  *
  418  *      This routine is called from the mmap and fork code to create a new
  419  *      OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
  420  *      and then converting it with swp_pager_meta_convert().
  421  *
  422  *      We only support unnamed objects.
  423  *
  424  * No restrictions.
  425  */
  426 vm_object_t
  427 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
  428 {
  429         vm_object_t object;
  430 
  431         KKASSERT(handle == NULL);
  432         object = vm_object_allocate_hold(OBJT_DEFAULT,
  433                                          OFF_TO_IDX(offset + PAGE_MASK + size));
  434         swp_pager_meta_convert(object);
  435         vm_object_drop(object);
  436 
  437         return (object);
  438 }
  439 
  440 /*
  441  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
  442  *
  443  *      The swap backing for the object is destroyed.  The code is 
  444  *      designed such that we can reinstantiate it later, but this
  445  *      routine is typically called only when the entire object is
  446  *      about to be destroyed.
  447  *
  448  * The object must be locked or unreferenceable.
  449  * No other requirements.
  450  */
  451 static void
  452 swap_pager_dealloc(vm_object_t object)
  453 {
  454         vm_object_hold(object);
  455         vm_object_pip_wait(object, "swpdea");
  456 
  457         /*
  458          * Free all remaining metadata.  We only bother to free it from 
  459          * the swap meta data.  We do not attempt to free swapblk's still
  460          * associated with vm_page_t's for this object.  We do not care
  461          * if paging is still in progress on some objects.
  462          */
  463         swp_pager_meta_free_all(object);
  464         vm_object_drop(object);
  465 }
  466 
  467 /************************************************************************
  468  *                      SWAP PAGER BITMAP ROUTINES                      *
  469  ************************************************************************/
  470 
  471 /*
  472  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
  473  *
  474  *      Allocate swap for the requested number of pages.  The starting
  475  *      swap block number (a page index) is returned or SWAPBLK_NONE
  476  *      if the allocation failed.
  477  *
  478  *      Also has the side effect of advising that somebody made a mistake
  479  *      when they configured swap and didn't configure enough.
  480  *
  481  * The caller must hold the object.
  482  * This routine may not block.
  483  */
  484 static __inline swblk_t
  485 swp_pager_getswapspace(vm_object_t object, int npages)
  486 {
  487         swblk_t blk;
  488 
  489         lwkt_gettoken(&vm_token);
  490         blk = blist_allocat(swapblist, npages, swapiterator);
  491         if (blk == SWAPBLK_NONE)
  492                 blk = blist_allocat(swapblist, npages, 0);
  493         if (blk == SWAPBLK_NONE) {
  494                 if (swap_pager_full != 2) {
  495                         kprintf("swap_pager_getswapspace: failed alloc=%d\n",
  496                                 npages);
  497                         swap_pager_full = 2;
  498                         swap_pager_almost_full = 1;
  499                 }
  500         } else {
  501                 /* swapiterator = blk; disable for now, doesn't work well */
  502                 swapacctspace(blk, -npages);
  503                 if (object->type == OBJT_SWAP)
  504                         vm_swap_anon_use += npages;
  505                 else
  506                         vm_swap_cache_use += npages;
  507                 swp_sizecheck();
  508         }
  509         lwkt_reltoken(&vm_token);
  510         return(blk);
  511 }
  512 
  513 /*
  514  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space 
  515  *
  516  *      This routine returns the specified swap blocks back to the bitmap.
  517  *
  518  *      Note:  This routine may not block (it could in the old swap code),
  519  *      and through the use of the new blist routines it does not block.
  520  *
  521  *      We must be called at splvm() to avoid races with bitmap frees from
  522  *      vm_page_remove() aka swap_pager_page_removed().
  523  *
  524  * This routine may not block.
  525  */
  526 
  527 static __inline void
  528 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
  529 {
  530         struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
  531 
  532         lwkt_gettoken(&vm_token);
  533         sp->sw_nused -= npages;
  534         if (object->type == OBJT_SWAP)
  535                 vm_swap_anon_use -= npages;
  536         else
  537                 vm_swap_cache_use -= npages;
  538 
  539         if (sp->sw_flags & SW_CLOSING) {
  540                 lwkt_reltoken(&vm_token);
  541                 return;
  542         }
  543 
  544         blist_free(swapblist, blk, npages);
  545         vm_swap_size += npages;
  546         swp_sizecheck();
  547         lwkt_reltoken(&vm_token);
  548 }
  549 
  550 /*
  551  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
  552  *                              range within an object.
  553  *
  554  *      This is a globally accessible routine.
  555  *
  556  *      This routine removes swapblk assignments from swap metadata.
  557  *
  558  *      The external callers of this routine typically have already destroyed 
  559  *      or renamed vm_page_t's associated with this range in the object so 
  560  *      we should be ok.
  561  *
  562  * No requirements.
  563  */
  564 void
  565 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
  566 {
  567         vm_object_hold(object);
  568         swp_pager_meta_free(object, start, size);
  569         vm_object_drop(object);
  570 }
  571 
  572 /*
  573  * No requirements.
  574  */
  575 void
  576 swap_pager_freespace_all(vm_object_t object)
  577 {
  578         vm_object_hold(object);
  579         swp_pager_meta_free_all(object);
  580         vm_object_drop(object);
  581 }
  582 
  583 /*
  584  * This function conditionally frees swap cache swap starting at
  585  * (*basei) in the object.  (count) swap blocks will be nominally freed.
  586  * The actual number of blocks freed can be more or less than the
  587  * requested number.
  588  *
  589  * This function nominally returns the number of blocks freed.  However,
  590  * the actual number of blocks freed may be less then the returned value.
  591  * If the function is unable to exhaust the object or if it is able to
  592  * free (approximately) the requested number of blocks it returns
  593  * a value n > count.
  594  *
  595  * If we exhaust the object we will return a value n <= count.
  596  *
  597  * The caller must hold the object.
  598  *
  599  * WARNING!  If count == 0 then -1 can be returned as a degenerate case,
  600  *           callers should always pass a count value > 0.
  601  */
  602 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
  603 
  604 int
  605 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
  606 {
  607         struct swfreeinfo info;
  608         int n;
  609         int t;
  610 
  611         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
  612 
  613         info.object = object;
  614         info.basei = *basei;    /* skip up to this page index */
  615         info.begi = count;      /* max swap pages to destroy */
  616         info.endi = count * 8;  /* max swblocks to scan */
  617 
  618         swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
  619                                 swap_pager_condfree_callback, &info);
  620         *basei = info.basei;
  621 
  622         /*
  623          * Take the higher difference swblocks vs pages
  624          */
  625         n = count - (int)info.begi;
  626         t = count * 8 - (int)info.endi;
  627         if (n < t)
  628                 n = t;
  629         if (n < 1)
  630                 n = 1;
  631         return(n);
  632 }
  633 
  634 /*
  635  * The idea is to free whole meta-block to avoid fragmenting
  636  * the swap space or disk I/O.  We only do this if NO VM pages
  637  * are present.
  638  *
  639  * We do not have to deal with clearing PG_SWAPPED in related VM
  640  * pages because there are no related VM pages.
  641  *
  642  * The caller must hold the object.
  643  */
  644 static int
  645 swap_pager_condfree_callback(struct swblock *swap, void *data)
  646 {
  647         struct swfreeinfo *info = data;
  648         vm_object_t object = info->object;
  649         int i;
  650 
  651         for (i = 0; i < SWAP_META_PAGES; ++i) {
  652                 if (vm_page_lookup(object, swap->swb_index + i))
  653                         break;
  654         }
  655         info->basei = swap->swb_index + SWAP_META_PAGES;
  656         if (i == SWAP_META_PAGES) {
  657                 info->begi -= swap->swb_count;
  658                 swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
  659         }
  660         --info->endi;
  661         if ((int)info->begi < 0 || (int)info->endi < 0)
  662                 return(-1);
  663         lwkt_yield();
  664         return(0);
  665 }
  666 
  667 /*
  668  * Called by vm_page_alloc() when a new VM page is inserted
  669  * into a VM object.  Checks whether swap has been assigned to
  670  * the page and sets PG_SWAPPED as necessary.
  671  *
  672  * No requirements.
  673  */
  674 void
  675 swap_pager_page_inserted(vm_page_t m)
  676 {
  677         if (m->object->swblock_count) {
  678                 vm_object_hold(m->object);
  679                 if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
  680                         vm_page_flag_set(m, PG_SWAPPED);
  681                 vm_object_drop(m->object);
  682         }
  683 }
  684 
  685 /*
  686  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
  687  *
  688  *      Assigns swap blocks to the specified range within the object.  The 
  689  *      swap blocks are not zerod.  Any previous swap assignment is destroyed.
  690  *
  691  *      Returns 0 on success, -1 on failure.
  692  *
  693  * The caller is responsible for avoiding races in the specified range.
  694  * No other requirements.
  695  */
  696 int
  697 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
  698 {
  699         int n = 0;
  700         swblk_t blk = SWAPBLK_NONE;
  701         vm_pindex_t beg = start;        /* save start index */
  702 
  703         vm_object_hold(object);
  704 
  705         while (size) {
  706                 if (n == 0) {
  707                         n = BLIST_MAX_ALLOC;
  708                         while ((blk = swp_pager_getswapspace(object, n)) ==
  709                                SWAPBLK_NONE)
  710                         {
  711                                 n >>= 1;
  712                                 if (n == 0) {
  713                                         swp_pager_meta_free(object, beg,
  714                                                             start - beg);
  715                                         vm_object_drop(object);
  716                                         return(-1);
  717                                 }
  718                         }
  719                 }
  720                 swp_pager_meta_build(object, start, blk);
  721                 --size;
  722                 ++start;
  723                 ++blk;
  724                 --n;
  725         }
  726         swp_pager_meta_free(object, start, n);
  727         vm_object_drop(object);
  728         return(0);
  729 }
  730 
  731 /*
  732  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
  733  *                      and destroy the source.
  734  *
  735  *      Copy any valid swapblks from the source to the destination.  In
  736  *      cases where both the source and destination have a valid swapblk,
  737  *      we keep the destination's.
  738  *
  739  *      This routine is allowed to block.  It may block allocating metadata
  740  *      indirectly through swp_pager_meta_build() or if paging is still in
  741  *      progress on the source. 
  742  *
  743  *      XXX vm_page_collapse() kinda expects us not to block because we 
  744  *      supposedly do not need to allocate memory, but for the moment we
  745  *      *may* have to get a little memory from the zone allocator, but
  746  *      it is taken from the interrupt memory.  We should be ok. 
  747  *
  748  *      The source object contains no vm_page_t's (which is just as well)
  749  *      The source object is of type OBJT_SWAP.
  750  *
  751  *      The source and destination objects must be held by the caller.
  752  */
  753 void
  754 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
  755                 vm_pindex_t base_index, int destroysource)
  756 {
  757         vm_pindex_t i;
  758 
  759         ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
  760         ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
  761 
  762         /*
  763          * transfer source to destination.
  764          */
  765         for (i = 0; i < dstobject->size; ++i) {
  766                 swblk_t dstaddr;
  767 
  768                 /*
  769                  * Locate (without changing) the swapblk on the destination,
  770                  * unless it is invalid in which case free it silently, or
  771                  * if the destination is a resident page, in which case the
  772                  * source is thrown away.
  773                  */
  774                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
  775 
  776                 if (dstaddr == SWAPBLK_NONE) {
  777                         /*
  778                          * Destination has no swapblk and is not resident,
  779                          * copy source.
  780                          */
  781                         swblk_t srcaddr;
  782 
  783                         srcaddr = swp_pager_meta_ctl(srcobject,
  784                                                      base_index + i, SWM_POP);
  785 
  786                         if (srcaddr != SWAPBLK_NONE)
  787                                 swp_pager_meta_build(dstobject, i, srcaddr);
  788                 } else {
  789                         /*
  790                          * Destination has valid swapblk or it is represented
  791                          * by a resident page.  We destroy the sourceblock.
  792                          */
  793                         swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
  794                 }
  795         }
  796 
  797         /*
  798          * Free left over swap blocks in source.
  799          *
  800          * We have to revert the type to OBJT_DEFAULT so we do not accidently
  801          * double-remove the object from the swap queues.
  802          */
  803         if (destroysource) {
  804                 /*
  805                  * Reverting the type is not necessary, the caller is going
  806                  * to destroy srcobject directly, but I'm doing it here
  807                  * for consistency since we've removed the object from its
  808                  * queues.
  809                  */
  810                 swp_pager_meta_free_all(srcobject);
  811                 if (srcobject->type == OBJT_SWAP)
  812                         srcobject->type = OBJT_DEFAULT;
  813         }
  814 }
  815 
  816 /*
  817  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
  818  *                              the requested page.
  819  *
  820  *      We determine whether good backing store exists for the requested
  821  *      page and return TRUE if it does, FALSE if it doesn't.
  822  *
  823  *      If TRUE, we also try to determine how much valid, contiguous backing
  824  *      store exists before and after the requested page within a reasonable
  825  *      distance.  We do not try to restrict it to the swap device stripe
  826  *      (that is handled in getpages/putpages).  It probably isn't worth
  827  *      doing here.
  828  *
  829  * No requirements.
  830  */
  831 boolean_t
  832 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
  833 {
  834         swblk_t blk0;
  835 
  836         /*
  837          * do we have good backing store at the requested index ?
  838          */
  839         vm_object_hold(object);
  840         blk0 = swp_pager_meta_ctl(object, pindex, 0);
  841 
  842         if (blk0 == SWAPBLK_NONE) {
  843                 vm_object_drop(object);
  844                 return (FALSE);
  845         }
  846         vm_object_drop(object);
  847         return (TRUE);
  848 }
  849 
  850 /*
  851  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
  852  *
  853  * This removes any associated swap backing store, whether valid or
  854  * not, from the page.  This operates on any VM object, not just OBJT_SWAP
  855  * objects.
  856  *
  857  * This routine is typically called when a page is made dirty, at
  858  * which point any associated swap can be freed.  MADV_FREE also
  859  * calls us in a special-case situation
  860  *
  861  * NOTE!!!  If the page is clean and the swap was valid, the caller
  862  * should make the page dirty before calling this routine.  This routine
  863  * does NOT change the m->dirty status of the page.  Also: MADV_FREE
  864  * depends on it.
  865  *
  866  * The page must be busied or soft-busied.
  867  * The caller can hold the object to avoid blocking, else we might block.
  868  * No other requirements.
  869  */
  870 void
  871 swap_pager_unswapped(vm_page_t m)
  872 {
  873         if (m->flags & PG_SWAPPED) {
  874                 vm_object_hold(m->object);
  875                 KKASSERT(m->flags & PG_SWAPPED);
  876                 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
  877                 vm_page_flag_clear(m, PG_SWAPPED);
  878                 vm_object_drop(m->object);
  879         }
  880 }
  881 
  882 /*
  883  * SWAP_PAGER_STRATEGY() - read, write, free blocks
  884  *
  885  * This implements a VM OBJECT strategy function using swap backing store.
  886  * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
  887  * types.
  888  *
  889  * This is intended to be a cacheless interface (i.e. caching occurs at
  890  * higher levels), and is also used as a swap-based SSD cache for vnode
  891  * and device objects.
  892  *
  893  * All I/O goes directly to and from the swap device.
  894  *      
  895  * We currently attempt to run I/O synchronously or asynchronously as
  896  * the caller requests.  This isn't perfect because we loose error
  897  * sequencing when we run multiple ops in parallel to satisfy a request.
  898  * But this is swap, so we let it all hang out.
  899  *
  900  * No requirements.
  901  */
  902 void
  903 swap_pager_strategy(vm_object_t object, struct bio *bio)
  904 {
  905         struct buf *bp = bio->bio_buf;
  906         struct bio *nbio;
  907         vm_pindex_t start;
  908         vm_pindex_t biox_blkno = 0;
  909         int count;
  910         char *data;
  911         struct bio *biox;
  912         struct buf *bufx;
  913 #if 0
  914         struct bio_track *track;
  915 #endif
  916 
  917 #if 0
  918         /*
  919          * tracking for swapdev vnode I/Os
  920          */
  921         if (bp->b_cmd == BUF_CMD_READ)
  922                 track = &swapdev_vp->v_track_read;
  923         else
  924                 track = &swapdev_vp->v_track_write;
  925 #endif
  926 
  927         if (bp->b_bcount & PAGE_MASK) {
  928                 bp->b_error = EINVAL;
  929                 bp->b_flags |= B_ERROR | B_INVAL;
  930                 biodone(bio);
  931                 kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
  932                         "not page bounded\n",
  933                         bp, (long long)bio->bio_offset, (int)bp->b_bcount);
  934                 return;
  935         }
  936 
  937         /*
  938          * Clear error indication, initialize page index, count, data pointer.
  939          */
  940         bp->b_error = 0;
  941         bp->b_flags &= ~B_ERROR;
  942         bp->b_resid = bp->b_bcount;
  943 
  944         start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
  945         count = howmany(bp->b_bcount, PAGE_SIZE);
  946         data = bp->b_data;
  947 
  948         /*
  949          * Deal with BUF_CMD_FREEBLKS
  950          */
  951         if (bp->b_cmd == BUF_CMD_FREEBLKS) {
  952                 /*
  953                  * FREE PAGE(s) - destroy underlying swap that is no longer
  954                  *                needed.
  955                  */
  956                 vm_object_hold(object);
  957                 swp_pager_meta_free(object, start, count);
  958                 vm_object_drop(object);
  959                 bp->b_resid = 0;
  960                 biodone(bio);
  961                 return;
  962         }
  963 
  964         /*
  965          * We need to be able to create a new cluster of I/O's.  We cannot
  966          * use the caller fields of the passed bio so push a new one.
  967          *
  968          * Because nbio is just a placeholder for the cluster links,
  969          * we can biodone() the original bio instead of nbio to make
  970          * things a bit more efficient.
  971          */
  972         nbio = push_bio(bio);
  973         nbio->bio_offset = bio->bio_offset;
  974         nbio->bio_caller_info1.cluster_head = NULL;
  975         nbio->bio_caller_info2.cluster_tail = NULL;
  976 
  977         biox = NULL;
  978         bufx = NULL;
  979 
  980         /*
  981          * Execute read or write
  982          */
  983         vm_object_hold(object);
  984 
  985         while (count > 0) {
  986                 swblk_t blk;
  987 
  988                 /*
  989                  * Obtain block.  If block not found and writing, allocate a
  990                  * new block and build it into the object.
  991                  */
  992                 blk = swp_pager_meta_ctl(object, start, 0);
  993                 if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
  994                         blk = swp_pager_getswapspace(object, 1);
  995                         if (blk == SWAPBLK_NONE) {
  996                                 bp->b_error = ENOMEM;
  997                                 bp->b_flags |= B_ERROR;
  998                                 break;
  999                         }
 1000                         swp_pager_meta_build(object, start, blk);
 1001                 }
 1002                         
 1003                 /*
 1004                  * Do we have to flush our current collection?  Yes if:
 1005                  *
 1006                  *      - no swap block at this index
 1007                  *      - swap block is not contiguous
 1008                  *      - we cross a physical disk boundry in the
 1009                  *        stripe.
 1010                  */
 1011                 if (
 1012                     biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
 1013                      ((biox_blkno ^ blk) & dmmax_mask)
 1014                     )
 1015                 ) {
 1016                         if (bp->b_cmd == BUF_CMD_READ) {
 1017                                 ++mycpu->gd_cnt.v_swapin;
 1018                                 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
 1019                         } else {
 1020                                 ++mycpu->gd_cnt.v_swapout;
 1021                                 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
 1022                                 bufx->b_dirtyend = bufx->b_bcount;
 1023                         }
 1024 
 1025                         /*
 1026                          * Finished with this buf.
 1027                          */
 1028                         KKASSERT(bufx->b_bcount != 0);
 1029                         if (bufx->b_cmd != BUF_CMD_READ)
 1030                                 bufx->b_dirtyend = bufx->b_bcount;
 1031                         biox = NULL;
 1032                         bufx = NULL;
 1033                 }
 1034 
 1035                 /*
 1036                  * Add new swapblk to biox, instantiating biox if necessary.
 1037                  * Zero-fill reads are able to take a shortcut.
 1038                  */
 1039                 if (blk == SWAPBLK_NONE) {
 1040                         /*
 1041                          * We can only get here if we are reading.  Since
 1042                          * we are at splvm() we can safely modify b_resid,
 1043                          * even if chain ops are in progress.
 1044                          */
 1045                         bzero(data, PAGE_SIZE);
 1046                         bp->b_resid -= PAGE_SIZE;
 1047                 } else {
 1048                         if (biox == NULL) {
 1049                                 /* XXX chain count > 4, wait to <= 4 */
 1050 
 1051                                 bufx = getpbuf(NULL);
 1052                                 biox = &bufx->b_bio1;
 1053                                 cluster_append(nbio, bufx);
 1054                                 bufx->b_flags |= (bp->b_flags & B_ORDERED);
 1055                                 bufx->b_cmd = bp->b_cmd;
 1056                                 biox->bio_done = swap_chain_iodone;
 1057                                 biox->bio_offset = (off_t)blk << PAGE_SHIFT;
 1058                                 biox->bio_caller_info1.cluster_parent = nbio;
 1059                                 biox_blkno = blk;
 1060                                 bufx->b_bcount = 0;
 1061                                 bufx->b_data = data;
 1062                         }
 1063                         bufx->b_bcount += PAGE_SIZE;
 1064                 }
 1065                 --count;
 1066                 ++start;
 1067                 data += PAGE_SIZE;
 1068         }
 1069 
 1070         vm_object_drop(object);
 1071 
 1072         /*
 1073          *  Flush out last buffer
 1074          */
 1075         if (biox) {
 1076                 if (bufx->b_cmd == BUF_CMD_READ) {
 1077                         ++mycpu->gd_cnt.v_swapin;
 1078                         mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
 1079                 } else {
 1080                         ++mycpu->gd_cnt.v_swapout;
 1081                         mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
 1082                         bufx->b_dirtyend = bufx->b_bcount;
 1083                 }
 1084                 KKASSERT(bufx->b_bcount);
 1085                 if (bufx->b_cmd != BUF_CMD_READ)
 1086                         bufx->b_dirtyend = bufx->b_bcount;
 1087                 /* biox, bufx = NULL */
 1088         }
 1089 
 1090         /*
 1091          * Now initiate all the I/O.  Be careful looping on our chain as
 1092          * I/O's may complete while we are still initiating them.
 1093          *
 1094          * If the request is a 100% sparse read no bios will be present
 1095          * and we just biodone() the buffer.
 1096          */
 1097         nbio->bio_caller_info2.cluster_tail = NULL;
 1098         bufx = nbio->bio_caller_info1.cluster_head;
 1099 
 1100         if (bufx) {
 1101                 while (bufx) {
 1102                         biox = &bufx->b_bio1;
 1103                         BUF_KERNPROC(bufx);
 1104                         bufx = bufx->b_cluster_next;
 1105                         vn_strategy(swapdev_vp, biox);
 1106                 }
 1107         } else {
 1108                 biodone(bio);
 1109         }
 1110 
 1111         /*
 1112          * Completion of the cluster will also call biodone_chain(nbio).
 1113          * We never call biodone(nbio) so we don't have to worry about
 1114          * setting up a bio_done callback.  It's handled in the sub-IO.
 1115          */
 1116         /**/
 1117 }
 1118 
 1119 /*
 1120  * biodone callback
 1121  *
 1122  * No requirements.
 1123  */
 1124 static void
 1125 swap_chain_iodone(struct bio *biox)
 1126 {
 1127         struct buf **nextp;
 1128         struct buf *bufx;       /* chained sub-buffer */
 1129         struct bio *nbio;       /* parent nbio with chain glue */
 1130         struct buf *bp;         /* original bp associated with nbio */
 1131         int chain_empty;
 1132 
 1133         bufx = biox->bio_buf;
 1134         nbio = biox->bio_caller_info1.cluster_parent;
 1135         bp = nbio->bio_buf;
 1136 
 1137         /*
 1138          * Update the original buffer
 1139          */
 1140         KKASSERT(bp != NULL);
 1141         if (bufx->b_flags & B_ERROR) {
 1142                 atomic_set_int(&bufx->b_flags, B_ERROR);
 1143                 bp->b_error = bufx->b_error;    /* race ok */
 1144         } else if (bufx->b_resid != 0) {
 1145                 atomic_set_int(&bufx->b_flags, B_ERROR);
 1146                 bp->b_error = EINVAL;           /* race ok */
 1147         } else {
 1148                 atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
 1149         }
 1150 
 1151         /*
 1152          * Remove us from the chain.
 1153          */
 1154         spin_lock(&swapbp_spin);
 1155         nextp = &nbio->bio_caller_info1.cluster_head;
 1156         while (*nextp != bufx) {
 1157                 KKASSERT(*nextp != NULL);
 1158                 nextp = &(*nextp)->b_cluster_next;
 1159         }
 1160         *nextp = bufx->b_cluster_next;
 1161         chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
 1162         spin_unlock(&swapbp_spin);
 1163 
 1164         /*
 1165          * Clean up bufx.  If the chain is now empty we finish out
 1166          * the parent.  Note that we may be racing other completions
 1167          * so we must use the chain_empty status from above.
 1168          */
 1169         if (chain_empty) {
 1170                 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
 1171                         atomic_set_int(&bp->b_flags, B_ERROR);
 1172                         bp->b_error = EINVAL;
 1173                 }
 1174                 biodone_chain(nbio);
 1175         }
 1176         relpbuf(bufx, NULL);
 1177 }
 1178 
 1179 /*
 1180  * SWAP_PAGER_GETPAGES() - bring page in from swap
 1181  *
 1182  * The requested page may have to be brought in from swap.  Calculate the
 1183  * swap block and bring in additional pages if possible.  All pages must
 1184  * have contiguous swap block assignments and reside in the same object.
 1185  *
 1186  * The caller has a single vm_object_pip_add() reference prior to
 1187  * calling us and we should return with the same.
 1188  *
 1189  * The caller has BUSY'd the page.  We should return with (*mpp) left busy,
 1190  * and any additinal pages unbusied.
 1191  *
 1192  * If the caller encounters a PG_RAM page it will pass it to us even though
 1193  * it may be valid and dirty.  We cannot overwrite the page in this case!
 1194  * The case is used to allow us to issue pure read-aheads.
 1195  *
 1196  * NOTE! XXX This code does not entirely pipeline yet due to the fact that
 1197  *       the PG_RAM page is validated at the same time as mreq.  What we
 1198  *       really need to do is issue a separate read-ahead pbuf.
 1199  *
 1200  * No requirements.
 1201  */
 1202 static int
 1203 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
 1204 {
 1205         struct buf *bp;
 1206         struct bio *bio;
 1207         vm_page_t mreq;
 1208         vm_page_t m;
 1209         vm_offset_t kva;
 1210         swblk_t blk;
 1211         int i;
 1212         int j;
 1213         int raonly;
 1214         int error;
 1215         u_int32_t flags;
 1216         vm_page_t marray[XIO_INTERNAL_PAGES];
 1217 
 1218         mreq = *mpp;
 1219 
 1220         vm_object_hold(object);
 1221         if (mreq->object != object) {
 1222                 panic("swap_pager_getpages: object mismatch %p/%p", 
 1223                     object, 
 1224                     mreq->object
 1225                 );
 1226         }
 1227 
 1228         /*
 1229          * We don't want to overwrite a fully valid page as it might be
 1230          * dirty.  This case can occur when e.g. vm_fault hits a perfectly
 1231          * valid page with PG_RAM set.
 1232          *
 1233          * In this case we see if the next page is a suitable page-in
 1234          * candidate and if it is we issue read-ahead.  PG_RAM will be
 1235          * set on the last page of the read-ahead to continue the pipeline.
 1236          */
 1237         if (mreq->valid == VM_PAGE_BITS_ALL) {
 1238                 if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
 1239                         vm_object_drop(object);
 1240                         return(VM_PAGER_OK);
 1241                 }
 1242                 blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
 1243                 if (blk == SWAPBLK_NONE) {
 1244                         vm_object_drop(object);
 1245                         return(VM_PAGER_OK);
 1246                 }
 1247                 m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
 1248                                             TRUE, &error);
 1249                 if (error) {
 1250                         vm_object_drop(object);
 1251                         return(VM_PAGER_OK);
 1252                 } else if (m == NULL) {
 1253                         /*
 1254                          * Use VM_ALLOC_QUICK to avoid blocking on cache
 1255                          * page reuse.
 1256                          */
 1257                         m = vm_page_alloc(object, mreq->pindex + 1,
 1258                                           VM_ALLOC_QUICK);
 1259                         if (m == NULL) {
 1260                                 vm_object_drop(object);
 1261                                 return(VM_PAGER_OK);
 1262                         }
 1263                 } else {
 1264                         if (m->valid) {
 1265                                 vm_page_wakeup(m);
 1266                                 vm_object_drop(object);
 1267                                 return(VM_PAGER_OK);
 1268                         }
 1269                         vm_page_unqueue_nowakeup(m);
 1270                 }
 1271                 /* page is busy */
 1272                 mreq = m;
 1273                 raonly = 1;
 1274         } else {
 1275                 raonly = 0;
 1276         }
 1277 
 1278         /*
 1279          * Try to block-read contiguous pages from swap if sequential,
 1280          * otherwise just read one page.  Contiguous pages from swap must
 1281          * reside within a single device stripe because the I/O cannot be
 1282          * broken up across multiple stripes.
 1283          *
 1284          * Note that blk and iblk can be SWAPBLK_NONE but the loop is
 1285          * set up such that the case(s) are handled implicitly.
 1286          */
 1287         blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
 1288         marray[0] = mreq;
 1289 
 1290         for (i = 1; swap_burst_read &&
 1291                     i < XIO_INTERNAL_PAGES &&
 1292                     mreq->pindex + i < object->size; ++i) {
 1293                 swblk_t iblk;
 1294 
 1295                 iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
 1296                 if (iblk != blk + i)
 1297                         break;
 1298                 if ((blk ^ iblk) & dmmax_mask)
 1299                         break;
 1300                 m = vm_page_lookup_busy_try(object, mreq->pindex + i,
 1301                                             TRUE, &error);
 1302                 if (error) {
 1303                         break;
 1304                 } else if (m == NULL) {
 1305                         /*
 1306                          * Use VM_ALLOC_QUICK to avoid blocking on cache
 1307                          * page reuse.
 1308                          */
 1309                         m = vm_page_alloc(object, mreq->pindex + i,
 1310                                           VM_ALLOC_QUICK);
 1311                         if (m == NULL)
 1312                                 break;
 1313                 } else {
 1314                         if (m->valid) {
 1315                                 vm_page_wakeup(m);
 1316                                 break;
 1317                         }
 1318                         vm_page_unqueue_nowakeup(m);
 1319                 }
 1320                 /* page is busy */
 1321                 marray[i] = m;
 1322         }
 1323         if (i > 1)
 1324                 vm_page_flag_set(marray[i - 1], PG_RAM);
 1325 
 1326         /*
 1327          * If mreq is the requested page and we have nothing to do return
 1328          * VM_PAGER_FAIL.  If raonly is set mreq is just another read-ahead
 1329          * page and must be cleaned up.
 1330          */
 1331         if (blk == SWAPBLK_NONE) {
 1332                 KKASSERT(i == 1);
 1333                 if (raonly) {
 1334                         vnode_pager_freepage(mreq);
 1335                         vm_object_drop(object);
 1336                         return(VM_PAGER_OK);
 1337                 } else {
 1338                         vm_object_drop(object);
 1339                         return(VM_PAGER_FAIL);
 1340                 }
 1341         }
 1342 
 1343         /*
 1344          * map our page(s) into kva for input
 1345          */
 1346         bp = getpbuf_kva(&nsw_rcount);
 1347         bio = &bp->b_bio1;
 1348         kva = (vm_offset_t) bp->b_kvabase;
 1349         bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
 1350         pmap_qenter(kva, bp->b_xio.xio_pages, i);
 1351 
 1352         bp->b_data = (caddr_t)kva;
 1353         bp->b_bcount = PAGE_SIZE * i;
 1354         bp->b_xio.xio_npages = i;
 1355         bio->bio_done = swp_pager_async_iodone;
 1356         bio->bio_offset = (off_t)blk << PAGE_SHIFT;
 1357         bio->bio_caller_info1.index = SWBIO_READ;
 1358 
 1359         /*
 1360          * Set index.  If raonly set the index beyond the array so all
 1361          * the pages are treated the same, otherwise the original mreq is
 1362          * at index 0.
 1363          */
 1364         if (raonly)
 1365                 bio->bio_driver_info = (void *)(intptr_t)i;
 1366         else
 1367                 bio->bio_driver_info = (void *)(intptr_t)0;
 1368 
 1369         for (j = 0; j < i; ++j)
 1370                 vm_page_flag_set(bp->b_xio.xio_pages[j], PG_SWAPINPROG);
 1371 
 1372         mycpu->gd_cnt.v_swapin++;
 1373         mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
 1374 
 1375         /*
 1376          * We still hold the lock on mreq, and our automatic completion routine
 1377          * does not remove it.
 1378          */
 1379         vm_object_pip_add(object, bp->b_xio.xio_npages);
 1380 
 1381         /*
 1382          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
 1383          * this point because we automatically release it on completion.
 1384          * Instead, we look at the one page we are interested in which we
 1385          * still hold a lock on even through the I/O completion.
 1386          *
 1387          * The other pages in our m[] array are also released on completion,
 1388          * so we cannot assume they are valid anymore either.
 1389          */
 1390         bp->b_cmd = BUF_CMD_READ;
 1391         BUF_KERNPROC(bp);
 1392         vn_strategy(swapdev_vp, bio);
 1393 
 1394         /*
 1395          * Wait for the page we want to complete.  PG_SWAPINPROG is always
 1396          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
 1397          * is set in the meta-data.
 1398          *
 1399          * If this is a read-ahead only we return immediately without
 1400          * waiting for I/O.
 1401          */
 1402         if (raonly) {
 1403                 vm_object_drop(object);
 1404                 return(VM_PAGER_OK);
 1405         }
 1406 
 1407         /*
 1408          * Read-ahead includes originally requested page case.
 1409          */
 1410         for (;;) {
 1411                 flags = mreq->flags;
 1412                 cpu_ccfence();
 1413                 if ((flags & PG_SWAPINPROG) == 0)
 1414                         break;
 1415                 tsleep_interlock(mreq, 0);
 1416                 if (!atomic_cmpset_int(&mreq->flags, flags,
 1417                                        flags | PG_WANTED | PG_REFERENCED)) {
 1418                         continue;
 1419                 }
 1420                 mycpu->gd_cnt.v_intrans++;
 1421                 if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
 1422                         kprintf(
 1423                             "swap_pager: indefinite wait buffer: "
 1424                                 " offset: %lld, size: %ld\n",
 1425                             (long long)bio->bio_offset,
 1426                             (long)bp->b_bcount
 1427                         );
 1428                 }
 1429         }
 1430 
 1431         /*
 1432          * mreq is left bussied after completion, but all the other pages
 1433          * are freed.  If we had an unrecoverable read error the page will
 1434          * not be valid.
 1435          */
 1436         vm_object_drop(object);
 1437         if (mreq->valid != VM_PAGE_BITS_ALL)
 1438                 return(VM_PAGER_ERROR);
 1439         else
 1440                 return(VM_PAGER_OK);
 1441 
 1442         /*
 1443          * A final note: in a low swap situation, we cannot deallocate swap
 1444          * and mark a page dirty here because the caller is likely to mark
 1445          * the page clean when we return, causing the page to possibly revert 
 1446          * to all-zero's later.
 1447          */
 1448 }
 1449 
 1450 /*
 1451  *      swap_pager_putpages: 
 1452  *
 1453  *      Assign swap (if necessary) and initiate I/O on the specified pages.
 1454  *
 1455  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
 1456  *      are automatically converted to SWAP objects.
 1457  *
 1458  *      In a low memory situation we may block in vn_strategy(), but the new 
 1459  *      vm_page reservation system coupled with properly written VFS devices 
 1460  *      should ensure that no low-memory deadlock occurs.  This is an area
 1461  *      which needs work.
 1462  *
 1463  *      The parent has N vm_object_pip_add() references prior to
 1464  *      calling us and will remove references for rtvals[] that are
 1465  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
 1466  *      completion.
 1467  *
 1468  *      The parent has soft-busy'd the pages it passes us and will unbusy
 1469  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
 1470  *      We need to unbusy the rest on I/O completion.
 1471  *
 1472  * No requirements.
 1473  */
 1474 void
 1475 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
 1476                     boolean_t sync, int *rtvals)
 1477 {
 1478         int i;
 1479         int n = 0;
 1480 
 1481         vm_object_hold(object);
 1482 
 1483         if (count && m[0]->object != object) {
 1484                 panic("swap_pager_getpages: object mismatch %p/%p", 
 1485                     object, 
 1486                     m[0]->object
 1487                 );
 1488         }
 1489 
 1490         /*
 1491          * Step 1
 1492          *
 1493          * Turn object into OBJT_SWAP
 1494          * check for bogus sysops
 1495          * force sync if not pageout process
 1496          */
 1497         if (object->type == OBJT_DEFAULT) {
 1498                 if (object->type == OBJT_DEFAULT)
 1499                         swp_pager_meta_convert(object);
 1500         }
 1501 
 1502         if (curthread != pagethread)
 1503                 sync = TRUE;
 1504 
 1505         /*
 1506          * Step 2
 1507          *
 1508          * Update nsw parameters from swap_async_max sysctl values.  
 1509          * Do not let the sysop crash the machine with bogus numbers.
 1510          */
 1511         if (swap_async_max != nsw_wcount_async_max) {
 1512                 int n;
 1513 
 1514                 /*
 1515                  * limit range
 1516                  */
 1517                 if ((n = swap_async_max) > nswbuf / 2)
 1518                         n = nswbuf / 2;
 1519                 if (n < 1)
 1520                         n = 1;
 1521                 swap_async_max = n;
 1522 
 1523                 /*
 1524                  * Adjust difference ( if possible ).  If the current async
 1525                  * count is too low, we may not be able to make the adjustment
 1526                  * at this time.
 1527                  *
 1528                  * vm_token needed for nsw_wcount sleep interlock
 1529                  */
 1530                 lwkt_gettoken(&vm_token);
 1531                 n -= nsw_wcount_async_max;
 1532                 if (nsw_wcount_async + n >= 0) {
 1533                         nsw_wcount_async_max += n;
 1534                         pbuf_adjcount(&nsw_wcount_async, n);
 1535                 }
 1536                 lwkt_reltoken(&vm_token);
 1537         }
 1538 
 1539         /*
 1540          * Step 3
 1541          *
 1542          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
 1543          * The page is left dirty until the pageout operation completes
 1544          * successfully.
 1545          */
 1546 
 1547         for (i = 0; i < count; i += n) {
 1548                 struct buf *bp;
 1549                 struct bio *bio;
 1550                 swblk_t blk;
 1551                 int j;
 1552 
 1553                 /*
 1554                  * Maximum I/O size is limited by a number of factors.
 1555                  */
 1556 
 1557                 n = min(BLIST_MAX_ALLOC, count - i);
 1558                 n = min(n, nsw_cluster_max);
 1559 
 1560                 lwkt_gettoken(&vm_token);
 1561 
 1562                 /*
 1563                  * Get biggest block of swap we can.  If we fail, fall
 1564                  * back and try to allocate a smaller block.  Don't go
 1565                  * overboard trying to allocate space if it would overly
 1566                  * fragment swap.
 1567                  */
 1568                 while (
 1569                     (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
 1570                     n > 4
 1571                 ) {
 1572                         n >>= 1;
 1573                 }
 1574                 if (blk == SWAPBLK_NONE) {
 1575                         for (j = 0; j < n; ++j)
 1576                                 rtvals[i+j] = VM_PAGER_FAIL;
 1577                         lwkt_reltoken(&vm_token);
 1578                         continue;
 1579                 }
 1580                 if (vm_report_swap_allocs > 0) {
 1581                         kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
 1582                         --vm_report_swap_allocs;
 1583                 }
 1584 
 1585                 /*
 1586                  * The I/O we are constructing cannot cross a physical
 1587                  * disk boundry in the swap stripe.  Note: we are still
 1588                  * at splvm().
 1589                  */
 1590                 if ((blk ^ (blk + n)) & dmmax_mask) {
 1591                         j = ((blk + dmmax) & dmmax_mask) - blk;
 1592                         swp_pager_freeswapspace(object, blk + j, n - j);
 1593                         n = j;
 1594                 }
 1595 
 1596                 /*
 1597                  * All I/O parameters have been satisfied, build the I/O
 1598                  * request and assign the swap space.
 1599                  */
 1600                 if (sync == TRUE)
 1601                         bp = getpbuf_kva(&nsw_wcount_sync);
 1602                 else
 1603                         bp = getpbuf_kva(&nsw_wcount_async);
 1604                 bio = &bp->b_bio1;
 1605 
 1606                 lwkt_reltoken(&vm_token);
 1607 
 1608                 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
 1609 
 1610                 bp->b_bcount = PAGE_SIZE * n;
 1611                 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
 1612 
 1613                 for (j = 0; j < n; ++j) {
 1614                         vm_page_t mreq = m[i+j];
 1615 
 1616                         swp_pager_meta_build(mreq->object, mreq->pindex,
 1617                                              blk + j);
 1618                         if (object->type == OBJT_SWAP)
 1619                                 vm_page_dirty(mreq);
 1620                         rtvals[i+j] = VM_PAGER_OK;
 1621 
 1622                         vm_page_flag_set(mreq, PG_SWAPINPROG);
 1623                         bp->b_xio.xio_pages[j] = mreq;
 1624                 }
 1625                 bp->b_xio.xio_npages = n;
 1626 
 1627                 mycpu->gd_cnt.v_swapout++;
 1628                 mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
 1629 
 1630                 bp->b_dirtyoff = 0;             /* req'd for NFS */
 1631                 bp->b_dirtyend = bp->b_bcount;  /* req'd for NFS */
 1632                 bp->b_cmd = BUF_CMD_WRITE;
 1633                 bio->bio_caller_info1.index = SWBIO_WRITE;
 1634 
 1635                 /*
 1636                  * asynchronous
 1637                  */
 1638                 if (sync == FALSE) {
 1639                         bio->bio_done = swp_pager_async_iodone;
 1640                         BUF_KERNPROC(bp);
 1641                         vn_strategy(swapdev_vp, bio);
 1642 
 1643                         for (j = 0; j < n; ++j)
 1644                                 rtvals[i+j] = VM_PAGER_PEND;
 1645                         continue;
 1646                 }
 1647 
 1648                 /*
 1649                  * Issue synchrnously.
 1650                  *
 1651                  * Wait for the sync I/O to complete, then update rtvals.
 1652                  * We just set the rtvals[] to VM_PAGER_PEND so we can call
 1653                  * our async completion routine at the end, thus avoiding a
 1654                  * double-free.
 1655                  */
 1656                 bio->bio_caller_info1.index |= SWBIO_SYNC;
 1657                 bio->bio_done = biodone_sync;
 1658                 bio->bio_flags |= BIO_SYNC;
 1659                 vn_strategy(swapdev_vp, bio);
 1660                 biowait(bio, "swwrt");
 1661 
 1662                 for (j = 0; j < n; ++j)
 1663                         rtvals[i+j] = VM_PAGER_PEND;
 1664 
 1665                 /*
 1666                  * Now that we are through with the bp, we can call the
 1667                  * normal async completion, which frees everything up.
 1668                  */
 1669                 swp_pager_async_iodone(bio);
 1670         }
 1671         vm_object_drop(object);
 1672 }
 1673 
 1674 /*
 1675  * No requirements.
 1676  */
 1677 void
 1678 swap_pager_newswap(void)
 1679 {
 1680         swp_sizecheck();
 1681 }
 1682 
 1683 /*
 1684  *      swp_pager_async_iodone:
 1685  *
 1686  *      Completion routine for asynchronous reads and writes from/to swap.
 1687  *      Also called manually by synchronous code to finish up a bp.
 1688  *
 1689  *      For READ operations, the pages are PG_BUSY'd.  For WRITE operations, 
 1690  *      the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY 
 1691  *      unbusy all pages except the 'main' request page.  For WRITE 
 1692  *      operations, we vm_page_t->busy'd unbusy all pages ( we can do this 
 1693  *      because we marked them all VM_PAGER_PEND on return from putpages ).
 1694  *
 1695  *      This routine may not block.
 1696  *
 1697  * No requirements.
 1698  */
 1699 static void
 1700 swp_pager_async_iodone(struct bio *bio)
 1701 {
 1702         struct buf *bp = bio->bio_buf;
 1703         vm_object_t object = NULL;
 1704         int i;
 1705         int *nswptr;
 1706 
 1707         /*
 1708          * report error
 1709          */
 1710         if (bp->b_flags & B_ERROR) {
 1711                 kprintf(
 1712                     "swap_pager: I/O error - %s failed; offset %lld,"
 1713                         "size %ld, error %d\n",
 1714                     ((bio->bio_caller_info1.index & SWBIO_READ) ?
 1715                         "pagein" : "pageout"),
 1716                     (long long)bio->bio_offset,
 1717                     (long)bp->b_bcount,
 1718                     bp->b_error
 1719                 );
 1720         }
 1721 
 1722         /*
 1723          * set object, raise to splvm().
 1724          */
 1725         if (bp->b_xio.xio_npages)
 1726                 object = bp->b_xio.xio_pages[0]->object;
 1727 
 1728         /*
 1729          * remove the mapping for kernel virtual
 1730          */
 1731         pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
 1732 
 1733         /*
 1734          * cleanup pages.  If an error occurs writing to swap, we are in
 1735          * very serious trouble.  If it happens to be a disk error, though,
 1736          * we may be able to recover by reassigning the swap later on.  So
 1737          * in this case we remove the m->swapblk assignment for the page 
 1738          * but do not free it in the rlist.  The errornous block(s) are thus
 1739          * never reallocated as swap.  Redirty the page and continue.
 1740          */
 1741         for (i = 0; i < bp->b_xio.xio_npages; ++i) {
 1742                 vm_page_t m = bp->b_xio.xio_pages[i];
 1743 
 1744                 if (bp->b_flags & B_ERROR) {
 1745                         /*
 1746                          * If an error occurs I'd love to throw the swapblk
 1747                          * away without freeing it back to swapspace, so it
 1748                          * can never be used again.  But I can't from an 
 1749                          * interrupt.
 1750                          */
 1751 
 1752                         if (bio->bio_caller_info1.index & SWBIO_READ) {
 1753                                 /*
 1754                                  * When reading, reqpage needs to stay
 1755                                  * locked for the parent, but all other
 1756                                  * pages can be freed.  We still want to
 1757                                  * wakeup the parent waiting on the page,
 1758                                  * though.  ( also: pg_reqpage can be -1 and 
 1759                                  * not match anything ).
 1760                                  *
 1761                                  * We have to wake specifically requested pages
 1762                                  * up too because we cleared PG_SWAPINPROG and
 1763                                  * someone may be waiting for that.
 1764                                  *
 1765                                  * NOTE: for reads, m->dirty will probably
 1766                                  * be overridden by the original caller of
 1767                                  * getpages so don't play cute tricks here.
 1768                                  *
 1769                                  * NOTE: We can't actually free the page from
 1770                                  * here, because this is an interrupt.  It
 1771                                  * is not legal to mess with object->memq
 1772                                  * from an interrupt.  Deactivate the page
 1773                                  * instead.
 1774                                  */
 1775 
 1776                                 m->valid = 0;
 1777                                 vm_page_flag_clear(m, PG_ZERO);
 1778                                 vm_page_flag_clear(m, PG_SWAPINPROG);
 1779 
 1780                                 /*
 1781                                  * bio_driver_info holds the requested page
 1782                                  * index.
 1783                                  */
 1784                                 if (i != (int)(intptr_t)bio->bio_driver_info) {
 1785                                         vm_page_deactivate(m);
 1786                                         vm_page_wakeup(m);
 1787                                 } else {
 1788                                         vm_page_flash(m);
 1789                                 }
 1790                                 /*
 1791                                  * If i == bp->b_pager.pg_reqpage, do not wake 
 1792                                  * the page up.  The caller needs to.
 1793                                  */
 1794                         } else {
 1795                                 /*
 1796                                  * If a write error occurs remove the swap
 1797                                  * assignment (note that PG_SWAPPED may or
 1798                                  * may not be set depending on prior activity).
 1799                                  *
 1800                                  * Re-dirty OBJT_SWAP pages as there is no
 1801                                  * other backing store, we can't throw the
 1802                                  * page away.
 1803                                  *
 1804                                  * Non-OBJT_SWAP pages (aka swapcache) must
 1805                                  * not be dirtied since they may not have
 1806                                  * been dirty in the first place, and they
 1807                                  * do have backing store (the vnode).
 1808                                  */
 1809                                 vm_page_busy_wait(m, FALSE, "swadpg");
 1810                                 swp_pager_meta_ctl(m->object, m->pindex,
 1811                                                    SWM_FREE);
 1812                                 vm_page_flag_clear(m, PG_SWAPPED);
 1813                                 if (m->object->type == OBJT_SWAP) {
 1814                                         vm_page_dirty(m);
 1815                                         vm_page_activate(m);
 1816                                 }
 1817                                 vm_page_flag_clear(m, PG_SWAPINPROG);
 1818                                 vm_page_io_finish(m);
 1819                                 vm_page_wakeup(m);
 1820                         }
 1821                 } else if (bio->bio_caller_info1.index & SWBIO_READ) {
 1822                         /*
 1823                          * NOTE: for reads, m->dirty will probably be 
 1824                          * overridden by the original caller of getpages so
 1825                          * we cannot set them in order to free the underlying
 1826                          * swap in a low-swap situation.  I don't think we'd
 1827                          * want to do that anyway, but it was an optimization
 1828                          * that existed in the old swapper for a time before
 1829                          * it got ripped out due to precisely this problem.
 1830                          *
 1831                          * clear PG_ZERO in page.
 1832                          *
 1833                          * If not the requested page then deactivate it.
 1834                          *
 1835                          * Note that the requested page, reqpage, is left
 1836                          * busied, but we still have to wake it up.  The
 1837                          * other pages are released (unbusied) by 
 1838                          * vm_page_wakeup().  We do not set reqpage's
 1839                          * valid bits here, it is up to the caller.
 1840                          */
 1841 
 1842                         /* 
 1843                          * NOTE: can't call pmap_clear_modify(m) from an
 1844                          * interrupt thread, the pmap code may have to map
 1845                          * non-kernel pmaps and currently asserts the case.
 1846                          */
 1847                         /*pmap_clear_modify(m);*/
 1848                         m->valid = VM_PAGE_BITS_ALL;
 1849                         vm_page_undirty(m);
 1850                         vm_page_flag_clear(m, PG_ZERO | PG_SWAPINPROG);
 1851                         vm_page_flag_set(m, PG_SWAPPED);
 1852 
 1853                         /*
 1854                          * We have to wake specifically requested pages
 1855                          * up too because we cleared PG_SWAPINPROG and
 1856                          * could be waiting for it in getpages.  However,
 1857                          * be sure to not unbusy getpages specifically
 1858                          * requested page - getpages expects it to be 
 1859                          * left busy.
 1860                          *
 1861                          * bio_driver_info holds the requested page
 1862                          */
 1863                         if (i != (int)(intptr_t)bio->bio_driver_info) {
 1864                                 vm_page_deactivate(m);
 1865                                 vm_page_wakeup(m);
 1866                         } else {
 1867                                 vm_page_flash(m);
 1868                         }
 1869                 } else {
 1870                         /*
 1871                          * Mark the page clean but do not mess with the
 1872                          * pmap-layer's modified state.  That state should
 1873                          * also be clear since the caller protected the
 1874                          * page VM_PROT_READ, but allow the case.
 1875                          *
 1876                          * We are in an interrupt, avoid pmap operations.
 1877                          *
 1878                          * If we have a severe page deficit, deactivate the
 1879                          * page.  Do not try to cache it (which would also
 1880                          * involve a pmap op), because the page might still
 1881                          * be read-heavy.
 1882                          *
 1883                          * When using the swap to cache clean vnode pages
 1884                          * we do not mess with the page dirty bits.
 1885                          */
 1886                         vm_page_busy_wait(m, FALSE, "swadpg");
 1887                         if (m->object->type == OBJT_SWAP)
 1888                                 vm_page_undirty(m);
 1889                         vm_page_flag_clear(m, PG_SWAPINPROG);
 1890                         vm_page_flag_set(m, PG_SWAPPED);
 1891                         if (vm_page_count_severe())
 1892                                 vm_page_deactivate(m);
 1893 #if 0
 1894                         if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
 1895                                 vm_page_protect(m, VM_PROT_READ);
 1896 #endif
 1897                         vm_page_io_finish(m);
 1898                         vm_page_wakeup(m);
 1899                 }
 1900         }
 1901 
 1902         /*
 1903          * adjust pip.  NOTE: the original parent may still have its own
 1904          * pip refs on the object.
 1905          */
 1906 
 1907         if (object)
 1908                 vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
 1909 
 1910         /*
 1911          * Release the physical I/O buffer.
 1912          *
 1913          * NOTE: Due to synchronous operations in the write case b_cmd may
 1914          *       already be set to BUF_CMD_DONE and BIO_SYNC may have already
 1915          *       been cleared.
 1916          *
 1917          * Use vm_token to interlock nsw_rcount/wcount wakeup?
 1918          */
 1919         lwkt_gettoken(&vm_token);
 1920         if (bio->bio_caller_info1.index & SWBIO_READ)
 1921                 nswptr = &nsw_rcount;
 1922         else if (bio->bio_caller_info1.index & SWBIO_SYNC)
 1923                 nswptr = &nsw_wcount_sync;
 1924         else
 1925                 nswptr = &nsw_wcount_async;
 1926         bp->b_cmd = BUF_CMD_DONE;
 1927         relpbuf(bp, nswptr);
 1928         lwkt_reltoken(&vm_token);
 1929 }
 1930 
 1931 /*
 1932  * Fault-in a potentially swapped page and remove the swap reference.
 1933  * (used by swapoff code)
 1934  *
 1935  * object must be held.
 1936  */
 1937 static __inline void
 1938 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
 1939 {
 1940         struct vnode *vp;
 1941         vm_page_t m;
 1942         int error;
 1943 
 1944         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
 1945 
 1946         if (object->type == OBJT_VNODE) {
 1947                 /*
 1948                  * Any swap related to a vnode is due to swapcache.  We must
 1949                  * vget() the vnode in case it is not active (otherwise
 1950                  * vref() will panic).  Calling vm_object_page_remove() will
 1951                  * ensure that any swap ref is removed interlocked with the
 1952                  * page.  clean_only is set to TRUE so we don't throw away
 1953                  * dirty pages.
 1954                  */
 1955                 vp = object->handle;
 1956                 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
 1957                 if (error == 0) {
 1958                         vm_object_page_remove(object, pindex, pindex + 1, TRUE);
 1959                         vput(vp);
 1960                 }
 1961         } else {
 1962                 /*
 1963                  * Otherwise it is a normal OBJT_SWAP object and we can
 1964                  * fault the page in and remove the swap.
 1965                  */
 1966                 m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
 1967                                          VM_PROT_NONE,
 1968                                          VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
 1969                                          sharedp, &error);
 1970                 if (m)
 1971                         vm_page_unhold(m);
 1972         }
 1973 }
 1974 
 1975 /*
 1976  * This removes all swap blocks related to a particular device.  We have
 1977  * to be careful of ripups during the scan.
 1978  */
 1979 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
 1980 
 1981 int
 1982 swap_pager_swapoff(int devidx)
 1983 {
 1984         struct swswapoffinfo info;
 1985         struct vm_object marker;
 1986         vm_object_t object;
 1987         int n;
 1988 
 1989         bzero(&marker, sizeof(marker));
 1990         marker.type = OBJT_MARKER;
 1991 
 1992         for (n = 0; n < VMOBJ_HSIZE; ++n) {
 1993                 lwkt_gettoken(&vmobj_tokens[n]);
 1994                 TAILQ_INSERT_HEAD(&vm_object_lists[n], &marker, object_list);
 1995 
 1996                 while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) {
 1997                         if (object->type == OBJT_MARKER)
 1998                                 goto skip;
 1999                         if (object->type != OBJT_SWAP &&
 2000                             object->type != OBJT_VNODE)
 2001                                 goto skip;
 2002                         vm_object_hold(object);
 2003                         if (object->type != OBJT_SWAP &&
 2004                             object->type != OBJT_VNODE) {
 2005                                 vm_object_drop(object);
 2006                                 goto skip;
 2007                         }
 2008                         info.object = object;
 2009                         info.shared = 0;
 2010                         info.devidx = devidx;
 2011                         swblock_rb_tree_RB_SCAN(&object->swblock_root,
 2012                                             NULL, swp_pager_swapoff_callback,
 2013                                             &info);
 2014                         vm_object_drop(object);
 2015 skip:
 2016                         if (object == TAILQ_NEXT(&marker, object_list)) {
 2017                                 TAILQ_REMOVE(&vm_object_lists[n],
 2018                                              &marker, object_list);
 2019                                 TAILQ_INSERT_AFTER(&vm_object_lists[n], object,
 2020                                                    &marker, object_list);
 2021                         }
 2022                 }
 2023                 TAILQ_REMOVE(&vm_object_lists[n], &marker, object_list);
 2024                 lwkt_reltoken(&vmobj_tokens[n]);
 2025         }
 2026 
 2027         /*
 2028          * If we fail to locate all swblocks we just fail gracefully and
 2029          * do not bother to restore paging on the swap device.  If the
 2030          * user wants to retry the user can retry.
 2031          */
 2032         if (swdevt[devidx].sw_nused)
 2033                 return (1);
 2034         else
 2035                 return (0);
 2036 }
 2037 
 2038 static
 2039 int
 2040 swp_pager_swapoff_callback(struct swblock *swap, void *data)
 2041 {
 2042         struct swswapoffinfo *info = data;
 2043         vm_object_t object = info->object;
 2044         vm_pindex_t index;
 2045         swblk_t v;
 2046         int i;
 2047 
 2048         index = swap->swb_index;
 2049         for (i = 0; i < SWAP_META_PAGES; ++i) {
 2050                 /*
 2051                  * Make sure we don't race a dying object.  This will
 2052                  * kill the scan of the object's swap blocks entirely.
 2053                  */
 2054                 if (object->flags & OBJ_DEAD)
 2055                         return(-1);
 2056 
 2057                 /*
 2058                  * Fault the page, which can obviously block.  If the swap
 2059                  * structure disappears break out.
 2060                  */
 2061                 v = swap->swb_pages[i];
 2062                 if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
 2063                         swp_pager_fault_page(object, &info->shared,
 2064                                              swap->swb_index + i);
 2065                         /* swap ptr might go away */
 2066                         if (RB_LOOKUP(swblock_rb_tree,
 2067                                       &object->swblock_root, index) != swap) {
 2068                                 break;
 2069                         }
 2070                 }
 2071         }
 2072         return(0);
 2073 }
 2074 
 2075 /************************************************************************
 2076  *                              SWAP META DATA                          *
 2077  ************************************************************************
 2078  *
 2079  *      These routines manipulate the swap metadata stored in the 
 2080  *      OBJT_SWAP object.  All swp_*() routines must be called at
 2081  *      splvm() because swap can be freed up by the low level vm_page
 2082  *      code which might be called from interrupts beyond what splbio() covers.
 2083  *
 2084  *      Swap metadata is implemented with a global hash and not directly
 2085  *      linked into the object.  Instead the object simply contains
 2086  *      appropriate tracking counters.
 2087  */
 2088 
 2089 /*
 2090  * Lookup the swblock containing the specified swap block index.
 2091  *
 2092  * The caller must hold the object.
 2093  */
 2094 static __inline
 2095 struct swblock *
 2096 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
 2097 {
 2098         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
 2099         index &= ~(vm_pindex_t)SWAP_META_MASK;
 2100         return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
 2101 }
 2102 
 2103 /*
 2104  * Remove a swblock from the RB tree.
 2105  *
 2106  * The caller must hold the object.
 2107  */
 2108 static __inline
 2109 void
 2110 swp_pager_remove(vm_object_t object, struct swblock *swap)
 2111 {
 2112         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
 2113         RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
 2114 }
 2115 
 2116 /*
 2117  * Convert default object to swap object if necessary
 2118  *
 2119  * The caller must hold the object.
 2120  */
 2121 static void
 2122 swp_pager_meta_convert(vm_object_t object)
 2123 {
 2124         if (object->type == OBJT_DEFAULT) {
 2125                 object->type = OBJT_SWAP;
 2126                 KKASSERT(object->swblock_count == 0);
 2127         }
 2128 }
 2129 
 2130 /*
 2131  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
 2132  *
 2133  *      We first convert the object to a swap object if it is a default
 2134  *      object.  Vnode objects do not need to be converted.
 2135  *
 2136  *      The specified swapblk is added to the object's swap metadata.  If
 2137  *      the swapblk is not valid, it is freed instead.  Any previously
 2138  *      assigned swapblk is freed.
 2139  *
 2140  * The caller must hold the object.
 2141  */
 2142 static void
 2143 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
 2144 {
 2145         struct swblock *swap;
 2146         struct swblock *oswap;
 2147         vm_pindex_t v;
 2148 
 2149         KKASSERT(swapblk != SWAPBLK_NONE);
 2150         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
 2151 
 2152         /*
 2153          * Convert object if necessary
 2154          */
 2155         if (object->type == OBJT_DEFAULT)
 2156                 swp_pager_meta_convert(object);
 2157         
 2158         /*
 2159          * Locate swblock.  If not found create, but if we aren't adding
 2160          * anything just return.  If we run out of space in the map we wait
 2161          * and, since the hash table may have changed, retry.
 2162          */
 2163 retry:
 2164         swap = swp_pager_lookup(object, index);
 2165 
 2166         if (swap == NULL) {
 2167                 int i;
 2168 
 2169                 swap = zalloc(swap_zone);
 2170                 if (swap == NULL) {
 2171                         vm_wait(0);
 2172                         goto retry;
 2173                 }
 2174                 swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
 2175                 swap->swb_count = 0;
 2176 
 2177                 ++object->swblock_count;
 2178 
 2179                 for (i = 0; i < SWAP_META_PAGES; ++i)
 2180                         swap->swb_pages[i] = SWAPBLK_NONE;
 2181                 oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
 2182                 KKASSERT(oswap == NULL);
 2183         }
 2184 
 2185         /*
 2186          * Delete prior contents of metadata.
 2187          *
 2188          * NOTE: Decrement swb_count after the freeing operation (which
 2189          *       might block) to prevent racing destruction of the swblock.
 2190          */
 2191         index &= SWAP_META_MASK;
 2192 
 2193         while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
 2194                 swap->swb_pages[index] = SWAPBLK_NONE;
 2195                 /* can block */
 2196                 swp_pager_freeswapspace(object, v, 1);
 2197                 --swap->swb_count;
 2198                 --mycpu->gd_vmtotal.t_vm;
 2199         }
 2200 
 2201         /*
 2202          * Enter block into metadata
 2203          */
 2204         swap->swb_pages[index] = swapblk;
 2205         if (swapblk != SWAPBLK_NONE) {
 2206                 ++swap->swb_count;
 2207                 ++mycpu->gd_vmtotal.t_vm;
 2208         }
 2209 }
 2210 
 2211 /*
 2212  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
 2213  *
 2214  *      The requested range of blocks is freed, with any associated swap 
 2215  *      returned to the swap bitmap.
 2216  *
 2217  *      This routine will free swap metadata structures as they are cleaned 
 2218  *      out.  This routine does *NOT* operate on swap metadata associated
 2219  *      with resident pages.
 2220  *
 2221  * The caller must hold the object.
 2222  */
 2223 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
 2224 
 2225 static void
 2226 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
 2227 {
 2228         struct swfreeinfo info;
 2229 
 2230         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
 2231 
 2232         /*
 2233          * Nothing to do
 2234          */
 2235         if (object->swblock_count == 0) {
 2236                 KKASSERT(RB_EMPTY(&object->swblock_root));
 2237                 return;
 2238         }
 2239         if (count == 0)
 2240                 return;
 2241 
 2242         /*
 2243          * Setup for RB tree scan.  Note that the pindex range can be huge
 2244          * due to the 64 bit page index space so we cannot safely iterate.
 2245          */
 2246         info.object = object;
 2247         info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
 2248         info.begi = index;
 2249         info.endi = index + count - 1;
 2250         swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
 2251                                 swp_pager_meta_free_callback, &info);
 2252 }
 2253 
 2254 /*
 2255  * The caller must hold the object.
 2256  */
 2257 static
 2258 int
 2259 swp_pager_meta_free_callback(struct swblock *swap, void *data)
 2260 {
 2261         struct swfreeinfo *info = data;
 2262         vm_object_t object = info->object;
 2263         int index;
 2264         int eindex;
 2265 
 2266         /*
 2267          * Figure out the range within the swblock.  The wider scan may
 2268          * return edge-case swap blocks when the start and/or end points
 2269          * are in the middle of a block.
 2270          */
 2271         if (swap->swb_index < info->begi)
 2272                 index = (int)info->begi & SWAP_META_MASK;
 2273         else
 2274                 index = 0;
 2275 
 2276         if (swap->swb_index + SWAP_META_PAGES > info->endi)
 2277                 eindex = (int)info->endi & SWAP_META_MASK;
 2278         else
 2279                 eindex = SWAP_META_MASK;
 2280 
 2281         /*
 2282          * Scan and free the blocks.  The loop terminates early
 2283          * if (swap) runs out of blocks and could be freed.
 2284          *
 2285          * NOTE: Decrement swb_count after swp_pager_freeswapspace()
 2286          *       to deal with a zfree race.
 2287          */
 2288         while (index <= eindex) {
 2289                 swblk_t v = swap->swb_pages[index];
 2290 
 2291                 if (v != SWAPBLK_NONE) {
 2292                         swap->swb_pages[index] = SWAPBLK_NONE;
 2293                         /* can block */
 2294                         swp_pager_freeswapspace(object, v, 1);
 2295                         --mycpu->gd_vmtotal.t_vm;
 2296                         if (--swap->swb_count == 0) {
 2297                                 swp_pager_remove(object, swap);
 2298                                 zfree(swap_zone, swap);
 2299                                 --object->swblock_count;
 2300                                 break;
 2301                         }
 2302                 }
 2303                 ++index;
 2304         }
 2305 
 2306         /* swap may be invalid here due to zfree above */
 2307         lwkt_yield();
 2308 
 2309         return(0);
 2310 }
 2311 
 2312 /*
 2313  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
 2314  *
 2315  *      This routine locates and destroys all swap metadata associated with
 2316  *      an object.
 2317  *
 2318  * NOTE: Decrement swb_count after the freeing operation (which
 2319  *       might block) to prevent racing destruction of the swblock.
 2320  *
 2321  * The caller must hold the object.
 2322  */
 2323 static void
 2324 swp_pager_meta_free_all(vm_object_t object)
 2325 {
 2326         struct swblock *swap;
 2327         int i;
 2328 
 2329         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
 2330 
 2331         while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
 2332                 swp_pager_remove(object, swap);
 2333                 for (i = 0; i < SWAP_META_PAGES; ++i) {
 2334                         swblk_t v = swap->swb_pages[i];
 2335                         if (v != SWAPBLK_NONE) {
 2336                                 /* can block */
 2337                                 swp_pager_freeswapspace(object, v, 1);
 2338                                 --swap->swb_count;
 2339                                 --mycpu->gd_vmtotal.t_vm;
 2340                         }
 2341                 }
 2342                 if (swap->swb_count != 0)
 2343                         panic("swap_pager_meta_free_all: swb_count != 0");
 2344                 zfree(swap_zone, swap);
 2345                 --object->swblock_count;
 2346                 lwkt_yield();
 2347         }
 2348         KKASSERT(object->swblock_count == 0);
 2349 }
 2350 
 2351 /*
 2352  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
 2353  *
 2354  *      This routine is capable of looking up, popping, or freeing
 2355  *      swapblk assignments in the swap meta data or in the vm_page_t.
 2356  *      The routine typically returns the swapblk being looked-up, or popped,
 2357  *      or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
 2358  *      was invalid.  This routine will automatically free any invalid 
 2359  *      meta-data swapblks.
 2360  *
 2361  *      It is not possible to store invalid swapblks in the swap meta data
 2362  *      (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
 2363  *
 2364  *      When acting on a busy resident page and paging is in progress, we 
 2365  *      have to wait until paging is complete but otherwise can act on the 
 2366  *      busy page.
 2367  *
 2368  *      SWM_FREE        remove and free swap block from metadata
 2369  *      SWM_POP         remove from meta data but do not free.. pop it out
 2370  *
 2371  * The caller must hold the object.
 2372  */
 2373 static swblk_t
 2374 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
 2375 {
 2376         struct swblock *swap;
 2377         swblk_t r1;
 2378 
 2379         if (object->swblock_count == 0)
 2380                 return(SWAPBLK_NONE);
 2381 
 2382         r1 = SWAPBLK_NONE;
 2383         swap = swp_pager_lookup(object, index);
 2384 
 2385         if (swap != NULL) {
 2386                 index &= SWAP_META_MASK;
 2387                 r1 = swap->swb_pages[index];
 2388 
 2389                 if (r1 != SWAPBLK_NONE) {
 2390                         if (flags & (SWM_FREE|SWM_POP)) {
 2391                                 swap->swb_pages[index] = SWAPBLK_NONE;
 2392                                 --mycpu->gd_vmtotal.t_vm;
 2393                                 if (--swap->swb_count == 0) {
 2394                                         swp_pager_remove(object, swap);
 2395                                         zfree(swap_zone, swap);
 2396                                         --object->swblock_count;
 2397                                 }
 2398                         } 
 2399                         /* swap ptr may be invalid */
 2400                         if (flags & SWM_FREE) {
 2401                                 swp_pager_freeswapspace(object, r1, 1);
 2402                                 r1 = SWAPBLK_NONE;
 2403                         }
 2404                 }
 2405                 /* swap ptr may be invalid */
 2406         }
 2407         return(r1);
 2408 }

Cache object: c546f42a829052cb6896211a6e17ef88


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.