The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/swap_pager.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1998 Matthew Dillon,
    3  * Copyright (c) 1994 John S. Dyson
    4  * Copyright (c) 1990 University of Utah.
    5  * Copyright (c) 1982, 1986, 1989, 1993
    6  *      The Regents of the University of California.  All rights reserved.
    7  *
    8  * This code is derived from software contributed to Berkeley by
    9  * the Systems Programming Group of the University of Utah Computer
   10  * Science Department.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. All advertising materials mentioning features or use of this software
   21  *    must display the following acknowledgement:
   22  *      This product includes software developed by the University of
   23  *      California, Berkeley and its contributors.
   24  * 4. Neither the name of the University nor the names of its contributors
   25  *    may be used to endorse or promote products derived from this software
   26  *    without specific prior written permission.
   27  *
   28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   38  * SUCH DAMAGE.
   39  *
   40  *                              New Swap System
   41  *                              Matthew Dillon
   42  *
   43  * Radix Bitmap 'blists'.
   44  *
   45  *      - The new swapper uses the new radix bitmap code.  This should scale
   46  *        to arbitrarily small or arbitrarily large swap spaces and an almost
   47  *        arbitrary degree of fragmentation.
   48  *
   49  * Features:
   50  *
   51  *      - on the fly reallocation of swap during putpages.  The new system
   52  *        does not try to keep previously allocated swap blocks for dirty
   53  *        pages.
   54  *
   55  *      - on the fly deallocation of swap
   56  *
   57  *      - No more garbage collection required.  Unnecessarily allocated swap
   58  *        blocks only exist for dirty vm_page_t's now and these are already
   59  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
   60  *        removal of invalidated swap blocks when a page is destroyed
   61  *        or renamed.
   62  *
   63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
   64  *
   65  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
   66  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
   67  */
   68 
   69 #include <sys/cdefs.h>
   70 __FBSDID("$FreeBSD: releng/10.1/sys/vm/swap_pager.c 265932 2014-05-12 20:48:04Z des $");
   71 
   72 #include "opt_swap.h"
   73 #include "opt_vm.h"
   74 
   75 #include <sys/param.h>
   76 #include <sys/systm.h>
   77 #include <sys/conf.h>
   78 #include <sys/kernel.h>
   79 #include <sys/priv.h>
   80 #include <sys/proc.h>
   81 #include <sys/bio.h>
   82 #include <sys/buf.h>
   83 #include <sys/disk.h>
   84 #include <sys/fcntl.h>
   85 #include <sys/mount.h>
   86 #include <sys/namei.h>
   87 #include <sys/vnode.h>
   88 #include <sys/malloc.h>
   89 #include <sys/racct.h>
   90 #include <sys/resource.h>
   91 #include <sys/resourcevar.h>
   92 #include <sys/rwlock.h>
   93 #include <sys/sysctl.h>
   94 #include <sys/sysproto.h>
   95 #include <sys/blist.h>
   96 #include <sys/lock.h>
   97 #include <sys/sx.h>
   98 #include <sys/vmmeter.h>
   99 
  100 #include <security/mac/mac_framework.h>
  101 
  102 #include <vm/vm.h>
  103 #include <vm/pmap.h>
  104 #include <vm/vm_map.h>
  105 #include <vm/vm_kern.h>
  106 #include <vm/vm_object.h>
  107 #include <vm/vm_page.h>
  108 #include <vm/vm_pager.h>
  109 #include <vm/vm_pageout.h>
  110 #include <vm/vm_param.h>
  111 #include <vm/swap_pager.h>
  112 #include <vm/vm_extern.h>
  113 #include <vm/uma.h>
  114 
  115 #include <geom/geom.h>
  116 
  117 /*
  118  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, 16
  119  * or 32 pages per allocation.
  120  * The 32-page limit is due to the radix code (kern/subr_blist.c).
  121  */
  122 #ifndef MAX_PAGEOUT_CLUSTER
  123 #define MAX_PAGEOUT_CLUSTER 16
  124 #endif
  125 
  126 #if !defined(SWB_NPAGES)
  127 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
  128 #endif
  129 
  130 /*
  131  * The swblock structure maps an object and a small, fixed-size range
  132  * of page indices to disk addresses within a swap area.
  133  * The collection of these mappings is implemented as a hash table.
  134  * Unused disk addresses within a swap area are allocated and managed
  135  * using a blist.
  136  */
  137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
  138 #define SWAP_META_PAGES         (SWB_NPAGES * 2)
  139 #define SWAP_META_MASK          (SWAP_META_PAGES - 1)
  140 
  141 struct swblock {
  142         struct swblock  *swb_hnext;
  143         vm_object_t     swb_object;
  144         vm_pindex_t     swb_index;
  145         int             swb_count;
  146         daddr_t         swb_pages[SWAP_META_PAGES];
  147 };
  148 
  149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
  150 static struct mtx sw_dev_mtx;
  151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
  152 static struct swdevt *swdevhd;  /* Allocate from here next */
  153 static int nswapdev;            /* Number of swap devices */
  154 int swap_pager_avail;
  155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
  156 
  157 static vm_ooffset_t swap_total;
  158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
  159     "Total amount of available swap storage.");
  160 static vm_ooffset_t swap_reserved;
  161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
  162     "Amount of swap storage needed to back all allocated anonymous memory.");
  163 static int overcommit = 0;
  164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
  165     "Configure virtual memory overcommit behavior. See tuning(7) "
  166     "for details.");
  167 static unsigned long swzone;
  168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
  169     "Actual size of swap metadata zone");
  170 static unsigned long swap_maxpages;
  171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
  172     "Maximum amount of swap supported");
  173 
  174 /* bits from overcommit */
  175 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
  176 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
  177 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
  178 
  179 int
  180 swap_reserve(vm_ooffset_t incr)
  181 {
  182 
  183         return (swap_reserve_by_cred(incr, curthread->td_ucred));
  184 }
  185 
  186 int
  187 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
  188 {
  189         vm_ooffset_t r, s;
  190         int res, error;
  191         static int curfail;
  192         static struct timeval lastfail;
  193         struct uidinfo *uip;
  194 
  195         uip = cred->cr_ruidinfo;
  196 
  197         if (incr & PAGE_MASK)
  198                 panic("swap_reserve: & PAGE_MASK");
  199 
  200 #ifdef RACCT
  201         PROC_LOCK(curproc);
  202         error = racct_add(curproc, RACCT_SWAP, incr);
  203         PROC_UNLOCK(curproc);
  204         if (error != 0)
  205                 return (0);
  206 #endif
  207 
  208         res = 0;
  209         mtx_lock(&sw_dev_mtx);
  210         r = swap_reserved + incr;
  211         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
  212                 s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count;
  213                 s *= PAGE_SIZE;
  214         } else
  215                 s = 0;
  216         s += swap_total;
  217         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
  218             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
  219                 res = 1;
  220                 swap_reserved = r;
  221         }
  222         mtx_unlock(&sw_dev_mtx);
  223 
  224         if (res) {
  225                 PROC_LOCK(curproc);
  226                 UIDINFO_VMSIZE_LOCK(uip);
  227                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
  228                     uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) &&
  229                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
  230                         res = 0;
  231                 else
  232                         uip->ui_vmsize += incr;
  233                 UIDINFO_VMSIZE_UNLOCK(uip);
  234                 PROC_UNLOCK(curproc);
  235                 if (!res) {
  236                         mtx_lock(&sw_dev_mtx);
  237                         swap_reserved -= incr;
  238                         mtx_unlock(&sw_dev_mtx);
  239                 }
  240         }
  241         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
  242                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
  243                     uip->ui_uid, curproc->p_pid, incr);
  244         }
  245 
  246 #ifdef RACCT
  247         if (!res) {
  248                 PROC_LOCK(curproc);
  249                 racct_sub(curproc, RACCT_SWAP, incr);
  250                 PROC_UNLOCK(curproc);
  251         }
  252 #endif
  253 
  254         return (res);
  255 }
  256 
  257 void
  258 swap_reserve_force(vm_ooffset_t incr)
  259 {
  260         struct uidinfo *uip;
  261 
  262         mtx_lock(&sw_dev_mtx);
  263         swap_reserved += incr;
  264         mtx_unlock(&sw_dev_mtx);
  265 
  266 #ifdef RACCT
  267         PROC_LOCK(curproc);
  268         racct_add_force(curproc, RACCT_SWAP, incr);
  269         PROC_UNLOCK(curproc);
  270 #endif
  271 
  272         uip = curthread->td_ucred->cr_ruidinfo;
  273         PROC_LOCK(curproc);
  274         UIDINFO_VMSIZE_LOCK(uip);
  275         uip->ui_vmsize += incr;
  276         UIDINFO_VMSIZE_UNLOCK(uip);
  277         PROC_UNLOCK(curproc);
  278 }
  279 
  280 void
  281 swap_release(vm_ooffset_t decr)
  282 {
  283         struct ucred *cred;
  284 
  285         PROC_LOCK(curproc);
  286         cred = curthread->td_ucred;
  287         swap_release_by_cred(decr, cred);
  288         PROC_UNLOCK(curproc);
  289 }
  290 
  291 void
  292 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
  293 {
  294         struct uidinfo *uip;
  295 
  296         uip = cred->cr_ruidinfo;
  297 
  298         if (decr & PAGE_MASK)
  299                 panic("swap_release: & PAGE_MASK");
  300 
  301         mtx_lock(&sw_dev_mtx);
  302         if (swap_reserved < decr)
  303                 panic("swap_reserved < decr");
  304         swap_reserved -= decr;
  305         mtx_unlock(&sw_dev_mtx);
  306 
  307         UIDINFO_VMSIZE_LOCK(uip);
  308         if (uip->ui_vmsize < decr)
  309                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
  310         uip->ui_vmsize -= decr;
  311         UIDINFO_VMSIZE_UNLOCK(uip);
  312 
  313         racct_sub_cred(cred, RACCT_SWAP, decr);
  314 }
  315 
  316 static void swapdev_strategy(struct buf *, struct swdevt *sw);
  317 
  318 #define SWM_FREE        0x02    /* free, period                 */
  319 #define SWM_POP         0x04    /* pop out                      */
  320 
  321 int swap_pager_full = 2;        /* swap space exhaustion (task killing) */
  322 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
  323 static int nsw_rcount;          /* free read buffers                    */
  324 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
  325 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
  326 static int nsw_wcount_async_max;/* assigned maximum                     */
  327 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
  328 
  329 static struct swblock **swhash;
  330 static int swhash_mask;
  331 static struct mtx swhash_mtx;
  332 
  333 static int swap_async_max = 4;  /* maximum in-progress async I/O's      */
  334 static struct sx sw_alloc_sx;
  335 
  336 
  337 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
  338         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
  339 
  340 /*
  341  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
  342  * of searching a named list by hashing it just a little.
  343  */
  344 
  345 #define NOBJLISTS               8
  346 
  347 #define NOBJLIST(handle)        \
  348         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
  349 
  350 static struct mtx sw_alloc_mtx; /* protect list manipulation */
  351 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
  352 static uma_zone_t       swap_zone;
  353 
  354 /*
  355  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
  356  * calls hooked from other parts of the VM system and do not appear here.
  357  * (see vm/swap_pager.h).
  358  */
  359 static vm_object_t
  360                 swap_pager_alloc(void *handle, vm_ooffset_t size,
  361                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
  362 static void     swap_pager_dealloc(vm_object_t object);
  363 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
  364 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
  365 static boolean_t
  366                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
  367 static void     swap_pager_init(void);
  368 static void     swap_pager_unswapped(vm_page_t);
  369 static void     swap_pager_swapoff(struct swdevt *sp);
  370 
  371 struct pagerops swappagerops = {
  372         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
  373         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
  374         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
  375         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
  376         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
  377         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
  378         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
  379 };
  380 
  381 /*
  382  * dmmax is in page-sized chunks with the new swap system.  It was
  383  * dev-bsized chunks in the old.  dmmax is always a power of 2.
  384  *
  385  * swap_*() routines are externally accessible.  swp_*() routines are
  386  * internal.
  387  */
  388 static int dmmax;
  389 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
  390 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
  391 
  392 SYSCTL_INT(_vm, OID_AUTO, dmmax,
  393         CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
  394 
  395 static void     swp_sizecheck(void);
  396 static void     swp_pager_async_iodone(struct buf *bp);
  397 static int      swapongeom(struct thread *, struct vnode *);
  398 static int      swaponvp(struct thread *, struct vnode *, u_long);
  399 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
  400 
  401 /*
  402  * Swap bitmap functions
  403  */
  404 static void     swp_pager_freeswapspace(daddr_t blk, int npages);
  405 static daddr_t  swp_pager_getswapspace(int npages);
  406 
  407 /*
  408  * Metadata functions
  409  */
  410 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
  411 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
  412 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
  413 static void swp_pager_meta_free_all(vm_object_t);
  414 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
  415 
  416 static void
  417 swp_pager_free_nrpage(vm_page_t m)
  418 {
  419 
  420         vm_page_lock(m);
  421         if (m->wire_count == 0)
  422                 vm_page_free(m);
  423         vm_page_unlock(m);
  424 }
  425 
  426 /*
  427  * SWP_SIZECHECK() -    update swap_pager_full indication
  428  *
  429  *      update the swap_pager_almost_full indication and warn when we are
  430  *      about to run out of swap space, using lowat/hiwat hysteresis.
  431  *
  432  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
  433  *
  434  *      No restrictions on call
  435  *      This routine may not block.
  436  */
  437 static void
  438 swp_sizecheck(void)
  439 {
  440 
  441         if (swap_pager_avail < nswap_lowat) {
  442                 if (swap_pager_almost_full == 0) {
  443                         printf("swap_pager: out of swap space\n");
  444                         swap_pager_almost_full = 1;
  445                 }
  446         } else {
  447                 swap_pager_full = 0;
  448                 if (swap_pager_avail > nswap_hiwat)
  449                         swap_pager_almost_full = 0;
  450         }
  451 }
  452 
  453 /*
  454  * SWP_PAGER_HASH() -   hash swap meta data
  455  *
  456  *      This is an helper function which hashes the swapblk given
  457  *      the object and page index.  It returns a pointer to a pointer
  458  *      to the object, or a pointer to a NULL pointer if it could not
  459  *      find a swapblk.
  460  */
  461 static struct swblock **
  462 swp_pager_hash(vm_object_t object, vm_pindex_t index)
  463 {
  464         struct swblock **pswap;
  465         struct swblock *swap;
  466 
  467         index &= ~(vm_pindex_t)SWAP_META_MASK;
  468         pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
  469         while ((swap = *pswap) != NULL) {
  470                 if (swap->swb_object == object &&
  471                     swap->swb_index == index
  472                 ) {
  473                         break;
  474                 }
  475                 pswap = &swap->swb_hnext;
  476         }
  477         return (pswap);
  478 }
  479 
  480 /*
  481  * SWAP_PAGER_INIT() -  initialize the swap pager!
  482  *
  483  *      Expected to be started from system init.  NOTE:  This code is run
  484  *      before much else so be careful what you depend on.  Most of the VM
  485  *      system has yet to be initialized at this point.
  486  */
  487 static void
  488 swap_pager_init(void)
  489 {
  490         /*
  491          * Initialize object lists
  492          */
  493         int i;
  494 
  495         for (i = 0; i < NOBJLISTS; ++i)
  496                 TAILQ_INIT(&swap_pager_object_list[i]);
  497         mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
  498         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
  499 
  500         /*
  501          * Device Stripe, in PAGE_SIZE'd blocks
  502          */
  503         dmmax = SWB_NPAGES * 2;
  504 }
  505 
  506 /*
  507  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
  508  *
  509  *      Expected to be started from pageout process once, prior to entering
  510  *      its main loop.
  511  */
  512 void
  513 swap_pager_swap_init(void)
  514 {
  515         unsigned long n, n2;
  516 
  517         /*
  518          * Number of in-transit swap bp operations.  Don't
  519          * exhaust the pbufs completely.  Make sure we
  520          * initialize workable values (0 will work for hysteresis
  521          * but it isn't very efficient).
  522          *
  523          * The nsw_cluster_max is constrained by the bp->b_pages[]
  524          * array (MAXPHYS/PAGE_SIZE) and our locally defined
  525          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
  526          * constrained by the swap device interleave stripe size.
  527          *
  528          * Currently we hardwire nsw_wcount_async to 4.  This limit is
  529          * designed to prevent other I/O from having high latencies due to
  530          * our pageout I/O.  The value 4 works well for one or two active swap
  531          * devices but is probably a little low if you have more.  Even so,
  532          * a higher value would probably generate only a limited improvement
  533          * with three or four active swap devices since the system does not
  534          * typically have to pageout at extreme bandwidths.   We will want
  535          * at least 2 per swap devices, and 4 is a pretty good value if you
  536          * have one NFS swap device due to the command/ack latency over NFS.
  537          * So it all works out pretty well.
  538          */
  539         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
  540 
  541         mtx_lock(&pbuf_mtx);
  542         nsw_rcount = (nswbuf + 1) / 2;
  543         nsw_wcount_sync = (nswbuf + 3) / 4;
  544         nsw_wcount_async = 4;
  545         nsw_wcount_async_max = nsw_wcount_async;
  546         mtx_unlock(&pbuf_mtx);
  547 
  548         /*
  549          * Initialize our zone.  Right now I'm just guessing on the number
  550          * we need based on the number of pages in the system.  Each swblock
  551          * can hold 32 pages, so this is probably overkill.  This reservation
  552          * is typically limited to around 32MB by default.
  553          */
  554         n = cnt.v_page_count / 2;
  555         if (maxswzone && n > maxswzone / sizeof(struct swblock))
  556                 n = maxswzone / sizeof(struct swblock);
  557         n2 = n;
  558         swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
  559             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
  560         if (swap_zone == NULL)
  561                 panic("failed to create swap_zone.");
  562         do {
  563                 if (uma_zone_reserve_kva(swap_zone, n))
  564                         break;
  565                 /*
  566                  * if the allocation failed, try a zone two thirds the
  567                  * size of the previous attempt.
  568                  */
  569                 n -= ((n + 2) / 3);
  570         } while (n > 0);
  571         if (n2 != n)
  572                 printf("Swap zone entries reduced from %lu to %lu.\n", n2, n);
  573         swap_maxpages = n * SWAP_META_PAGES;
  574         swzone = n * sizeof(struct swblock);
  575         n2 = n;
  576 
  577         /*
  578          * Initialize our meta-data hash table.  The swapper does not need to
  579          * be quite as efficient as the VM system, so we do not use an
  580          * oversized hash table.
  581          *
  582          *      n:              size of hash table, must be power of 2
  583          *      swhash_mask:    hash table index mask
  584          */
  585         for (n = 1; n < n2 / 8; n *= 2)
  586                 ;
  587         swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
  588         swhash_mask = n - 1;
  589         mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
  590 }
  591 
  592 /*
  593  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
  594  *                      its metadata structures.
  595  *
  596  *      This routine is called from the mmap and fork code to create a new
  597  *      OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
  598  *      and then converting it with swp_pager_meta_build().
  599  *
  600  *      This routine may block in vm_object_allocate() and create a named
  601  *      object lookup race, so we must interlock.
  602  *
  603  * MPSAFE
  604  */
  605 static vm_object_t
  606 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
  607     vm_ooffset_t offset, struct ucred *cred)
  608 {
  609         vm_object_t object;
  610         vm_pindex_t pindex;
  611 
  612         pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
  613         if (handle) {
  614                 mtx_lock(&Giant);
  615                 /*
  616                  * Reference existing named region or allocate new one.  There
  617                  * should not be a race here against swp_pager_meta_build()
  618                  * as called from vm_page_remove() in regards to the lookup
  619                  * of the handle.
  620                  */
  621                 sx_xlock(&sw_alloc_sx);
  622                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
  623                 if (object == NULL) {
  624                         if (cred != NULL) {
  625                                 if (!swap_reserve_by_cred(size, cred)) {
  626                                         sx_xunlock(&sw_alloc_sx);
  627                                         mtx_unlock(&Giant);
  628                                         return (NULL);
  629                                 }
  630                                 crhold(cred);
  631                         }
  632                         object = vm_object_allocate(OBJT_DEFAULT, pindex);
  633                         VM_OBJECT_WLOCK(object);
  634                         object->handle = handle;
  635                         if (cred != NULL) {
  636                                 object->cred = cred;
  637                                 object->charge = size;
  638                         }
  639                         swp_pager_meta_build(object, 0, SWAPBLK_NONE);
  640                         VM_OBJECT_WUNLOCK(object);
  641                 }
  642                 sx_xunlock(&sw_alloc_sx);
  643                 mtx_unlock(&Giant);
  644         } else {
  645                 if (cred != NULL) {
  646                         if (!swap_reserve_by_cred(size, cred))
  647                                 return (NULL);
  648                         crhold(cred);
  649                 }
  650                 object = vm_object_allocate(OBJT_DEFAULT, pindex);
  651                 VM_OBJECT_WLOCK(object);
  652                 if (cred != NULL) {
  653                         object->cred = cred;
  654                         object->charge = size;
  655                 }
  656                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
  657                 VM_OBJECT_WUNLOCK(object);
  658         }
  659         return (object);
  660 }
  661 
  662 /*
  663  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
  664  *
  665  *      The swap backing for the object is destroyed.  The code is
  666  *      designed such that we can reinstantiate it later, but this
  667  *      routine is typically called only when the entire object is
  668  *      about to be destroyed.
  669  *
  670  *      The object must be locked.
  671  */
  672 static void
  673 swap_pager_dealloc(vm_object_t object)
  674 {
  675 
  676         /*
  677          * Remove from list right away so lookups will fail if we block for
  678          * pageout completion.
  679          */
  680         if (object->handle != NULL) {
  681                 mtx_lock(&sw_alloc_mtx);
  682                 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
  683                 mtx_unlock(&sw_alloc_mtx);
  684         }
  685 
  686         VM_OBJECT_ASSERT_WLOCKED(object);
  687         vm_object_pip_wait(object, "swpdea");
  688 
  689         /*
  690          * Free all remaining metadata.  We only bother to free it from
  691          * the swap meta data.  We do not attempt to free swapblk's still
  692          * associated with vm_page_t's for this object.  We do not care
  693          * if paging is still in progress on some objects.
  694          */
  695         swp_pager_meta_free_all(object);
  696 }
  697 
  698 /************************************************************************
  699  *                      SWAP PAGER BITMAP ROUTINES                      *
  700  ************************************************************************/
  701 
  702 /*
  703  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
  704  *
  705  *      Allocate swap for the requested number of pages.  The starting
  706  *      swap block number (a page index) is returned or SWAPBLK_NONE
  707  *      if the allocation failed.
  708  *
  709  *      Also has the side effect of advising that somebody made a mistake
  710  *      when they configured swap and didn't configure enough.
  711  *
  712  *      This routine may not sleep.
  713  *
  714  *      We allocate in round-robin fashion from the configured devices.
  715  */
  716 static daddr_t
  717 swp_pager_getswapspace(int npages)
  718 {
  719         daddr_t blk;
  720         struct swdevt *sp;
  721         int i;
  722 
  723         blk = SWAPBLK_NONE;
  724         mtx_lock(&sw_dev_mtx);
  725         sp = swdevhd;
  726         for (i = 0; i < nswapdev; i++) {
  727                 if (sp == NULL)
  728                         sp = TAILQ_FIRST(&swtailq);
  729                 if (!(sp->sw_flags & SW_CLOSING)) {
  730                         blk = blist_alloc(sp->sw_blist, npages);
  731                         if (blk != SWAPBLK_NONE) {
  732                                 blk += sp->sw_first;
  733                                 sp->sw_used += npages;
  734                                 swap_pager_avail -= npages;
  735                                 swp_sizecheck();
  736                                 swdevhd = TAILQ_NEXT(sp, sw_list);
  737                                 goto done;
  738                         }
  739                 }
  740                 sp = TAILQ_NEXT(sp, sw_list);
  741         }
  742         if (swap_pager_full != 2) {
  743                 printf("swap_pager_getswapspace(%d): failed\n", npages);
  744                 swap_pager_full = 2;
  745                 swap_pager_almost_full = 1;
  746         }
  747         swdevhd = NULL;
  748 done:
  749         mtx_unlock(&sw_dev_mtx);
  750         return (blk);
  751 }
  752 
  753 static int
  754 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
  755 {
  756 
  757         return (blk >= sp->sw_first && blk < sp->sw_end);
  758 }
  759 
  760 static void
  761 swp_pager_strategy(struct buf *bp)
  762 {
  763         struct swdevt *sp;
  764 
  765         mtx_lock(&sw_dev_mtx);
  766         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  767                 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
  768                         mtx_unlock(&sw_dev_mtx);
  769                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
  770                             unmapped_buf_allowed) {
  771                                 bp->b_kvaalloc = bp->b_data;
  772                                 bp->b_data = unmapped_buf;
  773                                 bp->b_kvabase = unmapped_buf;
  774                                 bp->b_offset = 0;
  775                                 bp->b_flags |= B_UNMAPPED;
  776                         } else {
  777                                 pmap_qenter((vm_offset_t)bp->b_data,
  778                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
  779                         }
  780                         sp->sw_strategy(bp, sp);
  781                         return;
  782                 }
  783         }
  784         panic("Swapdev not found");
  785 }
  786 
  787 
  788 /*
  789  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
  790  *
  791  *      This routine returns the specified swap blocks back to the bitmap.
  792  *
  793  *      This routine may not sleep.
  794  */
  795 static void
  796 swp_pager_freeswapspace(daddr_t blk, int npages)
  797 {
  798         struct swdevt *sp;
  799 
  800         mtx_lock(&sw_dev_mtx);
  801         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  802                 if (blk >= sp->sw_first && blk < sp->sw_end) {
  803                         sp->sw_used -= npages;
  804                         /*
  805                          * If we are attempting to stop swapping on
  806                          * this device, we don't want to mark any
  807                          * blocks free lest they be reused.
  808                          */
  809                         if ((sp->sw_flags & SW_CLOSING) == 0) {
  810                                 blist_free(sp->sw_blist, blk - sp->sw_first,
  811                                     npages);
  812                                 swap_pager_avail += npages;
  813                                 swp_sizecheck();
  814                         }
  815                         mtx_unlock(&sw_dev_mtx);
  816                         return;
  817                 }
  818         }
  819         panic("Swapdev not found");
  820 }
  821 
  822 /*
  823  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
  824  *                              range within an object.
  825  *
  826  *      This is a globally accessible routine.
  827  *
  828  *      This routine removes swapblk assignments from swap metadata.
  829  *
  830  *      The external callers of this routine typically have already destroyed
  831  *      or renamed vm_page_t's associated with this range in the object so
  832  *      we should be ok.
  833  *
  834  *      The object must be locked.
  835  */
  836 void
  837 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
  838 {
  839 
  840         swp_pager_meta_free(object, start, size);
  841 }
  842 
  843 /*
  844  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
  845  *
  846  *      Assigns swap blocks to the specified range within the object.  The
  847  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
  848  *
  849  *      Returns 0 on success, -1 on failure.
  850  */
  851 int
  852 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
  853 {
  854         int n = 0;
  855         daddr_t blk = SWAPBLK_NONE;
  856         vm_pindex_t beg = start;        /* save start index */
  857 
  858         VM_OBJECT_WLOCK(object);
  859         while (size) {
  860                 if (n == 0) {
  861                         n = BLIST_MAX_ALLOC;
  862                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
  863                                 n >>= 1;
  864                                 if (n == 0) {
  865                                         swp_pager_meta_free(object, beg, start - beg);
  866                                         VM_OBJECT_WUNLOCK(object);
  867                                         return (-1);
  868                                 }
  869                         }
  870                 }
  871                 swp_pager_meta_build(object, start, blk);
  872                 --size;
  873                 ++start;
  874                 ++blk;
  875                 --n;
  876         }
  877         swp_pager_meta_free(object, start, n);
  878         VM_OBJECT_WUNLOCK(object);
  879         return (0);
  880 }
  881 
  882 /*
  883  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
  884  *                      and destroy the source.
  885  *
  886  *      Copy any valid swapblks from the source to the destination.  In
  887  *      cases where both the source and destination have a valid swapblk,
  888  *      we keep the destination's.
  889  *
  890  *      This routine is allowed to sleep.  It may sleep allocating metadata
  891  *      indirectly through swp_pager_meta_build() or if paging is still in
  892  *      progress on the source.
  893  *
  894  *      The source object contains no vm_page_t's (which is just as well)
  895  *
  896  *      The source object is of type OBJT_SWAP.
  897  *
  898  *      The source and destination objects must be locked.
  899  *      Both object locks may temporarily be released.
  900  */
  901 void
  902 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
  903     vm_pindex_t offset, int destroysource)
  904 {
  905         vm_pindex_t i;
  906 
  907         VM_OBJECT_ASSERT_WLOCKED(srcobject);
  908         VM_OBJECT_ASSERT_WLOCKED(dstobject);
  909 
  910         /*
  911          * If destroysource is set, we remove the source object from the
  912          * swap_pager internal queue now.
  913          */
  914         if (destroysource) {
  915                 if (srcobject->handle != NULL) {
  916                         mtx_lock(&sw_alloc_mtx);
  917                         TAILQ_REMOVE(
  918                             NOBJLIST(srcobject->handle),
  919                             srcobject,
  920                             pager_object_list
  921                         );
  922                         mtx_unlock(&sw_alloc_mtx);
  923                 }
  924         }
  925 
  926         /*
  927          * transfer source to destination.
  928          */
  929         for (i = 0; i < dstobject->size; ++i) {
  930                 daddr_t dstaddr;
  931 
  932                 /*
  933                  * Locate (without changing) the swapblk on the destination,
  934                  * unless it is invalid in which case free it silently, or
  935                  * if the destination is a resident page, in which case the
  936                  * source is thrown away.
  937                  */
  938                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
  939 
  940                 if (dstaddr == SWAPBLK_NONE) {
  941                         /*
  942                          * Destination has no swapblk and is not resident,
  943                          * copy source.
  944                          */
  945                         daddr_t srcaddr;
  946 
  947                         srcaddr = swp_pager_meta_ctl(
  948                             srcobject,
  949                             i + offset,
  950                             SWM_POP
  951                         );
  952 
  953                         if (srcaddr != SWAPBLK_NONE) {
  954                                 /*
  955                                  * swp_pager_meta_build() can sleep.
  956                                  */
  957                                 vm_object_pip_add(srcobject, 1);
  958                                 VM_OBJECT_WUNLOCK(srcobject);
  959                                 vm_object_pip_add(dstobject, 1);
  960                                 swp_pager_meta_build(dstobject, i, srcaddr);
  961                                 vm_object_pip_wakeup(dstobject);
  962                                 VM_OBJECT_WLOCK(srcobject);
  963                                 vm_object_pip_wakeup(srcobject);
  964                         }
  965                 } else {
  966                         /*
  967                          * Destination has valid swapblk or it is represented
  968                          * by a resident page.  We destroy the sourceblock.
  969                          */
  970 
  971                         swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
  972                 }
  973         }
  974 
  975         /*
  976          * Free left over swap blocks in source.
  977          *
  978          * We have to revert the type to OBJT_DEFAULT so we do not accidently
  979          * double-remove the object from the swap queues.
  980          */
  981         if (destroysource) {
  982                 swp_pager_meta_free_all(srcobject);
  983                 /*
  984                  * Reverting the type is not necessary, the caller is going
  985                  * to destroy srcobject directly, but I'm doing it here
  986                  * for consistency since we've removed the object from its
  987                  * queues.
  988                  */
  989                 srcobject->type = OBJT_DEFAULT;
  990         }
  991 }
  992 
  993 /*
  994  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
  995  *                              the requested page.
  996  *
  997  *      We determine whether good backing store exists for the requested
  998  *      page and return TRUE if it does, FALSE if it doesn't.
  999  *
 1000  *      If TRUE, we also try to determine how much valid, contiguous backing
 1001  *      store exists before and after the requested page within a reasonable
 1002  *      distance.  We do not try to restrict it to the swap device stripe
 1003  *      (that is handled in getpages/putpages).  It probably isn't worth
 1004  *      doing here.
 1005  */
 1006 static boolean_t
 1007 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
 1008 {
 1009         daddr_t blk0;
 1010 
 1011         VM_OBJECT_ASSERT_LOCKED(object);
 1012         /*
 1013          * do we have good backing store at the requested index ?
 1014          */
 1015         blk0 = swp_pager_meta_ctl(object, pindex, 0);
 1016 
 1017         if (blk0 == SWAPBLK_NONE) {
 1018                 if (before)
 1019                         *before = 0;
 1020                 if (after)
 1021                         *after = 0;
 1022                 return (FALSE);
 1023         }
 1024 
 1025         /*
 1026          * find backwards-looking contiguous good backing store
 1027          */
 1028         if (before != NULL) {
 1029                 int i;
 1030 
 1031                 for (i = 1; i < (SWB_NPAGES/2); ++i) {
 1032                         daddr_t blk;
 1033 
 1034                         if (i > pindex)
 1035                                 break;
 1036                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
 1037                         if (blk != blk0 - i)
 1038                                 break;
 1039                 }
 1040                 *before = (i - 1);
 1041         }
 1042 
 1043         /*
 1044          * find forward-looking contiguous good backing store
 1045          */
 1046         if (after != NULL) {
 1047                 int i;
 1048 
 1049                 for (i = 1; i < (SWB_NPAGES/2); ++i) {
 1050                         daddr_t blk;
 1051 
 1052                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
 1053                         if (blk != blk0 + i)
 1054                                 break;
 1055                 }
 1056                 *after = (i - 1);
 1057         }
 1058         return (TRUE);
 1059 }
 1060 
 1061 /*
 1062  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
 1063  *
 1064  *      This removes any associated swap backing store, whether valid or
 1065  *      not, from the page.
 1066  *
 1067  *      This routine is typically called when a page is made dirty, at
 1068  *      which point any associated swap can be freed.  MADV_FREE also
 1069  *      calls us in a special-case situation
 1070  *
 1071  *      NOTE!!!  If the page is clean and the swap was valid, the caller
 1072  *      should make the page dirty before calling this routine.  This routine
 1073  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
 1074  *      depends on it.
 1075  *
 1076  *      This routine may not sleep.
 1077  *
 1078  *      The object containing the page must be locked.
 1079  */
 1080 static void
 1081 swap_pager_unswapped(vm_page_t m)
 1082 {
 1083 
 1084         swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
 1085 }
 1086 
 1087 /*
 1088  * SWAP_PAGER_GETPAGES() - bring pages in from swap
 1089  *
 1090  *      Attempt to retrieve (m, count) pages from backing store, but make
 1091  *      sure we retrieve at least m[reqpage].  We try to load in as large
 1092  *      a chunk surrounding m[reqpage] as is contiguous in swap and which
 1093  *      belongs to the same object.
 1094  *
 1095  *      The code is designed for asynchronous operation and
 1096  *      immediate-notification of 'reqpage' but tends not to be
 1097  *      used that way.  Please do not optimize-out this algorithmic
 1098  *      feature, I intend to improve on it in the future.
 1099  *
 1100  *      The parent has a single vm_object_pip_add() reference prior to
 1101  *      calling us and we should return with the same.
 1102  *
 1103  *      The parent has BUSY'd the pages.  We should return with 'm'
 1104  *      left busy, but the others adjusted.
 1105  */
 1106 static int
 1107 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
 1108 {
 1109         struct buf *bp;
 1110         vm_page_t mreq;
 1111         int i;
 1112         int j;
 1113         daddr_t blk;
 1114 
 1115         mreq = m[reqpage];
 1116 
 1117         KASSERT(mreq->object == object,
 1118             ("swap_pager_getpages: object mismatch %p/%p",
 1119             object, mreq->object));
 1120 
 1121         /*
 1122          * Calculate range to retrieve.  The pages have already been assigned
 1123          * their swapblks.  We require a *contiguous* range but we know it to
 1124          * not span devices.   If we do not supply it, bad things
 1125          * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
 1126          * loops are set up such that the case(s) are handled implicitly.
 1127          *
 1128          * The swp_*() calls must be made with the object locked.
 1129          */
 1130         blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
 1131 
 1132         for (i = reqpage - 1; i >= 0; --i) {
 1133                 daddr_t iblk;
 1134 
 1135                 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
 1136                 if (blk != iblk + (reqpage - i))
 1137                         break;
 1138         }
 1139         ++i;
 1140 
 1141         for (j = reqpage + 1; j < count; ++j) {
 1142                 daddr_t jblk;
 1143 
 1144                 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
 1145                 if (blk != jblk - (j - reqpage))
 1146                         break;
 1147         }
 1148 
 1149         /*
 1150          * free pages outside our collection range.   Note: we never free
 1151          * mreq, it must remain busy throughout.
 1152          */
 1153         if (0 < i || j < count) {
 1154                 int k;
 1155 
 1156                 for (k = 0; k < i; ++k)
 1157                         swp_pager_free_nrpage(m[k]);
 1158                 for (k = j; k < count; ++k)
 1159                         swp_pager_free_nrpage(m[k]);
 1160         }
 1161 
 1162         /*
 1163          * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
 1164          * still busy, but the others unbusied.
 1165          */
 1166         if (blk == SWAPBLK_NONE)
 1167                 return (VM_PAGER_FAIL);
 1168 
 1169         /*
 1170          * Getpbuf() can sleep.
 1171          */
 1172         VM_OBJECT_WUNLOCK(object);
 1173         /*
 1174          * Get a swap buffer header to perform the IO
 1175          */
 1176         bp = getpbuf(&nsw_rcount);
 1177         bp->b_flags |= B_PAGING;
 1178 
 1179         bp->b_iocmd = BIO_READ;
 1180         bp->b_iodone = swp_pager_async_iodone;
 1181         bp->b_rcred = crhold(thread0.td_ucred);
 1182         bp->b_wcred = crhold(thread0.td_ucred);
 1183         bp->b_blkno = blk - (reqpage - i);
 1184         bp->b_bcount = PAGE_SIZE * (j - i);
 1185         bp->b_bufsize = PAGE_SIZE * (j - i);
 1186         bp->b_pager.pg_reqpage = reqpage - i;
 1187 
 1188         VM_OBJECT_WLOCK(object);
 1189         {
 1190                 int k;
 1191 
 1192                 for (k = i; k < j; ++k) {
 1193                         bp->b_pages[k - i] = m[k];
 1194                         m[k]->oflags |= VPO_SWAPINPROG;
 1195                 }
 1196         }
 1197         bp->b_npages = j - i;
 1198 
 1199         PCPU_INC(cnt.v_swapin);
 1200         PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
 1201 
 1202         /*
 1203          * We still hold the lock on mreq, and our automatic completion routine
 1204          * does not remove it.
 1205          */
 1206         vm_object_pip_add(object, bp->b_npages);
 1207         VM_OBJECT_WUNLOCK(object);
 1208 
 1209         /*
 1210          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
 1211          * this point because we automatically release it on completion.
 1212          * Instead, we look at the one page we are interested in which we
 1213          * still hold a lock on even through the I/O completion.
 1214          *
 1215          * The other pages in our m[] array are also released on completion,
 1216          * so we cannot assume they are valid anymore either.
 1217          *
 1218          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1219          */
 1220         BUF_KERNPROC(bp);
 1221         swp_pager_strategy(bp);
 1222 
 1223         /*
 1224          * wait for the page we want to complete.  VPO_SWAPINPROG is always
 1225          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
 1226          * is set in the meta-data.
 1227          */
 1228         VM_OBJECT_WLOCK(object);
 1229         while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
 1230                 mreq->oflags |= VPO_SWAPSLEEP;
 1231                 PCPU_INC(cnt.v_intrans);
 1232                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
 1233                     "swread", hz * 20)) {
 1234                         printf(
 1235 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
 1236                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
 1237                 }
 1238         }
 1239 
 1240         /*
 1241          * mreq is left busied after completion, but all the other pages
 1242          * are freed.  If we had an unrecoverable read error the page will
 1243          * not be valid.
 1244          */
 1245         if (mreq->valid != VM_PAGE_BITS_ALL) {
 1246                 return (VM_PAGER_ERROR);
 1247         } else {
 1248                 return (VM_PAGER_OK);
 1249         }
 1250 
 1251         /*
 1252          * A final note: in a low swap situation, we cannot deallocate swap
 1253          * and mark a page dirty here because the caller is likely to mark
 1254          * the page clean when we return, causing the page to possibly revert
 1255          * to all-zero's later.
 1256          */
 1257 }
 1258 
 1259 /*
 1260  *      swap_pager_putpages:
 1261  *
 1262  *      Assign swap (if necessary) and initiate I/O on the specified pages.
 1263  *
 1264  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
 1265  *      are automatically converted to SWAP objects.
 1266  *
 1267  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
 1268  *      vm_page reservation system coupled with properly written VFS devices
 1269  *      should ensure that no low-memory deadlock occurs.  This is an area
 1270  *      which needs work.
 1271  *
 1272  *      The parent has N vm_object_pip_add() references prior to
 1273  *      calling us and will remove references for rtvals[] that are
 1274  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
 1275  *      completion.
 1276  *
 1277  *      The parent has soft-busy'd the pages it passes us and will unbusy
 1278  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
 1279  *      We need to unbusy the rest on I/O completion.
 1280  */
 1281 void
 1282 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
 1283     boolean_t sync, int *rtvals)
 1284 {
 1285         int i;
 1286         int n = 0;
 1287 
 1288         if (count && m[0]->object != object) {
 1289                 panic("swap_pager_putpages: object mismatch %p/%p",
 1290                     object,
 1291                     m[0]->object
 1292                 );
 1293         }
 1294 
 1295         /*
 1296          * Step 1
 1297          *
 1298          * Turn object into OBJT_SWAP
 1299          * check for bogus sysops
 1300          * force sync if not pageout process
 1301          */
 1302         if (object->type != OBJT_SWAP)
 1303                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
 1304         VM_OBJECT_WUNLOCK(object);
 1305 
 1306         if (curproc != pageproc)
 1307                 sync = TRUE;
 1308 
 1309         /*
 1310          * Step 2
 1311          *
 1312          * Update nsw parameters from swap_async_max sysctl values.
 1313          * Do not let the sysop crash the machine with bogus numbers.
 1314          */
 1315         mtx_lock(&pbuf_mtx);
 1316         if (swap_async_max != nsw_wcount_async_max) {
 1317                 int n;
 1318 
 1319                 /*
 1320                  * limit range
 1321                  */
 1322                 if ((n = swap_async_max) > nswbuf / 2)
 1323                         n = nswbuf / 2;
 1324                 if (n < 1)
 1325                         n = 1;
 1326                 swap_async_max = n;
 1327 
 1328                 /*
 1329                  * Adjust difference ( if possible ).  If the current async
 1330                  * count is too low, we may not be able to make the adjustment
 1331                  * at this time.
 1332                  */
 1333                 n -= nsw_wcount_async_max;
 1334                 if (nsw_wcount_async + n >= 0) {
 1335                         nsw_wcount_async += n;
 1336                         nsw_wcount_async_max += n;
 1337                         wakeup(&nsw_wcount_async);
 1338                 }
 1339         }
 1340         mtx_unlock(&pbuf_mtx);
 1341 
 1342         /*
 1343          * Step 3
 1344          *
 1345          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
 1346          * The page is left dirty until the pageout operation completes
 1347          * successfully.
 1348          */
 1349         for (i = 0; i < count; i += n) {
 1350                 int j;
 1351                 struct buf *bp;
 1352                 daddr_t blk;
 1353 
 1354                 /*
 1355                  * Maximum I/O size is limited by a number of factors.
 1356                  */
 1357                 n = min(BLIST_MAX_ALLOC, count - i);
 1358                 n = min(n, nsw_cluster_max);
 1359 
 1360                 /*
 1361                  * Get biggest block of swap we can.  If we fail, fall
 1362                  * back and try to allocate a smaller block.  Don't go
 1363                  * overboard trying to allocate space if it would overly
 1364                  * fragment swap.
 1365                  */
 1366                 while (
 1367                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
 1368                     n > 4
 1369                 ) {
 1370                         n >>= 1;
 1371                 }
 1372                 if (blk == SWAPBLK_NONE) {
 1373                         for (j = 0; j < n; ++j)
 1374                                 rtvals[i+j] = VM_PAGER_FAIL;
 1375                         continue;
 1376                 }
 1377 
 1378                 /*
 1379                  * All I/O parameters have been satisfied, build the I/O
 1380                  * request and assign the swap space.
 1381                  */
 1382                 if (sync == TRUE) {
 1383                         bp = getpbuf(&nsw_wcount_sync);
 1384                 } else {
 1385                         bp = getpbuf(&nsw_wcount_async);
 1386                         bp->b_flags = B_ASYNC;
 1387                 }
 1388                 bp->b_flags |= B_PAGING;
 1389                 bp->b_iocmd = BIO_WRITE;
 1390 
 1391                 bp->b_rcred = crhold(thread0.td_ucred);
 1392                 bp->b_wcred = crhold(thread0.td_ucred);
 1393                 bp->b_bcount = PAGE_SIZE * n;
 1394                 bp->b_bufsize = PAGE_SIZE * n;
 1395                 bp->b_blkno = blk;
 1396 
 1397                 VM_OBJECT_WLOCK(object);
 1398                 for (j = 0; j < n; ++j) {
 1399                         vm_page_t mreq = m[i+j];
 1400 
 1401                         swp_pager_meta_build(
 1402                             mreq->object,
 1403                             mreq->pindex,
 1404                             blk + j
 1405                         );
 1406                         vm_page_dirty(mreq);
 1407                         rtvals[i+j] = VM_PAGER_OK;
 1408 
 1409                         mreq->oflags |= VPO_SWAPINPROG;
 1410                         bp->b_pages[j] = mreq;
 1411                 }
 1412                 VM_OBJECT_WUNLOCK(object);
 1413                 bp->b_npages = n;
 1414                 /*
 1415                  * Must set dirty range for NFS to work.
 1416                  */
 1417                 bp->b_dirtyoff = 0;
 1418                 bp->b_dirtyend = bp->b_bcount;
 1419 
 1420                 PCPU_INC(cnt.v_swapout);
 1421                 PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
 1422 
 1423                 /*
 1424                  * asynchronous
 1425                  *
 1426                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1427                  */
 1428                 if (sync == FALSE) {
 1429                         bp->b_iodone = swp_pager_async_iodone;
 1430                         BUF_KERNPROC(bp);
 1431                         swp_pager_strategy(bp);
 1432 
 1433                         for (j = 0; j < n; ++j)
 1434                                 rtvals[i+j] = VM_PAGER_PEND;
 1435                         /* restart outter loop */
 1436                         continue;
 1437                 }
 1438 
 1439                 /*
 1440                  * synchronous
 1441                  *
 1442                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1443                  */
 1444                 bp->b_iodone = bdone;
 1445                 swp_pager_strategy(bp);
 1446 
 1447                 /*
 1448                  * Wait for the sync I/O to complete, then update rtvals.
 1449                  * We just set the rtvals[] to VM_PAGER_PEND so we can call
 1450                  * our async completion routine at the end, thus avoiding a
 1451                  * double-free.
 1452                  */
 1453                 bwait(bp, PVM, "swwrt");
 1454                 for (j = 0; j < n; ++j)
 1455                         rtvals[i+j] = VM_PAGER_PEND;
 1456                 /*
 1457                  * Now that we are through with the bp, we can call the
 1458                  * normal async completion, which frees everything up.
 1459                  */
 1460                 swp_pager_async_iodone(bp);
 1461         }
 1462         VM_OBJECT_WLOCK(object);
 1463 }
 1464 
 1465 /*
 1466  *      swp_pager_async_iodone:
 1467  *
 1468  *      Completion routine for asynchronous reads and writes from/to swap.
 1469  *      Also called manually by synchronous code to finish up a bp.
 1470  *
 1471  *      This routine may not sleep.
 1472  */
 1473 static void
 1474 swp_pager_async_iodone(struct buf *bp)
 1475 {
 1476         int i;
 1477         vm_object_t object = NULL;
 1478 
 1479         /*
 1480          * report error
 1481          */
 1482         if (bp->b_ioflags & BIO_ERROR) {
 1483                 printf(
 1484                     "swap_pager: I/O error - %s failed; blkno %ld,"
 1485                         "size %ld, error %d\n",
 1486                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
 1487                     (long)bp->b_blkno,
 1488                     (long)bp->b_bcount,
 1489                     bp->b_error
 1490                 );
 1491         }
 1492 
 1493         /*
 1494          * remove the mapping for kernel virtual
 1495          */
 1496         if ((bp->b_flags & B_UNMAPPED) != 0) {
 1497                 bp->b_data = bp->b_kvaalloc;
 1498                 bp->b_kvabase = bp->b_kvaalloc;
 1499                 bp->b_flags &= ~B_UNMAPPED;
 1500         } else
 1501                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
 1502 
 1503         if (bp->b_npages) {
 1504                 object = bp->b_pages[0]->object;
 1505                 VM_OBJECT_WLOCK(object);
 1506         }
 1507 
 1508         /*
 1509          * cleanup pages.  If an error occurs writing to swap, we are in
 1510          * very serious trouble.  If it happens to be a disk error, though,
 1511          * we may be able to recover by reassigning the swap later on.  So
 1512          * in this case we remove the m->swapblk assignment for the page
 1513          * but do not free it in the rlist.  The errornous block(s) are thus
 1514          * never reallocated as swap.  Redirty the page and continue.
 1515          */
 1516         for (i = 0; i < bp->b_npages; ++i) {
 1517                 vm_page_t m = bp->b_pages[i];
 1518 
 1519                 m->oflags &= ~VPO_SWAPINPROG;
 1520                 if (m->oflags & VPO_SWAPSLEEP) {
 1521                         m->oflags &= ~VPO_SWAPSLEEP;
 1522                         wakeup(&object->paging_in_progress);
 1523                 }
 1524 
 1525                 if (bp->b_ioflags & BIO_ERROR) {
 1526                         /*
 1527                          * If an error occurs I'd love to throw the swapblk
 1528                          * away without freeing it back to swapspace, so it
 1529                          * can never be used again.  But I can't from an
 1530                          * interrupt.
 1531                          */
 1532                         if (bp->b_iocmd == BIO_READ) {
 1533                                 /*
 1534                                  * When reading, reqpage needs to stay
 1535                                  * locked for the parent, but all other
 1536                                  * pages can be freed.  We still want to
 1537                                  * wakeup the parent waiting on the page,
 1538                                  * though.  ( also: pg_reqpage can be -1 and
 1539                                  * not match anything ).
 1540                                  *
 1541                                  * We have to wake specifically requested pages
 1542                                  * up too because we cleared VPO_SWAPINPROG and
 1543                                  * someone may be waiting for that.
 1544                                  *
 1545                                  * NOTE: for reads, m->dirty will probably
 1546                                  * be overridden by the original caller of
 1547                                  * getpages so don't play cute tricks here.
 1548                                  */
 1549                                 m->valid = 0;
 1550                                 if (i != bp->b_pager.pg_reqpage)
 1551                                         swp_pager_free_nrpage(m);
 1552                                 else {
 1553                                         vm_page_lock(m);
 1554                                         vm_page_flash(m);
 1555                                         vm_page_unlock(m);
 1556                                 }
 1557                                 /*
 1558                                  * If i == bp->b_pager.pg_reqpage, do not wake
 1559                                  * the page up.  The caller needs to.
 1560                                  */
 1561                         } else {
 1562                                 /*
 1563                                  * If a write error occurs, reactivate page
 1564                                  * so it doesn't clog the inactive list,
 1565                                  * then finish the I/O.
 1566                                  */
 1567                                 vm_page_dirty(m);
 1568                                 vm_page_lock(m);
 1569                                 vm_page_activate(m);
 1570                                 vm_page_unlock(m);
 1571                                 vm_page_sunbusy(m);
 1572                         }
 1573                 } else if (bp->b_iocmd == BIO_READ) {
 1574                         /*
 1575                          * NOTE: for reads, m->dirty will probably be
 1576                          * overridden by the original caller of getpages so
 1577                          * we cannot set them in order to free the underlying
 1578                          * swap in a low-swap situation.  I don't think we'd
 1579                          * want to do that anyway, but it was an optimization
 1580                          * that existed in the old swapper for a time before
 1581                          * it got ripped out due to precisely this problem.
 1582                          *
 1583                          * If not the requested page then deactivate it.
 1584                          *
 1585                          * Note that the requested page, reqpage, is left
 1586                          * busied, but we still have to wake it up.  The
 1587                          * other pages are released (unbusied) by
 1588                          * vm_page_xunbusy().
 1589                          */
 1590                         KASSERT(!pmap_page_is_mapped(m),
 1591                             ("swp_pager_async_iodone: page %p is mapped", m));
 1592                         m->valid = VM_PAGE_BITS_ALL;
 1593                         KASSERT(m->dirty == 0,
 1594                             ("swp_pager_async_iodone: page %p is dirty", m));
 1595 
 1596                         /*
 1597                          * We have to wake specifically requested pages
 1598                          * up too because we cleared VPO_SWAPINPROG and
 1599                          * could be waiting for it in getpages.  However,
 1600                          * be sure to not unbusy getpages specifically
 1601                          * requested page - getpages expects it to be
 1602                          * left busy.
 1603                          */
 1604                         if (i != bp->b_pager.pg_reqpage) {
 1605                                 vm_page_lock(m);
 1606                                 vm_page_deactivate(m);
 1607                                 vm_page_unlock(m);
 1608                                 vm_page_xunbusy(m);
 1609                         } else {
 1610                                 vm_page_lock(m);
 1611                                 vm_page_flash(m);
 1612                                 vm_page_unlock(m);
 1613                         }
 1614                 } else {
 1615                         /*
 1616                          * For write success, clear the dirty
 1617                          * status, then finish the I/O ( which decrements the
 1618                          * busy count and possibly wakes waiter's up ).
 1619                          */
 1620                         KASSERT(!pmap_page_is_write_mapped(m),
 1621                             ("swp_pager_async_iodone: page %p is not write"
 1622                             " protected", m));
 1623                         vm_page_undirty(m);
 1624                         vm_page_sunbusy(m);
 1625                         if (vm_page_count_severe()) {
 1626                                 vm_page_lock(m);
 1627                                 vm_page_try_to_cache(m);
 1628                                 vm_page_unlock(m);
 1629                         }
 1630                 }
 1631         }
 1632 
 1633         /*
 1634          * adjust pip.  NOTE: the original parent may still have its own
 1635          * pip refs on the object.
 1636          */
 1637         if (object != NULL) {
 1638                 vm_object_pip_wakeupn(object, bp->b_npages);
 1639                 VM_OBJECT_WUNLOCK(object);
 1640         }
 1641 
 1642         /*
 1643          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
 1644          * bstrategy(). Set them back to NULL now we're done with it, or we'll
 1645          * trigger a KASSERT in relpbuf().
 1646          */
 1647         if (bp->b_vp) {
 1648                     bp->b_vp = NULL;
 1649                     bp->b_bufobj = NULL;
 1650         }
 1651         /*
 1652          * release the physical I/O buffer
 1653          */
 1654         relpbuf(
 1655             bp,
 1656             ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
 1657                 ((bp->b_flags & B_ASYNC) ?
 1658                     &nsw_wcount_async :
 1659                     &nsw_wcount_sync
 1660                 )
 1661             )
 1662         );
 1663 }
 1664 
 1665 /*
 1666  *      swap_pager_isswapped:
 1667  *
 1668  *      Return 1 if at least one page in the given object is paged
 1669  *      out to the given swap device.
 1670  *
 1671  *      This routine may not sleep.
 1672  */
 1673 int
 1674 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
 1675 {
 1676         daddr_t index = 0;
 1677         int bcount;
 1678         int i;
 1679 
 1680         VM_OBJECT_ASSERT_WLOCKED(object);
 1681         if (object->type != OBJT_SWAP)
 1682                 return (0);
 1683 
 1684         mtx_lock(&swhash_mtx);
 1685         for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
 1686                 struct swblock *swap;
 1687 
 1688                 if ((swap = *swp_pager_hash(object, index)) != NULL) {
 1689                         for (i = 0; i < SWAP_META_PAGES; ++i) {
 1690                                 if (swp_pager_isondev(swap->swb_pages[i], sp)) {
 1691                                         mtx_unlock(&swhash_mtx);
 1692                                         return (1);
 1693                                 }
 1694                         }
 1695                 }
 1696                 index += SWAP_META_PAGES;
 1697         }
 1698         mtx_unlock(&swhash_mtx);
 1699         return (0);
 1700 }
 1701 
 1702 /*
 1703  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
 1704  *
 1705  *      This routine dissociates the page at the given index within a
 1706  *      swap block from its backing store, paging it in if necessary.
 1707  *      If the page is paged in, it is placed in the inactive queue,
 1708  *      since it had its backing store ripped out from under it.
 1709  *      We also attempt to swap in all other pages in the swap block,
 1710  *      we only guarantee that the one at the specified index is
 1711  *      paged in.
 1712  *
 1713  *      XXX - The code to page the whole block in doesn't work, so we
 1714  *            revert to the one-by-one behavior for now.  Sigh.
 1715  */
 1716 static inline void
 1717 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
 1718 {
 1719         vm_page_t m;
 1720 
 1721         vm_object_pip_add(object, 1);
 1722         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
 1723         if (m->valid == VM_PAGE_BITS_ALL) {
 1724                 vm_object_pip_subtract(object, 1);
 1725                 vm_page_dirty(m);
 1726                 vm_page_lock(m);
 1727                 vm_page_activate(m);
 1728                 vm_page_unlock(m);
 1729                 vm_page_xunbusy(m);
 1730                 vm_pager_page_unswapped(m);
 1731                 return;
 1732         }
 1733 
 1734         if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
 1735                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
 1736         vm_object_pip_subtract(object, 1);
 1737         vm_page_dirty(m);
 1738         vm_page_lock(m);
 1739         vm_page_deactivate(m);
 1740         vm_page_unlock(m);
 1741         vm_page_xunbusy(m);
 1742         vm_pager_page_unswapped(m);
 1743 }
 1744 
 1745 /*
 1746  *      swap_pager_swapoff:
 1747  *
 1748  *      Page in all of the pages that have been paged out to the
 1749  *      given device.  The corresponding blocks in the bitmap must be
 1750  *      marked as allocated and the device must be flagged SW_CLOSING.
 1751  *      There may be no processes swapped out to the device.
 1752  *
 1753  *      This routine may block.
 1754  */
 1755 static void
 1756 swap_pager_swapoff(struct swdevt *sp)
 1757 {
 1758         struct swblock *swap;
 1759         int i, j, retries;
 1760 
 1761         GIANT_REQUIRED;
 1762 
 1763         retries = 0;
 1764 full_rescan:
 1765         mtx_lock(&swhash_mtx);
 1766         for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
 1767 restart:
 1768                 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
 1769                         vm_object_t object = swap->swb_object;
 1770                         vm_pindex_t pindex = swap->swb_index;
 1771                         for (j = 0; j < SWAP_META_PAGES; ++j) {
 1772                                 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
 1773                                         /* avoid deadlock */
 1774                                         if (!VM_OBJECT_TRYWLOCK(object)) {
 1775                                                 break;
 1776                                         } else {
 1777                                                 mtx_unlock(&swhash_mtx);
 1778                                                 swp_pager_force_pagein(object,
 1779                                                     pindex + j);
 1780                                                 VM_OBJECT_WUNLOCK(object);
 1781                                                 mtx_lock(&swhash_mtx);
 1782                                                 goto restart;
 1783                                         }
 1784                                 }
 1785                         }
 1786                 }
 1787         }
 1788         mtx_unlock(&swhash_mtx);
 1789         if (sp->sw_used) {
 1790                 /*
 1791                  * Objects may be locked or paging to the device being
 1792                  * removed, so we will miss their pages and need to
 1793                  * make another pass.  We have marked this device as
 1794                  * SW_CLOSING, so the activity should finish soon.
 1795                  */
 1796                 retries++;
 1797                 if (retries > 100) {
 1798                         panic("swapoff: failed to locate %d swap blocks",
 1799                             sp->sw_used);
 1800                 }
 1801                 pause("swpoff", hz / 20);
 1802                 goto full_rescan;
 1803         }
 1804 }
 1805 
 1806 /************************************************************************
 1807  *                              SWAP META DATA                          *
 1808  ************************************************************************
 1809  *
 1810  *      These routines manipulate the swap metadata stored in the
 1811  *      OBJT_SWAP object.
 1812  *
 1813  *      Swap metadata is implemented with a global hash and not directly
 1814  *      linked into the object.  Instead the object simply contains
 1815  *      appropriate tracking counters.
 1816  */
 1817 
 1818 /*
 1819  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
 1820  *
 1821  *      We first convert the object to a swap object if it is a default
 1822  *      object.
 1823  *
 1824  *      The specified swapblk is added to the object's swap metadata.  If
 1825  *      the swapblk is not valid, it is freed instead.  Any previously
 1826  *      assigned swapblk is freed.
 1827  */
 1828 static void
 1829 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
 1830 {
 1831         static volatile int exhausted;
 1832         struct swblock *swap;
 1833         struct swblock **pswap;
 1834         int idx;
 1835 
 1836         VM_OBJECT_ASSERT_WLOCKED(object);
 1837         /*
 1838          * Convert default object to swap object if necessary
 1839          */
 1840         if (object->type != OBJT_SWAP) {
 1841                 object->type = OBJT_SWAP;
 1842                 object->un_pager.swp.swp_bcount = 0;
 1843 
 1844                 if (object->handle != NULL) {
 1845                         mtx_lock(&sw_alloc_mtx);
 1846                         TAILQ_INSERT_TAIL(
 1847                             NOBJLIST(object->handle),
 1848                             object,
 1849                             pager_object_list
 1850                         );
 1851                         mtx_unlock(&sw_alloc_mtx);
 1852                 }
 1853         }
 1854 
 1855         /*
 1856          * Locate hash entry.  If not found create, but if we aren't adding
 1857          * anything just return.  If we run out of space in the map we wait
 1858          * and, since the hash table may have changed, retry.
 1859          */
 1860 retry:
 1861         mtx_lock(&swhash_mtx);
 1862         pswap = swp_pager_hash(object, pindex);
 1863 
 1864         if ((swap = *pswap) == NULL) {
 1865                 int i;
 1866 
 1867                 if (swapblk == SWAPBLK_NONE)
 1868                         goto done;
 1869 
 1870                 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT |
 1871                     (curproc == pageproc ? M_USE_RESERVE : 0));
 1872                 if (swap == NULL) {
 1873                         mtx_unlock(&swhash_mtx);
 1874                         VM_OBJECT_WUNLOCK(object);
 1875                         if (uma_zone_exhausted(swap_zone)) {
 1876                                 if (atomic_cmpset_int(&exhausted, 0, 1))
 1877                                         printf("swap zone exhausted, "
 1878                                             "increase kern.maxswzone\n");
 1879                                 vm_pageout_oom(VM_OOM_SWAPZ);
 1880                                 pause("swzonex", 10);
 1881                         } else
 1882                                 VM_WAIT;
 1883                         VM_OBJECT_WLOCK(object);
 1884                         goto retry;
 1885                 }
 1886 
 1887                 if (atomic_cmpset_int(&exhausted, 1, 0))
 1888                         printf("swap zone ok\n");
 1889 
 1890                 swap->swb_hnext = NULL;
 1891                 swap->swb_object = object;
 1892                 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
 1893                 swap->swb_count = 0;
 1894 
 1895                 ++object->un_pager.swp.swp_bcount;
 1896 
 1897                 for (i = 0; i < SWAP_META_PAGES; ++i)
 1898                         swap->swb_pages[i] = SWAPBLK_NONE;
 1899         }
 1900 
 1901         /*
 1902          * Delete prior contents of metadata
 1903          */
 1904         idx = pindex & SWAP_META_MASK;
 1905 
 1906         if (swap->swb_pages[idx] != SWAPBLK_NONE) {
 1907                 swp_pager_freeswapspace(swap->swb_pages[idx], 1);
 1908                 --swap->swb_count;
 1909         }
 1910 
 1911         /*
 1912          * Enter block into metadata
 1913          */
 1914         swap->swb_pages[idx] = swapblk;
 1915         if (swapblk != SWAPBLK_NONE)
 1916                 ++swap->swb_count;
 1917 done:
 1918         mtx_unlock(&swhash_mtx);
 1919 }
 1920 
 1921 /*
 1922  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
 1923  *
 1924  *      The requested range of blocks is freed, with any associated swap
 1925  *      returned to the swap bitmap.
 1926  *
 1927  *      This routine will free swap metadata structures as they are cleaned
 1928  *      out.  This routine does *NOT* operate on swap metadata associated
 1929  *      with resident pages.
 1930  */
 1931 static void
 1932 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
 1933 {
 1934 
 1935         VM_OBJECT_ASSERT_LOCKED(object);
 1936         if (object->type != OBJT_SWAP)
 1937                 return;
 1938 
 1939         while (count > 0) {
 1940                 struct swblock **pswap;
 1941                 struct swblock *swap;
 1942 
 1943                 mtx_lock(&swhash_mtx);
 1944                 pswap = swp_pager_hash(object, index);
 1945 
 1946                 if ((swap = *pswap) != NULL) {
 1947                         daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
 1948 
 1949                         if (v != SWAPBLK_NONE) {
 1950                                 swp_pager_freeswapspace(v, 1);
 1951                                 swap->swb_pages[index & SWAP_META_MASK] =
 1952                                         SWAPBLK_NONE;
 1953                                 if (--swap->swb_count == 0) {
 1954                                         *pswap = swap->swb_hnext;
 1955                                         uma_zfree(swap_zone, swap);
 1956                                         --object->un_pager.swp.swp_bcount;
 1957                                 }
 1958                         }
 1959                         --count;
 1960                         ++index;
 1961                 } else {
 1962                         int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
 1963                         count -= n;
 1964                         index += n;
 1965                 }
 1966                 mtx_unlock(&swhash_mtx);
 1967         }
 1968 }
 1969 
 1970 /*
 1971  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
 1972  *
 1973  *      This routine locates and destroys all swap metadata associated with
 1974  *      an object.
 1975  */
 1976 static void
 1977 swp_pager_meta_free_all(vm_object_t object)
 1978 {
 1979         daddr_t index = 0;
 1980 
 1981         VM_OBJECT_ASSERT_WLOCKED(object);
 1982         if (object->type != OBJT_SWAP)
 1983                 return;
 1984 
 1985         while (object->un_pager.swp.swp_bcount) {
 1986                 struct swblock **pswap;
 1987                 struct swblock *swap;
 1988 
 1989                 mtx_lock(&swhash_mtx);
 1990                 pswap = swp_pager_hash(object, index);
 1991                 if ((swap = *pswap) != NULL) {
 1992                         int i;
 1993 
 1994                         for (i = 0; i < SWAP_META_PAGES; ++i) {
 1995                                 daddr_t v = swap->swb_pages[i];
 1996                                 if (v != SWAPBLK_NONE) {
 1997                                         --swap->swb_count;
 1998                                         swp_pager_freeswapspace(v, 1);
 1999                                 }
 2000                         }
 2001                         if (swap->swb_count != 0)
 2002                                 panic("swap_pager_meta_free_all: swb_count != 0");
 2003                         *pswap = swap->swb_hnext;
 2004                         uma_zfree(swap_zone, swap);
 2005                         --object->un_pager.swp.swp_bcount;
 2006                 }
 2007                 mtx_unlock(&swhash_mtx);
 2008                 index += SWAP_META_PAGES;
 2009         }
 2010 }
 2011 
 2012 /*
 2013  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
 2014  *
 2015  *      This routine is capable of looking up, popping, or freeing
 2016  *      swapblk assignments in the swap meta data or in the vm_page_t.
 2017  *      The routine typically returns the swapblk being looked-up, or popped,
 2018  *      or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
 2019  *      was invalid.  This routine will automatically free any invalid
 2020  *      meta-data swapblks.
 2021  *
 2022  *      It is not possible to store invalid swapblks in the swap meta data
 2023  *      (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
 2024  *
 2025  *      When acting on a busy resident page and paging is in progress, we
 2026  *      have to wait until paging is complete but otherwise can act on the
 2027  *      busy page.
 2028  *
 2029  *      SWM_FREE        remove and free swap block from metadata
 2030  *      SWM_POP         remove from meta data but do not free.. pop it out
 2031  */
 2032 static daddr_t
 2033 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
 2034 {
 2035         struct swblock **pswap;
 2036         struct swblock *swap;
 2037         daddr_t r1;
 2038         int idx;
 2039 
 2040         VM_OBJECT_ASSERT_LOCKED(object);
 2041         /*
 2042          * The meta data only exists of the object is OBJT_SWAP
 2043          * and even then might not be allocated yet.
 2044          */
 2045         if (object->type != OBJT_SWAP)
 2046                 return (SWAPBLK_NONE);
 2047 
 2048         r1 = SWAPBLK_NONE;
 2049         mtx_lock(&swhash_mtx);
 2050         pswap = swp_pager_hash(object, pindex);
 2051 
 2052         if ((swap = *pswap) != NULL) {
 2053                 idx = pindex & SWAP_META_MASK;
 2054                 r1 = swap->swb_pages[idx];
 2055 
 2056                 if (r1 != SWAPBLK_NONE) {
 2057                         if (flags & SWM_FREE) {
 2058                                 swp_pager_freeswapspace(r1, 1);
 2059                                 r1 = SWAPBLK_NONE;
 2060                         }
 2061                         if (flags & (SWM_FREE|SWM_POP)) {
 2062                                 swap->swb_pages[idx] = SWAPBLK_NONE;
 2063                                 if (--swap->swb_count == 0) {
 2064                                         *pswap = swap->swb_hnext;
 2065                                         uma_zfree(swap_zone, swap);
 2066                                         --object->un_pager.swp.swp_bcount;
 2067                                 }
 2068                         }
 2069                 }
 2070         }
 2071         mtx_unlock(&swhash_mtx);
 2072         return (r1);
 2073 }
 2074 
 2075 /*
 2076  * System call swapon(name) enables swapping on device name,
 2077  * which must be in the swdevsw.  Return EBUSY
 2078  * if already swapping on this device.
 2079  */
 2080 #ifndef _SYS_SYSPROTO_H_
 2081 struct swapon_args {
 2082         char *name;
 2083 };
 2084 #endif
 2085 
 2086 /*
 2087  * MPSAFE
 2088  */
 2089 /* ARGSUSED */
 2090 int
 2091 sys_swapon(struct thread *td, struct swapon_args *uap)
 2092 {
 2093         struct vattr attr;
 2094         struct vnode *vp;
 2095         struct nameidata nd;
 2096         int error;
 2097 
 2098         error = priv_check(td, PRIV_SWAPON);
 2099         if (error)
 2100                 return (error);
 2101 
 2102         mtx_lock(&Giant);
 2103         while (swdev_syscall_active)
 2104             tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
 2105         swdev_syscall_active = 1;
 2106 
 2107         /*
 2108          * Swap metadata may not fit in the KVM if we have physical
 2109          * memory of >1GB.
 2110          */
 2111         if (swap_zone == NULL) {
 2112                 error = ENOMEM;
 2113                 goto done;
 2114         }
 2115 
 2116         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
 2117             uap->name, td);
 2118         error = namei(&nd);
 2119         if (error)
 2120                 goto done;
 2121 
 2122         NDFREE(&nd, NDF_ONLY_PNBUF);
 2123         vp = nd.ni_vp;
 2124 
 2125         if (vn_isdisk(vp, &error)) {
 2126                 error = swapongeom(td, vp);
 2127         } else if (vp->v_type == VREG &&
 2128             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 2129             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
 2130                 /*
 2131                  * Allow direct swapping to NFS regular files in the same
 2132                  * way that nfs_mountroot() sets up diskless swapping.
 2133                  */
 2134                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
 2135         }
 2136 
 2137         if (error)
 2138                 vrele(vp);
 2139 done:
 2140         swdev_syscall_active = 0;
 2141         wakeup_one(&swdev_syscall_active);
 2142         mtx_unlock(&Giant);
 2143         return (error);
 2144 }
 2145 
 2146 /*
 2147  * Check that the total amount of swap currently configured does not
 2148  * exceed half the theoretical maximum.  If it does, print a warning
 2149  * message and return -1; otherwise, return 0.
 2150  */
 2151 static int
 2152 swapon_check_swzone(unsigned long npages)
 2153 {
 2154         unsigned long maxpages;
 2155 
 2156         /* absolute maximum we can handle assuming 100% efficiency */
 2157         maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES;
 2158 
 2159         /* recommend using no more than half that amount */
 2160         if (npages > maxpages / 2) {
 2161                 printf("warning: total configured swap (%lu pages) "
 2162                     "exceeds maximum recommended amount (%lu pages).\n",
 2163                     npages, maxpages / 2);
 2164                 printf("warning: increase kern.maxswzone "
 2165                     "or reduce amount of swap.\n");
 2166                 return (-1);
 2167         }
 2168         return (0);
 2169 }
 2170 
 2171 static void
 2172 swaponsomething(struct vnode *vp, void *id, u_long nblks,
 2173     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
 2174 {
 2175         struct swdevt *sp, *tsp;
 2176         swblk_t dvbase;
 2177         u_long mblocks;
 2178 
 2179         /*
 2180          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
 2181          * First chop nblks off to page-align it, then convert.
 2182          *
 2183          * sw->sw_nblks is in page-sized chunks now too.
 2184          */
 2185         nblks &= ~(ctodb(1) - 1);
 2186         nblks = dbtoc(nblks);
 2187 
 2188         /*
 2189          * If we go beyond this, we get overflows in the radix
 2190          * tree bitmap code.
 2191          */
 2192         mblocks = 0x40000000 / BLIST_META_RADIX;
 2193         if (nblks > mblocks) {
 2194                 printf(
 2195     "WARNING: reducing swap size to maximum of %luMB per unit\n",
 2196                     mblocks / 1024 / 1024 * PAGE_SIZE);
 2197                 nblks = mblocks;
 2198         }
 2199 
 2200         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
 2201         sp->sw_vp = vp;
 2202         sp->sw_id = id;
 2203         sp->sw_dev = dev;
 2204         sp->sw_flags = 0;
 2205         sp->sw_nblks = nblks;
 2206         sp->sw_used = 0;
 2207         sp->sw_strategy = strategy;
 2208         sp->sw_close = close;
 2209         sp->sw_flags = flags;
 2210 
 2211         sp->sw_blist = blist_create(nblks, M_WAITOK);
 2212         /*
 2213          * Do not free the first two block in order to avoid overwriting
 2214          * any bsd label at the front of the partition
 2215          */
 2216         blist_free(sp->sw_blist, 2, nblks - 2);
 2217 
 2218         dvbase = 0;
 2219         mtx_lock(&sw_dev_mtx);
 2220         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
 2221                 if (tsp->sw_end >= dvbase) {
 2222                         /*
 2223                          * We put one uncovered page between the devices
 2224                          * in order to definitively prevent any cross-device
 2225                          * I/O requests
 2226                          */
 2227                         dvbase = tsp->sw_end + 1;
 2228                 }
 2229         }
 2230         sp->sw_first = dvbase;
 2231         sp->sw_end = dvbase + nblks;
 2232         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
 2233         nswapdev++;
 2234         swap_pager_avail += nblks;
 2235         swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
 2236         swapon_check_swzone(swap_total / PAGE_SIZE);
 2237         swp_sizecheck();
 2238         mtx_unlock(&sw_dev_mtx);
 2239 }
 2240 
 2241 /*
 2242  * SYSCALL: swapoff(devname)
 2243  *
 2244  * Disable swapping on the given device.
 2245  *
 2246  * XXX: Badly designed system call: it should use a device index
 2247  * rather than filename as specification.  We keep sw_vp around
 2248  * only to make this work.
 2249  */
 2250 #ifndef _SYS_SYSPROTO_H_
 2251 struct swapoff_args {
 2252         char *name;
 2253 };
 2254 #endif
 2255 
 2256 /*
 2257  * MPSAFE
 2258  */
 2259 /* ARGSUSED */
 2260 int
 2261 sys_swapoff(struct thread *td, struct swapoff_args *uap)
 2262 {
 2263         struct vnode *vp;
 2264         struct nameidata nd;
 2265         struct swdevt *sp;
 2266         int error;
 2267 
 2268         error = priv_check(td, PRIV_SWAPOFF);
 2269         if (error)
 2270                 return (error);
 2271 
 2272         mtx_lock(&Giant);
 2273         while (swdev_syscall_active)
 2274             tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
 2275         swdev_syscall_active = 1;
 2276 
 2277         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
 2278             td);
 2279         error = namei(&nd);
 2280         if (error)
 2281                 goto done;
 2282         NDFREE(&nd, NDF_ONLY_PNBUF);
 2283         vp = nd.ni_vp;
 2284 
 2285         mtx_lock(&sw_dev_mtx);
 2286         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2287                 if (sp->sw_vp == vp)
 2288                         break;
 2289         }
 2290         mtx_unlock(&sw_dev_mtx);
 2291         if (sp == NULL) {
 2292                 error = EINVAL;
 2293                 goto done;
 2294         }
 2295         error = swapoff_one(sp, td->td_ucred);
 2296 done:
 2297         swdev_syscall_active = 0;
 2298         wakeup_one(&swdev_syscall_active);
 2299         mtx_unlock(&Giant);
 2300         return (error);
 2301 }
 2302 
 2303 static int
 2304 swapoff_one(struct swdevt *sp, struct ucred *cred)
 2305 {
 2306         u_long nblks, dvbase;
 2307 #ifdef MAC
 2308         int error;
 2309 #endif
 2310 
 2311         mtx_assert(&Giant, MA_OWNED);
 2312 #ifdef MAC
 2313         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
 2314         error = mac_system_check_swapoff(cred, sp->sw_vp);
 2315         (void) VOP_UNLOCK(sp->sw_vp, 0);
 2316         if (error != 0)
 2317                 return (error);
 2318 #endif
 2319         nblks = sp->sw_nblks;
 2320 
 2321         /*
 2322          * We can turn off this swap device safely only if the
 2323          * available virtual memory in the system will fit the amount
 2324          * of data we will have to page back in, plus an epsilon so
 2325          * the system doesn't become critically low on swap space.
 2326          */
 2327         if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
 2328             nblks + nswap_lowat) {
 2329                 return (ENOMEM);
 2330         }
 2331 
 2332         /*
 2333          * Prevent further allocations on this device.
 2334          */
 2335         mtx_lock(&sw_dev_mtx);
 2336         sp->sw_flags |= SW_CLOSING;
 2337         for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
 2338                 swap_pager_avail -= blist_fill(sp->sw_blist,
 2339                      dvbase, dmmax);
 2340         }
 2341         swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
 2342         mtx_unlock(&sw_dev_mtx);
 2343 
 2344         /*
 2345          * Page in the contents of the device and close it.
 2346          */
 2347         swap_pager_swapoff(sp);
 2348 
 2349         sp->sw_close(curthread, sp);
 2350         sp->sw_id = NULL;
 2351         mtx_lock(&sw_dev_mtx);
 2352         TAILQ_REMOVE(&swtailq, sp, sw_list);
 2353         nswapdev--;
 2354         if (nswapdev == 0) {
 2355                 swap_pager_full = 2;
 2356                 swap_pager_almost_full = 1;
 2357         }
 2358         if (swdevhd == sp)
 2359                 swdevhd = NULL;
 2360         mtx_unlock(&sw_dev_mtx);
 2361         blist_destroy(sp->sw_blist);
 2362         free(sp, M_VMPGDATA);
 2363         return (0);
 2364 }
 2365 
 2366 void
 2367 swapoff_all(void)
 2368 {
 2369         struct swdevt *sp, *spt;
 2370         const char *devname;
 2371         int error;
 2372 
 2373         mtx_lock(&Giant);
 2374         while (swdev_syscall_active)
 2375                 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
 2376         swdev_syscall_active = 1;
 2377 
 2378         mtx_lock(&sw_dev_mtx);
 2379         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
 2380                 mtx_unlock(&sw_dev_mtx);
 2381                 if (vn_isdisk(sp->sw_vp, NULL))
 2382                         devname = devtoname(sp->sw_vp->v_rdev);
 2383                 else
 2384                         devname = "[file]";
 2385                 error = swapoff_one(sp, thread0.td_ucred);
 2386                 if (error != 0) {
 2387                         printf("Cannot remove swap device %s (error=%d), "
 2388                             "skipping.\n", devname, error);
 2389                 } else if (bootverbose) {
 2390                         printf("Swap device %s removed.\n", devname);
 2391                 }
 2392                 mtx_lock(&sw_dev_mtx);
 2393         }
 2394         mtx_unlock(&sw_dev_mtx);
 2395 
 2396         swdev_syscall_active = 0;
 2397         wakeup_one(&swdev_syscall_active);
 2398         mtx_unlock(&Giant);
 2399 }
 2400 
 2401 void
 2402 swap_pager_status(int *total, int *used)
 2403 {
 2404         struct swdevt *sp;
 2405 
 2406         *total = 0;
 2407         *used = 0;
 2408         mtx_lock(&sw_dev_mtx);
 2409         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2410                 *total += sp->sw_nblks;
 2411                 *used += sp->sw_used;
 2412         }
 2413         mtx_unlock(&sw_dev_mtx);
 2414 }
 2415 
 2416 int
 2417 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
 2418 {
 2419         struct swdevt *sp;
 2420         const char *tmp_devname;
 2421         int error, n;
 2422 
 2423         n = 0;
 2424         error = ENOENT;
 2425         mtx_lock(&sw_dev_mtx);
 2426         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2427                 if (n != name) {
 2428                         n++;
 2429                         continue;
 2430                 }
 2431                 xs->xsw_version = XSWDEV_VERSION;
 2432                 xs->xsw_dev = sp->sw_dev;
 2433                 xs->xsw_flags = sp->sw_flags;
 2434                 xs->xsw_nblks = sp->sw_nblks;
 2435                 xs->xsw_used = sp->sw_used;
 2436                 if (devname != NULL) {
 2437                         if (vn_isdisk(sp->sw_vp, NULL))
 2438                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
 2439                         else
 2440                                 tmp_devname = "[file]";
 2441                         strncpy(devname, tmp_devname, len);
 2442                 }
 2443                 error = 0;
 2444                 break;
 2445         }
 2446         mtx_unlock(&sw_dev_mtx);
 2447         return (error);
 2448 }
 2449 
 2450 static int
 2451 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
 2452 {
 2453         struct xswdev xs;
 2454         int error;
 2455 
 2456         if (arg2 != 1)                  /* name length */
 2457                 return (EINVAL);
 2458         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
 2459         if (error != 0)
 2460                 return (error);
 2461         error = SYSCTL_OUT(req, &xs, sizeof(xs));
 2462         return (error);
 2463 }
 2464 
 2465 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
 2466     "Number of swap devices");
 2467 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
 2468     "Swap statistics by device");
 2469 
 2470 /*
 2471  * vmspace_swap_count() - count the approximate swap usage in pages for a
 2472  *                        vmspace.
 2473  *
 2474  *      The map must be locked.
 2475  *
 2476  *      Swap usage is determined by taking the proportional swap used by
 2477  *      VM objects backing the VM map.  To make up for fractional losses,
 2478  *      if the VM object has any swap use at all the associated map entries
 2479  *      count for at least 1 swap page.
 2480  */
 2481 long
 2482 vmspace_swap_count(struct vmspace *vmspace)
 2483 {
 2484         vm_map_t map;
 2485         vm_map_entry_t cur;
 2486         vm_object_t object;
 2487         long count, n;
 2488 
 2489         map = &vmspace->vm_map;
 2490         count = 0;
 2491 
 2492         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
 2493                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
 2494                     (object = cur->object.vm_object) != NULL) {
 2495                         VM_OBJECT_WLOCK(object);
 2496                         if (object->type == OBJT_SWAP &&
 2497                             object->un_pager.swp.swp_bcount != 0) {
 2498                                 n = (cur->end - cur->start) / PAGE_SIZE;
 2499                                 count += object->un_pager.swp.swp_bcount *
 2500                                     SWAP_META_PAGES * n / object->size + 1;
 2501                         }
 2502                         VM_OBJECT_WUNLOCK(object);
 2503                 }
 2504         }
 2505         return (count);
 2506 }
 2507 
 2508 /*
 2509  * GEOM backend
 2510  *
 2511  * Swapping onto disk devices.
 2512  *
 2513  */
 2514 
 2515 static g_orphan_t swapgeom_orphan;
 2516 
 2517 static struct g_class g_swap_class = {
 2518         .name = "SWAP",
 2519         .version = G_VERSION,
 2520         .orphan = swapgeom_orphan,
 2521 };
 2522 
 2523 DECLARE_GEOM_CLASS(g_swap_class, g_class);
 2524 
 2525 
 2526 static void
 2527 swapgeom_done(struct bio *bp2)
 2528 {
 2529         struct buf *bp;
 2530 
 2531         bp = bp2->bio_caller2;
 2532         bp->b_ioflags = bp2->bio_flags;
 2533         if (bp2->bio_error)
 2534                 bp->b_ioflags |= BIO_ERROR;
 2535         bp->b_resid = bp->b_bcount - bp2->bio_completed;
 2536         bp->b_error = bp2->bio_error;
 2537         bufdone(bp);
 2538         g_destroy_bio(bp2);
 2539 }
 2540 
 2541 static void
 2542 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
 2543 {
 2544         struct bio *bio;
 2545         struct g_consumer *cp;
 2546 
 2547         cp = sp->sw_id;
 2548         if (cp == NULL) {
 2549                 bp->b_error = ENXIO;
 2550                 bp->b_ioflags |= BIO_ERROR;
 2551                 bufdone(bp);
 2552                 return;
 2553         }
 2554         if (bp->b_iocmd == BIO_WRITE)
 2555                 bio = g_new_bio();
 2556         else
 2557                 bio = g_alloc_bio();
 2558         if (bio == NULL) {
 2559                 bp->b_error = ENOMEM;
 2560                 bp->b_ioflags |= BIO_ERROR;
 2561                 bufdone(bp);
 2562                 return;
 2563         }
 2564 
 2565         bio->bio_caller2 = bp;
 2566         bio->bio_cmd = bp->b_iocmd;
 2567         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
 2568         bio->bio_length = bp->b_bcount;
 2569         bio->bio_done = swapgeom_done;
 2570         if ((bp->b_flags & B_UNMAPPED) != 0) {
 2571                 bio->bio_ma = bp->b_pages;
 2572                 bio->bio_data = unmapped_buf;
 2573                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
 2574                 bio->bio_ma_n = bp->b_npages;
 2575                 bio->bio_flags |= BIO_UNMAPPED;
 2576         } else {
 2577                 bio->bio_data = bp->b_data;
 2578                 bio->bio_ma = NULL;
 2579         }
 2580         g_io_request(bio, cp);
 2581         return;
 2582 }
 2583 
 2584 static void
 2585 swapgeom_orphan(struct g_consumer *cp)
 2586 {
 2587         struct swdevt *sp;
 2588 
 2589         mtx_lock(&sw_dev_mtx);
 2590         TAILQ_FOREACH(sp, &swtailq, sw_list)
 2591                 if (sp->sw_id == cp)
 2592                         sp->sw_flags |= SW_CLOSING;
 2593         mtx_unlock(&sw_dev_mtx);
 2594 }
 2595 
 2596 static void
 2597 swapgeom_close_ev(void *arg, int flags)
 2598 {
 2599         struct g_consumer *cp;
 2600 
 2601         cp = arg;
 2602         g_access(cp, -1, -1, 0);
 2603         g_detach(cp);
 2604         g_destroy_consumer(cp);
 2605 }
 2606 
 2607 static void
 2608 swapgeom_close(struct thread *td, struct swdevt *sw)
 2609 {
 2610 
 2611         /* XXX: direct call when Giant untangled */
 2612         g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
 2613 }
 2614 
 2615 
 2616 struct swh0h0 {
 2617         struct cdev *dev;
 2618         struct vnode *vp;
 2619         int     error;
 2620 };
 2621 
 2622 static void
 2623 swapongeom_ev(void *arg, int flags)
 2624 {
 2625         struct swh0h0 *swh;
 2626         struct g_provider *pp;
 2627         struct g_consumer *cp;
 2628         static struct g_geom *gp;
 2629         struct swdevt *sp;
 2630         u_long nblks;
 2631         int error;
 2632 
 2633         swh = arg;
 2634         swh->error = 0;
 2635         pp = g_dev_getprovider(swh->dev);
 2636         if (pp == NULL) {
 2637                 swh->error = ENODEV;
 2638                 return;
 2639         }
 2640         mtx_lock(&sw_dev_mtx);
 2641         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2642                 cp = sp->sw_id;
 2643                 if (cp != NULL && cp->provider == pp) {
 2644                         mtx_unlock(&sw_dev_mtx);
 2645                         swh->error = EBUSY;
 2646                         return;
 2647                 }
 2648         }
 2649         mtx_unlock(&sw_dev_mtx);
 2650         if (gp == NULL)
 2651                 gp = g_new_geomf(&g_swap_class, "swap");
 2652         cp = g_new_consumer(gp);
 2653         g_attach(cp, pp);
 2654         /*
 2655          * XXX: Everytime you think you can improve the margin for
 2656          * footshooting, somebody depends on the ability to do so:
 2657          * savecore(8) wants to write to our swapdev so we cannot
 2658          * set an exclusive count :-(
 2659          */
 2660         error = g_access(cp, 1, 1, 0);
 2661         if (error) {
 2662                 g_detach(cp);
 2663                 g_destroy_consumer(cp);
 2664                 swh->error = error;
 2665                 return;
 2666         }
 2667         nblks = pp->mediasize / DEV_BSIZE;
 2668         swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
 2669             swapgeom_close, dev2udev(swh->dev),
 2670             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
 2671         swh->error = 0;
 2672 }
 2673 
 2674 static int
 2675 swapongeom(struct thread *td, struct vnode *vp)
 2676 {
 2677         int error;
 2678         struct swh0h0 swh;
 2679 
 2680         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2681 
 2682         swh.dev = vp->v_rdev;
 2683         swh.vp = vp;
 2684         swh.error = 0;
 2685         /* XXX: direct call when Giant untangled */
 2686         error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
 2687         if (!error)
 2688                 error = swh.error;
 2689         VOP_UNLOCK(vp, 0);
 2690         return (error);
 2691 }
 2692 
 2693 /*
 2694  * VNODE backend
 2695  *
 2696  * This is used mainly for network filesystem (read: probably only tested
 2697  * with NFS) swapfiles.
 2698  *
 2699  */
 2700 
 2701 static void
 2702 swapdev_strategy(struct buf *bp, struct swdevt *sp)
 2703 {
 2704         struct vnode *vp2;
 2705 
 2706         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
 2707 
 2708         vp2 = sp->sw_id;
 2709         vhold(vp2);
 2710         if (bp->b_iocmd == BIO_WRITE) {
 2711                 if (bp->b_bufobj)
 2712                         bufobj_wdrop(bp->b_bufobj);
 2713                 bufobj_wref(&vp2->v_bufobj);
 2714         }
 2715         if (bp->b_bufobj != &vp2->v_bufobj)
 2716                 bp->b_bufobj = &vp2->v_bufobj;
 2717         bp->b_vp = vp2;
 2718         bp->b_iooffset = dbtob(bp->b_blkno);
 2719         bstrategy(bp);
 2720         return;
 2721 }
 2722 
 2723 static void
 2724 swapdev_close(struct thread *td, struct swdevt *sp)
 2725 {
 2726 
 2727         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
 2728         vrele(sp->sw_vp);
 2729 }
 2730 
 2731 
 2732 static int
 2733 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
 2734 {
 2735         struct swdevt *sp;
 2736         int error;
 2737 
 2738         if (nblks == 0)
 2739                 return (ENXIO);
 2740         mtx_lock(&sw_dev_mtx);
 2741         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2742                 if (sp->sw_id == vp) {
 2743                         mtx_unlock(&sw_dev_mtx);
 2744                         return (EBUSY);
 2745                 }
 2746         }
 2747         mtx_unlock(&sw_dev_mtx);
 2748 
 2749         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2750 #ifdef MAC
 2751         error = mac_system_check_swapon(td->td_ucred, vp);
 2752         if (error == 0)
 2753 #endif
 2754                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
 2755         (void) VOP_UNLOCK(vp, 0);
 2756         if (error)
 2757                 return (error);
 2758 
 2759         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
 2760             NODEV, 0);
 2761         return (0);
 2762 }

Cache object: 77c2082bfcc355f688c295cf074180ac


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.