FreeBSD/Linux Kernel Cross Reference
sys/vm/swap_pager.c
1 /*-
2 * Copyright (c) 1998 Matthew Dillon,
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1990 University of Utah.
5 * Copyright (c) 1982, 1986, 1989, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * New Swap System
41 * Matthew Dillon
42 *
43 * Radix Bitmap 'blists'.
44 *
45 * - The new swapper uses the new radix bitmap code. This should scale
46 * to arbitrarily small or arbitrarily large swap spaces and an almost
47 * arbitrary degree of fragmentation.
48 *
49 * Features:
50 *
51 * - on the fly reallocation of swap during putpages. The new system
52 * does not try to keep previously allocated swap blocks for dirty
53 * pages.
54 *
55 * - on the fly deallocation of swap
56 *
57 * - No more garbage collection required. Unnecessarily allocated swap
58 * blocks only exist for dirty vm_page_t's now and these are already
59 * cycled (in a high-load system) by the pager. We also do on-the-fly
60 * removal of invalidated swap blocks when a page is destroyed
61 * or renamed.
62 *
63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64 *
65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94
66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94
67 */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD: releng/10.0/sys/vm/swap_pager.c 254649 2013-08-22 07:39:53Z kib $");
71
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/racct.h>
90 #include <sys/resource.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/sysctl.h>
94 #include <sys/sysproto.h>
95 #include <sys/blist.h>
96 #include <sys/lock.h>
97 #include <sys/sx.h>
98 #include <sys/vmmeter.h>
99
100 #include <security/mac/mac_framework.h>
101
102 #include <vm/vm.h>
103 #include <vm/pmap.h>
104 #include <vm/vm_map.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_pageout.h>
110 #include <vm/vm_param.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114
115 #include <geom/geom.h>
116
117 /*
118 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, 16
119 * or 32 pages per allocation.
120 * The 32-page limit is due to the radix code (kern/subr_blist.c).
121 */
122 #ifndef MAX_PAGEOUT_CLUSTER
123 #define MAX_PAGEOUT_CLUSTER 16
124 #endif
125
126 #if !defined(SWB_NPAGES)
127 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER
128 #endif
129
130 /*
131 * The swblock structure maps an object and a small, fixed-size range
132 * of page indices to disk addresses within a swap area.
133 * The collection of these mappings is implemented as a hash table.
134 * Unused disk addresses within a swap area are allocated and managed
135 * using a blist.
136 */
137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
138 #define SWAP_META_PAGES (SWB_NPAGES * 2)
139 #define SWAP_META_MASK (SWAP_META_PAGES - 1)
140
141 struct swblock {
142 struct swblock *swb_hnext;
143 vm_object_t swb_object;
144 vm_pindex_t swb_index;
145 int swb_count;
146 daddr_t swb_pages[SWAP_META_PAGES];
147 };
148
149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
150 static struct mtx sw_dev_mtx;
151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
152 static struct swdevt *swdevhd; /* Allocate from here next */
153 static int nswapdev; /* Number of swap devices */
154 int swap_pager_avail;
155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
156
157 static vm_ooffset_t swap_total;
158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
159 "Total amount of available swap storage.");
160 static vm_ooffset_t swap_reserved;
161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
162 "Amount of swap storage needed to back all allocated anonymous memory.");
163 static int overcommit = 0;
164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
165 "Configure virtual memory overcommit behavior. See tuning(7) "
166 "for details.");
167
168 /* bits from overcommit */
169 #define SWAP_RESERVE_FORCE_ON (1 << 0)
170 #define SWAP_RESERVE_RLIMIT_ON (1 << 1)
171 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2)
172
173 int
174 swap_reserve(vm_ooffset_t incr)
175 {
176
177 return (swap_reserve_by_cred(incr, curthread->td_ucred));
178 }
179
180 int
181 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
182 {
183 vm_ooffset_t r, s;
184 int res, error;
185 static int curfail;
186 static struct timeval lastfail;
187 struct uidinfo *uip;
188
189 uip = cred->cr_ruidinfo;
190
191 if (incr & PAGE_MASK)
192 panic("swap_reserve: & PAGE_MASK");
193
194 #ifdef RACCT
195 PROC_LOCK(curproc);
196 error = racct_add(curproc, RACCT_SWAP, incr);
197 PROC_UNLOCK(curproc);
198 if (error != 0)
199 return (0);
200 #endif
201
202 res = 0;
203 mtx_lock(&sw_dev_mtx);
204 r = swap_reserved + incr;
205 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
206 s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count;
207 s *= PAGE_SIZE;
208 } else
209 s = 0;
210 s += swap_total;
211 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
212 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
213 res = 1;
214 swap_reserved = r;
215 }
216 mtx_unlock(&sw_dev_mtx);
217
218 if (res) {
219 PROC_LOCK(curproc);
220 UIDINFO_VMSIZE_LOCK(uip);
221 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
222 uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) &&
223 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
224 res = 0;
225 else
226 uip->ui_vmsize += incr;
227 UIDINFO_VMSIZE_UNLOCK(uip);
228 PROC_UNLOCK(curproc);
229 if (!res) {
230 mtx_lock(&sw_dev_mtx);
231 swap_reserved -= incr;
232 mtx_unlock(&sw_dev_mtx);
233 }
234 }
235 if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
236 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
237 uip->ui_uid, curproc->p_pid, incr);
238 }
239
240 #ifdef RACCT
241 if (!res) {
242 PROC_LOCK(curproc);
243 racct_sub(curproc, RACCT_SWAP, incr);
244 PROC_UNLOCK(curproc);
245 }
246 #endif
247
248 return (res);
249 }
250
251 void
252 swap_reserve_force(vm_ooffset_t incr)
253 {
254 struct uidinfo *uip;
255
256 mtx_lock(&sw_dev_mtx);
257 swap_reserved += incr;
258 mtx_unlock(&sw_dev_mtx);
259
260 #ifdef RACCT
261 PROC_LOCK(curproc);
262 racct_add_force(curproc, RACCT_SWAP, incr);
263 PROC_UNLOCK(curproc);
264 #endif
265
266 uip = curthread->td_ucred->cr_ruidinfo;
267 PROC_LOCK(curproc);
268 UIDINFO_VMSIZE_LOCK(uip);
269 uip->ui_vmsize += incr;
270 UIDINFO_VMSIZE_UNLOCK(uip);
271 PROC_UNLOCK(curproc);
272 }
273
274 void
275 swap_release(vm_ooffset_t decr)
276 {
277 struct ucred *cred;
278
279 PROC_LOCK(curproc);
280 cred = curthread->td_ucred;
281 swap_release_by_cred(decr, cred);
282 PROC_UNLOCK(curproc);
283 }
284
285 void
286 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
287 {
288 struct uidinfo *uip;
289
290 uip = cred->cr_ruidinfo;
291
292 if (decr & PAGE_MASK)
293 panic("swap_release: & PAGE_MASK");
294
295 mtx_lock(&sw_dev_mtx);
296 if (swap_reserved < decr)
297 panic("swap_reserved < decr");
298 swap_reserved -= decr;
299 mtx_unlock(&sw_dev_mtx);
300
301 UIDINFO_VMSIZE_LOCK(uip);
302 if (uip->ui_vmsize < decr)
303 printf("negative vmsize for uid = %d\n", uip->ui_uid);
304 uip->ui_vmsize -= decr;
305 UIDINFO_VMSIZE_UNLOCK(uip);
306
307 racct_sub_cred(cred, RACCT_SWAP, decr);
308 }
309
310 static void swapdev_strategy(struct buf *, struct swdevt *sw);
311
312 #define SWM_FREE 0x02 /* free, period */
313 #define SWM_POP 0x04 /* pop out */
314
315 int swap_pager_full = 2; /* swap space exhaustion (task killing) */
316 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
317 static int nsw_rcount; /* free read buffers */
318 static int nsw_wcount_sync; /* limit write buffers / synchronous */
319 static int nsw_wcount_async; /* limit write buffers / asynchronous */
320 static int nsw_wcount_async_max;/* assigned maximum */
321 static int nsw_cluster_max; /* maximum VOP I/O allowed */
322
323 static struct swblock **swhash;
324 static int swhash_mask;
325 static struct mtx swhash_mtx;
326
327 static int swap_async_max = 4; /* maximum in-progress async I/O's */
328 static struct sx sw_alloc_sx;
329
330
331 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
332 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
333
334 /*
335 * "named" and "unnamed" anon region objects. Try to reduce the overhead
336 * of searching a named list by hashing it just a little.
337 */
338
339 #define NOBJLISTS 8
340
341 #define NOBJLIST(handle) \
342 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
343
344 static struct mtx sw_alloc_mtx; /* protect list manipulation */
345 static struct pagerlst swap_pager_object_list[NOBJLISTS];
346 static uma_zone_t swap_zone;
347
348 /*
349 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure
350 * calls hooked from other parts of the VM system and do not appear here.
351 * (see vm/swap_pager.h).
352 */
353 static vm_object_t
354 swap_pager_alloc(void *handle, vm_ooffset_t size,
355 vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
356 static void swap_pager_dealloc(vm_object_t object);
357 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
358 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
359 static boolean_t
360 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
361 static void swap_pager_init(void);
362 static void swap_pager_unswapped(vm_page_t);
363 static void swap_pager_swapoff(struct swdevt *sp);
364
365 struct pagerops swappagerops = {
366 .pgo_init = swap_pager_init, /* early system initialization of pager */
367 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */
368 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */
369 .pgo_getpages = swap_pager_getpages, /* pagein */
370 .pgo_putpages = swap_pager_putpages, /* pageout */
371 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */
372 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */
373 };
374
375 /*
376 * dmmax is in page-sized chunks with the new swap system. It was
377 * dev-bsized chunks in the old. dmmax is always a power of 2.
378 *
379 * swap_*() routines are externally accessible. swp_*() routines are
380 * internal.
381 */
382 static int dmmax;
383 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */
384 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */
385
386 SYSCTL_INT(_vm, OID_AUTO, dmmax,
387 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
388
389 static void swp_sizecheck(void);
390 static void swp_pager_async_iodone(struct buf *bp);
391 static int swapongeom(struct thread *, struct vnode *);
392 static int swaponvp(struct thread *, struct vnode *, u_long);
393 static int swapoff_one(struct swdevt *sp, struct ucred *cred);
394
395 /*
396 * Swap bitmap functions
397 */
398 static void swp_pager_freeswapspace(daddr_t blk, int npages);
399 static daddr_t swp_pager_getswapspace(int npages);
400
401 /*
402 * Metadata functions
403 */
404 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
405 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
406 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
407 static void swp_pager_meta_free_all(vm_object_t);
408 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
409
410 static void
411 swp_pager_free_nrpage(vm_page_t m)
412 {
413
414 vm_page_lock(m);
415 if (m->wire_count == 0)
416 vm_page_free(m);
417 vm_page_unlock(m);
418 }
419
420 /*
421 * SWP_SIZECHECK() - update swap_pager_full indication
422 *
423 * update the swap_pager_almost_full indication and warn when we are
424 * about to run out of swap space, using lowat/hiwat hysteresis.
425 *
426 * Clear swap_pager_full ( task killing ) indication when lowat is met.
427 *
428 * No restrictions on call
429 * This routine may not block.
430 */
431 static void
432 swp_sizecheck(void)
433 {
434
435 if (swap_pager_avail < nswap_lowat) {
436 if (swap_pager_almost_full == 0) {
437 printf("swap_pager: out of swap space\n");
438 swap_pager_almost_full = 1;
439 }
440 } else {
441 swap_pager_full = 0;
442 if (swap_pager_avail > nswap_hiwat)
443 swap_pager_almost_full = 0;
444 }
445 }
446
447 /*
448 * SWP_PAGER_HASH() - hash swap meta data
449 *
450 * This is an helper function which hashes the swapblk given
451 * the object and page index. It returns a pointer to a pointer
452 * to the object, or a pointer to a NULL pointer if it could not
453 * find a swapblk.
454 */
455 static struct swblock **
456 swp_pager_hash(vm_object_t object, vm_pindex_t index)
457 {
458 struct swblock **pswap;
459 struct swblock *swap;
460
461 index &= ~(vm_pindex_t)SWAP_META_MASK;
462 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
463 while ((swap = *pswap) != NULL) {
464 if (swap->swb_object == object &&
465 swap->swb_index == index
466 ) {
467 break;
468 }
469 pswap = &swap->swb_hnext;
470 }
471 return (pswap);
472 }
473
474 /*
475 * SWAP_PAGER_INIT() - initialize the swap pager!
476 *
477 * Expected to be started from system init. NOTE: This code is run
478 * before much else so be careful what you depend on. Most of the VM
479 * system has yet to be initialized at this point.
480 */
481 static void
482 swap_pager_init(void)
483 {
484 /*
485 * Initialize object lists
486 */
487 int i;
488
489 for (i = 0; i < NOBJLISTS; ++i)
490 TAILQ_INIT(&swap_pager_object_list[i]);
491 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
492 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
493
494 /*
495 * Device Stripe, in PAGE_SIZE'd blocks
496 */
497 dmmax = SWB_NPAGES * 2;
498 }
499
500 /*
501 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
502 *
503 * Expected to be started from pageout process once, prior to entering
504 * its main loop.
505 */
506 void
507 swap_pager_swap_init(void)
508 {
509 int n, n2;
510
511 /*
512 * Number of in-transit swap bp operations. Don't
513 * exhaust the pbufs completely. Make sure we
514 * initialize workable values (0 will work for hysteresis
515 * but it isn't very efficient).
516 *
517 * The nsw_cluster_max is constrained by the bp->b_pages[]
518 * array (MAXPHYS/PAGE_SIZE) and our locally defined
519 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are
520 * constrained by the swap device interleave stripe size.
521 *
522 * Currently we hardwire nsw_wcount_async to 4. This limit is
523 * designed to prevent other I/O from having high latencies due to
524 * our pageout I/O. The value 4 works well for one or two active swap
525 * devices but is probably a little low if you have more. Even so,
526 * a higher value would probably generate only a limited improvement
527 * with three or four active swap devices since the system does not
528 * typically have to pageout at extreme bandwidths. We will want
529 * at least 2 per swap devices, and 4 is a pretty good value if you
530 * have one NFS swap device due to the command/ack latency over NFS.
531 * So it all works out pretty well.
532 */
533 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
534
535 mtx_lock(&pbuf_mtx);
536 nsw_rcount = (nswbuf + 1) / 2;
537 nsw_wcount_sync = (nswbuf + 3) / 4;
538 nsw_wcount_async = 4;
539 nsw_wcount_async_max = nsw_wcount_async;
540 mtx_unlock(&pbuf_mtx);
541
542 /*
543 * Initialize our zone. Right now I'm just guessing on the number
544 * we need based on the number of pages in the system. Each swblock
545 * can hold 16 pages, so this is probably overkill. This reservation
546 * is typically limited to around 32MB by default.
547 */
548 n = cnt.v_page_count / 2;
549 if (maxswzone && n > maxswzone / sizeof(struct swblock))
550 n = maxswzone / sizeof(struct swblock);
551 n2 = n;
552 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
553 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
554 if (swap_zone == NULL)
555 panic("failed to create swap_zone.");
556 do {
557 if (uma_zone_reserve_kva(swap_zone, n))
558 break;
559 /*
560 * if the allocation failed, try a zone two thirds the
561 * size of the previous attempt.
562 */
563 n -= ((n + 2) / 3);
564 } while (n > 0);
565 if (n2 != n)
566 printf("Swap zone entries reduced from %d to %d.\n", n2, n);
567 n2 = n;
568
569 /*
570 * Initialize our meta-data hash table. The swapper does not need to
571 * be quite as efficient as the VM system, so we do not use an
572 * oversized hash table.
573 *
574 * n: size of hash table, must be power of 2
575 * swhash_mask: hash table index mask
576 */
577 for (n = 1; n < n2 / 8; n *= 2)
578 ;
579 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
580 swhash_mask = n - 1;
581 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
582 }
583
584 /*
585 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
586 * its metadata structures.
587 *
588 * This routine is called from the mmap and fork code to create a new
589 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object
590 * and then converting it with swp_pager_meta_build().
591 *
592 * This routine may block in vm_object_allocate() and create a named
593 * object lookup race, so we must interlock.
594 *
595 * MPSAFE
596 */
597 static vm_object_t
598 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
599 vm_ooffset_t offset, struct ucred *cred)
600 {
601 vm_object_t object;
602 vm_pindex_t pindex;
603
604 pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
605 if (handle) {
606 mtx_lock(&Giant);
607 /*
608 * Reference existing named region or allocate new one. There
609 * should not be a race here against swp_pager_meta_build()
610 * as called from vm_page_remove() in regards to the lookup
611 * of the handle.
612 */
613 sx_xlock(&sw_alloc_sx);
614 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
615 if (object == NULL) {
616 if (cred != NULL) {
617 if (!swap_reserve_by_cred(size, cred)) {
618 sx_xunlock(&sw_alloc_sx);
619 mtx_unlock(&Giant);
620 return (NULL);
621 }
622 crhold(cred);
623 }
624 object = vm_object_allocate(OBJT_DEFAULT, pindex);
625 VM_OBJECT_WLOCK(object);
626 object->handle = handle;
627 if (cred != NULL) {
628 object->cred = cred;
629 object->charge = size;
630 }
631 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
632 VM_OBJECT_WUNLOCK(object);
633 }
634 sx_xunlock(&sw_alloc_sx);
635 mtx_unlock(&Giant);
636 } else {
637 if (cred != NULL) {
638 if (!swap_reserve_by_cred(size, cred))
639 return (NULL);
640 crhold(cred);
641 }
642 object = vm_object_allocate(OBJT_DEFAULT, pindex);
643 VM_OBJECT_WLOCK(object);
644 if (cred != NULL) {
645 object->cred = cred;
646 object->charge = size;
647 }
648 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
649 VM_OBJECT_WUNLOCK(object);
650 }
651 return (object);
652 }
653
654 /*
655 * SWAP_PAGER_DEALLOC() - remove swap metadata from object
656 *
657 * The swap backing for the object is destroyed. The code is
658 * designed such that we can reinstantiate it later, but this
659 * routine is typically called only when the entire object is
660 * about to be destroyed.
661 *
662 * The object must be locked.
663 */
664 static void
665 swap_pager_dealloc(vm_object_t object)
666 {
667
668 /*
669 * Remove from list right away so lookups will fail if we block for
670 * pageout completion.
671 */
672 if (object->handle != NULL) {
673 mtx_lock(&sw_alloc_mtx);
674 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
675 mtx_unlock(&sw_alloc_mtx);
676 }
677
678 VM_OBJECT_ASSERT_WLOCKED(object);
679 vm_object_pip_wait(object, "swpdea");
680
681 /*
682 * Free all remaining metadata. We only bother to free it from
683 * the swap meta data. We do not attempt to free swapblk's still
684 * associated with vm_page_t's for this object. We do not care
685 * if paging is still in progress on some objects.
686 */
687 swp_pager_meta_free_all(object);
688 }
689
690 /************************************************************************
691 * SWAP PAGER BITMAP ROUTINES *
692 ************************************************************************/
693
694 /*
695 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space
696 *
697 * Allocate swap for the requested number of pages. The starting
698 * swap block number (a page index) is returned or SWAPBLK_NONE
699 * if the allocation failed.
700 *
701 * Also has the side effect of advising that somebody made a mistake
702 * when they configured swap and didn't configure enough.
703 *
704 * This routine may not sleep.
705 *
706 * We allocate in round-robin fashion from the configured devices.
707 */
708 static daddr_t
709 swp_pager_getswapspace(int npages)
710 {
711 daddr_t blk;
712 struct swdevt *sp;
713 int i;
714
715 blk = SWAPBLK_NONE;
716 mtx_lock(&sw_dev_mtx);
717 sp = swdevhd;
718 for (i = 0; i < nswapdev; i++) {
719 if (sp == NULL)
720 sp = TAILQ_FIRST(&swtailq);
721 if (!(sp->sw_flags & SW_CLOSING)) {
722 blk = blist_alloc(sp->sw_blist, npages);
723 if (blk != SWAPBLK_NONE) {
724 blk += sp->sw_first;
725 sp->sw_used += npages;
726 swap_pager_avail -= npages;
727 swp_sizecheck();
728 swdevhd = TAILQ_NEXT(sp, sw_list);
729 goto done;
730 }
731 }
732 sp = TAILQ_NEXT(sp, sw_list);
733 }
734 if (swap_pager_full != 2) {
735 printf("swap_pager_getswapspace(%d): failed\n", npages);
736 swap_pager_full = 2;
737 swap_pager_almost_full = 1;
738 }
739 swdevhd = NULL;
740 done:
741 mtx_unlock(&sw_dev_mtx);
742 return (blk);
743 }
744
745 static int
746 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
747 {
748
749 return (blk >= sp->sw_first && blk < sp->sw_end);
750 }
751
752 static void
753 swp_pager_strategy(struct buf *bp)
754 {
755 struct swdevt *sp;
756
757 mtx_lock(&sw_dev_mtx);
758 TAILQ_FOREACH(sp, &swtailq, sw_list) {
759 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
760 mtx_unlock(&sw_dev_mtx);
761 if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
762 unmapped_buf_allowed) {
763 bp->b_kvaalloc = bp->b_data;
764 bp->b_data = unmapped_buf;
765 bp->b_kvabase = unmapped_buf;
766 bp->b_offset = 0;
767 bp->b_flags |= B_UNMAPPED;
768 } else {
769 pmap_qenter((vm_offset_t)bp->b_data,
770 &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
771 }
772 sp->sw_strategy(bp, sp);
773 return;
774 }
775 }
776 panic("Swapdev not found");
777 }
778
779
780 /*
781 * SWP_PAGER_FREESWAPSPACE() - free raw swap space
782 *
783 * This routine returns the specified swap blocks back to the bitmap.
784 *
785 * This routine may not sleep.
786 */
787 static void
788 swp_pager_freeswapspace(daddr_t blk, int npages)
789 {
790 struct swdevt *sp;
791
792 mtx_lock(&sw_dev_mtx);
793 TAILQ_FOREACH(sp, &swtailq, sw_list) {
794 if (blk >= sp->sw_first && blk < sp->sw_end) {
795 sp->sw_used -= npages;
796 /*
797 * If we are attempting to stop swapping on
798 * this device, we don't want to mark any
799 * blocks free lest they be reused.
800 */
801 if ((sp->sw_flags & SW_CLOSING) == 0) {
802 blist_free(sp->sw_blist, blk - sp->sw_first,
803 npages);
804 swap_pager_avail += npages;
805 swp_sizecheck();
806 }
807 mtx_unlock(&sw_dev_mtx);
808 return;
809 }
810 }
811 panic("Swapdev not found");
812 }
813
814 /*
815 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page
816 * range within an object.
817 *
818 * This is a globally accessible routine.
819 *
820 * This routine removes swapblk assignments from swap metadata.
821 *
822 * The external callers of this routine typically have already destroyed
823 * or renamed vm_page_t's associated with this range in the object so
824 * we should be ok.
825 *
826 * The object must be locked.
827 */
828 void
829 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
830 {
831
832 swp_pager_meta_free(object, start, size);
833 }
834
835 /*
836 * SWAP_PAGER_RESERVE() - reserve swap blocks in object
837 *
838 * Assigns swap blocks to the specified range within the object. The
839 * swap blocks are not zeroed. Any previous swap assignment is destroyed.
840 *
841 * Returns 0 on success, -1 on failure.
842 */
843 int
844 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
845 {
846 int n = 0;
847 daddr_t blk = SWAPBLK_NONE;
848 vm_pindex_t beg = start; /* save start index */
849
850 VM_OBJECT_WLOCK(object);
851 while (size) {
852 if (n == 0) {
853 n = BLIST_MAX_ALLOC;
854 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
855 n >>= 1;
856 if (n == 0) {
857 swp_pager_meta_free(object, beg, start - beg);
858 VM_OBJECT_WUNLOCK(object);
859 return (-1);
860 }
861 }
862 }
863 swp_pager_meta_build(object, start, blk);
864 --size;
865 ++start;
866 ++blk;
867 --n;
868 }
869 swp_pager_meta_free(object, start, n);
870 VM_OBJECT_WUNLOCK(object);
871 return (0);
872 }
873
874 /*
875 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager
876 * and destroy the source.
877 *
878 * Copy any valid swapblks from the source to the destination. In
879 * cases where both the source and destination have a valid swapblk,
880 * we keep the destination's.
881 *
882 * This routine is allowed to sleep. It may sleep allocating metadata
883 * indirectly through swp_pager_meta_build() or if paging is still in
884 * progress on the source.
885 *
886 * The source object contains no vm_page_t's (which is just as well)
887 *
888 * The source object is of type OBJT_SWAP.
889 *
890 * The source and destination objects must be locked.
891 * Both object locks may temporarily be released.
892 */
893 void
894 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
895 vm_pindex_t offset, int destroysource)
896 {
897 vm_pindex_t i;
898
899 VM_OBJECT_ASSERT_WLOCKED(srcobject);
900 VM_OBJECT_ASSERT_WLOCKED(dstobject);
901
902 /*
903 * If destroysource is set, we remove the source object from the
904 * swap_pager internal queue now.
905 */
906 if (destroysource) {
907 if (srcobject->handle != NULL) {
908 mtx_lock(&sw_alloc_mtx);
909 TAILQ_REMOVE(
910 NOBJLIST(srcobject->handle),
911 srcobject,
912 pager_object_list
913 );
914 mtx_unlock(&sw_alloc_mtx);
915 }
916 }
917
918 /*
919 * transfer source to destination.
920 */
921 for (i = 0; i < dstobject->size; ++i) {
922 daddr_t dstaddr;
923
924 /*
925 * Locate (without changing) the swapblk on the destination,
926 * unless it is invalid in which case free it silently, or
927 * if the destination is a resident page, in which case the
928 * source is thrown away.
929 */
930 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
931
932 if (dstaddr == SWAPBLK_NONE) {
933 /*
934 * Destination has no swapblk and is not resident,
935 * copy source.
936 */
937 daddr_t srcaddr;
938
939 srcaddr = swp_pager_meta_ctl(
940 srcobject,
941 i + offset,
942 SWM_POP
943 );
944
945 if (srcaddr != SWAPBLK_NONE) {
946 /*
947 * swp_pager_meta_build() can sleep.
948 */
949 vm_object_pip_add(srcobject, 1);
950 VM_OBJECT_WUNLOCK(srcobject);
951 vm_object_pip_add(dstobject, 1);
952 swp_pager_meta_build(dstobject, i, srcaddr);
953 vm_object_pip_wakeup(dstobject);
954 VM_OBJECT_WLOCK(srcobject);
955 vm_object_pip_wakeup(srcobject);
956 }
957 } else {
958 /*
959 * Destination has valid swapblk or it is represented
960 * by a resident page. We destroy the sourceblock.
961 */
962
963 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
964 }
965 }
966
967 /*
968 * Free left over swap blocks in source.
969 *
970 * We have to revert the type to OBJT_DEFAULT so we do not accidently
971 * double-remove the object from the swap queues.
972 */
973 if (destroysource) {
974 swp_pager_meta_free_all(srcobject);
975 /*
976 * Reverting the type is not necessary, the caller is going
977 * to destroy srcobject directly, but I'm doing it here
978 * for consistency since we've removed the object from its
979 * queues.
980 */
981 srcobject->type = OBJT_DEFAULT;
982 }
983 }
984
985 /*
986 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for
987 * the requested page.
988 *
989 * We determine whether good backing store exists for the requested
990 * page and return TRUE if it does, FALSE if it doesn't.
991 *
992 * If TRUE, we also try to determine how much valid, contiguous backing
993 * store exists before and after the requested page within a reasonable
994 * distance. We do not try to restrict it to the swap device stripe
995 * (that is handled in getpages/putpages). It probably isn't worth
996 * doing here.
997 */
998 static boolean_t
999 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
1000 {
1001 daddr_t blk0;
1002
1003 VM_OBJECT_ASSERT_LOCKED(object);
1004 /*
1005 * do we have good backing store at the requested index ?
1006 */
1007 blk0 = swp_pager_meta_ctl(object, pindex, 0);
1008
1009 if (blk0 == SWAPBLK_NONE) {
1010 if (before)
1011 *before = 0;
1012 if (after)
1013 *after = 0;
1014 return (FALSE);
1015 }
1016
1017 /*
1018 * find backwards-looking contiguous good backing store
1019 */
1020 if (before != NULL) {
1021 int i;
1022
1023 for (i = 1; i < (SWB_NPAGES/2); ++i) {
1024 daddr_t blk;
1025
1026 if (i > pindex)
1027 break;
1028 blk = swp_pager_meta_ctl(object, pindex - i, 0);
1029 if (blk != blk0 - i)
1030 break;
1031 }
1032 *before = (i - 1);
1033 }
1034
1035 /*
1036 * find forward-looking contiguous good backing store
1037 */
1038 if (after != NULL) {
1039 int i;
1040
1041 for (i = 1; i < (SWB_NPAGES/2); ++i) {
1042 daddr_t blk;
1043
1044 blk = swp_pager_meta_ctl(object, pindex + i, 0);
1045 if (blk != blk0 + i)
1046 break;
1047 }
1048 *after = (i - 1);
1049 }
1050 return (TRUE);
1051 }
1052
1053 /*
1054 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1055 *
1056 * This removes any associated swap backing store, whether valid or
1057 * not, from the page.
1058 *
1059 * This routine is typically called when a page is made dirty, at
1060 * which point any associated swap can be freed. MADV_FREE also
1061 * calls us in a special-case situation
1062 *
1063 * NOTE!!! If the page is clean and the swap was valid, the caller
1064 * should make the page dirty before calling this routine. This routine
1065 * does NOT change the m->dirty status of the page. Also: MADV_FREE
1066 * depends on it.
1067 *
1068 * This routine may not sleep.
1069 *
1070 * The object containing the page must be locked.
1071 */
1072 static void
1073 swap_pager_unswapped(vm_page_t m)
1074 {
1075
1076 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1077 }
1078
1079 /*
1080 * SWAP_PAGER_GETPAGES() - bring pages in from swap
1081 *
1082 * Attempt to retrieve (m, count) pages from backing store, but make
1083 * sure we retrieve at least m[reqpage]. We try to load in as large
1084 * a chunk surrounding m[reqpage] as is contiguous in swap and which
1085 * belongs to the same object.
1086 *
1087 * The code is designed for asynchronous operation and
1088 * immediate-notification of 'reqpage' but tends not to be
1089 * used that way. Please do not optimize-out this algorithmic
1090 * feature, I intend to improve on it in the future.
1091 *
1092 * The parent has a single vm_object_pip_add() reference prior to
1093 * calling us and we should return with the same.
1094 *
1095 * The parent has BUSY'd the pages. We should return with 'm'
1096 * left busy, but the others adjusted.
1097 */
1098 static int
1099 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1100 {
1101 struct buf *bp;
1102 vm_page_t mreq;
1103 int i;
1104 int j;
1105 daddr_t blk;
1106
1107 mreq = m[reqpage];
1108
1109 KASSERT(mreq->object == object,
1110 ("swap_pager_getpages: object mismatch %p/%p",
1111 object, mreq->object));
1112
1113 /*
1114 * Calculate range to retrieve. The pages have already been assigned
1115 * their swapblks. We require a *contiguous* range but we know it to
1116 * not span devices. If we do not supply it, bad things
1117 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1118 * loops are set up such that the case(s) are handled implicitly.
1119 *
1120 * The swp_*() calls must be made with the object locked.
1121 */
1122 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1123
1124 for (i = reqpage - 1; i >= 0; --i) {
1125 daddr_t iblk;
1126
1127 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1128 if (blk != iblk + (reqpage - i))
1129 break;
1130 }
1131 ++i;
1132
1133 for (j = reqpage + 1; j < count; ++j) {
1134 daddr_t jblk;
1135
1136 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1137 if (blk != jblk - (j - reqpage))
1138 break;
1139 }
1140
1141 /*
1142 * free pages outside our collection range. Note: we never free
1143 * mreq, it must remain busy throughout.
1144 */
1145 if (0 < i || j < count) {
1146 int k;
1147
1148 for (k = 0; k < i; ++k)
1149 swp_pager_free_nrpage(m[k]);
1150 for (k = j; k < count; ++k)
1151 swp_pager_free_nrpage(m[k]);
1152 }
1153
1154 /*
1155 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq
1156 * still busy, but the others unbusied.
1157 */
1158 if (blk == SWAPBLK_NONE)
1159 return (VM_PAGER_FAIL);
1160
1161 /*
1162 * Getpbuf() can sleep.
1163 */
1164 VM_OBJECT_WUNLOCK(object);
1165 /*
1166 * Get a swap buffer header to perform the IO
1167 */
1168 bp = getpbuf(&nsw_rcount);
1169 bp->b_flags |= B_PAGING;
1170
1171 bp->b_iocmd = BIO_READ;
1172 bp->b_iodone = swp_pager_async_iodone;
1173 bp->b_rcred = crhold(thread0.td_ucred);
1174 bp->b_wcred = crhold(thread0.td_ucred);
1175 bp->b_blkno = blk - (reqpage - i);
1176 bp->b_bcount = PAGE_SIZE * (j - i);
1177 bp->b_bufsize = PAGE_SIZE * (j - i);
1178 bp->b_pager.pg_reqpage = reqpage - i;
1179
1180 VM_OBJECT_WLOCK(object);
1181 {
1182 int k;
1183
1184 for (k = i; k < j; ++k) {
1185 bp->b_pages[k - i] = m[k];
1186 m[k]->oflags |= VPO_SWAPINPROG;
1187 }
1188 }
1189 bp->b_npages = j - i;
1190
1191 PCPU_INC(cnt.v_swapin);
1192 PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1193
1194 /*
1195 * We still hold the lock on mreq, and our automatic completion routine
1196 * does not remove it.
1197 */
1198 vm_object_pip_add(object, bp->b_npages);
1199 VM_OBJECT_WUNLOCK(object);
1200
1201 /*
1202 * perform the I/O. NOTE!!! bp cannot be considered valid after
1203 * this point because we automatically release it on completion.
1204 * Instead, we look at the one page we are interested in which we
1205 * still hold a lock on even through the I/O completion.
1206 *
1207 * The other pages in our m[] array are also released on completion,
1208 * so we cannot assume they are valid anymore either.
1209 *
1210 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1211 */
1212 BUF_KERNPROC(bp);
1213 swp_pager_strategy(bp);
1214
1215 /*
1216 * wait for the page we want to complete. VPO_SWAPINPROG is always
1217 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE
1218 * is set in the meta-data.
1219 */
1220 VM_OBJECT_WLOCK(object);
1221 while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1222 mreq->oflags |= VPO_SWAPSLEEP;
1223 PCPU_INC(cnt.v_intrans);
1224 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1225 "swread", hz * 20)) {
1226 printf(
1227 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1228 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1229 }
1230 }
1231
1232 /*
1233 * mreq is left busied after completion, but all the other pages
1234 * are freed. If we had an unrecoverable read error the page will
1235 * not be valid.
1236 */
1237 if (mreq->valid != VM_PAGE_BITS_ALL) {
1238 return (VM_PAGER_ERROR);
1239 } else {
1240 return (VM_PAGER_OK);
1241 }
1242
1243 /*
1244 * A final note: in a low swap situation, we cannot deallocate swap
1245 * and mark a page dirty here because the caller is likely to mark
1246 * the page clean when we return, causing the page to possibly revert
1247 * to all-zero's later.
1248 */
1249 }
1250
1251 /*
1252 * swap_pager_putpages:
1253 *
1254 * Assign swap (if necessary) and initiate I/O on the specified pages.
1255 *
1256 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects
1257 * are automatically converted to SWAP objects.
1258 *
1259 * In a low memory situation we may block in VOP_STRATEGY(), but the new
1260 * vm_page reservation system coupled with properly written VFS devices
1261 * should ensure that no low-memory deadlock occurs. This is an area
1262 * which needs work.
1263 *
1264 * The parent has N vm_object_pip_add() references prior to
1265 * calling us and will remove references for rtvals[] that are
1266 * not set to VM_PAGER_PEND. We need to remove the rest on I/O
1267 * completion.
1268 *
1269 * The parent has soft-busy'd the pages it passes us and will unbusy
1270 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1271 * We need to unbusy the rest on I/O completion.
1272 */
1273 void
1274 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1275 boolean_t sync, int *rtvals)
1276 {
1277 int i;
1278 int n = 0;
1279
1280 if (count && m[0]->object != object) {
1281 panic("swap_pager_putpages: object mismatch %p/%p",
1282 object,
1283 m[0]->object
1284 );
1285 }
1286
1287 /*
1288 * Step 1
1289 *
1290 * Turn object into OBJT_SWAP
1291 * check for bogus sysops
1292 * force sync if not pageout process
1293 */
1294 if (object->type != OBJT_SWAP)
1295 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1296 VM_OBJECT_WUNLOCK(object);
1297
1298 if (curproc != pageproc)
1299 sync = TRUE;
1300
1301 /*
1302 * Step 2
1303 *
1304 * Update nsw parameters from swap_async_max sysctl values.
1305 * Do not let the sysop crash the machine with bogus numbers.
1306 */
1307 mtx_lock(&pbuf_mtx);
1308 if (swap_async_max != nsw_wcount_async_max) {
1309 int n;
1310
1311 /*
1312 * limit range
1313 */
1314 if ((n = swap_async_max) > nswbuf / 2)
1315 n = nswbuf / 2;
1316 if (n < 1)
1317 n = 1;
1318 swap_async_max = n;
1319
1320 /*
1321 * Adjust difference ( if possible ). If the current async
1322 * count is too low, we may not be able to make the adjustment
1323 * at this time.
1324 */
1325 n -= nsw_wcount_async_max;
1326 if (nsw_wcount_async + n >= 0) {
1327 nsw_wcount_async += n;
1328 nsw_wcount_async_max += n;
1329 wakeup(&nsw_wcount_async);
1330 }
1331 }
1332 mtx_unlock(&pbuf_mtx);
1333
1334 /*
1335 * Step 3
1336 *
1337 * Assign swap blocks and issue I/O. We reallocate swap on the fly.
1338 * The page is left dirty until the pageout operation completes
1339 * successfully.
1340 */
1341 for (i = 0; i < count; i += n) {
1342 int j;
1343 struct buf *bp;
1344 daddr_t blk;
1345
1346 /*
1347 * Maximum I/O size is limited by a number of factors.
1348 */
1349 n = min(BLIST_MAX_ALLOC, count - i);
1350 n = min(n, nsw_cluster_max);
1351
1352 /*
1353 * Get biggest block of swap we can. If we fail, fall
1354 * back and try to allocate a smaller block. Don't go
1355 * overboard trying to allocate space if it would overly
1356 * fragment swap.
1357 */
1358 while (
1359 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1360 n > 4
1361 ) {
1362 n >>= 1;
1363 }
1364 if (blk == SWAPBLK_NONE) {
1365 for (j = 0; j < n; ++j)
1366 rtvals[i+j] = VM_PAGER_FAIL;
1367 continue;
1368 }
1369
1370 /*
1371 * All I/O parameters have been satisfied, build the I/O
1372 * request and assign the swap space.
1373 */
1374 if (sync == TRUE) {
1375 bp = getpbuf(&nsw_wcount_sync);
1376 } else {
1377 bp = getpbuf(&nsw_wcount_async);
1378 bp->b_flags = B_ASYNC;
1379 }
1380 bp->b_flags |= B_PAGING;
1381 bp->b_iocmd = BIO_WRITE;
1382
1383 bp->b_rcred = crhold(thread0.td_ucred);
1384 bp->b_wcred = crhold(thread0.td_ucred);
1385 bp->b_bcount = PAGE_SIZE * n;
1386 bp->b_bufsize = PAGE_SIZE * n;
1387 bp->b_blkno = blk;
1388
1389 VM_OBJECT_WLOCK(object);
1390 for (j = 0; j < n; ++j) {
1391 vm_page_t mreq = m[i+j];
1392
1393 swp_pager_meta_build(
1394 mreq->object,
1395 mreq->pindex,
1396 blk + j
1397 );
1398 vm_page_dirty(mreq);
1399 rtvals[i+j] = VM_PAGER_OK;
1400
1401 mreq->oflags |= VPO_SWAPINPROG;
1402 bp->b_pages[j] = mreq;
1403 }
1404 VM_OBJECT_WUNLOCK(object);
1405 bp->b_npages = n;
1406 /*
1407 * Must set dirty range for NFS to work.
1408 */
1409 bp->b_dirtyoff = 0;
1410 bp->b_dirtyend = bp->b_bcount;
1411
1412 PCPU_INC(cnt.v_swapout);
1413 PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1414
1415 /*
1416 * asynchronous
1417 *
1418 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1419 */
1420 if (sync == FALSE) {
1421 bp->b_iodone = swp_pager_async_iodone;
1422 BUF_KERNPROC(bp);
1423 swp_pager_strategy(bp);
1424
1425 for (j = 0; j < n; ++j)
1426 rtvals[i+j] = VM_PAGER_PEND;
1427 /* restart outter loop */
1428 continue;
1429 }
1430
1431 /*
1432 * synchronous
1433 *
1434 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1435 */
1436 bp->b_iodone = bdone;
1437 swp_pager_strategy(bp);
1438
1439 /*
1440 * Wait for the sync I/O to complete, then update rtvals.
1441 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1442 * our async completion routine at the end, thus avoiding a
1443 * double-free.
1444 */
1445 bwait(bp, PVM, "swwrt");
1446 for (j = 0; j < n; ++j)
1447 rtvals[i+j] = VM_PAGER_PEND;
1448 /*
1449 * Now that we are through with the bp, we can call the
1450 * normal async completion, which frees everything up.
1451 */
1452 swp_pager_async_iodone(bp);
1453 }
1454 VM_OBJECT_WLOCK(object);
1455 }
1456
1457 /*
1458 * swp_pager_async_iodone:
1459 *
1460 * Completion routine for asynchronous reads and writes from/to swap.
1461 * Also called manually by synchronous code to finish up a bp.
1462 *
1463 * This routine may not sleep.
1464 */
1465 static void
1466 swp_pager_async_iodone(struct buf *bp)
1467 {
1468 int i;
1469 vm_object_t object = NULL;
1470
1471 /*
1472 * report error
1473 */
1474 if (bp->b_ioflags & BIO_ERROR) {
1475 printf(
1476 "swap_pager: I/O error - %s failed; blkno %ld,"
1477 "size %ld, error %d\n",
1478 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1479 (long)bp->b_blkno,
1480 (long)bp->b_bcount,
1481 bp->b_error
1482 );
1483 }
1484
1485 /*
1486 * remove the mapping for kernel virtual
1487 */
1488 if ((bp->b_flags & B_UNMAPPED) != 0) {
1489 bp->b_data = bp->b_kvaalloc;
1490 bp->b_kvabase = bp->b_kvaalloc;
1491 bp->b_flags &= ~B_UNMAPPED;
1492 } else
1493 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1494
1495 if (bp->b_npages) {
1496 object = bp->b_pages[0]->object;
1497 VM_OBJECT_WLOCK(object);
1498 }
1499
1500 /*
1501 * cleanup pages. If an error occurs writing to swap, we are in
1502 * very serious trouble. If it happens to be a disk error, though,
1503 * we may be able to recover by reassigning the swap later on. So
1504 * in this case we remove the m->swapblk assignment for the page
1505 * but do not free it in the rlist. The errornous block(s) are thus
1506 * never reallocated as swap. Redirty the page and continue.
1507 */
1508 for (i = 0; i < bp->b_npages; ++i) {
1509 vm_page_t m = bp->b_pages[i];
1510
1511 m->oflags &= ~VPO_SWAPINPROG;
1512 if (m->oflags & VPO_SWAPSLEEP) {
1513 m->oflags &= ~VPO_SWAPSLEEP;
1514 wakeup(&object->paging_in_progress);
1515 }
1516
1517 if (bp->b_ioflags & BIO_ERROR) {
1518 /*
1519 * If an error occurs I'd love to throw the swapblk
1520 * away without freeing it back to swapspace, so it
1521 * can never be used again. But I can't from an
1522 * interrupt.
1523 */
1524 if (bp->b_iocmd == BIO_READ) {
1525 /*
1526 * When reading, reqpage needs to stay
1527 * locked for the parent, but all other
1528 * pages can be freed. We still want to
1529 * wakeup the parent waiting on the page,
1530 * though. ( also: pg_reqpage can be -1 and
1531 * not match anything ).
1532 *
1533 * We have to wake specifically requested pages
1534 * up too because we cleared VPO_SWAPINPROG and
1535 * someone may be waiting for that.
1536 *
1537 * NOTE: for reads, m->dirty will probably
1538 * be overridden by the original caller of
1539 * getpages so don't play cute tricks here.
1540 */
1541 m->valid = 0;
1542 if (i != bp->b_pager.pg_reqpage)
1543 swp_pager_free_nrpage(m);
1544 else {
1545 vm_page_lock(m);
1546 vm_page_flash(m);
1547 vm_page_unlock(m);
1548 }
1549 /*
1550 * If i == bp->b_pager.pg_reqpage, do not wake
1551 * the page up. The caller needs to.
1552 */
1553 } else {
1554 /*
1555 * If a write error occurs, reactivate page
1556 * so it doesn't clog the inactive list,
1557 * then finish the I/O.
1558 */
1559 vm_page_dirty(m);
1560 vm_page_lock(m);
1561 vm_page_activate(m);
1562 vm_page_unlock(m);
1563 vm_page_sunbusy(m);
1564 }
1565 } else if (bp->b_iocmd == BIO_READ) {
1566 /*
1567 * NOTE: for reads, m->dirty will probably be
1568 * overridden by the original caller of getpages so
1569 * we cannot set them in order to free the underlying
1570 * swap in a low-swap situation. I don't think we'd
1571 * want to do that anyway, but it was an optimization
1572 * that existed in the old swapper for a time before
1573 * it got ripped out due to precisely this problem.
1574 *
1575 * If not the requested page then deactivate it.
1576 *
1577 * Note that the requested page, reqpage, is left
1578 * busied, but we still have to wake it up. The
1579 * other pages are released (unbusied) by
1580 * vm_page_xunbusy().
1581 */
1582 KASSERT(!pmap_page_is_mapped(m),
1583 ("swp_pager_async_iodone: page %p is mapped", m));
1584 m->valid = VM_PAGE_BITS_ALL;
1585 KASSERT(m->dirty == 0,
1586 ("swp_pager_async_iodone: page %p is dirty", m));
1587
1588 /*
1589 * We have to wake specifically requested pages
1590 * up too because we cleared VPO_SWAPINPROG and
1591 * could be waiting for it in getpages. However,
1592 * be sure to not unbusy getpages specifically
1593 * requested page - getpages expects it to be
1594 * left busy.
1595 */
1596 if (i != bp->b_pager.pg_reqpage) {
1597 vm_page_lock(m);
1598 vm_page_deactivate(m);
1599 vm_page_unlock(m);
1600 vm_page_xunbusy(m);
1601 } else {
1602 vm_page_lock(m);
1603 vm_page_flash(m);
1604 vm_page_unlock(m);
1605 }
1606 } else {
1607 /*
1608 * For write success, clear the dirty
1609 * status, then finish the I/O ( which decrements the
1610 * busy count and possibly wakes waiter's up ).
1611 */
1612 KASSERT(!pmap_page_is_write_mapped(m),
1613 ("swp_pager_async_iodone: page %p is not write"
1614 " protected", m));
1615 vm_page_undirty(m);
1616 vm_page_sunbusy(m);
1617 if (vm_page_count_severe()) {
1618 vm_page_lock(m);
1619 vm_page_try_to_cache(m);
1620 vm_page_unlock(m);
1621 }
1622 }
1623 }
1624
1625 /*
1626 * adjust pip. NOTE: the original parent may still have its own
1627 * pip refs on the object.
1628 */
1629 if (object != NULL) {
1630 vm_object_pip_wakeupn(object, bp->b_npages);
1631 VM_OBJECT_WUNLOCK(object);
1632 }
1633
1634 /*
1635 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1636 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1637 * trigger a KASSERT in relpbuf().
1638 */
1639 if (bp->b_vp) {
1640 bp->b_vp = NULL;
1641 bp->b_bufobj = NULL;
1642 }
1643 /*
1644 * release the physical I/O buffer
1645 */
1646 relpbuf(
1647 bp,
1648 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1649 ((bp->b_flags & B_ASYNC) ?
1650 &nsw_wcount_async :
1651 &nsw_wcount_sync
1652 )
1653 )
1654 );
1655 }
1656
1657 /*
1658 * swap_pager_isswapped:
1659 *
1660 * Return 1 if at least one page in the given object is paged
1661 * out to the given swap device.
1662 *
1663 * This routine may not sleep.
1664 */
1665 int
1666 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1667 {
1668 daddr_t index = 0;
1669 int bcount;
1670 int i;
1671
1672 VM_OBJECT_ASSERT_WLOCKED(object);
1673 if (object->type != OBJT_SWAP)
1674 return (0);
1675
1676 mtx_lock(&swhash_mtx);
1677 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1678 struct swblock *swap;
1679
1680 if ((swap = *swp_pager_hash(object, index)) != NULL) {
1681 for (i = 0; i < SWAP_META_PAGES; ++i) {
1682 if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1683 mtx_unlock(&swhash_mtx);
1684 return (1);
1685 }
1686 }
1687 }
1688 index += SWAP_META_PAGES;
1689 }
1690 mtx_unlock(&swhash_mtx);
1691 return (0);
1692 }
1693
1694 /*
1695 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1696 *
1697 * This routine dissociates the page at the given index within a
1698 * swap block from its backing store, paging it in if necessary.
1699 * If the page is paged in, it is placed in the inactive queue,
1700 * since it had its backing store ripped out from under it.
1701 * We also attempt to swap in all other pages in the swap block,
1702 * we only guarantee that the one at the specified index is
1703 * paged in.
1704 *
1705 * XXX - The code to page the whole block in doesn't work, so we
1706 * revert to the one-by-one behavior for now. Sigh.
1707 */
1708 static inline void
1709 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1710 {
1711 vm_page_t m;
1712
1713 vm_object_pip_add(object, 1);
1714 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1715 if (m->valid == VM_PAGE_BITS_ALL) {
1716 vm_object_pip_subtract(object, 1);
1717 vm_page_dirty(m);
1718 vm_page_lock(m);
1719 vm_page_activate(m);
1720 vm_page_unlock(m);
1721 vm_page_xunbusy(m);
1722 vm_pager_page_unswapped(m);
1723 return;
1724 }
1725
1726 if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1727 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1728 vm_object_pip_subtract(object, 1);
1729 vm_page_dirty(m);
1730 vm_page_lock(m);
1731 vm_page_deactivate(m);
1732 vm_page_unlock(m);
1733 vm_page_xunbusy(m);
1734 vm_pager_page_unswapped(m);
1735 }
1736
1737 /*
1738 * swap_pager_swapoff:
1739 *
1740 * Page in all of the pages that have been paged out to the
1741 * given device. The corresponding blocks in the bitmap must be
1742 * marked as allocated and the device must be flagged SW_CLOSING.
1743 * There may be no processes swapped out to the device.
1744 *
1745 * This routine may block.
1746 */
1747 static void
1748 swap_pager_swapoff(struct swdevt *sp)
1749 {
1750 struct swblock *swap;
1751 int i, j, retries;
1752
1753 GIANT_REQUIRED;
1754
1755 retries = 0;
1756 full_rescan:
1757 mtx_lock(&swhash_mtx);
1758 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1759 restart:
1760 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1761 vm_object_t object = swap->swb_object;
1762 vm_pindex_t pindex = swap->swb_index;
1763 for (j = 0; j < SWAP_META_PAGES; ++j) {
1764 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1765 /* avoid deadlock */
1766 if (!VM_OBJECT_TRYWLOCK(object)) {
1767 break;
1768 } else {
1769 mtx_unlock(&swhash_mtx);
1770 swp_pager_force_pagein(object,
1771 pindex + j);
1772 VM_OBJECT_WUNLOCK(object);
1773 mtx_lock(&swhash_mtx);
1774 goto restart;
1775 }
1776 }
1777 }
1778 }
1779 }
1780 mtx_unlock(&swhash_mtx);
1781 if (sp->sw_used) {
1782 /*
1783 * Objects may be locked or paging to the device being
1784 * removed, so we will miss their pages and need to
1785 * make another pass. We have marked this device as
1786 * SW_CLOSING, so the activity should finish soon.
1787 */
1788 retries++;
1789 if (retries > 100) {
1790 panic("swapoff: failed to locate %d swap blocks",
1791 sp->sw_used);
1792 }
1793 pause("swpoff", hz / 20);
1794 goto full_rescan;
1795 }
1796 }
1797
1798 /************************************************************************
1799 * SWAP META DATA *
1800 ************************************************************************
1801 *
1802 * These routines manipulate the swap metadata stored in the
1803 * OBJT_SWAP object.
1804 *
1805 * Swap metadata is implemented with a global hash and not directly
1806 * linked into the object. Instead the object simply contains
1807 * appropriate tracking counters.
1808 */
1809
1810 /*
1811 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object
1812 *
1813 * We first convert the object to a swap object if it is a default
1814 * object.
1815 *
1816 * The specified swapblk is added to the object's swap metadata. If
1817 * the swapblk is not valid, it is freed instead. Any previously
1818 * assigned swapblk is freed.
1819 */
1820 static void
1821 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1822 {
1823 static volatile int exhausted;
1824 struct swblock *swap;
1825 struct swblock **pswap;
1826 int idx;
1827
1828 VM_OBJECT_ASSERT_WLOCKED(object);
1829 /*
1830 * Convert default object to swap object if necessary
1831 */
1832 if (object->type != OBJT_SWAP) {
1833 object->type = OBJT_SWAP;
1834 object->un_pager.swp.swp_bcount = 0;
1835
1836 if (object->handle != NULL) {
1837 mtx_lock(&sw_alloc_mtx);
1838 TAILQ_INSERT_TAIL(
1839 NOBJLIST(object->handle),
1840 object,
1841 pager_object_list
1842 );
1843 mtx_unlock(&sw_alloc_mtx);
1844 }
1845 }
1846
1847 /*
1848 * Locate hash entry. If not found create, but if we aren't adding
1849 * anything just return. If we run out of space in the map we wait
1850 * and, since the hash table may have changed, retry.
1851 */
1852 retry:
1853 mtx_lock(&swhash_mtx);
1854 pswap = swp_pager_hash(object, pindex);
1855
1856 if ((swap = *pswap) == NULL) {
1857 int i;
1858
1859 if (swapblk == SWAPBLK_NONE)
1860 goto done;
1861
1862 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT |
1863 (curproc == pageproc ? M_USE_RESERVE : 0));
1864 if (swap == NULL) {
1865 mtx_unlock(&swhash_mtx);
1866 VM_OBJECT_WUNLOCK(object);
1867 if (uma_zone_exhausted(swap_zone)) {
1868 if (atomic_cmpset_int(&exhausted, 0, 1))
1869 printf("swap zone exhausted, "
1870 "increase kern.maxswzone\n");
1871 vm_pageout_oom(VM_OOM_SWAPZ);
1872 pause("swzonex", 10);
1873 } else
1874 VM_WAIT;
1875 VM_OBJECT_WLOCK(object);
1876 goto retry;
1877 }
1878
1879 if (atomic_cmpset_int(&exhausted, 1, 0))
1880 printf("swap zone ok\n");
1881
1882 swap->swb_hnext = NULL;
1883 swap->swb_object = object;
1884 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1885 swap->swb_count = 0;
1886
1887 ++object->un_pager.swp.swp_bcount;
1888
1889 for (i = 0; i < SWAP_META_PAGES; ++i)
1890 swap->swb_pages[i] = SWAPBLK_NONE;
1891 }
1892
1893 /*
1894 * Delete prior contents of metadata
1895 */
1896 idx = pindex & SWAP_META_MASK;
1897
1898 if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1899 swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1900 --swap->swb_count;
1901 }
1902
1903 /*
1904 * Enter block into metadata
1905 */
1906 swap->swb_pages[idx] = swapblk;
1907 if (swapblk != SWAPBLK_NONE)
1908 ++swap->swb_count;
1909 done:
1910 mtx_unlock(&swhash_mtx);
1911 }
1912
1913 /*
1914 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1915 *
1916 * The requested range of blocks is freed, with any associated swap
1917 * returned to the swap bitmap.
1918 *
1919 * This routine will free swap metadata structures as they are cleaned
1920 * out. This routine does *NOT* operate on swap metadata associated
1921 * with resident pages.
1922 */
1923 static void
1924 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1925 {
1926
1927 VM_OBJECT_ASSERT_LOCKED(object);
1928 if (object->type != OBJT_SWAP)
1929 return;
1930
1931 while (count > 0) {
1932 struct swblock **pswap;
1933 struct swblock *swap;
1934
1935 mtx_lock(&swhash_mtx);
1936 pswap = swp_pager_hash(object, index);
1937
1938 if ((swap = *pswap) != NULL) {
1939 daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1940
1941 if (v != SWAPBLK_NONE) {
1942 swp_pager_freeswapspace(v, 1);
1943 swap->swb_pages[index & SWAP_META_MASK] =
1944 SWAPBLK_NONE;
1945 if (--swap->swb_count == 0) {
1946 *pswap = swap->swb_hnext;
1947 uma_zfree(swap_zone, swap);
1948 --object->un_pager.swp.swp_bcount;
1949 }
1950 }
1951 --count;
1952 ++index;
1953 } else {
1954 int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1955 count -= n;
1956 index += n;
1957 }
1958 mtx_unlock(&swhash_mtx);
1959 }
1960 }
1961
1962 /*
1963 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1964 *
1965 * This routine locates and destroys all swap metadata associated with
1966 * an object.
1967 */
1968 static void
1969 swp_pager_meta_free_all(vm_object_t object)
1970 {
1971 daddr_t index = 0;
1972
1973 VM_OBJECT_ASSERT_WLOCKED(object);
1974 if (object->type != OBJT_SWAP)
1975 return;
1976
1977 while (object->un_pager.swp.swp_bcount) {
1978 struct swblock **pswap;
1979 struct swblock *swap;
1980
1981 mtx_lock(&swhash_mtx);
1982 pswap = swp_pager_hash(object, index);
1983 if ((swap = *pswap) != NULL) {
1984 int i;
1985
1986 for (i = 0; i < SWAP_META_PAGES; ++i) {
1987 daddr_t v = swap->swb_pages[i];
1988 if (v != SWAPBLK_NONE) {
1989 --swap->swb_count;
1990 swp_pager_freeswapspace(v, 1);
1991 }
1992 }
1993 if (swap->swb_count != 0)
1994 panic("swap_pager_meta_free_all: swb_count != 0");
1995 *pswap = swap->swb_hnext;
1996 uma_zfree(swap_zone, swap);
1997 --object->un_pager.swp.swp_bcount;
1998 }
1999 mtx_unlock(&swhash_mtx);
2000 index += SWAP_META_PAGES;
2001 }
2002 }
2003
2004 /*
2005 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data.
2006 *
2007 * This routine is capable of looking up, popping, or freeing
2008 * swapblk assignments in the swap meta data or in the vm_page_t.
2009 * The routine typically returns the swapblk being looked-up, or popped,
2010 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2011 * was invalid. This routine will automatically free any invalid
2012 * meta-data swapblks.
2013 *
2014 * It is not possible to store invalid swapblks in the swap meta data
2015 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2016 *
2017 * When acting on a busy resident page and paging is in progress, we
2018 * have to wait until paging is complete but otherwise can act on the
2019 * busy page.
2020 *
2021 * SWM_FREE remove and free swap block from metadata
2022 * SWM_POP remove from meta data but do not free.. pop it out
2023 */
2024 static daddr_t
2025 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2026 {
2027 struct swblock **pswap;
2028 struct swblock *swap;
2029 daddr_t r1;
2030 int idx;
2031
2032 VM_OBJECT_ASSERT_LOCKED(object);
2033 /*
2034 * The meta data only exists of the object is OBJT_SWAP
2035 * and even then might not be allocated yet.
2036 */
2037 if (object->type != OBJT_SWAP)
2038 return (SWAPBLK_NONE);
2039
2040 r1 = SWAPBLK_NONE;
2041 mtx_lock(&swhash_mtx);
2042 pswap = swp_pager_hash(object, pindex);
2043
2044 if ((swap = *pswap) != NULL) {
2045 idx = pindex & SWAP_META_MASK;
2046 r1 = swap->swb_pages[idx];
2047
2048 if (r1 != SWAPBLK_NONE) {
2049 if (flags & SWM_FREE) {
2050 swp_pager_freeswapspace(r1, 1);
2051 r1 = SWAPBLK_NONE;
2052 }
2053 if (flags & (SWM_FREE|SWM_POP)) {
2054 swap->swb_pages[idx] = SWAPBLK_NONE;
2055 if (--swap->swb_count == 0) {
2056 *pswap = swap->swb_hnext;
2057 uma_zfree(swap_zone, swap);
2058 --object->un_pager.swp.swp_bcount;
2059 }
2060 }
2061 }
2062 }
2063 mtx_unlock(&swhash_mtx);
2064 return (r1);
2065 }
2066
2067 /*
2068 * System call swapon(name) enables swapping on device name,
2069 * which must be in the swdevsw. Return EBUSY
2070 * if already swapping on this device.
2071 */
2072 #ifndef _SYS_SYSPROTO_H_
2073 struct swapon_args {
2074 char *name;
2075 };
2076 #endif
2077
2078 /*
2079 * MPSAFE
2080 */
2081 /* ARGSUSED */
2082 int
2083 sys_swapon(struct thread *td, struct swapon_args *uap)
2084 {
2085 struct vattr attr;
2086 struct vnode *vp;
2087 struct nameidata nd;
2088 int error;
2089
2090 error = priv_check(td, PRIV_SWAPON);
2091 if (error)
2092 return (error);
2093
2094 mtx_lock(&Giant);
2095 while (swdev_syscall_active)
2096 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2097 swdev_syscall_active = 1;
2098
2099 /*
2100 * Swap metadata may not fit in the KVM if we have physical
2101 * memory of >1GB.
2102 */
2103 if (swap_zone == NULL) {
2104 error = ENOMEM;
2105 goto done;
2106 }
2107
2108 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2109 uap->name, td);
2110 error = namei(&nd);
2111 if (error)
2112 goto done;
2113
2114 NDFREE(&nd, NDF_ONLY_PNBUF);
2115 vp = nd.ni_vp;
2116
2117 if (vn_isdisk(vp, &error)) {
2118 error = swapongeom(td, vp);
2119 } else if (vp->v_type == VREG &&
2120 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2121 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2122 /*
2123 * Allow direct swapping to NFS regular files in the same
2124 * way that nfs_mountroot() sets up diskless swapping.
2125 */
2126 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2127 }
2128
2129 if (error)
2130 vrele(vp);
2131 done:
2132 swdev_syscall_active = 0;
2133 wakeup_one(&swdev_syscall_active);
2134 mtx_unlock(&Giant);
2135 return (error);
2136 }
2137
2138 /*
2139 * Check that the total amount of swap currently configured does not
2140 * exceed half the theoretical maximum. If it does, print a warning
2141 * message and return -1; otherwise, return 0.
2142 */
2143 static int
2144 swapon_check_swzone(unsigned long npages)
2145 {
2146 unsigned long maxpages;
2147
2148 /* absolute maximum we can handle assuming 100% efficiency */
2149 maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES;
2150
2151 /* recommend using no more than half that amount */
2152 if (npages > maxpages / 2) {
2153 printf("warning: total configured swap (%lu pages) "
2154 "exceeds maximum recommended amount (%lu pages).\n",
2155 npages, maxpages / 2);
2156 printf("warning: increase kern.maxswzone "
2157 "or reduce amount of swap.\n");
2158 return (-1);
2159 }
2160 return (0);
2161 }
2162
2163 static void
2164 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2165 sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2166 {
2167 struct swdevt *sp, *tsp;
2168 swblk_t dvbase;
2169 u_long mblocks;
2170
2171 /*
2172 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2173 * First chop nblks off to page-align it, then convert.
2174 *
2175 * sw->sw_nblks is in page-sized chunks now too.
2176 */
2177 nblks &= ~(ctodb(1) - 1);
2178 nblks = dbtoc(nblks);
2179
2180 /*
2181 * If we go beyond this, we get overflows in the radix
2182 * tree bitmap code.
2183 */
2184 mblocks = 0x40000000 / BLIST_META_RADIX;
2185 if (nblks > mblocks) {
2186 printf(
2187 "WARNING: reducing swap size to maximum of %luMB per unit\n",
2188 mblocks / 1024 / 1024 * PAGE_SIZE);
2189 nblks = mblocks;
2190 }
2191
2192 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2193 sp->sw_vp = vp;
2194 sp->sw_id = id;
2195 sp->sw_dev = dev;
2196 sp->sw_flags = 0;
2197 sp->sw_nblks = nblks;
2198 sp->sw_used = 0;
2199 sp->sw_strategy = strategy;
2200 sp->sw_close = close;
2201 sp->sw_flags = flags;
2202
2203 sp->sw_blist = blist_create(nblks, M_WAITOK);
2204 /*
2205 * Do not free the first two block in order to avoid overwriting
2206 * any bsd label at the front of the partition
2207 */
2208 blist_free(sp->sw_blist, 2, nblks - 2);
2209
2210 dvbase = 0;
2211 mtx_lock(&sw_dev_mtx);
2212 TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2213 if (tsp->sw_end >= dvbase) {
2214 /*
2215 * We put one uncovered page between the devices
2216 * in order to definitively prevent any cross-device
2217 * I/O requests
2218 */
2219 dvbase = tsp->sw_end + 1;
2220 }
2221 }
2222 sp->sw_first = dvbase;
2223 sp->sw_end = dvbase + nblks;
2224 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2225 nswapdev++;
2226 swap_pager_avail += nblks;
2227 swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2228 swapon_check_swzone(swap_total / PAGE_SIZE);
2229 swp_sizecheck();
2230 mtx_unlock(&sw_dev_mtx);
2231 }
2232
2233 /*
2234 * SYSCALL: swapoff(devname)
2235 *
2236 * Disable swapping on the given device.
2237 *
2238 * XXX: Badly designed system call: it should use a device index
2239 * rather than filename as specification. We keep sw_vp around
2240 * only to make this work.
2241 */
2242 #ifndef _SYS_SYSPROTO_H_
2243 struct swapoff_args {
2244 char *name;
2245 };
2246 #endif
2247
2248 /*
2249 * MPSAFE
2250 */
2251 /* ARGSUSED */
2252 int
2253 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2254 {
2255 struct vnode *vp;
2256 struct nameidata nd;
2257 struct swdevt *sp;
2258 int error;
2259
2260 error = priv_check(td, PRIV_SWAPOFF);
2261 if (error)
2262 return (error);
2263
2264 mtx_lock(&Giant);
2265 while (swdev_syscall_active)
2266 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2267 swdev_syscall_active = 1;
2268
2269 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2270 td);
2271 error = namei(&nd);
2272 if (error)
2273 goto done;
2274 NDFREE(&nd, NDF_ONLY_PNBUF);
2275 vp = nd.ni_vp;
2276
2277 mtx_lock(&sw_dev_mtx);
2278 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2279 if (sp->sw_vp == vp)
2280 break;
2281 }
2282 mtx_unlock(&sw_dev_mtx);
2283 if (sp == NULL) {
2284 error = EINVAL;
2285 goto done;
2286 }
2287 error = swapoff_one(sp, td->td_ucred);
2288 done:
2289 swdev_syscall_active = 0;
2290 wakeup_one(&swdev_syscall_active);
2291 mtx_unlock(&Giant);
2292 return (error);
2293 }
2294
2295 static int
2296 swapoff_one(struct swdevt *sp, struct ucred *cred)
2297 {
2298 u_long nblks, dvbase;
2299 #ifdef MAC
2300 int error;
2301 #endif
2302
2303 mtx_assert(&Giant, MA_OWNED);
2304 #ifdef MAC
2305 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2306 error = mac_system_check_swapoff(cred, sp->sw_vp);
2307 (void) VOP_UNLOCK(sp->sw_vp, 0);
2308 if (error != 0)
2309 return (error);
2310 #endif
2311 nblks = sp->sw_nblks;
2312
2313 /*
2314 * We can turn off this swap device safely only if the
2315 * available virtual memory in the system will fit the amount
2316 * of data we will have to page back in, plus an epsilon so
2317 * the system doesn't become critically low on swap space.
2318 */
2319 if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2320 nblks + nswap_lowat) {
2321 return (ENOMEM);
2322 }
2323
2324 /*
2325 * Prevent further allocations on this device.
2326 */
2327 mtx_lock(&sw_dev_mtx);
2328 sp->sw_flags |= SW_CLOSING;
2329 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2330 swap_pager_avail -= blist_fill(sp->sw_blist,
2331 dvbase, dmmax);
2332 }
2333 swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2334 mtx_unlock(&sw_dev_mtx);
2335
2336 /*
2337 * Page in the contents of the device and close it.
2338 */
2339 swap_pager_swapoff(sp);
2340
2341 sp->sw_close(curthread, sp);
2342 sp->sw_id = NULL;
2343 mtx_lock(&sw_dev_mtx);
2344 TAILQ_REMOVE(&swtailq, sp, sw_list);
2345 nswapdev--;
2346 if (nswapdev == 0) {
2347 swap_pager_full = 2;
2348 swap_pager_almost_full = 1;
2349 }
2350 if (swdevhd == sp)
2351 swdevhd = NULL;
2352 mtx_unlock(&sw_dev_mtx);
2353 blist_destroy(sp->sw_blist);
2354 free(sp, M_VMPGDATA);
2355 return (0);
2356 }
2357
2358 void
2359 swapoff_all(void)
2360 {
2361 struct swdevt *sp, *spt;
2362 const char *devname;
2363 int error;
2364
2365 mtx_lock(&Giant);
2366 while (swdev_syscall_active)
2367 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2368 swdev_syscall_active = 1;
2369
2370 mtx_lock(&sw_dev_mtx);
2371 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2372 mtx_unlock(&sw_dev_mtx);
2373 if (vn_isdisk(sp->sw_vp, NULL))
2374 devname = devtoname(sp->sw_vp->v_rdev);
2375 else
2376 devname = "[file]";
2377 error = swapoff_one(sp, thread0.td_ucred);
2378 if (error != 0) {
2379 printf("Cannot remove swap device %s (error=%d), "
2380 "skipping.\n", devname, error);
2381 } else if (bootverbose) {
2382 printf("Swap device %s removed.\n", devname);
2383 }
2384 mtx_lock(&sw_dev_mtx);
2385 }
2386 mtx_unlock(&sw_dev_mtx);
2387
2388 swdev_syscall_active = 0;
2389 wakeup_one(&swdev_syscall_active);
2390 mtx_unlock(&Giant);
2391 }
2392
2393 void
2394 swap_pager_status(int *total, int *used)
2395 {
2396 struct swdevt *sp;
2397
2398 *total = 0;
2399 *used = 0;
2400 mtx_lock(&sw_dev_mtx);
2401 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2402 *total += sp->sw_nblks;
2403 *used += sp->sw_used;
2404 }
2405 mtx_unlock(&sw_dev_mtx);
2406 }
2407
2408 int
2409 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2410 {
2411 struct swdevt *sp;
2412 const char *tmp_devname;
2413 int error, n;
2414
2415 n = 0;
2416 error = ENOENT;
2417 mtx_lock(&sw_dev_mtx);
2418 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2419 if (n != name) {
2420 n++;
2421 continue;
2422 }
2423 xs->xsw_version = XSWDEV_VERSION;
2424 xs->xsw_dev = sp->sw_dev;
2425 xs->xsw_flags = sp->sw_flags;
2426 xs->xsw_nblks = sp->sw_nblks;
2427 xs->xsw_used = sp->sw_used;
2428 if (devname != NULL) {
2429 if (vn_isdisk(sp->sw_vp, NULL))
2430 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2431 else
2432 tmp_devname = "[file]";
2433 strncpy(devname, tmp_devname, len);
2434 }
2435 error = 0;
2436 break;
2437 }
2438 mtx_unlock(&sw_dev_mtx);
2439 return (error);
2440 }
2441
2442 static int
2443 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2444 {
2445 struct xswdev xs;
2446 int error;
2447
2448 if (arg2 != 1) /* name length */
2449 return (EINVAL);
2450 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2451 if (error != 0)
2452 return (error);
2453 error = SYSCTL_OUT(req, &xs, sizeof(xs));
2454 return (error);
2455 }
2456
2457 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2458 "Number of swap devices");
2459 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2460 "Swap statistics by device");
2461
2462 /*
2463 * vmspace_swap_count() - count the approximate swap usage in pages for a
2464 * vmspace.
2465 *
2466 * The map must be locked.
2467 *
2468 * Swap usage is determined by taking the proportional swap used by
2469 * VM objects backing the VM map. To make up for fractional losses,
2470 * if the VM object has any swap use at all the associated map entries
2471 * count for at least 1 swap page.
2472 */
2473 long
2474 vmspace_swap_count(struct vmspace *vmspace)
2475 {
2476 vm_map_t map;
2477 vm_map_entry_t cur;
2478 vm_object_t object;
2479 long count, n;
2480
2481 map = &vmspace->vm_map;
2482 count = 0;
2483
2484 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2485 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2486 (object = cur->object.vm_object) != NULL) {
2487 VM_OBJECT_WLOCK(object);
2488 if (object->type == OBJT_SWAP &&
2489 object->un_pager.swp.swp_bcount != 0) {
2490 n = (cur->end - cur->start) / PAGE_SIZE;
2491 count += object->un_pager.swp.swp_bcount *
2492 SWAP_META_PAGES * n / object->size + 1;
2493 }
2494 VM_OBJECT_WUNLOCK(object);
2495 }
2496 }
2497 return (count);
2498 }
2499
2500 /*
2501 * GEOM backend
2502 *
2503 * Swapping onto disk devices.
2504 *
2505 */
2506
2507 static g_orphan_t swapgeom_orphan;
2508
2509 static struct g_class g_swap_class = {
2510 .name = "SWAP",
2511 .version = G_VERSION,
2512 .orphan = swapgeom_orphan,
2513 };
2514
2515 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2516
2517
2518 static void
2519 swapgeom_done(struct bio *bp2)
2520 {
2521 struct buf *bp;
2522
2523 bp = bp2->bio_caller2;
2524 bp->b_ioflags = bp2->bio_flags;
2525 if (bp2->bio_error)
2526 bp->b_ioflags |= BIO_ERROR;
2527 bp->b_resid = bp->b_bcount - bp2->bio_completed;
2528 bp->b_error = bp2->bio_error;
2529 bufdone(bp);
2530 g_destroy_bio(bp2);
2531 }
2532
2533 static void
2534 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2535 {
2536 struct bio *bio;
2537 struct g_consumer *cp;
2538
2539 cp = sp->sw_id;
2540 if (cp == NULL) {
2541 bp->b_error = ENXIO;
2542 bp->b_ioflags |= BIO_ERROR;
2543 bufdone(bp);
2544 return;
2545 }
2546 if (bp->b_iocmd == BIO_WRITE)
2547 bio = g_new_bio();
2548 else
2549 bio = g_alloc_bio();
2550 if (bio == NULL) {
2551 bp->b_error = ENOMEM;
2552 bp->b_ioflags |= BIO_ERROR;
2553 bufdone(bp);
2554 return;
2555 }
2556
2557 bio->bio_caller2 = bp;
2558 bio->bio_cmd = bp->b_iocmd;
2559 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2560 bio->bio_length = bp->b_bcount;
2561 bio->bio_done = swapgeom_done;
2562 if ((bp->b_flags & B_UNMAPPED) != 0) {
2563 bio->bio_ma = bp->b_pages;
2564 bio->bio_data = unmapped_buf;
2565 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2566 bio->bio_ma_n = bp->b_npages;
2567 bio->bio_flags |= BIO_UNMAPPED;
2568 } else {
2569 bio->bio_data = bp->b_data;
2570 bio->bio_ma = NULL;
2571 }
2572 g_io_request(bio, cp);
2573 return;
2574 }
2575
2576 static void
2577 swapgeom_orphan(struct g_consumer *cp)
2578 {
2579 struct swdevt *sp;
2580
2581 mtx_lock(&sw_dev_mtx);
2582 TAILQ_FOREACH(sp, &swtailq, sw_list)
2583 if (sp->sw_id == cp)
2584 sp->sw_flags |= SW_CLOSING;
2585 mtx_unlock(&sw_dev_mtx);
2586 }
2587
2588 static void
2589 swapgeom_close_ev(void *arg, int flags)
2590 {
2591 struct g_consumer *cp;
2592
2593 cp = arg;
2594 g_access(cp, -1, -1, 0);
2595 g_detach(cp);
2596 g_destroy_consumer(cp);
2597 }
2598
2599 static void
2600 swapgeom_close(struct thread *td, struct swdevt *sw)
2601 {
2602
2603 /* XXX: direct call when Giant untangled */
2604 g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2605 }
2606
2607
2608 struct swh0h0 {
2609 struct cdev *dev;
2610 struct vnode *vp;
2611 int error;
2612 };
2613
2614 static void
2615 swapongeom_ev(void *arg, int flags)
2616 {
2617 struct swh0h0 *swh;
2618 struct g_provider *pp;
2619 struct g_consumer *cp;
2620 static struct g_geom *gp;
2621 struct swdevt *sp;
2622 u_long nblks;
2623 int error;
2624
2625 swh = arg;
2626 swh->error = 0;
2627 pp = g_dev_getprovider(swh->dev);
2628 if (pp == NULL) {
2629 swh->error = ENODEV;
2630 return;
2631 }
2632 mtx_lock(&sw_dev_mtx);
2633 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2634 cp = sp->sw_id;
2635 if (cp != NULL && cp->provider == pp) {
2636 mtx_unlock(&sw_dev_mtx);
2637 swh->error = EBUSY;
2638 return;
2639 }
2640 }
2641 mtx_unlock(&sw_dev_mtx);
2642 if (gp == NULL)
2643 gp = g_new_geomf(&g_swap_class, "swap");
2644 cp = g_new_consumer(gp);
2645 g_attach(cp, pp);
2646 /*
2647 * XXX: Everytime you think you can improve the margin for
2648 * footshooting, somebody depends on the ability to do so:
2649 * savecore(8) wants to write to our swapdev so we cannot
2650 * set an exclusive count :-(
2651 */
2652 error = g_access(cp, 1, 1, 0);
2653 if (error) {
2654 g_detach(cp);
2655 g_destroy_consumer(cp);
2656 swh->error = error;
2657 return;
2658 }
2659 nblks = pp->mediasize / DEV_BSIZE;
2660 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2661 swapgeom_close, dev2udev(swh->dev),
2662 (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2663 swh->error = 0;
2664 }
2665
2666 static int
2667 swapongeom(struct thread *td, struct vnode *vp)
2668 {
2669 int error;
2670 struct swh0h0 swh;
2671
2672 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2673
2674 swh.dev = vp->v_rdev;
2675 swh.vp = vp;
2676 swh.error = 0;
2677 /* XXX: direct call when Giant untangled */
2678 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2679 if (!error)
2680 error = swh.error;
2681 VOP_UNLOCK(vp, 0);
2682 return (error);
2683 }
2684
2685 /*
2686 * VNODE backend
2687 *
2688 * This is used mainly for network filesystem (read: probably only tested
2689 * with NFS) swapfiles.
2690 *
2691 */
2692
2693 static void
2694 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2695 {
2696 struct vnode *vp2;
2697
2698 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2699
2700 vp2 = sp->sw_id;
2701 vhold(vp2);
2702 if (bp->b_iocmd == BIO_WRITE) {
2703 if (bp->b_bufobj)
2704 bufobj_wdrop(bp->b_bufobj);
2705 bufobj_wref(&vp2->v_bufobj);
2706 }
2707 if (bp->b_bufobj != &vp2->v_bufobj)
2708 bp->b_bufobj = &vp2->v_bufobj;
2709 bp->b_vp = vp2;
2710 bp->b_iooffset = dbtob(bp->b_blkno);
2711 bstrategy(bp);
2712 return;
2713 }
2714
2715 static void
2716 swapdev_close(struct thread *td, struct swdevt *sp)
2717 {
2718
2719 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2720 vrele(sp->sw_vp);
2721 }
2722
2723
2724 static int
2725 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2726 {
2727 struct swdevt *sp;
2728 int error;
2729
2730 if (nblks == 0)
2731 return (ENXIO);
2732 mtx_lock(&sw_dev_mtx);
2733 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2734 if (sp->sw_id == vp) {
2735 mtx_unlock(&sw_dev_mtx);
2736 return (EBUSY);
2737 }
2738 }
2739 mtx_unlock(&sw_dev_mtx);
2740
2741 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2742 #ifdef MAC
2743 error = mac_system_check_swapon(td->td_ucred, vp);
2744 if (error == 0)
2745 #endif
2746 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2747 (void) VOP_UNLOCK(vp, 0);
2748 if (error)
2749 return (error);
2750
2751 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2752 NODEV, 0);
2753 return (0);
2754 }
Cache object: 3650b3a59429009eb1f9e24139f085e5
|