The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/swap_pager.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1998 Matthew Dillon,
    3  * Copyright (c) 1994 John S. Dyson
    4  * Copyright (c) 1990 University of Utah.
    5  * Copyright (c) 1982, 1986, 1989, 1993
    6  *      The Regents of the University of California.  All rights reserved.
    7  *
    8  * This code is derived from software contributed to Berkeley by
    9  * the Systems Programming Group of the University of Utah Computer
   10  * Science Department.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. All advertising materials mentioning features or use of this software
   21  *    must display the following acknowledgement:
   22  *      This product includes software developed by the University of
   23  *      California, Berkeley and its contributors.
   24  * 4. Neither the name of the University nor the names of its contributors
   25  *    may be used to endorse or promote products derived from this software
   26  *    without specific prior written permission.
   27  *
   28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   38  * SUCH DAMAGE.
   39  *
   40  *                              New Swap System
   41  *                              Matthew Dillon
   42  *
   43  * Radix Bitmap 'blists'.
   44  *
   45  *      - The new swapper uses the new radix bitmap code.  This should scale
   46  *        to arbitrarily small or arbitrarily large swap spaces and an almost
   47  *        arbitrary degree of fragmentation.
   48  *
   49  * Features:
   50  *
   51  *      - on the fly reallocation of swap during putpages.  The new system
   52  *        does not try to keep previously allocated swap blocks for dirty
   53  *        pages.
   54  *
   55  *      - on the fly deallocation of swap
   56  *
   57  *      - No more garbage collection required.  Unnecessarily allocated swap
   58  *        blocks only exist for dirty vm_page_t's now and these are already
   59  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
   60  *        removal of invalidated swap blocks when a page is destroyed
   61  *        or renamed.
   62  *
   63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
   64  *
   65  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
   66  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
   67  */
   68 
   69 #include <sys/cdefs.h>
   70 __FBSDID("$FreeBSD: releng/10.3/sys/vm/swap_pager.c 287850 2015-09-16 04:38:07Z imp $");
   71 
   72 #include "opt_swap.h"
   73 #include "opt_vm.h"
   74 
   75 #include <sys/param.h>
   76 #include <sys/systm.h>
   77 #include <sys/conf.h>
   78 #include <sys/kernel.h>
   79 #include <sys/priv.h>
   80 #include <sys/proc.h>
   81 #include <sys/bio.h>
   82 #include <sys/buf.h>
   83 #include <sys/disk.h>
   84 #include <sys/fcntl.h>
   85 #include <sys/mount.h>
   86 #include <sys/namei.h>
   87 #include <sys/vnode.h>
   88 #include <sys/malloc.h>
   89 #include <sys/racct.h>
   90 #include <sys/resource.h>
   91 #include <sys/resourcevar.h>
   92 #include <sys/rwlock.h>
   93 #include <sys/sysctl.h>
   94 #include <sys/sysproto.h>
   95 #include <sys/blist.h>
   96 #include <sys/lock.h>
   97 #include <sys/sx.h>
   98 #include <sys/vmmeter.h>
   99 
  100 #include <security/mac/mac_framework.h>
  101 
  102 #include <vm/vm.h>
  103 #include <vm/pmap.h>
  104 #include <vm/vm_map.h>
  105 #include <vm/vm_kern.h>
  106 #include <vm/vm_object.h>
  107 #include <vm/vm_page.h>
  108 #include <vm/vm_pager.h>
  109 #include <vm/vm_pageout.h>
  110 #include <vm/vm_param.h>
  111 #include <vm/swap_pager.h>
  112 #include <vm/vm_extern.h>
  113 #include <vm/uma.h>
  114 
  115 #include <geom/geom.h>
  116 
  117 /*
  118  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, 16
  119  * or 32 pages per allocation.
  120  * The 32-page limit is due to the radix code (kern/subr_blist.c).
  121  */
  122 #ifndef MAX_PAGEOUT_CLUSTER
  123 #define MAX_PAGEOUT_CLUSTER 16
  124 #endif
  125 
  126 #if !defined(SWB_NPAGES)
  127 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
  128 #endif
  129 
  130 /*
  131  * The swblock structure maps an object and a small, fixed-size range
  132  * of page indices to disk addresses within a swap area.
  133  * The collection of these mappings is implemented as a hash table.
  134  * Unused disk addresses within a swap area are allocated and managed
  135  * using a blist.
  136  */
  137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
  138 #define SWAP_META_PAGES         (SWB_NPAGES * 2)
  139 #define SWAP_META_MASK          (SWAP_META_PAGES - 1)
  140 
  141 struct swblock {
  142         struct swblock  *swb_hnext;
  143         vm_object_t     swb_object;
  144         vm_pindex_t     swb_index;
  145         int             swb_count;
  146         daddr_t         swb_pages[SWAP_META_PAGES];
  147 };
  148 
  149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
  150 static struct mtx sw_dev_mtx;
  151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
  152 static struct swdevt *swdevhd;  /* Allocate from here next */
  153 static int nswapdev;            /* Number of swap devices */
  154 int swap_pager_avail;
  155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
  156 
  157 static vm_ooffset_t swap_total;
  158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
  159     "Total amount of available swap storage.");
  160 static vm_ooffset_t swap_reserved;
  161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
  162     "Amount of swap storage needed to back all allocated anonymous memory.");
  163 static int overcommit = 0;
  164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
  165     "Configure virtual memory overcommit behavior. See tuning(7) "
  166     "for details.");
  167 static unsigned long swzone;
  168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
  169     "Actual size of swap metadata zone");
  170 static unsigned long swap_maxpages;
  171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
  172     "Maximum amount of swap supported");
  173 
  174 /* bits from overcommit */
  175 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
  176 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
  177 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
  178 
  179 int
  180 swap_reserve(vm_ooffset_t incr)
  181 {
  182 
  183         return (swap_reserve_by_cred(incr, curthread->td_ucred));
  184 }
  185 
  186 int
  187 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
  188 {
  189         vm_ooffset_t r, s;
  190         int res, error;
  191         static int curfail;
  192         static struct timeval lastfail;
  193         struct uidinfo *uip;
  194 
  195         uip = cred->cr_ruidinfo;
  196 
  197         if (incr & PAGE_MASK)
  198                 panic("swap_reserve: & PAGE_MASK");
  199 
  200 #ifdef RACCT
  201         if (racct_enable) {
  202                 PROC_LOCK(curproc);
  203                 error = racct_add(curproc, RACCT_SWAP, incr);
  204                 PROC_UNLOCK(curproc);
  205                 if (error != 0)
  206                         return (0);
  207         }
  208 #endif
  209 
  210         res = 0;
  211         mtx_lock(&sw_dev_mtx);
  212         r = swap_reserved + incr;
  213         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
  214                 s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count;
  215                 s *= PAGE_SIZE;
  216         } else
  217                 s = 0;
  218         s += swap_total;
  219         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
  220             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
  221                 res = 1;
  222                 swap_reserved = r;
  223         }
  224         mtx_unlock(&sw_dev_mtx);
  225 
  226         if (res) {
  227                 PROC_LOCK(curproc);
  228                 UIDINFO_VMSIZE_LOCK(uip);
  229                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
  230                     uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) &&
  231                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
  232                         res = 0;
  233                 else
  234                         uip->ui_vmsize += incr;
  235                 UIDINFO_VMSIZE_UNLOCK(uip);
  236                 PROC_UNLOCK(curproc);
  237                 if (!res) {
  238                         mtx_lock(&sw_dev_mtx);
  239                         swap_reserved -= incr;
  240                         mtx_unlock(&sw_dev_mtx);
  241                 }
  242         }
  243         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
  244                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
  245                     uip->ui_uid, curproc->p_pid, incr);
  246         }
  247 
  248 #ifdef RACCT
  249         if (!res) {
  250                 PROC_LOCK(curproc);
  251                 racct_sub(curproc, RACCT_SWAP, incr);
  252                 PROC_UNLOCK(curproc);
  253         }
  254 #endif
  255 
  256         return (res);
  257 }
  258 
  259 void
  260 swap_reserve_force(vm_ooffset_t incr)
  261 {
  262         struct uidinfo *uip;
  263 
  264         mtx_lock(&sw_dev_mtx);
  265         swap_reserved += incr;
  266         mtx_unlock(&sw_dev_mtx);
  267 
  268 #ifdef RACCT
  269         PROC_LOCK(curproc);
  270         racct_add_force(curproc, RACCT_SWAP, incr);
  271         PROC_UNLOCK(curproc);
  272 #endif
  273 
  274         uip = curthread->td_ucred->cr_ruidinfo;
  275         PROC_LOCK(curproc);
  276         UIDINFO_VMSIZE_LOCK(uip);
  277         uip->ui_vmsize += incr;
  278         UIDINFO_VMSIZE_UNLOCK(uip);
  279         PROC_UNLOCK(curproc);
  280 }
  281 
  282 void
  283 swap_release(vm_ooffset_t decr)
  284 {
  285         struct ucred *cred;
  286 
  287         PROC_LOCK(curproc);
  288         cred = curthread->td_ucred;
  289         swap_release_by_cred(decr, cred);
  290         PROC_UNLOCK(curproc);
  291 }
  292 
  293 void
  294 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
  295 {
  296         struct uidinfo *uip;
  297 
  298         uip = cred->cr_ruidinfo;
  299 
  300         if (decr & PAGE_MASK)
  301                 panic("swap_release: & PAGE_MASK");
  302 
  303         mtx_lock(&sw_dev_mtx);
  304         if (swap_reserved < decr)
  305                 panic("swap_reserved < decr");
  306         swap_reserved -= decr;
  307         mtx_unlock(&sw_dev_mtx);
  308 
  309         UIDINFO_VMSIZE_LOCK(uip);
  310         if (uip->ui_vmsize < decr)
  311                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
  312         uip->ui_vmsize -= decr;
  313         UIDINFO_VMSIZE_UNLOCK(uip);
  314 
  315         racct_sub_cred(cred, RACCT_SWAP, decr);
  316 }
  317 
  318 static void swapdev_strategy(struct buf *, struct swdevt *sw);
  319 
  320 #define SWM_FREE        0x02    /* free, period                 */
  321 #define SWM_POP         0x04    /* pop out                      */
  322 
  323 int swap_pager_full = 2;        /* swap space exhaustion (task killing) */
  324 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
  325 static int nsw_rcount;          /* free read buffers                    */
  326 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
  327 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
  328 static int nsw_wcount_async_max;/* assigned maximum                     */
  329 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
  330 
  331 static struct swblock **swhash;
  332 static int swhash_mask;
  333 static struct mtx swhash_mtx;
  334 
  335 static int swap_async_max = 4;  /* maximum in-progress async I/O's      */
  336 static struct sx sw_alloc_sx;
  337 
  338 
  339 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
  340         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
  341 
  342 /*
  343  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
  344  * of searching a named list by hashing it just a little.
  345  */
  346 
  347 #define NOBJLISTS               8
  348 
  349 #define NOBJLIST(handle)        \
  350         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
  351 
  352 static struct mtx sw_alloc_mtx; /* protect list manipulation */
  353 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
  354 static uma_zone_t       swap_zone;
  355 
  356 /*
  357  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
  358  * calls hooked from other parts of the VM system and do not appear here.
  359  * (see vm/swap_pager.h).
  360  */
  361 static vm_object_t
  362                 swap_pager_alloc(void *handle, vm_ooffset_t size,
  363                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
  364 static void     swap_pager_dealloc(vm_object_t object);
  365 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
  366 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
  367 static boolean_t
  368                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
  369 static void     swap_pager_init(void);
  370 static void     swap_pager_unswapped(vm_page_t);
  371 static void     swap_pager_swapoff(struct swdevt *sp);
  372 
  373 struct pagerops swappagerops = {
  374         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
  375         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
  376         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
  377         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
  378         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
  379         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
  380         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
  381 };
  382 
  383 /*
  384  * dmmax is in page-sized chunks with the new swap system.  It was
  385  * dev-bsized chunks in the old.  dmmax is always a power of 2.
  386  *
  387  * swap_*() routines are externally accessible.  swp_*() routines are
  388  * internal.
  389  */
  390 static int dmmax;
  391 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
  392 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
  393 
  394 SYSCTL_INT(_vm, OID_AUTO, dmmax,
  395         CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
  396 
  397 static void     swp_sizecheck(void);
  398 static void     swp_pager_async_iodone(struct buf *bp);
  399 static int      swapongeom(struct thread *, struct vnode *);
  400 static int      swaponvp(struct thread *, struct vnode *, u_long);
  401 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
  402 
  403 /*
  404  * Swap bitmap functions
  405  */
  406 static void     swp_pager_freeswapspace(daddr_t blk, int npages);
  407 static daddr_t  swp_pager_getswapspace(int npages);
  408 
  409 /*
  410  * Metadata functions
  411  */
  412 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
  413 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
  414 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
  415 static void swp_pager_meta_free_all(vm_object_t);
  416 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
  417 
  418 static void
  419 swp_pager_free_nrpage(vm_page_t m)
  420 {
  421 
  422         vm_page_lock(m);
  423         if (m->wire_count == 0)
  424                 vm_page_free(m);
  425         vm_page_unlock(m);
  426 }
  427 
  428 /*
  429  * SWP_SIZECHECK() -    update swap_pager_full indication
  430  *
  431  *      update the swap_pager_almost_full indication and warn when we are
  432  *      about to run out of swap space, using lowat/hiwat hysteresis.
  433  *
  434  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
  435  *
  436  *      No restrictions on call
  437  *      This routine may not block.
  438  */
  439 static void
  440 swp_sizecheck(void)
  441 {
  442 
  443         if (swap_pager_avail < nswap_lowat) {
  444                 if (swap_pager_almost_full == 0) {
  445                         printf("swap_pager: out of swap space\n");
  446                         swap_pager_almost_full = 1;
  447                 }
  448         } else {
  449                 swap_pager_full = 0;
  450                 if (swap_pager_avail > nswap_hiwat)
  451                         swap_pager_almost_full = 0;
  452         }
  453 }
  454 
  455 /*
  456  * SWP_PAGER_HASH() -   hash swap meta data
  457  *
  458  *      This is an helper function which hashes the swapblk given
  459  *      the object and page index.  It returns a pointer to a pointer
  460  *      to the object, or a pointer to a NULL pointer if it could not
  461  *      find a swapblk.
  462  */
  463 static struct swblock **
  464 swp_pager_hash(vm_object_t object, vm_pindex_t index)
  465 {
  466         struct swblock **pswap;
  467         struct swblock *swap;
  468 
  469         index &= ~(vm_pindex_t)SWAP_META_MASK;
  470         pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
  471         while ((swap = *pswap) != NULL) {
  472                 if (swap->swb_object == object &&
  473                     swap->swb_index == index
  474                 ) {
  475                         break;
  476                 }
  477                 pswap = &swap->swb_hnext;
  478         }
  479         return (pswap);
  480 }
  481 
  482 /*
  483  * SWAP_PAGER_INIT() -  initialize the swap pager!
  484  *
  485  *      Expected to be started from system init.  NOTE:  This code is run
  486  *      before much else so be careful what you depend on.  Most of the VM
  487  *      system has yet to be initialized at this point.
  488  */
  489 static void
  490 swap_pager_init(void)
  491 {
  492         /*
  493          * Initialize object lists
  494          */
  495         int i;
  496 
  497         for (i = 0; i < NOBJLISTS; ++i)
  498                 TAILQ_INIT(&swap_pager_object_list[i]);
  499         mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
  500         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
  501 
  502         /*
  503          * Device Stripe, in PAGE_SIZE'd blocks
  504          */
  505         dmmax = SWB_NPAGES * 2;
  506 }
  507 
  508 /*
  509  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
  510  *
  511  *      Expected to be started from pageout process once, prior to entering
  512  *      its main loop.
  513  */
  514 void
  515 swap_pager_swap_init(void)
  516 {
  517         unsigned long n, n2;
  518 
  519         /*
  520          * Number of in-transit swap bp operations.  Don't
  521          * exhaust the pbufs completely.  Make sure we
  522          * initialize workable values (0 will work for hysteresis
  523          * but it isn't very efficient).
  524          *
  525          * The nsw_cluster_max is constrained by the bp->b_pages[]
  526          * array (MAXPHYS/PAGE_SIZE) and our locally defined
  527          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
  528          * constrained by the swap device interleave stripe size.
  529          *
  530          * Currently we hardwire nsw_wcount_async to 4.  This limit is
  531          * designed to prevent other I/O from having high latencies due to
  532          * our pageout I/O.  The value 4 works well for one or two active swap
  533          * devices but is probably a little low if you have more.  Even so,
  534          * a higher value would probably generate only a limited improvement
  535          * with three or four active swap devices since the system does not
  536          * typically have to pageout at extreme bandwidths.   We will want
  537          * at least 2 per swap devices, and 4 is a pretty good value if you
  538          * have one NFS swap device due to the command/ack latency over NFS.
  539          * So it all works out pretty well.
  540          */
  541         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
  542 
  543         mtx_lock(&pbuf_mtx);
  544         nsw_rcount = (nswbuf + 1) / 2;
  545         nsw_wcount_sync = (nswbuf + 3) / 4;
  546         nsw_wcount_async = 4;
  547         nsw_wcount_async_max = nsw_wcount_async;
  548         mtx_unlock(&pbuf_mtx);
  549 
  550         /*
  551          * Initialize our zone.  Right now I'm just guessing on the number
  552          * we need based on the number of pages in the system.  Each swblock
  553          * can hold 32 pages, so this is probably overkill.  This reservation
  554          * is typically limited to around 32MB by default.
  555          */
  556         n = cnt.v_page_count / 2;
  557         if (maxswzone && n > maxswzone / sizeof(struct swblock))
  558                 n = maxswzone / sizeof(struct swblock);
  559         n2 = n;
  560         swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
  561             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
  562         if (swap_zone == NULL)
  563                 panic("failed to create swap_zone.");
  564         do {
  565                 if (uma_zone_reserve_kva(swap_zone, n))
  566                         break;
  567                 /*
  568                  * if the allocation failed, try a zone two thirds the
  569                  * size of the previous attempt.
  570                  */
  571                 n -= ((n + 2) / 3);
  572         } while (n > 0);
  573         if (n2 != n)
  574                 printf("Swap zone entries reduced from %lu to %lu.\n", n2, n);
  575         swap_maxpages = n * SWAP_META_PAGES;
  576         swzone = n * sizeof(struct swblock);
  577         n2 = n;
  578 
  579         /*
  580          * Initialize our meta-data hash table.  The swapper does not need to
  581          * be quite as efficient as the VM system, so we do not use an
  582          * oversized hash table.
  583          *
  584          *      n:              size of hash table, must be power of 2
  585          *      swhash_mask:    hash table index mask
  586          */
  587         for (n = 1; n < n2 / 8; n *= 2)
  588                 ;
  589         swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
  590         swhash_mask = n - 1;
  591         mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
  592 }
  593 
  594 /*
  595  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
  596  *                      its metadata structures.
  597  *
  598  *      This routine is called from the mmap and fork code to create a new
  599  *      OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
  600  *      and then converting it with swp_pager_meta_build().
  601  *
  602  *      This routine may block in vm_object_allocate() and create a named
  603  *      object lookup race, so we must interlock.
  604  *
  605  * MPSAFE
  606  */
  607 static vm_object_t
  608 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
  609     vm_ooffset_t offset, struct ucred *cred)
  610 {
  611         vm_object_t object;
  612         vm_pindex_t pindex;
  613 
  614         pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
  615         if (handle) {
  616                 mtx_lock(&Giant);
  617                 /*
  618                  * Reference existing named region or allocate new one.  There
  619                  * should not be a race here against swp_pager_meta_build()
  620                  * as called from vm_page_remove() in regards to the lookup
  621                  * of the handle.
  622                  */
  623                 sx_xlock(&sw_alloc_sx);
  624                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
  625                 if (object == NULL) {
  626                         if (cred != NULL) {
  627                                 if (!swap_reserve_by_cred(size, cred)) {
  628                                         sx_xunlock(&sw_alloc_sx);
  629                                         mtx_unlock(&Giant);
  630                                         return (NULL);
  631                                 }
  632                                 crhold(cred);
  633                         }
  634                         object = vm_object_allocate(OBJT_DEFAULT, pindex);
  635                         VM_OBJECT_WLOCK(object);
  636                         object->handle = handle;
  637                         if (cred != NULL) {
  638                                 object->cred = cred;
  639                                 object->charge = size;
  640                         }
  641                         swp_pager_meta_build(object, 0, SWAPBLK_NONE);
  642                         VM_OBJECT_WUNLOCK(object);
  643                 }
  644                 sx_xunlock(&sw_alloc_sx);
  645                 mtx_unlock(&Giant);
  646         } else {
  647                 if (cred != NULL) {
  648                         if (!swap_reserve_by_cred(size, cred))
  649                                 return (NULL);
  650                         crhold(cred);
  651                 }
  652                 object = vm_object_allocate(OBJT_DEFAULT, pindex);
  653                 VM_OBJECT_WLOCK(object);
  654                 if (cred != NULL) {
  655                         object->cred = cred;
  656                         object->charge = size;
  657                 }
  658                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
  659                 VM_OBJECT_WUNLOCK(object);
  660         }
  661         return (object);
  662 }
  663 
  664 /*
  665  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
  666  *
  667  *      The swap backing for the object is destroyed.  The code is
  668  *      designed such that we can reinstantiate it later, but this
  669  *      routine is typically called only when the entire object is
  670  *      about to be destroyed.
  671  *
  672  *      The object must be locked.
  673  */
  674 static void
  675 swap_pager_dealloc(vm_object_t object)
  676 {
  677 
  678         /*
  679          * Remove from list right away so lookups will fail if we block for
  680          * pageout completion.
  681          */
  682         if (object->handle != NULL) {
  683                 mtx_lock(&sw_alloc_mtx);
  684                 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
  685                 mtx_unlock(&sw_alloc_mtx);
  686         }
  687 
  688         VM_OBJECT_ASSERT_WLOCKED(object);
  689         vm_object_pip_wait(object, "swpdea");
  690 
  691         /*
  692          * Free all remaining metadata.  We only bother to free it from
  693          * the swap meta data.  We do not attempt to free swapblk's still
  694          * associated with vm_page_t's for this object.  We do not care
  695          * if paging is still in progress on some objects.
  696          */
  697         swp_pager_meta_free_all(object);
  698         object->handle = NULL;
  699         object->type = OBJT_DEAD;
  700 }
  701 
  702 /************************************************************************
  703  *                      SWAP PAGER BITMAP ROUTINES                      *
  704  ************************************************************************/
  705 
  706 /*
  707  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
  708  *
  709  *      Allocate swap for the requested number of pages.  The starting
  710  *      swap block number (a page index) is returned or SWAPBLK_NONE
  711  *      if the allocation failed.
  712  *
  713  *      Also has the side effect of advising that somebody made a mistake
  714  *      when they configured swap and didn't configure enough.
  715  *
  716  *      This routine may not sleep.
  717  *
  718  *      We allocate in round-robin fashion from the configured devices.
  719  */
  720 static daddr_t
  721 swp_pager_getswapspace(int npages)
  722 {
  723         daddr_t blk;
  724         struct swdevt *sp;
  725         int i;
  726 
  727         blk = SWAPBLK_NONE;
  728         mtx_lock(&sw_dev_mtx);
  729         sp = swdevhd;
  730         for (i = 0; i < nswapdev; i++) {
  731                 if (sp == NULL)
  732                         sp = TAILQ_FIRST(&swtailq);
  733                 if (!(sp->sw_flags & SW_CLOSING)) {
  734                         blk = blist_alloc(sp->sw_blist, npages);
  735                         if (blk != SWAPBLK_NONE) {
  736                                 blk += sp->sw_first;
  737                                 sp->sw_used += npages;
  738                                 swap_pager_avail -= npages;
  739                                 swp_sizecheck();
  740                                 swdevhd = TAILQ_NEXT(sp, sw_list);
  741                                 goto done;
  742                         }
  743                 }
  744                 sp = TAILQ_NEXT(sp, sw_list);
  745         }
  746         if (swap_pager_full != 2) {
  747                 printf("swap_pager_getswapspace(%d): failed\n", npages);
  748                 swap_pager_full = 2;
  749                 swap_pager_almost_full = 1;
  750         }
  751         swdevhd = NULL;
  752 done:
  753         mtx_unlock(&sw_dev_mtx);
  754         return (blk);
  755 }
  756 
  757 static int
  758 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
  759 {
  760 
  761         return (blk >= sp->sw_first && blk < sp->sw_end);
  762 }
  763 
  764 static void
  765 swp_pager_strategy(struct buf *bp)
  766 {
  767         struct swdevt *sp;
  768 
  769         mtx_lock(&sw_dev_mtx);
  770         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  771                 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
  772                         mtx_unlock(&sw_dev_mtx);
  773                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
  774                             unmapped_buf_allowed) {
  775                                 bp->b_kvaalloc = bp->b_data;
  776                                 bp->b_data = unmapped_buf;
  777                                 bp->b_kvabase = unmapped_buf;
  778                                 bp->b_offset = 0;
  779                                 bp->b_flags |= B_UNMAPPED;
  780                         } else {
  781                                 pmap_qenter((vm_offset_t)bp->b_data,
  782                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
  783                         }
  784                         sp->sw_strategy(bp, sp);
  785                         return;
  786                 }
  787         }
  788         panic("Swapdev not found");
  789 }
  790 
  791 
  792 /*
  793  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
  794  *
  795  *      This routine returns the specified swap blocks back to the bitmap.
  796  *
  797  *      This routine may not sleep.
  798  */
  799 static void
  800 swp_pager_freeswapspace(daddr_t blk, int npages)
  801 {
  802         struct swdevt *sp;
  803 
  804         mtx_lock(&sw_dev_mtx);
  805         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  806                 if (blk >= sp->sw_first && blk < sp->sw_end) {
  807                         sp->sw_used -= npages;
  808                         /*
  809                          * If we are attempting to stop swapping on
  810                          * this device, we don't want to mark any
  811                          * blocks free lest they be reused.
  812                          */
  813                         if ((sp->sw_flags & SW_CLOSING) == 0) {
  814                                 blist_free(sp->sw_blist, blk - sp->sw_first,
  815                                     npages);
  816                                 swap_pager_avail += npages;
  817                                 swp_sizecheck();
  818                         }
  819                         mtx_unlock(&sw_dev_mtx);
  820                         return;
  821                 }
  822         }
  823         panic("Swapdev not found");
  824 }
  825 
  826 /*
  827  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
  828  *                              range within an object.
  829  *
  830  *      This is a globally accessible routine.
  831  *
  832  *      This routine removes swapblk assignments from swap metadata.
  833  *
  834  *      The external callers of this routine typically have already destroyed
  835  *      or renamed vm_page_t's associated with this range in the object so
  836  *      we should be ok.
  837  *
  838  *      The object must be locked.
  839  */
  840 void
  841 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
  842 {
  843 
  844         swp_pager_meta_free(object, start, size);
  845 }
  846 
  847 /*
  848  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
  849  *
  850  *      Assigns swap blocks to the specified range within the object.  The
  851  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
  852  *
  853  *      Returns 0 on success, -1 on failure.
  854  */
  855 int
  856 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
  857 {
  858         int n = 0;
  859         daddr_t blk = SWAPBLK_NONE;
  860         vm_pindex_t beg = start;        /* save start index */
  861 
  862         VM_OBJECT_WLOCK(object);
  863         while (size) {
  864                 if (n == 0) {
  865                         n = BLIST_MAX_ALLOC;
  866                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
  867                                 n >>= 1;
  868                                 if (n == 0) {
  869                                         swp_pager_meta_free(object, beg, start - beg);
  870                                         VM_OBJECT_WUNLOCK(object);
  871                                         return (-1);
  872                                 }
  873                         }
  874                 }
  875                 swp_pager_meta_build(object, start, blk);
  876                 --size;
  877                 ++start;
  878                 ++blk;
  879                 --n;
  880         }
  881         swp_pager_meta_free(object, start, n);
  882         VM_OBJECT_WUNLOCK(object);
  883         return (0);
  884 }
  885 
  886 /*
  887  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
  888  *                      and destroy the source.
  889  *
  890  *      Copy any valid swapblks from the source to the destination.  In
  891  *      cases where both the source and destination have a valid swapblk,
  892  *      we keep the destination's.
  893  *
  894  *      This routine is allowed to sleep.  It may sleep allocating metadata
  895  *      indirectly through swp_pager_meta_build() or if paging is still in
  896  *      progress on the source.
  897  *
  898  *      The source object contains no vm_page_t's (which is just as well)
  899  *
  900  *      The source object is of type OBJT_SWAP.
  901  *
  902  *      The source and destination objects must be locked.
  903  *      Both object locks may temporarily be released.
  904  */
  905 void
  906 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
  907     vm_pindex_t offset, int destroysource)
  908 {
  909         vm_pindex_t i;
  910 
  911         VM_OBJECT_ASSERT_WLOCKED(srcobject);
  912         VM_OBJECT_ASSERT_WLOCKED(dstobject);
  913 
  914         /*
  915          * If destroysource is set, we remove the source object from the
  916          * swap_pager internal queue now.
  917          */
  918         if (destroysource) {
  919                 if (srcobject->handle != NULL) {
  920                         mtx_lock(&sw_alloc_mtx);
  921                         TAILQ_REMOVE(
  922                             NOBJLIST(srcobject->handle),
  923                             srcobject,
  924                             pager_object_list
  925                         );
  926                         mtx_unlock(&sw_alloc_mtx);
  927                 }
  928         }
  929 
  930         /*
  931          * transfer source to destination.
  932          */
  933         for (i = 0; i < dstobject->size; ++i) {
  934                 daddr_t dstaddr;
  935 
  936                 /*
  937                  * Locate (without changing) the swapblk on the destination,
  938                  * unless it is invalid in which case free it silently, or
  939                  * if the destination is a resident page, in which case the
  940                  * source is thrown away.
  941                  */
  942                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
  943 
  944                 if (dstaddr == SWAPBLK_NONE) {
  945                         /*
  946                          * Destination has no swapblk and is not resident,
  947                          * copy source.
  948                          */
  949                         daddr_t srcaddr;
  950 
  951                         srcaddr = swp_pager_meta_ctl(
  952                             srcobject,
  953                             i + offset,
  954                             SWM_POP
  955                         );
  956 
  957                         if (srcaddr != SWAPBLK_NONE) {
  958                                 /*
  959                                  * swp_pager_meta_build() can sleep.
  960                                  */
  961                                 vm_object_pip_add(srcobject, 1);
  962                                 VM_OBJECT_WUNLOCK(srcobject);
  963                                 vm_object_pip_add(dstobject, 1);
  964                                 swp_pager_meta_build(dstobject, i, srcaddr);
  965                                 vm_object_pip_wakeup(dstobject);
  966                                 VM_OBJECT_WLOCK(srcobject);
  967                                 vm_object_pip_wakeup(srcobject);
  968                         }
  969                 } else {
  970                         /*
  971                          * Destination has valid swapblk or it is represented
  972                          * by a resident page.  We destroy the sourceblock.
  973                          */
  974 
  975                         swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
  976                 }
  977         }
  978 
  979         /*
  980          * Free left over swap blocks in source.
  981          *
  982          * We have to revert the type to OBJT_DEFAULT so we do not accidently
  983          * double-remove the object from the swap queues.
  984          */
  985         if (destroysource) {
  986                 swp_pager_meta_free_all(srcobject);
  987                 /*
  988                  * Reverting the type is not necessary, the caller is going
  989                  * to destroy srcobject directly, but I'm doing it here
  990                  * for consistency since we've removed the object from its
  991                  * queues.
  992                  */
  993                 srcobject->type = OBJT_DEFAULT;
  994         }
  995 }
  996 
  997 /*
  998  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
  999  *                              the requested page.
 1000  *
 1001  *      We determine whether good backing store exists for the requested
 1002  *      page and return TRUE if it does, FALSE if it doesn't.
 1003  *
 1004  *      If TRUE, we also try to determine how much valid, contiguous backing
 1005  *      store exists before and after the requested page within a reasonable
 1006  *      distance.  We do not try to restrict it to the swap device stripe
 1007  *      (that is handled in getpages/putpages).  It probably isn't worth
 1008  *      doing here.
 1009  */
 1010 static boolean_t
 1011 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
 1012 {
 1013         daddr_t blk0;
 1014 
 1015         VM_OBJECT_ASSERT_LOCKED(object);
 1016         /*
 1017          * do we have good backing store at the requested index ?
 1018          */
 1019         blk0 = swp_pager_meta_ctl(object, pindex, 0);
 1020 
 1021         if (blk0 == SWAPBLK_NONE) {
 1022                 if (before)
 1023                         *before = 0;
 1024                 if (after)
 1025                         *after = 0;
 1026                 return (FALSE);
 1027         }
 1028 
 1029         /*
 1030          * find backwards-looking contiguous good backing store
 1031          */
 1032         if (before != NULL) {
 1033                 int i;
 1034 
 1035                 for (i = 1; i < (SWB_NPAGES/2); ++i) {
 1036                         daddr_t blk;
 1037 
 1038                         if (i > pindex)
 1039                                 break;
 1040                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
 1041                         if (blk != blk0 - i)
 1042                                 break;
 1043                 }
 1044                 *before = (i - 1);
 1045         }
 1046 
 1047         /*
 1048          * find forward-looking contiguous good backing store
 1049          */
 1050         if (after != NULL) {
 1051                 int i;
 1052 
 1053                 for (i = 1; i < (SWB_NPAGES/2); ++i) {
 1054                         daddr_t blk;
 1055 
 1056                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
 1057                         if (blk != blk0 + i)
 1058                                 break;
 1059                 }
 1060                 *after = (i - 1);
 1061         }
 1062         return (TRUE);
 1063 }
 1064 
 1065 /*
 1066  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
 1067  *
 1068  *      This removes any associated swap backing store, whether valid or
 1069  *      not, from the page.
 1070  *
 1071  *      This routine is typically called when a page is made dirty, at
 1072  *      which point any associated swap can be freed.  MADV_FREE also
 1073  *      calls us in a special-case situation
 1074  *
 1075  *      NOTE!!!  If the page is clean and the swap was valid, the caller
 1076  *      should make the page dirty before calling this routine.  This routine
 1077  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
 1078  *      depends on it.
 1079  *
 1080  *      This routine may not sleep.
 1081  *
 1082  *      The object containing the page must be locked.
 1083  */
 1084 static void
 1085 swap_pager_unswapped(vm_page_t m)
 1086 {
 1087 
 1088         swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
 1089 }
 1090 
 1091 /*
 1092  * SWAP_PAGER_GETPAGES() - bring pages in from swap
 1093  *
 1094  *      Attempt to retrieve (m, count) pages from backing store, but make
 1095  *      sure we retrieve at least m[reqpage].  We try to load in as large
 1096  *      a chunk surrounding m[reqpage] as is contiguous in swap and which
 1097  *      belongs to the same object.
 1098  *
 1099  *      The code is designed for asynchronous operation and
 1100  *      immediate-notification of 'reqpage' but tends not to be
 1101  *      used that way.  Please do not optimize-out this algorithmic
 1102  *      feature, I intend to improve on it in the future.
 1103  *
 1104  *      The parent has a single vm_object_pip_add() reference prior to
 1105  *      calling us and we should return with the same.
 1106  *
 1107  *      The parent has BUSY'd the pages.  We should return with 'm'
 1108  *      left busy, but the others adjusted.
 1109  */
 1110 static int
 1111 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
 1112 {
 1113         struct buf *bp;
 1114         vm_page_t mreq;
 1115         int i;
 1116         int j;
 1117         daddr_t blk;
 1118 
 1119         mreq = m[reqpage];
 1120 
 1121         KASSERT(mreq->object == object,
 1122             ("swap_pager_getpages: object mismatch %p/%p",
 1123             object, mreq->object));
 1124 
 1125         /*
 1126          * Calculate range to retrieve.  The pages have already been assigned
 1127          * their swapblks.  We require a *contiguous* range but we know it to
 1128          * not span devices.   If we do not supply it, bad things
 1129          * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
 1130          * loops are set up such that the case(s) are handled implicitly.
 1131          *
 1132          * The swp_*() calls must be made with the object locked.
 1133          */
 1134         blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
 1135 
 1136         for (i = reqpage - 1; i >= 0; --i) {
 1137                 daddr_t iblk;
 1138 
 1139                 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
 1140                 if (blk != iblk + (reqpage - i))
 1141                         break;
 1142         }
 1143         ++i;
 1144 
 1145         for (j = reqpage + 1; j < count; ++j) {
 1146                 daddr_t jblk;
 1147 
 1148                 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
 1149                 if (blk != jblk - (j - reqpage))
 1150                         break;
 1151         }
 1152 
 1153         /*
 1154          * free pages outside our collection range.   Note: we never free
 1155          * mreq, it must remain busy throughout.
 1156          */
 1157         if (0 < i || j < count) {
 1158                 int k;
 1159 
 1160                 for (k = 0; k < i; ++k)
 1161                         swp_pager_free_nrpage(m[k]);
 1162                 for (k = j; k < count; ++k)
 1163                         swp_pager_free_nrpage(m[k]);
 1164         }
 1165 
 1166         /*
 1167          * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
 1168          * still busy, but the others unbusied.
 1169          */
 1170         if (blk == SWAPBLK_NONE)
 1171                 return (VM_PAGER_FAIL);
 1172 
 1173         /*
 1174          * Getpbuf() can sleep.
 1175          */
 1176         VM_OBJECT_WUNLOCK(object);
 1177         /*
 1178          * Get a swap buffer header to perform the IO
 1179          */
 1180         bp = getpbuf(&nsw_rcount);
 1181         bp->b_flags |= B_PAGING;
 1182 
 1183         bp->b_iocmd = BIO_READ;
 1184         bp->b_iodone = swp_pager_async_iodone;
 1185         bp->b_rcred = crhold(thread0.td_ucred);
 1186         bp->b_wcred = crhold(thread0.td_ucred);
 1187         bp->b_blkno = blk - (reqpage - i);
 1188         bp->b_bcount = PAGE_SIZE * (j - i);
 1189         bp->b_bufsize = PAGE_SIZE * (j - i);
 1190         bp->b_pager.pg_reqpage = reqpage - i;
 1191 
 1192         VM_OBJECT_WLOCK(object);
 1193         {
 1194                 int k;
 1195 
 1196                 for (k = i; k < j; ++k) {
 1197                         bp->b_pages[k - i] = m[k];
 1198                         m[k]->oflags |= VPO_SWAPINPROG;
 1199                 }
 1200         }
 1201         bp->b_npages = j - i;
 1202 
 1203         PCPU_INC(cnt.v_swapin);
 1204         PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
 1205 
 1206         /*
 1207          * We still hold the lock on mreq, and our automatic completion routine
 1208          * does not remove it.
 1209          */
 1210         vm_object_pip_add(object, bp->b_npages);
 1211         VM_OBJECT_WUNLOCK(object);
 1212 
 1213         /*
 1214          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
 1215          * this point because we automatically release it on completion.
 1216          * Instead, we look at the one page we are interested in which we
 1217          * still hold a lock on even through the I/O completion.
 1218          *
 1219          * The other pages in our m[] array are also released on completion,
 1220          * so we cannot assume they are valid anymore either.
 1221          *
 1222          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1223          */
 1224         BUF_KERNPROC(bp);
 1225         swp_pager_strategy(bp);
 1226 
 1227         /*
 1228          * wait for the page we want to complete.  VPO_SWAPINPROG is always
 1229          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
 1230          * is set in the meta-data.
 1231          */
 1232         VM_OBJECT_WLOCK(object);
 1233         while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
 1234                 mreq->oflags |= VPO_SWAPSLEEP;
 1235                 PCPU_INC(cnt.v_intrans);
 1236                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
 1237                     "swread", hz * 20)) {
 1238                         printf(
 1239 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
 1240                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
 1241                 }
 1242         }
 1243 
 1244         /*
 1245          * mreq is left busied after completion, but all the other pages
 1246          * are freed.  If we had an unrecoverable read error the page will
 1247          * not be valid.
 1248          */
 1249         if (mreq->valid != VM_PAGE_BITS_ALL) {
 1250                 return (VM_PAGER_ERROR);
 1251         } else {
 1252                 return (VM_PAGER_OK);
 1253         }
 1254 
 1255         /*
 1256          * A final note: in a low swap situation, we cannot deallocate swap
 1257          * and mark a page dirty here because the caller is likely to mark
 1258          * the page clean when we return, causing the page to possibly revert
 1259          * to all-zero's later.
 1260          */
 1261 }
 1262 
 1263 /*
 1264  *      swap_pager_putpages:
 1265  *
 1266  *      Assign swap (if necessary) and initiate I/O on the specified pages.
 1267  *
 1268  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
 1269  *      are automatically converted to SWAP objects.
 1270  *
 1271  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
 1272  *      vm_page reservation system coupled with properly written VFS devices
 1273  *      should ensure that no low-memory deadlock occurs.  This is an area
 1274  *      which needs work.
 1275  *
 1276  *      The parent has N vm_object_pip_add() references prior to
 1277  *      calling us and will remove references for rtvals[] that are
 1278  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
 1279  *      completion.
 1280  *
 1281  *      The parent has soft-busy'd the pages it passes us and will unbusy
 1282  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
 1283  *      We need to unbusy the rest on I/O completion.
 1284  */
 1285 void
 1286 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
 1287     int flags, int *rtvals)
 1288 {
 1289         int i, n;
 1290         boolean_t sync;
 1291 
 1292         if (count && m[0]->object != object) {
 1293                 panic("swap_pager_putpages: object mismatch %p/%p",
 1294                     object,
 1295                     m[0]->object
 1296                 );
 1297         }
 1298 
 1299         /*
 1300          * Step 1
 1301          *
 1302          * Turn object into OBJT_SWAP
 1303          * check for bogus sysops
 1304          * force sync if not pageout process
 1305          */
 1306         if (object->type != OBJT_SWAP)
 1307                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
 1308         VM_OBJECT_WUNLOCK(object);
 1309 
 1310         n = 0;
 1311         if (curproc != pageproc)
 1312                 sync = TRUE;
 1313         else
 1314                 sync = (flags & VM_PAGER_PUT_SYNC) != 0;
 1315 
 1316         /*
 1317          * Step 2
 1318          *
 1319          * Update nsw parameters from swap_async_max sysctl values.
 1320          * Do not let the sysop crash the machine with bogus numbers.
 1321          */
 1322         mtx_lock(&pbuf_mtx);
 1323         if (swap_async_max != nsw_wcount_async_max) {
 1324                 int n;
 1325 
 1326                 /*
 1327                  * limit range
 1328                  */
 1329                 if ((n = swap_async_max) > nswbuf / 2)
 1330                         n = nswbuf / 2;
 1331                 if (n < 1)
 1332                         n = 1;
 1333                 swap_async_max = n;
 1334 
 1335                 /*
 1336                  * Adjust difference ( if possible ).  If the current async
 1337                  * count is too low, we may not be able to make the adjustment
 1338                  * at this time.
 1339                  */
 1340                 n -= nsw_wcount_async_max;
 1341                 if (nsw_wcount_async + n >= 0) {
 1342                         nsw_wcount_async += n;
 1343                         nsw_wcount_async_max += n;
 1344                         wakeup(&nsw_wcount_async);
 1345                 }
 1346         }
 1347         mtx_unlock(&pbuf_mtx);
 1348 
 1349         /*
 1350          * Step 3
 1351          *
 1352          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
 1353          * The page is left dirty until the pageout operation completes
 1354          * successfully.
 1355          */
 1356         for (i = 0; i < count; i += n) {
 1357                 int j;
 1358                 struct buf *bp;
 1359                 daddr_t blk;
 1360 
 1361                 /*
 1362                  * Maximum I/O size is limited by a number of factors.
 1363                  */
 1364                 n = min(BLIST_MAX_ALLOC, count - i);
 1365                 n = min(n, nsw_cluster_max);
 1366 
 1367                 /*
 1368                  * Get biggest block of swap we can.  If we fail, fall
 1369                  * back and try to allocate a smaller block.  Don't go
 1370                  * overboard trying to allocate space if it would overly
 1371                  * fragment swap.
 1372                  */
 1373                 while (
 1374                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
 1375                     n > 4
 1376                 ) {
 1377                         n >>= 1;
 1378                 }
 1379                 if (blk == SWAPBLK_NONE) {
 1380                         for (j = 0; j < n; ++j)
 1381                                 rtvals[i+j] = VM_PAGER_FAIL;
 1382                         continue;
 1383                 }
 1384 
 1385                 /*
 1386                  * All I/O parameters have been satisfied, build the I/O
 1387                  * request and assign the swap space.
 1388                  */
 1389                 if (sync == TRUE) {
 1390                         bp = getpbuf(&nsw_wcount_sync);
 1391                 } else {
 1392                         bp = getpbuf(&nsw_wcount_async);
 1393                         bp->b_flags = B_ASYNC;
 1394                 }
 1395                 bp->b_flags |= B_PAGING;
 1396                 bp->b_iocmd = BIO_WRITE;
 1397 
 1398                 bp->b_rcred = crhold(thread0.td_ucred);
 1399                 bp->b_wcred = crhold(thread0.td_ucred);
 1400                 bp->b_bcount = PAGE_SIZE * n;
 1401                 bp->b_bufsize = PAGE_SIZE * n;
 1402                 bp->b_blkno = blk;
 1403 
 1404                 VM_OBJECT_WLOCK(object);
 1405                 for (j = 0; j < n; ++j) {
 1406                         vm_page_t mreq = m[i+j];
 1407 
 1408                         swp_pager_meta_build(
 1409                             mreq->object,
 1410                             mreq->pindex,
 1411                             blk + j
 1412                         );
 1413                         vm_page_dirty(mreq);
 1414                         rtvals[i+j] = VM_PAGER_OK;
 1415 
 1416                         mreq->oflags |= VPO_SWAPINPROG;
 1417                         bp->b_pages[j] = mreq;
 1418                 }
 1419                 VM_OBJECT_WUNLOCK(object);
 1420                 bp->b_npages = n;
 1421                 /*
 1422                  * Must set dirty range for NFS to work.
 1423                  */
 1424                 bp->b_dirtyoff = 0;
 1425                 bp->b_dirtyend = bp->b_bcount;
 1426 
 1427                 PCPU_INC(cnt.v_swapout);
 1428                 PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
 1429 
 1430                 /*
 1431                  * asynchronous
 1432                  *
 1433                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1434                  */
 1435                 if (sync == FALSE) {
 1436                         bp->b_iodone = swp_pager_async_iodone;
 1437                         BUF_KERNPROC(bp);
 1438                         swp_pager_strategy(bp);
 1439 
 1440                         for (j = 0; j < n; ++j)
 1441                                 rtvals[i+j] = VM_PAGER_PEND;
 1442                         /* restart outter loop */
 1443                         continue;
 1444                 }
 1445 
 1446                 /*
 1447                  * synchronous
 1448                  *
 1449                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1450                  */
 1451                 bp->b_iodone = bdone;
 1452                 swp_pager_strategy(bp);
 1453 
 1454                 /*
 1455                  * Wait for the sync I/O to complete, then update rtvals.
 1456                  * We just set the rtvals[] to VM_PAGER_PEND so we can call
 1457                  * our async completion routine at the end, thus avoiding a
 1458                  * double-free.
 1459                  */
 1460                 bwait(bp, PVM, "swwrt");
 1461                 for (j = 0; j < n; ++j)
 1462                         rtvals[i+j] = VM_PAGER_PEND;
 1463                 /*
 1464                  * Now that we are through with the bp, we can call the
 1465                  * normal async completion, which frees everything up.
 1466                  */
 1467                 swp_pager_async_iodone(bp);
 1468         }
 1469         VM_OBJECT_WLOCK(object);
 1470 }
 1471 
 1472 /*
 1473  *      swp_pager_async_iodone:
 1474  *
 1475  *      Completion routine for asynchronous reads and writes from/to swap.
 1476  *      Also called manually by synchronous code to finish up a bp.
 1477  *
 1478  *      This routine may not sleep.
 1479  */
 1480 static void
 1481 swp_pager_async_iodone(struct buf *bp)
 1482 {
 1483         int i;
 1484         vm_object_t object = NULL;
 1485 
 1486         /*
 1487          * report error
 1488          */
 1489         if (bp->b_ioflags & BIO_ERROR) {
 1490                 printf(
 1491                     "swap_pager: I/O error - %s failed; blkno %ld,"
 1492                         "size %ld, error %d\n",
 1493                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
 1494                     (long)bp->b_blkno,
 1495                     (long)bp->b_bcount,
 1496                     bp->b_error
 1497                 );
 1498         }
 1499 
 1500         /*
 1501          * remove the mapping for kernel virtual
 1502          */
 1503         if ((bp->b_flags & B_UNMAPPED) != 0) {
 1504                 bp->b_data = bp->b_kvaalloc;
 1505                 bp->b_kvabase = bp->b_kvaalloc;
 1506                 bp->b_flags &= ~B_UNMAPPED;
 1507         } else
 1508                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
 1509 
 1510         if (bp->b_npages) {
 1511                 object = bp->b_pages[0]->object;
 1512                 VM_OBJECT_WLOCK(object);
 1513         }
 1514 
 1515         /*
 1516          * cleanup pages.  If an error occurs writing to swap, we are in
 1517          * very serious trouble.  If it happens to be a disk error, though,
 1518          * we may be able to recover by reassigning the swap later on.  So
 1519          * in this case we remove the m->swapblk assignment for the page
 1520          * but do not free it in the rlist.  The errornous block(s) are thus
 1521          * never reallocated as swap.  Redirty the page and continue.
 1522          */
 1523         for (i = 0; i < bp->b_npages; ++i) {
 1524                 vm_page_t m = bp->b_pages[i];
 1525 
 1526                 m->oflags &= ~VPO_SWAPINPROG;
 1527                 if (m->oflags & VPO_SWAPSLEEP) {
 1528                         m->oflags &= ~VPO_SWAPSLEEP;
 1529                         wakeup(&object->paging_in_progress);
 1530                 }
 1531 
 1532                 if (bp->b_ioflags & BIO_ERROR) {
 1533                         /*
 1534                          * If an error occurs I'd love to throw the swapblk
 1535                          * away without freeing it back to swapspace, so it
 1536                          * can never be used again.  But I can't from an
 1537                          * interrupt.
 1538                          */
 1539                         if (bp->b_iocmd == BIO_READ) {
 1540                                 /*
 1541                                  * When reading, reqpage needs to stay
 1542                                  * locked for the parent, but all other
 1543                                  * pages can be freed.  We still want to
 1544                                  * wakeup the parent waiting on the page,
 1545                                  * though.  ( also: pg_reqpage can be -1 and
 1546                                  * not match anything ).
 1547                                  *
 1548                                  * We have to wake specifically requested pages
 1549                                  * up too because we cleared VPO_SWAPINPROG and
 1550                                  * someone may be waiting for that.
 1551                                  *
 1552                                  * NOTE: for reads, m->dirty will probably
 1553                                  * be overridden by the original caller of
 1554                                  * getpages so don't play cute tricks here.
 1555                                  */
 1556                                 m->valid = 0;
 1557                                 if (i != bp->b_pager.pg_reqpage)
 1558                                         swp_pager_free_nrpage(m);
 1559                                 else {
 1560                                         vm_page_lock(m);
 1561                                         vm_page_flash(m);
 1562                                         vm_page_unlock(m);
 1563                                 }
 1564                                 /*
 1565                                  * If i == bp->b_pager.pg_reqpage, do not wake
 1566                                  * the page up.  The caller needs to.
 1567                                  */
 1568                         } else {
 1569                                 /*
 1570                                  * If a write error occurs, reactivate page
 1571                                  * so it doesn't clog the inactive list,
 1572                                  * then finish the I/O.
 1573                                  */
 1574                                 vm_page_dirty(m);
 1575                                 vm_page_lock(m);
 1576                                 vm_page_activate(m);
 1577                                 vm_page_unlock(m);
 1578                                 vm_page_sunbusy(m);
 1579                         }
 1580                 } else if (bp->b_iocmd == BIO_READ) {
 1581                         /*
 1582                          * NOTE: for reads, m->dirty will probably be
 1583                          * overridden by the original caller of getpages so
 1584                          * we cannot set them in order to free the underlying
 1585                          * swap in a low-swap situation.  I don't think we'd
 1586                          * want to do that anyway, but it was an optimization
 1587                          * that existed in the old swapper for a time before
 1588                          * it got ripped out due to precisely this problem.
 1589                          *
 1590                          * If not the requested page then deactivate it.
 1591                          *
 1592                          * Note that the requested page, reqpage, is left
 1593                          * busied, but we still have to wake it up.  The
 1594                          * other pages are released (unbusied) by
 1595                          * vm_page_xunbusy().
 1596                          */
 1597                         KASSERT(!pmap_page_is_mapped(m),
 1598                             ("swp_pager_async_iodone: page %p is mapped", m));
 1599                         m->valid = VM_PAGE_BITS_ALL;
 1600                         KASSERT(m->dirty == 0,
 1601                             ("swp_pager_async_iodone: page %p is dirty", m));
 1602 
 1603                         /*
 1604                          * We have to wake specifically requested pages
 1605                          * up too because we cleared VPO_SWAPINPROG and
 1606                          * could be waiting for it in getpages.  However,
 1607                          * be sure to not unbusy getpages specifically
 1608                          * requested page - getpages expects it to be
 1609                          * left busy.
 1610                          */
 1611                         if (i != bp->b_pager.pg_reqpage) {
 1612                                 vm_page_lock(m);
 1613                                 vm_page_deactivate(m);
 1614                                 vm_page_unlock(m);
 1615                                 vm_page_xunbusy(m);
 1616                         } else {
 1617                                 vm_page_lock(m);
 1618                                 vm_page_flash(m);
 1619                                 vm_page_unlock(m);
 1620                         }
 1621                 } else {
 1622                         /*
 1623                          * For write success, clear the dirty
 1624                          * status, then finish the I/O ( which decrements the
 1625                          * busy count and possibly wakes waiter's up ).
 1626                          */
 1627                         KASSERT(!pmap_page_is_write_mapped(m),
 1628                             ("swp_pager_async_iodone: page %p is not write"
 1629                             " protected", m));
 1630                         vm_page_undirty(m);
 1631                         vm_page_sunbusy(m);
 1632                         if (vm_page_count_severe()) {
 1633                                 vm_page_lock(m);
 1634                                 vm_page_try_to_cache(m);
 1635                                 vm_page_unlock(m);
 1636                         }
 1637                 }
 1638         }
 1639 
 1640         /*
 1641          * adjust pip.  NOTE: the original parent may still have its own
 1642          * pip refs on the object.
 1643          */
 1644         if (object != NULL) {
 1645                 vm_object_pip_wakeupn(object, bp->b_npages);
 1646                 VM_OBJECT_WUNLOCK(object);
 1647         }
 1648 
 1649         /*
 1650          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
 1651          * bstrategy(). Set them back to NULL now we're done with it, or we'll
 1652          * trigger a KASSERT in relpbuf().
 1653          */
 1654         if (bp->b_vp) {
 1655                     bp->b_vp = NULL;
 1656                     bp->b_bufobj = NULL;
 1657         }
 1658         /*
 1659          * release the physical I/O buffer
 1660          */
 1661         relpbuf(
 1662             bp,
 1663             ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
 1664                 ((bp->b_flags & B_ASYNC) ?
 1665                     &nsw_wcount_async :
 1666                     &nsw_wcount_sync
 1667                 )
 1668             )
 1669         );
 1670 }
 1671 
 1672 /*
 1673  *      swap_pager_isswapped:
 1674  *
 1675  *      Return 1 if at least one page in the given object is paged
 1676  *      out to the given swap device.
 1677  *
 1678  *      This routine may not sleep.
 1679  */
 1680 int
 1681 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
 1682 {
 1683         daddr_t index = 0;
 1684         int bcount;
 1685         int i;
 1686 
 1687         VM_OBJECT_ASSERT_WLOCKED(object);
 1688         if (object->type != OBJT_SWAP)
 1689                 return (0);
 1690 
 1691         mtx_lock(&swhash_mtx);
 1692         for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
 1693                 struct swblock *swap;
 1694 
 1695                 if ((swap = *swp_pager_hash(object, index)) != NULL) {
 1696                         for (i = 0; i < SWAP_META_PAGES; ++i) {
 1697                                 if (swp_pager_isondev(swap->swb_pages[i], sp)) {
 1698                                         mtx_unlock(&swhash_mtx);
 1699                                         return (1);
 1700                                 }
 1701                         }
 1702                 }
 1703                 index += SWAP_META_PAGES;
 1704         }
 1705         mtx_unlock(&swhash_mtx);
 1706         return (0);
 1707 }
 1708 
 1709 /*
 1710  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
 1711  *
 1712  *      This routine dissociates the page at the given index within a
 1713  *      swap block from its backing store, paging it in if necessary.
 1714  *      If the page is paged in, it is placed in the inactive queue,
 1715  *      since it had its backing store ripped out from under it.
 1716  *      We also attempt to swap in all other pages in the swap block,
 1717  *      we only guarantee that the one at the specified index is
 1718  *      paged in.
 1719  *
 1720  *      XXX - The code to page the whole block in doesn't work, so we
 1721  *            revert to the one-by-one behavior for now.  Sigh.
 1722  */
 1723 static inline void
 1724 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
 1725 {
 1726         vm_page_t m;
 1727 
 1728         vm_object_pip_add(object, 1);
 1729         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
 1730         if (m->valid == VM_PAGE_BITS_ALL) {
 1731                 vm_object_pip_subtract(object, 1);
 1732                 vm_page_dirty(m);
 1733                 vm_page_lock(m);
 1734                 vm_page_activate(m);
 1735                 vm_page_unlock(m);
 1736                 vm_page_xunbusy(m);
 1737                 vm_pager_page_unswapped(m);
 1738                 return;
 1739         }
 1740 
 1741         if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
 1742                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
 1743         vm_object_pip_subtract(object, 1);
 1744         vm_page_dirty(m);
 1745         vm_page_lock(m);
 1746         vm_page_deactivate(m);
 1747         vm_page_unlock(m);
 1748         vm_page_xunbusy(m);
 1749         vm_pager_page_unswapped(m);
 1750 }
 1751 
 1752 /*
 1753  *      swap_pager_swapoff:
 1754  *
 1755  *      Page in all of the pages that have been paged out to the
 1756  *      given device.  The corresponding blocks in the bitmap must be
 1757  *      marked as allocated and the device must be flagged SW_CLOSING.
 1758  *      There may be no processes swapped out to the device.
 1759  *
 1760  *      This routine may block.
 1761  */
 1762 static void
 1763 swap_pager_swapoff(struct swdevt *sp)
 1764 {
 1765         struct swblock *swap;
 1766         int i, j, retries;
 1767 
 1768         GIANT_REQUIRED;
 1769 
 1770         retries = 0;
 1771 full_rescan:
 1772         mtx_lock(&swhash_mtx);
 1773         for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
 1774 restart:
 1775                 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
 1776                         vm_object_t object = swap->swb_object;
 1777                         vm_pindex_t pindex = swap->swb_index;
 1778                         for (j = 0; j < SWAP_META_PAGES; ++j) {
 1779                                 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
 1780                                         /* avoid deadlock */
 1781                                         if (!VM_OBJECT_TRYWLOCK(object)) {
 1782                                                 break;
 1783                                         } else {
 1784                                                 mtx_unlock(&swhash_mtx);
 1785                                                 swp_pager_force_pagein(object,
 1786                                                     pindex + j);
 1787                                                 VM_OBJECT_WUNLOCK(object);
 1788                                                 mtx_lock(&swhash_mtx);
 1789                                                 goto restart;
 1790                                         }
 1791                                 }
 1792                         }
 1793                 }
 1794         }
 1795         mtx_unlock(&swhash_mtx);
 1796         if (sp->sw_used) {
 1797                 /*
 1798                  * Objects may be locked or paging to the device being
 1799                  * removed, so we will miss their pages and need to
 1800                  * make another pass.  We have marked this device as
 1801                  * SW_CLOSING, so the activity should finish soon.
 1802                  */
 1803                 retries++;
 1804                 if (retries > 100) {
 1805                         panic("swapoff: failed to locate %d swap blocks",
 1806                             sp->sw_used);
 1807                 }
 1808                 pause("swpoff", hz / 20);
 1809                 goto full_rescan;
 1810         }
 1811 }
 1812 
 1813 /************************************************************************
 1814  *                              SWAP META DATA                          *
 1815  ************************************************************************
 1816  *
 1817  *      These routines manipulate the swap metadata stored in the
 1818  *      OBJT_SWAP object.
 1819  *
 1820  *      Swap metadata is implemented with a global hash and not directly
 1821  *      linked into the object.  Instead the object simply contains
 1822  *      appropriate tracking counters.
 1823  */
 1824 
 1825 /*
 1826  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
 1827  *
 1828  *      We first convert the object to a swap object if it is a default
 1829  *      object.
 1830  *
 1831  *      The specified swapblk is added to the object's swap metadata.  If
 1832  *      the swapblk is not valid, it is freed instead.  Any previously
 1833  *      assigned swapblk is freed.
 1834  */
 1835 static void
 1836 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
 1837 {
 1838         static volatile int exhausted;
 1839         struct swblock *swap;
 1840         struct swblock **pswap;
 1841         int idx;
 1842 
 1843         VM_OBJECT_ASSERT_WLOCKED(object);
 1844         /*
 1845          * Convert default object to swap object if necessary
 1846          */
 1847         if (object->type != OBJT_SWAP) {
 1848                 object->type = OBJT_SWAP;
 1849                 object->un_pager.swp.swp_bcount = 0;
 1850 
 1851                 if (object->handle != NULL) {
 1852                         mtx_lock(&sw_alloc_mtx);
 1853                         TAILQ_INSERT_TAIL(
 1854                             NOBJLIST(object->handle),
 1855                             object,
 1856                             pager_object_list
 1857                         );
 1858                         mtx_unlock(&sw_alloc_mtx);
 1859                 }
 1860         }
 1861 
 1862         /*
 1863          * Locate hash entry.  If not found create, but if we aren't adding
 1864          * anything just return.  If we run out of space in the map we wait
 1865          * and, since the hash table may have changed, retry.
 1866          */
 1867 retry:
 1868         mtx_lock(&swhash_mtx);
 1869         pswap = swp_pager_hash(object, pindex);
 1870 
 1871         if ((swap = *pswap) == NULL) {
 1872                 int i;
 1873 
 1874                 if (swapblk == SWAPBLK_NONE)
 1875                         goto done;
 1876 
 1877                 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT |
 1878                     (curproc == pageproc ? M_USE_RESERVE : 0));
 1879                 if (swap == NULL) {
 1880                         mtx_unlock(&swhash_mtx);
 1881                         VM_OBJECT_WUNLOCK(object);
 1882                         if (uma_zone_exhausted(swap_zone)) {
 1883                                 if (atomic_cmpset_int(&exhausted, 0, 1))
 1884                                         printf("swap zone exhausted, "
 1885                                             "increase kern.maxswzone\n");
 1886                                 vm_pageout_oom(VM_OOM_SWAPZ);
 1887                                 pause("swzonex", 10);
 1888                         } else
 1889                                 VM_WAIT;
 1890                         VM_OBJECT_WLOCK(object);
 1891                         goto retry;
 1892                 }
 1893 
 1894                 if (atomic_cmpset_int(&exhausted, 1, 0))
 1895                         printf("swap zone ok\n");
 1896 
 1897                 swap->swb_hnext = NULL;
 1898                 swap->swb_object = object;
 1899                 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
 1900                 swap->swb_count = 0;
 1901 
 1902                 ++object->un_pager.swp.swp_bcount;
 1903 
 1904                 for (i = 0; i < SWAP_META_PAGES; ++i)
 1905                         swap->swb_pages[i] = SWAPBLK_NONE;
 1906         }
 1907 
 1908         /*
 1909          * Delete prior contents of metadata
 1910          */
 1911         idx = pindex & SWAP_META_MASK;
 1912 
 1913         if (swap->swb_pages[idx] != SWAPBLK_NONE) {
 1914                 swp_pager_freeswapspace(swap->swb_pages[idx], 1);
 1915                 --swap->swb_count;
 1916         }
 1917 
 1918         /*
 1919          * Enter block into metadata
 1920          */
 1921         swap->swb_pages[idx] = swapblk;
 1922         if (swapblk != SWAPBLK_NONE)
 1923                 ++swap->swb_count;
 1924 done:
 1925         mtx_unlock(&swhash_mtx);
 1926 }
 1927 
 1928 /*
 1929  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
 1930  *
 1931  *      The requested range of blocks is freed, with any associated swap
 1932  *      returned to the swap bitmap.
 1933  *
 1934  *      This routine will free swap metadata structures as they are cleaned
 1935  *      out.  This routine does *NOT* operate on swap metadata associated
 1936  *      with resident pages.
 1937  */
 1938 static void
 1939 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
 1940 {
 1941 
 1942         VM_OBJECT_ASSERT_LOCKED(object);
 1943         if (object->type != OBJT_SWAP)
 1944                 return;
 1945 
 1946         while (count > 0) {
 1947                 struct swblock **pswap;
 1948                 struct swblock *swap;
 1949 
 1950                 mtx_lock(&swhash_mtx);
 1951                 pswap = swp_pager_hash(object, index);
 1952 
 1953                 if ((swap = *pswap) != NULL) {
 1954                         daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
 1955 
 1956                         if (v != SWAPBLK_NONE) {
 1957                                 swp_pager_freeswapspace(v, 1);
 1958                                 swap->swb_pages[index & SWAP_META_MASK] =
 1959                                         SWAPBLK_NONE;
 1960                                 if (--swap->swb_count == 0) {
 1961                                         *pswap = swap->swb_hnext;
 1962                                         uma_zfree(swap_zone, swap);
 1963                                         --object->un_pager.swp.swp_bcount;
 1964                                 }
 1965                         }
 1966                         --count;
 1967                         ++index;
 1968                 } else {
 1969                         int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
 1970                         count -= n;
 1971                         index += n;
 1972                 }
 1973                 mtx_unlock(&swhash_mtx);
 1974         }
 1975 }
 1976 
 1977 /*
 1978  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
 1979  *
 1980  *      This routine locates and destroys all swap metadata associated with
 1981  *      an object.
 1982  */
 1983 static void
 1984 swp_pager_meta_free_all(vm_object_t object)
 1985 {
 1986         daddr_t index = 0;
 1987 
 1988         VM_OBJECT_ASSERT_WLOCKED(object);
 1989         if (object->type != OBJT_SWAP)
 1990                 return;
 1991 
 1992         while (object->un_pager.swp.swp_bcount) {
 1993                 struct swblock **pswap;
 1994                 struct swblock *swap;
 1995 
 1996                 mtx_lock(&swhash_mtx);
 1997                 pswap = swp_pager_hash(object, index);
 1998                 if ((swap = *pswap) != NULL) {
 1999                         int i;
 2000 
 2001                         for (i = 0; i < SWAP_META_PAGES; ++i) {
 2002                                 daddr_t v = swap->swb_pages[i];
 2003                                 if (v != SWAPBLK_NONE) {
 2004                                         --swap->swb_count;
 2005                                         swp_pager_freeswapspace(v, 1);
 2006                                 }
 2007                         }
 2008                         if (swap->swb_count != 0)
 2009                                 panic("swap_pager_meta_free_all: swb_count != 0");
 2010                         *pswap = swap->swb_hnext;
 2011                         uma_zfree(swap_zone, swap);
 2012                         --object->un_pager.swp.swp_bcount;
 2013                 }
 2014                 mtx_unlock(&swhash_mtx);
 2015                 index += SWAP_META_PAGES;
 2016         }
 2017 }
 2018 
 2019 /*
 2020  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
 2021  *
 2022  *      This routine is capable of looking up, popping, or freeing
 2023  *      swapblk assignments in the swap meta data or in the vm_page_t.
 2024  *      The routine typically returns the swapblk being looked-up, or popped,
 2025  *      or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
 2026  *      was invalid.  This routine will automatically free any invalid
 2027  *      meta-data swapblks.
 2028  *
 2029  *      It is not possible to store invalid swapblks in the swap meta data
 2030  *      (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
 2031  *
 2032  *      When acting on a busy resident page and paging is in progress, we
 2033  *      have to wait until paging is complete but otherwise can act on the
 2034  *      busy page.
 2035  *
 2036  *      SWM_FREE        remove and free swap block from metadata
 2037  *      SWM_POP         remove from meta data but do not free.. pop it out
 2038  */
 2039 static daddr_t
 2040 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
 2041 {
 2042         struct swblock **pswap;
 2043         struct swblock *swap;
 2044         daddr_t r1;
 2045         int idx;
 2046 
 2047         VM_OBJECT_ASSERT_LOCKED(object);
 2048         /*
 2049          * The meta data only exists of the object is OBJT_SWAP
 2050          * and even then might not be allocated yet.
 2051          */
 2052         if (object->type != OBJT_SWAP)
 2053                 return (SWAPBLK_NONE);
 2054 
 2055         r1 = SWAPBLK_NONE;
 2056         mtx_lock(&swhash_mtx);
 2057         pswap = swp_pager_hash(object, pindex);
 2058 
 2059         if ((swap = *pswap) != NULL) {
 2060                 idx = pindex & SWAP_META_MASK;
 2061                 r1 = swap->swb_pages[idx];
 2062 
 2063                 if (r1 != SWAPBLK_NONE) {
 2064                         if (flags & SWM_FREE) {
 2065                                 swp_pager_freeswapspace(r1, 1);
 2066                                 r1 = SWAPBLK_NONE;
 2067                         }
 2068                         if (flags & (SWM_FREE|SWM_POP)) {
 2069                                 swap->swb_pages[idx] = SWAPBLK_NONE;
 2070                                 if (--swap->swb_count == 0) {
 2071                                         *pswap = swap->swb_hnext;
 2072                                         uma_zfree(swap_zone, swap);
 2073                                         --object->un_pager.swp.swp_bcount;
 2074                                 }
 2075                         }
 2076                 }
 2077         }
 2078         mtx_unlock(&swhash_mtx);
 2079         return (r1);
 2080 }
 2081 
 2082 /*
 2083  * System call swapon(name) enables swapping on device name,
 2084  * which must be in the swdevsw.  Return EBUSY
 2085  * if already swapping on this device.
 2086  */
 2087 #ifndef _SYS_SYSPROTO_H_
 2088 struct swapon_args {
 2089         char *name;
 2090 };
 2091 #endif
 2092 
 2093 /*
 2094  * MPSAFE
 2095  */
 2096 /* ARGSUSED */
 2097 int
 2098 sys_swapon(struct thread *td, struct swapon_args *uap)
 2099 {
 2100         struct vattr attr;
 2101         struct vnode *vp;
 2102         struct nameidata nd;
 2103         int error;
 2104 
 2105         error = priv_check(td, PRIV_SWAPON);
 2106         if (error)
 2107                 return (error);
 2108 
 2109         mtx_lock(&Giant);
 2110         while (swdev_syscall_active)
 2111             tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
 2112         swdev_syscall_active = 1;
 2113 
 2114         /*
 2115          * Swap metadata may not fit in the KVM if we have physical
 2116          * memory of >1GB.
 2117          */
 2118         if (swap_zone == NULL) {
 2119                 error = ENOMEM;
 2120                 goto done;
 2121         }
 2122 
 2123         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
 2124             uap->name, td);
 2125         error = namei(&nd);
 2126         if (error)
 2127                 goto done;
 2128 
 2129         NDFREE(&nd, NDF_ONLY_PNBUF);
 2130         vp = nd.ni_vp;
 2131 
 2132         if (vn_isdisk(vp, &error)) {
 2133                 error = swapongeom(td, vp);
 2134         } else if (vp->v_type == VREG &&
 2135             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 2136             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
 2137                 /*
 2138                  * Allow direct swapping to NFS regular files in the same
 2139                  * way that nfs_mountroot() sets up diskless swapping.
 2140                  */
 2141                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
 2142         }
 2143 
 2144         if (error)
 2145                 vrele(vp);
 2146 done:
 2147         swdev_syscall_active = 0;
 2148         wakeup_one(&swdev_syscall_active);
 2149         mtx_unlock(&Giant);
 2150         return (error);
 2151 }
 2152 
 2153 /*
 2154  * Check that the total amount of swap currently configured does not
 2155  * exceed half the theoretical maximum.  If it does, print a warning
 2156  * message and return -1; otherwise, return 0.
 2157  */
 2158 static int
 2159 swapon_check_swzone(unsigned long npages)
 2160 {
 2161         unsigned long maxpages;
 2162 
 2163         /* absolute maximum we can handle assuming 100% efficiency */
 2164         maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES;
 2165 
 2166         /* recommend using no more than half that amount */
 2167         if (npages > maxpages / 2) {
 2168                 printf("warning: total configured swap (%lu pages) "
 2169                     "exceeds maximum recommended amount (%lu pages).\n",
 2170                     npages, maxpages / 2);
 2171                 printf("warning: increase kern.maxswzone "
 2172                     "or reduce amount of swap.\n");
 2173                 return (-1);
 2174         }
 2175         return (0);
 2176 }
 2177 
 2178 static void
 2179 swaponsomething(struct vnode *vp, void *id, u_long nblks,
 2180     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
 2181 {
 2182         struct swdevt *sp, *tsp;
 2183         swblk_t dvbase;
 2184         u_long mblocks;
 2185 
 2186         /*
 2187          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
 2188          * First chop nblks off to page-align it, then convert.
 2189          *
 2190          * sw->sw_nblks is in page-sized chunks now too.
 2191          */
 2192         nblks &= ~(ctodb(1) - 1);
 2193         nblks = dbtoc(nblks);
 2194 
 2195         /*
 2196          * If we go beyond this, we get overflows in the radix
 2197          * tree bitmap code.
 2198          */
 2199         mblocks = 0x40000000 / BLIST_META_RADIX;
 2200         if (nblks > mblocks) {
 2201                 printf(
 2202     "WARNING: reducing swap size to maximum of %luMB per unit\n",
 2203                     mblocks / 1024 / 1024 * PAGE_SIZE);
 2204                 nblks = mblocks;
 2205         }
 2206 
 2207         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
 2208         sp->sw_vp = vp;
 2209         sp->sw_id = id;
 2210         sp->sw_dev = dev;
 2211         sp->sw_flags = 0;
 2212         sp->sw_nblks = nblks;
 2213         sp->sw_used = 0;
 2214         sp->sw_strategy = strategy;
 2215         sp->sw_close = close;
 2216         sp->sw_flags = flags;
 2217 
 2218         sp->sw_blist = blist_create(nblks, M_WAITOK);
 2219         /*
 2220          * Do not free the first two block in order to avoid overwriting
 2221          * any bsd label at the front of the partition
 2222          */
 2223         blist_free(sp->sw_blist, 2, nblks - 2);
 2224 
 2225         dvbase = 0;
 2226         mtx_lock(&sw_dev_mtx);
 2227         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
 2228                 if (tsp->sw_end >= dvbase) {
 2229                         /*
 2230                          * We put one uncovered page between the devices
 2231                          * in order to definitively prevent any cross-device
 2232                          * I/O requests
 2233                          */
 2234                         dvbase = tsp->sw_end + 1;
 2235                 }
 2236         }
 2237         sp->sw_first = dvbase;
 2238         sp->sw_end = dvbase + nblks;
 2239         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
 2240         nswapdev++;
 2241         swap_pager_avail += nblks;
 2242         swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
 2243         swapon_check_swzone(swap_total / PAGE_SIZE);
 2244         swp_sizecheck();
 2245         mtx_unlock(&sw_dev_mtx);
 2246 }
 2247 
 2248 /*
 2249  * SYSCALL: swapoff(devname)
 2250  *
 2251  * Disable swapping on the given device.
 2252  *
 2253  * XXX: Badly designed system call: it should use a device index
 2254  * rather than filename as specification.  We keep sw_vp around
 2255  * only to make this work.
 2256  */
 2257 #ifndef _SYS_SYSPROTO_H_
 2258 struct swapoff_args {
 2259         char *name;
 2260 };
 2261 #endif
 2262 
 2263 /*
 2264  * MPSAFE
 2265  */
 2266 /* ARGSUSED */
 2267 int
 2268 sys_swapoff(struct thread *td, struct swapoff_args *uap)
 2269 {
 2270         struct vnode *vp;
 2271         struct nameidata nd;
 2272         struct swdevt *sp;
 2273         int error;
 2274 
 2275         error = priv_check(td, PRIV_SWAPOFF);
 2276         if (error)
 2277                 return (error);
 2278 
 2279         mtx_lock(&Giant);
 2280         while (swdev_syscall_active)
 2281             tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
 2282         swdev_syscall_active = 1;
 2283 
 2284         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
 2285             td);
 2286         error = namei(&nd);
 2287         if (error)
 2288                 goto done;
 2289         NDFREE(&nd, NDF_ONLY_PNBUF);
 2290         vp = nd.ni_vp;
 2291 
 2292         mtx_lock(&sw_dev_mtx);
 2293         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2294                 if (sp->sw_vp == vp)
 2295                         break;
 2296         }
 2297         mtx_unlock(&sw_dev_mtx);
 2298         if (sp == NULL) {
 2299                 error = EINVAL;
 2300                 goto done;
 2301         }
 2302         error = swapoff_one(sp, td->td_ucred);
 2303 done:
 2304         swdev_syscall_active = 0;
 2305         wakeup_one(&swdev_syscall_active);
 2306         mtx_unlock(&Giant);
 2307         return (error);
 2308 }
 2309 
 2310 static int
 2311 swapoff_one(struct swdevt *sp, struct ucred *cred)
 2312 {
 2313         u_long nblks, dvbase;
 2314 #ifdef MAC
 2315         int error;
 2316 #endif
 2317 
 2318         mtx_assert(&Giant, MA_OWNED);
 2319 #ifdef MAC
 2320         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
 2321         error = mac_system_check_swapoff(cred, sp->sw_vp);
 2322         (void) VOP_UNLOCK(sp->sw_vp, 0);
 2323         if (error != 0)
 2324                 return (error);
 2325 #endif
 2326         nblks = sp->sw_nblks;
 2327 
 2328         /*
 2329          * We can turn off this swap device safely only if the
 2330          * available virtual memory in the system will fit the amount
 2331          * of data we will have to page back in, plus an epsilon so
 2332          * the system doesn't become critically low on swap space.
 2333          */
 2334         if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
 2335             nblks + nswap_lowat) {
 2336                 return (ENOMEM);
 2337         }
 2338 
 2339         /*
 2340          * Prevent further allocations on this device.
 2341          */
 2342         mtx_lock(&sw_dev_mtx);
 2343         sp->sw_flags |= SW_CLOSING;
 2344         for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
 2345                 swap_pager_avail -= blist_fill(sp->sw_blist,
 2346                      dvbase, dmmax);
 2347         }
 2348         swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
 2349         mtx_unlock(&sw_dev_mtx);
 2350 
 2351         /*
 2352          * Page in the contents of the device and close it.
 2353          */
 2354         swap_pager_swapoff(sp);
 2355 
 2356         sp->sw_close(curthread, sp);
 2357         mtx_lock(&sw_dev_mtx);
 2358         sp->sw_id = NULL;
 2359         TAILQ_REMOVE(&swtailq, sp, sw_list);
 2360         nswapdev--;
 2361         if (nswapdev == 0) {
 2362                 swap_pager_full = 2;
 2363                 swap_pager_almost_full = 1;
 2364         }
 2365         if (swdevhd == sp)
 2366                 swdevhd = NULL;
 2367         mtx_unlock(&sw_dev_mtx);
 2368         blist_destroy(sp->sw_blist);
 2369         free(sp, M_VMPGDATA);
 2370         return (0);
 2371 }
 2372 
 2373 void
 2374 swapoff_all(void)
 2375 {
 2376         struct swdevt *sp, *spt;
 2377         const char *devname;
 2378         int error;
 2379 
 2380         mtx_lock(&Giant);
 2381         while (swdev_syscall_active)
 2382                 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
 2383         swdev_syscall_active = 1;
 2384 
 2385         mtx_lock(&sw_dev_mtx);
 2386         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
 2387                 mtx_unlock(&sw_dev_mtx);
 2388                 if (vn_isdisk(sp->sw_vp, NULL))
 2389                         devname = devtoname(sp->sw_vp->v_rdev);
 2390                 else
 2391                         devname = "[file]";
 2392                 error = swapoff_one(sp, thread0.td_ucred);
 2393                 if (error != 0) {
 2394                         printf("Cannot remove swap device %s (error=%d), "
 2395                             "skipping.\n", devname, error);
 2396                 } else if (bootverbose) {
 2397                         printf("Swap device %s removed.\n", devname);
 2398                 }
 2399                 mtx_lock(&sw_dev_mtx);
 2400         }
 2401         mtx_unlock(&sw_dev_mtx);
 2402 
 2403         swdev_syscall_active = 0;
 2404         wakeup_one(&swdev_syscall_active);
 2405         mtx_unlock(&Giant);
 2406 }
 2407 
 2408 void
 2409 swap_pager_status(int *total, int *used)
 2410 {
 2411         struct swdevt *sp;
 2412 
 2413         *total = 0;
 2414         *used = 0;
 2415         mtx_lock(&sw_dev_mtx);
 2416         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2417                 *total += sp->sw_nblks;
 2418                 *used += sp->sw_used;
 2419         }
 2420         mtx_unlock(&sw_dev_mtx);
 2421 }
 2422 
 2423 int
 2424 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
 2425 {
 2426         struct swdevt *sp;
 2427         const char *tmp_devname;
 2428         int error, n;
 2429 
 2430         n = 0;
 2431         error = ENOENT;
 2432         mtx_lock(&sw_dev_mtx);
 2433         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2434                 if (n != name) {
 2435                         n++;
 2436                         continue;
 2437                 }
 2438                 xs->xsw_version = XSWDEV_VERSION;
 2439                 xs->xsw_dev = sp->sw_dev;
 2440                 xs->xsw_flags = sp->sw_flags;
 2441                 xs->xsw_nblks = sp->sw_nblks;
 2442                 xs->xsw_used = sp->sw_used;
 2443                 if (devname != NULL) {
 2444                         if (vn_isdisk(sp->sw_vp, NULL))
 2445                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
 2446                         else
 2447                                 tmp_devname = "[file]";
 2448                         strncpy(devname, tmp_devname, len);
 2449                 }
 2450                 error = 0;
 2451                 break;
 2452         }
 2453         mtx_unlock(&sw_dev_mtx);
 2454         return (error);
 2455 }
 2456 
 2457 static int
 2458 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
 2459 {
 2460         struct xswdev xs;
 2461         int error;
 2462 
 2463         if (arg2 != 1)                  /* name length */
 2464                 return (EINVAL);
 2465         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
 2466         if (error != 0)
 2467                 return (error);
 2468         error = SYSCTL_OUT(req, &xs, sizeof(xs));
 2469         return (error);
 2470 }
 2471 
 2472 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
 2473     "Number of swap devices");
 2474 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
 2475     "Swap statistics by device");
 2476 
 2477 /*
 2478  * vmspace_swap_count() - count the approximate swap usage in pages for a
 2479  *                        vmspace.
 2480  *
 2481  *      The map must be locked.
 2482  *
 2483  *      Swap usage is determined by taking the proportional swap used by
 2484  *      VM objects backing the VM map.  To make up for fractional losses,
 2485  *      if the VM object has any swap use at all the associated map entries
 2486  *      count for at least 1 swap page.
 2487  */
 2488 long
 2489 vmspace_swap_count(struct vmspace *vmspace)
 2490 {
 2491         vm_map_t map;
 2492         vm_map_entry_t cur;
 2493         vm_object_t object;
 2494         long count, n;
 2495 
 2496         map = &vmspace->vm_map;
 2497         count = 0;
 2498 
 2499         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
 2500                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
 2501                     (object = cur->object.vm_object) != NULL) {
 2502                         VM_OBJECT_WLOCK(object);
 2503                         if (object->type == OBJT_SWAP &&
 2504                             object->un_pager.swp.swp_bcount != 0) {
 2505                                 n = (cur->end - cur->start) / PAGE_SIZE;
 2506                                 count += object->un_pager.swp.swp_bcount *
 2507                                     SWAP_META_PAGES * n / object->size + 1;
 2508                         }
 2509                         VM_OBJECT_WUNLOCK(object);
 2510                 }
 2511         }
 2512         return (count);
 2513 }
 2514 
 2515 /*
 2516  * GEOM backend
 2517  *
 2518  * Swapping onto disk devices.
 2519  *
 2520  */
 2521 
 2522 static g_orphan_t swapgeom_orphan;
 2523 
 2524 static struct g_class g_swap_class = {
 2525         .name = "SWAP",
 2526         .version = G_VERSION,
 2527         .orphan = swapgeom_orphan,
 2528 };
 2529 
 2530 DECLARE_GEOM_CLASS(g_swap_class, g_class);
 2531 
 2532 
 2533 static void
 2534 swapgeom_close_ev(void *arg, int flags)
 2535 {
 2536         struct g_consumer *cp;
 2537 
 2538         cp = arg;
 2539         g_access(cp, -1, -1, 0);
 2540         g_detach(cp);
 2541         g_destroy_consumer(cp);
 2542 }
 2543 
 2544 /*
 2545  * Add a reference to the g_consumer for an inflight transaction.
 2546  */
 2547 static void
 2548 swapgeom_acquire(struct g_consumer *cp)
 2549 {
 2550 
 2551         mtx_assert(&sw_dev_mtx, MA_OWNED);
 2552         cp->index++;
 2553 }
 2554 
 2555 /*
 2556  * Remove a reference from the g_consumer. Post a close event if
 2557  * all referneces go away.
 2558  */
 2559 static void
 2560 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
 2561 {
 2562 
 2563         mtx_assert(&sw_dev_mtx, MA_OWNED);
 2564         cp->index--;
 2565         if (cp->index == 0) {
 2566                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
 2567                         sp->sw_id = NULL;
 2568         }
 2569 }
 2570 
 2571 static void
 2572 swapgeom_done(struct bio *bp2)
 2573 {
 2574         struct swdevt *sp;
 2575         struct buf *bp;
 2576         struct g_consumer *cp;
 2577 
 2578         bp = bp2->bio_caller2;
 2579         cp = bp2->bio_from;
 2580         bp->b_ioflags = bp2->bio_flags;
 2581         if (bp2->bio_error)
 2582                 bp->b_ioflags |= BIO_ERROR;
 2583         bp->b_resid = bp->b_bcount - bp2->bio_completed;
 2584         bp->b_error = bp2->bio_error;
 2585         bufdone(bp);
 2586         sp = bp2->bio_caller1;
 2587         mtx_lock(&sw_dev_mtx);
 2588         swapgeom_release(cp, sp);
 2589         mtx_unlock(&sw_dev_mtx);
 2590         g_destroy_bio(bp2);
 2591 }
 2592 
 2593 static void
 2594 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
 2595 {
 2596         struct bio *bio;
 2597         struct g_consumer *cp;
 2598 
 2599         mtx_lock(&sw_dev_mtx);
 2600         cp = sp->sw_id;
 2601         if (cp == NULL) {
 2602                 mtx_unlock(&sw_dev_mtx);
 2603                 bp->b_error = ENXIO;
 2604                 bp->b_ioflags |= BIO_ERROR;
 2605                 bufdone(bp);
 2606                 return;
 2607         }
 2608         swapgeom_acquire(cp);
 2609         mtx_unlock(&sw_dev_mtx);
 2610         if (bp->b_iocmd == BIO_WRITE)
 2611                 bio = g_new_bio();
 2612         else
 2613                 bio = g_alloc_bio();
 2614         if (bio == NULL) {
 2615                 mtx_lock(&sw_dev_mtx);
 2616                 swapgeom_release(cp, sp);
 2617                 mtx_unlock(&sw_dev_mtx);
 2618                 bp->b_error = ENOMEM;
 2619                 bp->b_ioflags |= BIO_ERROR;
 2620                 bufdone(bp);
 2621                 return;
 2622         }
 2623 
 2624         bio->bio_caller1 = sp;
 2625         bio->bio_caller2 = bp;
 2626         bio->bio_cmd = bp->b_iocmd;
 2627         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
 2628         bio->bio_length = bp->b_bcount;
 2629         bio->bio_done = swapgeom_done;
 2630         if ((bp->b_flags & B_UNMAPPED) != 0) {
 2631                 bio->bio_ma = bp->b_pages;
 2632                 bio->bio_data = unmapped_buf;
 2633                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
 2634                 bio->bio_ma_n = bp->b_npages;
 2635                 bio->bio_flags |= BIO_UNMAPPED;
 2636         } else {
 2637                 bio->bio_data = bp->b_data;
 2638                 bio->bio_ma = NULL;
 2639         }
 2640         g_io_request(bio, cp);
 2641         return;
 2642 }
 2643 
 2644 static void
 2645 swapgeom_orphan(struct g_consumer *cp)
 2646 {
 2647         struct swdevt *sp;
 2648         int destroy;
 2649 
 2650         mtx_lock(&sw_dev_mtx);
 2651         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2652                 if (sp->sw_id == cp) {
 2653                         sp->sw_flags |= SW_CLOSING;
 2654                         break;
 2655                 }
 2656         }
 2657         /*
 2658          * Drop reference we were created with. Do directly since we're in a
 2659          * special context where we don't have to queue the call to
 2660          * swapgeom_close_ev().
 2661          */
 2662         cp->index--;
 2663         destroy = ((sp != NULL) && (cp->index == 0));
 2664         if (destroy)
 2665                 sp->sw_id = NULL;
 2666         mtx_unlock(&sw_dev_mtx);
 2667         if (destroy)
 2668                 swapgeom_close_ev(cp, 0);
 2669 }
 2670 
 2671 static void
 2672 swapgeom_close(struct thread *td, struct swdevt *sw)
 2673 {
 2674         struct g_consumer *cp;
 2675 
 2676         mtx_lock(&sw_dev_mtx);
 2677         cp = sw->sw_id;
 2678         sw->sw_id = NULL;
 2679         mtx_unlock(&sw_dev_mtx);
 2680         /* XXX: direct call when Giant untangled */
 2681         if (cp != NULL)
 2682                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
 2683 }
 2684 
 2685 
 2686 struct swh0h0 {
 2687         struct cdev *dev;
 2688         struct vnode *vp;
 2689         int     error;
 2690 };
 2691 
 2692 static void
 2693 swapongeom_ev(void *arg, int flags)
 2694 {
 2695         struct swh0h0 *swh;
 2696         struct g_provider *pp;
 2697         struct g_consumer *cp;
 2698         static struct g_geom *gp;
 2699         struct swdevt *sp;
 2700         u_long nblks;
 2701         int error;
 2702 
 2703         swh = arg;
 2704         swh->error = 0;
 2705         pp = g_dev_getprovider(swh->dev);
 2706         if (pp == NULL) {
 2707                 swh->error = ENODEV;
 2708                 return;
 2709         }
 2710         mtx_lock(&sw_dev_mtx);
 2711         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2712                 cp = sp->sw_id;
 2713                 if (cp != NULL && cp->provider == pp) {
 2714                         mtx_unlock(&sw_dev_mtx);
 2715                         swh->error = EBUSY;
 2716                         return;
 2717                 }
 2718         }
 2719         mtx_unlock(&sw_dev_mtx);
 2720         if (gp == NULL)
 2721                 gp = g_new_geomf(&g_swap_class, "swap");
 2722         cp = g_new_consumer(gp);
 2723         cp->index = 1;          /* Number of active I/Os, plus one for being active. */
 2724         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
 2725         g_attach(cp, pp);
 2726         /*
 2727          * XXX: Everytime you think you can improve the margin for
 2728          * footshooting, somebody depends on the ability to do so:
 2729          * savecore(8) wants to write to our swapdev so we cannot
 2730          * set an exclusive count :-(
 2731          */
 2732         error = g_access(cp, 1, 1, 0);
 2733         if (error) {
 2734                 g_detach(cp);
 2735                 g_destroy_consumer(cp);
 2736                 swh->error = error;
 2737                 return;
 2738         }
 2739         nblks = pp->mediasize / DEV_BSIZE;
 2740         swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
 2741             swapgeom_close, dev2udev(swh->dev),
 2742             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
 2743         swh->error = 0;
 2744 }
 2745 
 2746 static int
 2747 swapongeom(struct thread *td, struct vnode *vp)
 2748 {
 2749         int error;
 2750         struct swh0h0 swh;
 2751 
 2752         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2753 
 2754         swh.dev = vp->v_rdev;
 2755         swh.vp = vp;
 2756         swh.error = 0;
 2757         /* XXX: direct call when Giant untangled */
 2758         error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
 2759         if (!error)
 2760                 error = swh.error;
 2761         VOP_UNLOCK(vp, 0);
 2762         return (error);
 2763 }
 2764 
 2765 /*
 2766  * VNODE backend
 2767  *
 2768  * This is used mainly for network filesystem (read: probably only tested
 2769  * with NFS) swapfiles.
 2770  *
 2771  */
 2772 
 2773 static void
 2774 swapdev_strategy(struct buf *bp, struct swdevt *sp)
 2775 {
 2776         struct vnode *vp2;
 2777 
 2778         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
 2779 
 2780         vp2 = sp->sw_id;
 2781         vhold(vp2);
 2782         if (bp->b_iocmd == BIO_WRITE) {
 2783                 if (bp->b_bufobj)
 2784                         bufobj_wdrop(bp->b_bufobj);
 2785                 bufobj_wref(&vp2->v_bufobj);
 2786         }
 2787         if (bp->b_bufobj != &vp2->v_bufobj)
 2788                 bp->b_bufobj = &vp2->v_bufobj;
 2789         bp->b_vp = vp2;
 2790         bp->b_iooffset = dbtob(bp->b_blkno);
 2791         bstrategy(bp);
 2792         return;
 2793 }
 2794 
 2795 static void
 2796 swapdev_close(struct thread *td, struct swdevt *sp)
 2797 {
 2798 
 2799         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
 2800         vrele(sp->sw_vp);
 2801 }
 2802 
 2803 
 2804 static int
 2805 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
 2806 {
 2807         struct swdevt *sp;
 2808         int error;
 2809 
 2810         if (nblks == 0)
 2811                 return (ENXIO);
 2812         mtx_lock(&sw_dev_mtx);
 2813         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2814                 if (sp->sw_id == vp) {
 2815                         mtx_unlock(&sw_dev_mtx);
 2816                         return (EBUSY);
 2817                 }
 2818         }
 2819         mtx_unlock(&sw_dev_mtx);
 2820 
 2821         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2822 #ifdef MAC
 2823         error = mac_system_check_swapon(td->td_ucred, vp);
 2824         if (error == 0)
 2825 #endif
 2826                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
 2827         (void) VOP_UNLOCK(vp, 0);
 2828         if (error)
 2829                 return (error);
 2830 
 2831         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
 2832             NODEV, 0);
 2833         return (0);
 2834 }

Cache object: 9e04c0c2217bc4f7d9ca71fd1b80c7ec


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.