The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/swap_pager.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1998 Matthew Dillon,
    3  * Copyright (c) 1994 John S. Dyson
    4  * Copyright (c) 1990 University of Utah.
    5  * Copyright (c) 1982, 1986, 1989, 1993
    6  *      The Regents of the University of California.  All rights reserved.
    7  *
    8  * This code is derived from software contributed to Berkeley by
    9  * the Systems Programming Group of the University of Utah Computer
   10  * Science Department.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. All advertising materials mentioning features or use of this software
   21  *    must display the following acknowledgement:
   22  *      This product includes software developed by the University of
   23  *      California, Berkeley and its contributors.
   24  * 4. Neither the name of the University nor the names of its contributors
   25  *    may be used to endorse or promote products derived from this software
   26  *    without specific prior written permission.
   27  *
   28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   38  * SUCH DAMAGE.
   39  *
   40  *                              New Swap System
   41  *                              Matthew Dillon
   42  *
   43  * Radix Bitmap 'blists'.
   44  *
   45  *      - The new swapper uses the new radix bitmap code.  This should scale
   46  *        to arbitrarily small or arbitrarily large swap spaces and an almost
   47  *        arbitrary degree of fragmentation.
   48  *
   49  * Features:
   50  *
   51  *      - on the fly reallocation of swap during putpages.  The new system
   52  *        does not try to keep previously allocated swap blocks for dirty
   53  *        pages.
   54  *
   55  *      - on the fly deallocation of swap
   56  *
   57  *      - No more garbage collection required.  Unnecessarily allocated swap
   58  *        blocks only exist for dirty vm_page_t's now and these are already
   59  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
   60  *        removal of invalidated swap blocks when a page is destroyed
   61  *        or renamed.
   62  *
   63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
   64  *
   65  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
   66  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
   67  */
   68 
   69 #include <sys/cdefs.h>
   70 __FBSDID("$FreeBSD: releng/11.0/sys/vm/swap_pager.c 303905 2016-08-10 12:11:11Z kib $");
   71 
   72 #include "opt_swap.h"
   73 #include "opt_vm.h"
   74 
   75 #include <sys/param.h>
   76 #include <sys/systm.h>
   77 #include <sys/conf.h>
   78 #include <sys/kernel.h>
   79 #include <sys/priv.h>
   80 #include <sys/proc.h>
   81 #include <sys/bio.h>
   82 #include <sys/buf.h>
   83 #include <sys/disk.h>
   84 #include <sys/fcntl.h>
   85 #include <sys/mount.h>
   86 #include <sys/namei.h>
   87 #include <sys/vnode.h>
   88 #include <sys/malloc.h>
   89 #include <sys/racct.h>
   90 #include <sys/resource.h>
   91 #include <sys/resourcevar.h>
   92 #include <sys/rwlock.h>
   93 #include <sys/sysctl.h>
   94 #include <sys/sysproto.h>
   95 #include <sys/blist.h>
   96 #include <sys/lock.h>
   97 #include <sys/sx.h>
   98 #include <sys/vmmeter.h>
   99 
  100 #include <security/mac/mac_framework.h>
  101 
  102 #include <vm/vm.h>
  103 #include <vm/pmap.h>
  104 #include <vm/vm_map.h>
  105 #include <vm/vm_kern.h>
  106 #include <vm/vm_object.h>
  107 #include <vm/vm_page.h>
  108 #include <vm/vm_pager.h>
  109 #include <vm/vm_pageout.h>
  110 #include <vm/vm_param.h>
  111 #include <vm/swap_pager.h>
  112 #include <vm/vm_extern.h>
  113 #include <vm/uma.h>
  114 
  115 #include <geom/geom.h>
  116 
  117 /*
  118  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, 16
  119  * or 32 pages per allocation.
  120  * The 32-page limit is due to the radix code (kern/subr_blist.c).
  121  */
  122 #ifndef MAX_PAGEOUT_CLUSTER
  123 #define MAX_PAGEOUT_CLUSTER 16
  124 #endif
  125 
  126 #if !defined(SWB_NPAGES)
  127 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
  128 #endif
  129 
  130 /*
  131  * The swblock structure maps an object and a small, fixed-size range
  132  * of page indices to disk addresses within a swap area.
  133  * The collection of these mappings is implemented as a hash table.
  134  * Unused disk addresses within a swap area are allocated and managed
  135  * using a blist.
  136  */
  137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
  138 #define SWAP_META_PAGES         (SWB_NPAGES * 2)
  139 #define SWAP_META_MASK          (SWAP_META_PAGES - 1)
  140 
  141 struct swblock {
  142         struct swblock  *swb_hnext;
  143         vm_object_t     swb_object;
  144         vm_pindex_t     swb_index;
  145         int             swb_count;
  146         daddr_t         swb_pages[SWAP_META_PAGES];
  147 };
  148 
  149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
  150 static struct mtx sw_dev_mtx;
  151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
  152 static struct swdevt *swdevhd;  /* Allocate from here next */
  153 static int nswapdev;            /* Number of swap devices */
  154 int swap_pager_avail;
  155 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
  156 
  157 static vm_ooffset_t swap_total;
  158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
  159     "Total amount of available swap storage.");
  160 static vm_ooffset_t swap_reserved;
  161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
  162     "Amount of swap storage needed to back all allocated anonymous memory.");
  163 static int overcommit = 0;
  164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
  165     "Configure virtual memory overcommit behavior. See tuning(7) "
  166     "for details.");
  167 static unsigned long swzone;
  168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
  169     "Actual size of swap metadata zone");
  170 static unsigned long swap_maxpages;
  171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
  172     "Maximum amount of swap supported");
  173 
  174 /* bits from overcommit */
  175 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
  176 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
  177 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
  178 
  179 int
  180 swap_reserve(vm_ooffset_t incr)
  181 {
  182 
  183         return (swap_reserve_by_cred(incr, curthread->td_ucred));
  184 }
  185 
  186 int
  187 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
  188 {
  189         vm_ooffset_t r, s;
  190         int res, error;
  191         static int curfail;
  192         static struct timeval lastfail;
  193         struct uidinfo *uip;
  194 
  195         uip = cred->cr_ruidinfo;
  196 
  197         if (incr & PAGE_MASK)
  198                 panic("swap_reserve: & PAGE_MASK");
  199 
  200 #ifdef RACCT
  201         if (racct_enable) {
  202                 PROC_LOCK(curproc);
  203                 error = racct_add(curproc, RACCT_SWAP, incr);
  204                 PROC_UNLOCK(curproc);
  205                 if (error != 0)
  206                         return (0);
  207         }
  208 #endif
  209 
  210         res = 0;
  211         mtx_lock(&sw_dev_mtx);
  212         r = swap_reserved + incr;
  213         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
  214                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count;
  215                 s *= PAGE_SIZE;
  216         } else
  217                 s = 0;
  218         s += swap_total;
  219         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
  220             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
  221                 res = 1;
  222                 swap_reserved = r;
  223         }
  224         mtx_unlock(&sw_dev_mtx);
  225 
  226         if (res) {
  227                 UIDINFO_VMSIZE_LOCK(uip);
  228                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
  229                     uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) &&
  230                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
  231                         res = 0;
  232                 else
  233                         uip->ui_vmsize += incr;
  234                 UIDINFO_VMSIZE_UNLOCK(uip);
  235                 if (!res) {
  236                         mtx_lock(&sw_dev_mtx);
  237                         swap_reserved -= incr;
  238                         mtx_unlock(&sw_dev_mtx);
  239                 }
  240         }
  241         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
  242                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
  243                     uip->ui_uid, curproc->p_pid, incr);
  244         }
  245 
  246 #ifdef RACCT
  247         if (!res) {
  248                 PROC_LOCK(curproc);
  249                 racct_sub(curproc, RACCT_SWAP, incr);
  250                 PROC_UNLOCK(curproc);
  251         }
  252 #endif
  253 
  254         return (res);
  255 }
  256 
  257 void
  258 swap_reserve_force(vm_ooffset_t incr)
  259 {
  260         struct uidinfo *uip;
  261 
  262         mtx_lock(&sw_dev_mtx);
  263         swap_reserved += incr;
  264         mtx_unlock(&sw_dev_mtx);
  265 
  266 #ifdef RACCT
  267         PROC_LOCK(curproc);
  268         racct_add_force(curproc, RACCT_SWAP, incr);
  269         PROC_UNLOCK(curproc);
  270 #endif
  271 
  272         uip = curthread->td_ucred->cr_ruidinfo;
  273         PROC_LOCK(curproc);
  274         UIDINFO_VMSIZE_LOCK(uip);
  275         uip->ui_vmsize += incr;
  276         UIDINFO_VMSIZE_UNLOCK(uip);
  277         PROC_UNLOCK(curproc);
  278 }
  279 
  280 void
  281 swap_release(vm_ooffset_t decr)
  282 {
  283         struct ucred *cred;
  284 
  285         PROC_LOCK(curproc);
  286         cred = curthread->td_ucred;
  287         swap_release_by_cred(decr, cred);
  288         PROC_UNLOCK(curproc);
  289 }
  290 
  291 void
  292 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
  293 {
  294         struct uidinfo *uip;
  295 
  296         uip = cred->cr_ruidinfo;
  297 
  298         if (decr & PAGE_MASK)
  299                 panic("swap_release: & PAGE_MASK");
  300 
  301         mtx_lock(&sw_dev_mtx);
  302         if (swap_reserved < decr)
  303                 panic("swap_reserved < decr");
  304         swap_reserved -= decr;
  305         mtx_unlock(&sw_dev_mtx);
  306 
  307         UIDINFO_VMSIZE_LOCK(uip);
  308         if (uip->ui_vmsize < decr)
  309                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
  310         uip->ui_vmsize -= decr;
  311         UIDINFO_VMSIZE_UNLOCK(uip);
  312 
  313         racct_sub_cred(cred, RACCT_SWAP, decr);
  314 }
  315 
  316 #define SWM_FREE        0x02    /* free, period                 */
  317 #define SWM_POP         0x04    /* pop out                      */
  318 
  319 int swap_pager_full = 2;        /* swap space exhaustion (task killing) */
  320 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
  321 static int nsw_rcount;          /* free read buffers                    */
  322 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
  323 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
  324 static int nsw_wcount_async_max;/* assigned maximum                     */
  325 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
  326 
  327 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
  328 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
  329     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
  330     "Maximum running async swap ops");
  331 
  332 static struct swblock **swhash;
  333 static int swhash_mask;
  334 static struct mtx swhash_mtx;
  335 
  336 static struct sx sw_alloc_sx;
  337 
  338 /*
  339  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
  340  * of searching a named list by hashing it just a little.
  341  */
  342 
  343 #define NOBJLISTS               8
  344 
  345 #define NOBJLIST(handle)        \
  346         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
  347 
  348 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
  349 static uma_zone_t       swap_zone;
  350 
  351 /*
  352  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
  353  * calls hooked from other parts of the VM system and do not appear here.
  354  * (see vm/swap_pager.h).
  355  */
  356 static vm_object_t
  357                 swap_pager_alloc(void *handle, vm_ooffset_t size,
  358                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
  359 static void     swap_pager_dealloc(vm_object_t object);
  360 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
  361     int *);
  362 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
  363     int *, pgo_getpages_iodone_t, void *);
  364 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
  365 static boolean_t
  366                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
  367 static void     swap_pager_init(void);
  368 static void     swap_pager_unswapped(vm_page_t);
  369 static void     swap_pager_swapoff(struct swdevt *sp);
  370 
  371 struct pagerops swappagerops = {
  372         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
  373         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
  374         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
  375         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
  376         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
  377         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
  378         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
  379         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
  380 };
  381 
  382 /*
  383  * dmmax is in page-sized chunks with the new swap system.  It was
  384  * dev-bsized chunks in the old.  dmmax is always a power of 2.
  385  *
  386  * swap_*() routines are externally accessible.  swp_*() routines are
  387  * internal.
  388  */
  389 static int dmmax;
  390 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
  391 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
  392 
  393 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &dmmax, 0,
  394     "Maximum size of a swap block");
  395 
  396 static void     swp_sizecheck(void);
  397 static void     swp_pager_async_iodone(struct buf *bp);
  398 static int      swapongeom(struct vnode *);
  399 static int      swaponvp(struct thread *, struct vnode *, u_long);
  400 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
  401 
  402 /*
  403  * Swap bitmap functions
  404  */
  405 static void     swp_pager_freeswapspace(daddr_t blk, int npages);
  406 static daddr_t  swp_pager_getswapspace(int npages);
  407 
  408 /*
  409  * Metadata functions
  410  */
  411 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
  412 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
  413 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
  414 static void swp_pager_meta_free_all(vm_object_t);
  415 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
  416 
  417 /*
  418  * SWP_SIZECHECK() -    update swap_pager_full indication
  419  *
  420  *      update the swap_pager_almost_full indication and warn when we are
  421  *      about to run out of swap space, using lowat/hiwat hysteresis.
  422  *
  423  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
  424  *
  425  *      No restrictions on call
  426  *      This routine may not block.
  427  */
  428 static void
  429 swp_sizecheck(void)
  430 {
  431 
  432         if (swap_pager_avail < nswap_lowat) {
  433                 if (swap_pager_almost_full == 0) {
  434                         printf("swap_pager: out of swap space\n");
  435                         swap_pager_almost_full = 1;
  436                 }
  437         } else {
  438                 swap_pager_full = 0;
  439                 if (swap_pager_avail > nswap_hiwat)
  440                         swap_pager_almost_full = 0;
  441         }
  442 }
  443 
  444 /*
  445  * SWP_PAGER_HASH() -   hash swap meta data
  446  *
  447  *      This is an helper function which hashes the swapblk given
  448  *      the object and page index.  It returns a pointer to a pointer
  449  *      to the object, or a pointer to a NULL pointer if it could not
  450  *      find a swapblk.
  451  */
  452 static struct swblock **
  453 swp_pager_hash(vm_object_t object, vm_pindex_t index)
  454 {
  455         struct swblock **pswap;
  456         struct swblock *swap;
  457 
  458         index &= ~(vm_pindex_t)SWAP_META_MASK;
  459         pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
  460         while ((swap = *pswap) != NULL) {
  461                 if (swap->swb_object == object &&
  462                     swap->swb_index == index
  463                 ) {
  464                         break;
  465                 }
  466                 pswap = &swap->swb_hnext;
  467         }
  468         return (pswap);
  469 }
  470 
  471 /*
  472  * SWAP_PAGER_INIT() -  initialize the swap pager!
  473  *
  474  *      Expected to be started from system init.  NOTE:  This code is run
  475  *      before much else so be careful what you depend on.  Most of the VM
  476  *      system has yet to be initialized at this point.
  477  */
  478 static void
  479 swap_pager_init(void)
  480 {
  481         /*
  482          * Initialize object lists
  483          */
  484         int i;
  485 
  486         for (i = 0; i < NOBJLISTS; ++i)
  487                 TAILQ_INIT(&swap_pager_object_list[i]);
  488         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
  489         sx_init(&sw_alloc_sx, "swspsx");
  490         sx_init(&swdev_syscall_lock, "swsysc");
  491 
  492         /*
  493          * Device Stripe, in PAGE_SIZE'd blocks
  494          */
  495         dmmax = SWB_NPAGES * 2;
  496 }
  497 
  498 /*
  499  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
  500  *
  501  *      Expected to be started from pageout process once, prior to entering
  502  *      its main loop.
  503  */
  504 void
  505 swap_pager_swap_init(void)
  506 {
  507         unsigned long n, n2;
  508 
  509         /*
  510          * Number of in-transit swap bp operations.  Don't
  511          * exhaust the pbufs completely.  Make sure we
  512          * initialize workable values (0 will work for hysteresis
  513          * but it isn't very efficient).
  514          *
  515          * The nsw_cluster_max is constrained by the bp->b_pages[]
  516          * array (MAXPHYS/PAGE_SIZE) and our locally defined
  517          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
  518          * constrained by the swap device interleave stripe size.
  519          *
  520          * Currently we hardwire nsw_wcount_async to 4.  This limit is
  521          * designed to prevent other I/O from having high latencies due to
  522          * our pageout I/O.  The value 4 works well for one or two active swap
  523          * devices but is probably a little low if you have more.  Even so,
  524          * a higher value would probably generate only a limited improvement
  525          * with three or four active swap devices since the system does not
  526          * typically have to pageout at extreme bandwidths.   We will want
  527          * at least 2 per swap devices, and 4 is a pretty good value if you
  528          * have one NFS swap device due to the command/ack latency over NFS.
  529          * So it all works out pretty well.
  530          */
  531         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
  532 
  533         mtx_lock(&pbuf_mtx);
  534         nsw_rcount = (nswbuf + 1) / 2;
  535         nsw_wcount_sync = (nswbuf + 3) / 4;
  536         nsw_wcount_async = 4;
  537         nsw_wcount_async_max = nsw_wcount_async;
  538         mtx_unlock(&pbuf_mtx);
  539 
  540         /*
  541          * Initialize our zone.  Right now I'm just guessing on the number
  542          * we need based on the number of pages in the system.  Each swblock
  543          * can hold 32 pages, so this is probably overkill.  This reservation
  544          * is typically limited to around 32MB by default.
  545          */
  546         n = vm_cnt.v_page_count / 2;
  547         if (maxswzone && n > maxswzone / sizeof(struct swblock))
  548                 n = maxswzone / sizeof(struct swblock);
  549         n2 = n;
  550         swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
  551             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
  552         if (swap_zone == NULL)
  553                 panic("failed to create swap_zone.");
  554         do {
  555                 if (uma_zone_reserve_kva(swap_zone, n))
  556                         break;
  557                 /*
  558                  * if the allocation failed, try a zone two thirds the
  559                  * size of the previous attempt.
  560                  */
  561                 n -= ((n + 2) / 3);
  562         } while (n > 0);
  563         if (n2 != n)
  564                 printf("Swap zone entries reduced from %lu to %lu.\n", n2, n);
  565         swap_maxpages = n * SWAP_META_PAGES;
  566         swzone = n * sizeof(struct swblock);
  567         n2 = n;
  568 
  569         /*
  570          * Initialize our meta-data hash table.  The swapper does not need to
  571          * be quite as efficient as the VM system, so we do not use an
  572          * oversized hash table.
  573          *
  574          *      n:              size of hash table, must be power of 2
  575          *      swhash_mask:    hash table index mask
  576          */
  577         for (n = 1; n < n2 / 8; n *= 2)
  578                 ;
  579         swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
  580         swhash_mask = n - 1;
  581         mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
  582 }
  583 
  584 static vm_object_t
  585 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
  586     vm_ooffset_t offset)
  587 {
  588         vm_object_t object;
  589 
  590         if (cred != NULL) {
  591                 if (!swap_reserve_by_cred(size, cred))
  592                         return (NULL);
  593                 crhold(cred);
  594         }
  595         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
  596             PAGE_MASK + size));
  597         object->handle = handle;
  598         if (cred != NULL) {
  599                 object->cred = cred;
  600                 object->charge = size;
  601         }
  602         object->un_pager.swp.swp_bcount = 0;
  603         return (object);
  604 }
  605 
  606 /*
  607  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
  608  *                      its metadata structures.
  609  *
  610  *      This routine is called from the mmap and fork code to create a new
  611  *      OBJT_SWAP object.
  612  *
  613  *      This routine must ensure that no live duplicate is created for
  614  *      the named object request, which is protected against by
  615  *      holding the sw_alloc_sx lock in case handle != NULL.
  616  */
  617 static vm_object_t
  618 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
  619     vm_ooffset_t offset, struct ucred *cred)
  620 {
  621         vm_object_t object;
  622 
  623         if (handle != NULL) {
  624                 /*
  625                  * Reference existing named region or allocate new one.  There
  626                  * should not be a race here against swp_pager_meta_build()
  627                  * as called from vm_page_remove() in regards to the lookup
  628                  * of the handle.
  629                  */
  630                 sx_xlock(&sw_alloc_sx);
  631                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
  632                 if (object == NULL) {
  633                         object = swap_pager_alloc_init(handle, cred, size,
  634                             offset);
  635                         if (object != NULL) {
  636                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
  637                                     object, pager_object_list);
  638                         }
  639                 }
  640                 sx_xunlock(&sw_alloc_sx);
  641         } else {
  642                 object = swap_pager_alloc_init(handle, cred, size, offset);
  643         }
  644         return (object);
  645 }
  646 
  647 /*
  648  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
  649  *
  650  *      The swap backing for the object is destroyed.  The code is
  651  *      designed such that we can reinstantiate it later, but this
  652  *      routine is typically called only when the entire object is
  653  *      about to be destroyed.
  654  *
  655  *      The object must be locked.
  656  */
  657 static void
  658 swap_pager_dealloc(vm_object_t object)
  659 {
  660 
  661         VM_OBJECT_ASSERT_WLOCKED(object);
  662         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
  663 
  664         /*
  665          * Remove from list right away so lookups will fail if we block for
  666          * pageout completion.
  667          */
  668         if (object->handle != NULL) {
  669                 VM_OBJECT_WUNLOCK(object);
  670                 sx_xlock(&sw_alloc_sx);
  671                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
  672                     pager_object_list);
  673                 sx_xunlock(&sw_alloc_sx);
  674                 VM_OBJECT_WLOCK(object);
  675         }
  676 
  677         vm_object_pip_wait(object, "swpdea");
  678 
  679         /*
  680          * Free all remaining metadata.  We only bother to free it from
  681          * the swap meta data.  We do not attempt to free swapblk's still
  682          * associated with vm_page_t's for this object.  We do not care
  683          * if paging is still in progress on some objects.
  684          */
  685         swp_pager_meta_free_all(object);
  686         object->handle = NULL;
  687         object->type = OBJT_DEAD;
  688 }
  689 
  690 /************************************************************************
  691  *                      SWAP PAGER BITMAP ROUTINES                      *
  692  ************************************************************************/
  693 
  694 /*
  695  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
  696  *
  697  *      Allocate swap for the requested number of pages.  The starting
  698  *      swap block number (a page index) is returned or SWAPBLK_NONE
  699  *      if the allocation failed.
  700  *
  701  *      Also has the side effect of advising that somebody made a mistake
  702  *      when they configured swap and didn't configure enough.
  703  *
  704  *      This routine may not sleep.
  705  *
  706  *      We allocate in round-robin fashion from the configured devices.
  707  */
  708 static daddr_t
  709 swp_pager_getswapspace(int npages)
  710 {
  711         daddr_t blk;
  712         struct swdevt *sp;
  713         int i;
  714 
  715         blk = SWAPBLK_NONE;
  716         mtx_lock(&sw_dev_mtx);
  717         sp = swdevhd;
  718         for (i = 0; i < nswapdev; i++) {
  719                 if (sp == NULL)
  720                         sp = TAILQ_FIRST(&swtailq);
  721                 if (!(sp->sw_flags & SW_CLOSING)) {
  722                         blk = blist_alloc(sp->sw_blist, npages);
  723                         if (blk != SWAPBLK_NONE) {
  724                                 blk += sp->sw_first;
  725                                 sp->sw_used += npages;
  726                                 swap_pager_avail -= npages;
  727                                 swp_sizecheck();
  728                                 swdevhd = TAILQ_NEXT(sp, sw_list);
  729                                 goto done;
  730                         }
  731                 }
  732                 sp = TAILQ_NEXT(sp, sw_list);
  733         }
  734         if (swap_pager_full != 2) {
  735                 printf("swap_pager_getswapspace(%d): failed\n", npages);
  736                 swap_pager_full = 2;
  737                 swap_pager_almost_full = 1;
  738         }
  739         swdevhd = NULL;
  740 done:
  741         mtx_unlock(&sw_dev_mtx);
  742         return (blk);
  743 }
  744 
  745 static int
  746 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
  747 {
  748 
  749         return (blk >= sp->sw_first && blk < sp->sw_end);
  750 }
  751 
  752 static void
  753 swp_pager_strategy(struct buf *bp)
  754 {
  755         struct swdevt *sp;
  756 
  757         mtx_lock(&sw_dev_mtx);
  758         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  759                 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
  760                         mtx_unlock(&sw_dev_mtx);
  761                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
  762                             unmapped_buf_allowed) {
  763                                 bp->b_data = unmapped_buf;
  764                                 bp->b_offset = 0;
  765                         } else {
  766                                 pmap_qenter((vm_offset_t)bp->b_data,
  767                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
  768                         }
  769                         sp->sw_strategy(bp, sp);
  770                         return;
  771                 }
  772         }
  773         panic("Swapdev not found");
  774 }
  775 
  776 
  777 /*
  778  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
  779  *
  780  *      This routine returns the specified swap blocks back to the bitmap.
  781  *
  782  *      This routine may not sleep.
  783  */
  784 static void
  785 swp_pager_freeswapspace(daddr_t blk, int npages)
  786 {
  787         struct swdevt *sp;
  788 
  789         mtx_lock(&sw_dev_mtx);
  790         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  791                 if (blk >= sp->sw_first && blk < sp->sw_end) {
  792                         sp->sw_used -= npages;
  793                         /*
  794                          * If we are attempting to stop swapping on
  795                          * this device, we don't want to mark any
  796                          * blocks free lest they be reused.
  797                          */
  798                         if ((sp->sw_flags & SW_CLOSING) == 0) {
  799                                 blist_free(sp->sw_blist, blk - sp->sw_first,
  800                                     npages);
  801                                 swap_pager_avail += npages;
  802                                 swp_sizecheck();
  803                         }
  804                         mtx_unlock(&sw_dev_mtx);
  805                         return;
  806                 }
  807         }
  808         panic("Swapdev not found");
  809 }
  810 
  811 /*
  812  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
  813  *                              range within an object.
  814  *
  815  *      This is a globally accessible routine.
  816  *
  817  *      This routine removes swapblk assignments from swap metadata.
  818  *
  819  *      The external callers of this routine typically have already destroyed
  820  *      or renamed vm_page_t's associated with this range in the object so
  821  *      we should be ok.
  822  *
  823  *      The object must be locked.
  824  */
  825 void
  826 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
  827 {
  828 
  829         swp_pager_meta_free(object, start, size);
  830 }
  831 
  832 /*
  833  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
  834  *
  835  *      Assigns swap blocks to the specified range within the object.  The
  836  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
  837  *
  838  *      Returns 0 on success, -1 on failure.
  839  */
  840 int
  841 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
  842 {
  843         int n = 0;
  844         daddr_t blk = SWAPBLK_NONE;
  845         vm_pindex_t beg = start;        /* save start index */
  846 
  847         VM_OBJECT_WLOCK(object);
  848         while (size) {
  849                 if (n == 0) {
  850                         n = BLIST_MAX_ALLOC;
  851                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
  852                                 n >>= 1;
  853                                 if (n == 0) {
  854                                         swp_pager_meta_free(object, beg, start - beg);
  855                                         VM_OBJECT_WUNLOCK(object);
  856                                         return (-1);
  857                                 }
  858                         }
  859                 }
  860                 swp_pager_meta_build(object, start, blk);
  861                 --size;
  862                 ++start;
  863                 ++blk;
  864                 --n;
  865         }
  866         swp_pager_meta_free(object, start, n);
  867         VM_OBJECT_WUNLOCK(object);
  868         return (0);
  869 }
  870 
  871 /*
  872  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
  873  *                      and destroy the source.
  874  *
  875  *      Copy any valid swapblks from the source to the destination.  In
  876  *      cases where both the source and destination have a valid swapblk,
  877  *      we keep the destination's.
  878  *
  879  *      This routine is allowed to sleep.  It may sleep allocating metadata
  880  *      indirectly through swp_pager_meta_build() or if paging is still in
  881  *      progress on the source.
  882  *
  883  *      The source object contains no vm_page_t's (which is just as well)
  884  *
  885  *      The source object is of type OBJT_SWAP.
  886  *
  887  *      The source and destination objects must be locked.
  888  *      Both object locks may temporarily be released.
  889  */
  890 void
  891 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
  892     vm_pindex_t offset, int destroysource)
  893 {
  894         vm_pindex_t i;
  895 
  896         VM_OBJECT_ASSERT_WLOCKED(srcobject);
  897         VM_OBJECT_ASSERT_WLOCKED(dstobject);
  898 
  899         /*
  900          * If destroysource is set, we remove the source object from the
  901          * swap_pager internal queue now.
  902          */
  903         if (destroysource && srcobject->handle != NULL) {
  904                 vm_object_pip_add(srcobject, 1);
  905                 VM_OBJECT_WUNLOCK(srcobject);
  906                 vm_object_pip_add(dstobject, 1);
  907                 VM_OBJECT_WUNLOCK(dstobject);
  908                 sx_xlock(&sw_alloc_sx);
  909                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
  910                     pager_object_list);
  911                 sx_xunlock(&sw_alloc_sx);
  912                 VM_OBJECT_WLOCK(dstobject);
  913                 vm_object_pip_wakeup(dstobject);
  914                 VM_OBJECT_WLOCK(srcobject);
  915                 vm_object_pip_wakeup(srcobject);
  916         }
  917 
  918         /*
  919          * transfer source to destination.
  920          */
  921         for (i = 0; i < dstobject->size; ++i) {
  922                 daddr_t dstaddr;
  923 
  924                 /*
  925                  * Locate (without changing) the swapblk on the destination,
  926                  * unless it is invalid in which case free it silently, or
  927                  * if the destination is a resident page, in which case the
  928                  * source is thrown away.
  929                  */
  930                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
  931 
  932                 if (dstaddr == SWAPBLK_NONE) {
  933                         /*
  934                          * Destination has no swapblk and is not resident,
  935                          * copy source.
  936                          */
  937                         daddr_t srcaddr;
  938 
  939                         srcaddr = swp_pager_meta_ctl(
  940                             srcobject,
  941                             i + offset,
  942                             SWM_POP
  943                         );
  944 
  945                         if (srcaddr != SWAPBLK_NONE) {
  946                                 /*
  947                                  * swp_pager_meta_build() can sleep.
  948                                  */
  949                                 vm_object_pip_add(srcobject, 1);
  950                                 VM_OBJECT_WUNLOCK(srcobject);
  951                                 vm_object_pip_add(dstobject, 1);
  952                                 swp_pager_meta_build(dstobject, i, srcaddr);
  953                                 vm_object_pip_wakeup(dstobject);
  954                                 VM_OBJECT_WLOCK(srcobject);
  955                                 vm_object_pip_wakeup(srcobject);
  956                         }
  957                 } else {
  958                         /*
  959                          * Destination has valid swapblk or it is represented
  960                          * by a resident page.  We destroy the sourceblock.
  961                          */
  962 
  963                         swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
  964                 }
  965         }
  966 
  967         /*
  968          * Free left over swap blocks in source.
  969          *
  970          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
  971          * double-remove the object from the swap queues.
  972          */
  973         if (destroysource) {
  974                 swp_pager_meta_free_all(srcobject);
  975                 /*
  976                  * Reverting the type is not necessary, the caller is going
  977                  * to destroy srcobject directly, but I'm doing it here
  978                  * for consistency since we've removed the object from its
  979                  * queues.
  980                  */
  981                 srcobject->type = OBJT_DEFAULT;
  982         }
  983 }
  984 
  985 /*
  986  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
  987  *                              the requested page.
  988  *
  989  *      We determine whether good backing store exists for the requested
  990  *      page and return TRUE if it does, FALSE if it doesn't.
  991  *
  992  *      If TRUE, we also try to determine how much valid, contiguous backing
  993  *      store exists before and after the requested page within a reasonable
  994  *      distance.  We do not try to restrict it to the swap device stripe
  995  *      (that is handled in getpages/putpages).  It probably isn't worth
  996  *      doing here.
  997  */
  998 static boolean_t
  999 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
 1000 {
 1001         daddr_t blk0;
 1002 
 1003         VM_OBJECT_ASSERT_LOCKED(object);
 1004         /*
 1005          * do we have good backing store at the requested index ?
 1006          */
 1007         blk0 = swp_pager_meta_ctl(object, pindex, 0);
 1008 
 1009         if (blk0 == SWAPBLK_NONE) {
 1010                 if (before)
 1011                         *before = 0;
 1012                 if (after)
 1013                         *after = 0;
 1014                 return (FALSE);
 1015         }
 1016 
 1017         /*
 1018          * find backwards-looking contiguous good backing store
 1019          */
 1020         if (before != NULL) {
 1021                 int i;
 1022 
 1023                 for (i = 1; i < (SWB_NPAGES/2); ++i) {
 1024                         daddr_t blk;
 1025 
 1026                         if (i > pindex)
 1027                                 break;
 1028                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
 1029                         if (blk != blk0 - i)
 1030                                 break;
 1031                 }
 1032                 *before = (i - 1);
 1033         }
 1034 
 1035         /*
 1036          * find forward-looking contiguous good backing store
 1037          */
 1038         if (after != NULL) {
 1039                 int i;
 1040 
 1041                 for (i = 1; i < (SWB_NPAGES/2); ++i) {
 1042                         daddr_t blk;
 1043 
 1044                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
 1045                         if (blk != blk0 + i)
 1046                                 break;
 1047                 }
 1048                 *after = (i - 1);
 1049         }
 1050         return (TRUE);
 1051 }
 1052 
 1053 /*
 1054  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
 1055  *
 1056  *      This removes any associated swap backing store, whether valid or
 1057  *      not, from the page.
 1058  *
 1059  *      This routine is typically called when a page is made dirty, at
 1060  *      which point any associated swap can be freed.  MADV_FREE also
 1061  *      calls us in a special-case situation
 1062  *
 1063  *      NOTE!!!  If the page is clean and the swap was valid, the caller
 1064  *      should make the page dirty before calling this routine.  This routine
 1065  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
 1066  *      depends on it.
 1067  *
 1068  *      This routine may not sleep.
 1069  *
 1070  *      The object containing the page must be locked.
 1071  */
 1072 static void
 1073 swap_pager_unswapped(vm_page_t m)
 1074 {
 1075 
 1076         swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
 1077 }
 1078 
 1079 /*
 1080  * SWAP_PAGER_GETPAGES() - bring pages in from swap
 1081  *
 1082  *      Attempt to retrieve (m, count) pages from backing store, but make
 1083  *      sure we retrieve at least m[reqpage].  We try to load in as large
 1084  *      a chunk surrounding m[reqpage] as is contiguous in swap and which
 1085  *      belongs to the same object.
 1086  *
 1087  *      The code is designed for asynchronous operation and
 1088  *      immediate-notification of 'reqpage' but tends not to be
 1089  *      used that way.  Please do not optimize-out this algorithmic
 1090  *      feature, I intend to improve on it in the future.
 1091  *
 1092  *      The parent has a single vm_object_pip_add() reference prior to
 1093  *      calling us and we should return with the same.
 1094  *
 1095  *      The parent has BUSY'd the pages.  We should return with 'm'
 1096  *      left busy, but the others adjusted.
 1097  */
 1098 static int
 1099 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
 1100     int *rahead)
 1101 {
 1102         struct buf *bp;
 1103         daddr_t blk;
 1104 
 1105         /*
 1106          * Calculate range to retrieve.  The pages have already been assigned
 1107          * their swapblks.  We require a *contiguous* range but we know it to
 1108          * not span devices.   If we do not supply it, bad things
 1109          * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
 1110          * loops are set up such that the case(s) are handled implicitly.
 1111          *
 1112          * The swp_*() calls must be made with the object locked.
 1113          */
 1114         blk = swp_pager_meta_ctl(m[0]->object, m[0]->pindex, 0);
 1115 
 1116         if (blk == SWAPBLK_NONE)
 1117                 return (VM_PAGER_FAIL);
 1118 
 1119 #ifdef INVARIANTS
 1120         for (int i = 0; i < count; i++)
 1121                 KASSERT(blk + i ==
 1122                     swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0),
 1123                     ("%s: range is not contiguous", __func__));
 1124 #endif
 1125 
 1126         /*
 1127          * Getpbuf() can sleep.
 1128          */
 1129         VM_OBJECT_WUNLOCK(object);
 1130         /*
 1131          * Get a swap buffer header to perform the IO
 1132          */
 1133         bp = getpbuf(&nsw_rcount);
 1134         bp->b_flags |= B_PAGING;
 1135 
 1136         bp->b_iocmd = BIO_READ;
 1137         bp->b_iodone = swp_pager_async_iodone;
 1138         bp->b_rcred = crhold(thread0.td_ucred);
 1139         bp->b_wcred = crhold(thread0.td_ucred);
 1140         bp->b_blkno = blk;
 1141         bp->b_bcount = PAGE_SIZE * count;
 1142         bp->b_bufsize = PAGE_SIZE * count;
 1143         bp->b_npages = count;
 1144 
 1145         VM_OBJECT_WLOCK(object);
 1146         for (int i = 0; i < count; i++) {
 1147                 bp->b_pages[i] = m[i];
 1148                 m[i]->oflags |= VPO_SWAPINPROG;
 1149         }
 1150 
 1151         PCPU_INC(cnt.v_swapin);
 1152         PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
 1153 
 1154         /*
 1155          * We still hold the lock on mreq, and our automatic completion routine
 1156          * does not remove it.
 1157          */
 1158         vm_object_pip_add(object, bp->b_npages);
 1159         VM_OBJECT_WUNLOCK(object);
 1160 
 1161         /*
 1162          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
 1163          * this point because we automatically release it on completion.
 1164          * Instead, we look at the one page we are interested in which we
 1165          * still hold a lock on even through the I/O completion.
 1166          *
 1167          * The other pages in our m[] array are also released on completion,
 1168          * so we cannot assume they are valid anymore either.
 1169          *
 1170          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1171          */
 1172         BUF_KERNPROC(bp);
 1173         swp_pager_strategy(bp);
 1174 
 1175         /*
 1176          * wait for the page we want to complete.  VPO_SWAPINPROG is always
 1177          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
 1178          * is set in the meta-data.
 1179          */
 1180         VM_OBJECT_WLOCK(object);
 1181         while ((m[0]->oflags & VPO_SWAPINPROG) != 0) {
 1182                 m[0]->oflags |= VPO_SWAPSLEEP;
 1183                 PCPU_INC(cnt.v_intrans);
 1184                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
 1185                     "swread", hz * 20)) {
 1186                         printf(
 1187 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
 1188                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
 1189                 }
 1190         }
 1191 
 1192         /*
 1193          * If we had an unrecoverable read error pages will not be valid.
 1194          */
 1195         for (int i = 0; i < count; i++)
 1196                 if (m[i]->valid != VM_PAGE_BITS_ALL)
 1197                         return (VM_PAGER_ERROR);
 1198 
 1199         if (rbehind)
 1200                 *rbehind = 0;
 1201         if (rahead)
 1202                 *rahead = 0;
 1203 
 1204         return (VM_PAGER_OK);
 1205 
 1206         /*
 1207          * A final note: in a low swap situation, we cannot deallocate swap
 1208          * and mark a page dirty here because the caller is likely to mark
 1209          * the page clean when we return, causing the page to possibly revert
 1210          * to all-zero's later.
 1211          */
 1212 }
 1213 
 1214 /*
 1215  *      swap_pager_getpages_async():
 1216  *
 1217  *      Right now this is emulation of asynchronous operation on top of
 1218  *      swap_pager_getpages().
 1219  */
 1220 static int
 1221 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
 1222     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
 1223 {
 1224         int r, error;
 1225 
 1226         r = swap_pager_getpages(object, m, count, rbehind, rahead);
 1227         VM_OBJECT_WUNLOCK(object);
 1228         switch (r) {
 1229         case VM_PAGER_OK:
 1230                 error = 0;
 1231                 break;
 1232         case VM_PAGER_ERROR:
 1233                 error = EIO;
 1234                 break;
 1235         case VM_PAGER_FAIL:
 1236                 error = EINVAL;
 1237                 break;
 1238         default:
 1239                 panic("unhandled swap_pager_getpages() error %d", r);
 1240         }
 1241         (iodone)(arg, m, count, error);
 1242         VM_OBJECT_WLOCK(object);
 1243 
 1244         return (r);
 1245 }
 1246 
 1247 /*
 1248  *      swap_pager_putpages:
 1249  *
 1250  *      Assign swap (if necessary) and initiate I/O on the specified pages.
 1251  *
 1252  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
 1253  *      are automatically converted to SWAP objects.
 1254  *
 1255  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
 1256  *      vm_page reservation system coupled with properly written VFS devices
 1257  *      should ensure that no low-memory deadlock occurs.  This is an area
 1258  *      which needs work.
 1259  *
 1260  *      The parent has N vm_object_pip_add() references prior to
 1261  *      calling us and will remove references for rtvals[] that are
 1262  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
 1263  *      completion.
 1264  *
 1265  *      The parent has soft-busy'd the pages it passes us and will unbusy
 1266  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
 1267  *      We need to unbusy the rest on I/O completion.
 1268  */
 1269 static void
 1270 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
 1271     int flags, int *rtvals)
 1272 {
 1273         int i, n;
 1274         boolean_t sync;
 1275 
 1276         if (count && m[0]->object != object) {
 1277                 panic("swap_pager_putpages: object mismatch %p/%p",
 1278                     object,
 1279                     m[0]->object
 1280                 );
 1281         }
 1282 
 1283         /*
 1284          * Step 1
 1285          *
 1286          * Turn object into OBJT_SWAP
 1287          * check for bogus sysops
 1288          * force sync if not pageout process
 1289          */
 1290         if (object->type != OBJT_SWAP)
 1291                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
 1292         VM_OBJECT_WUNLOCK(object);
 1293 
 1294         n = 0;
 1295         if (curproc != pageproc)
 1296                 sync = TRUE;
 1297         else
 1298                 sync = (flags & VM_PAGER_PUT_SYNC) != 0;
 1299 
 1300         /*
 1301          * Step 2
 1302          *
 1303          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
 1304          * The page is left dirty until the pageout operation completes
 1305          * successfully.
 1306          */
 1307         for (i = 0; i < count; i += n) {
 1308                 int j;
 1309                 struct buf *bp;
 1310                 daddr_t blk;
 1311 
 1312                 /*
 1313                  * Maximum I/O size is limited by a number of factors.
 1314                  */
 1315                 n = min(BLIST_MAX_ALLOC, count - i);
 1316                 n = min(n, nsw_cluster_max);
 1317 
 1318                 /*
 1319                  * Get biggest block of swap we can.  If we fail, fall
 1320                  * back and try to allocate a smaller block.  Don't go
 1321                  * overboard trying to allocate space if it would overly
 1322                  * fragment swap.
 1323                  */
 1324                 while (
 1325                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
 1326                     n > 4
 1327                 ) {
 1328                         n >>= 1;
 1329                 }
 1330                 if (blk == SWAPBLK_NONE) {
 1331                         for (j = 0; j < n; ++j)
 1332                                 rtvals[i+j] = VM_PAGER_FAIL;
 1333                         continue;
 1334                 }
 1335 
 1336                 /*
 1337                  * All I/O parameters have been satisfied, build the I/O
 1338                  * request and assign the swap space.
 1339                  */
 1340                 if (sync == TRUE) {
 1341                         bp = getpbuf(&nsw_wcount_sync);
 1342                 } else {
 1343                         bp = getpbuf(&nsw_wcount_async);
 1344                         bp->b_flags = B_ASYNC;
 1345                 }
 1346                 bp->b_flags |= B_PAGING;
 1347                 bp->b_iocmd = BIO_WRITE;
 1348 
 1349                 bp->b_rcred = crhold(thread0.td_ucred);
 1350                 bp->b_wcred = crhold(thread0.td_ucred);
 1351                 bp->b_bcount = PAGE_SIZE * n;
 1352                 bp->b_bufsize = PAGE_SIZE * n;
 1353                 bp->b_blkno = blk;
 1354 
 1355                 VM_OBJECT_WLOCK(object);
 1356                 for (j = 0; j < n; ++j) {
 1357                         vm_page_t mreq = m[i+j];
 1358 
 1359                         swp_pager_meta_build(
 1360                             mreq->object,
 1361                             mreq->pindex,
 1362                             blk + j
 1363                         );
 1364                         vm_page_dirty(mreq);
 1365                         mreq->oflags |= VPO_SWAPINPROG;
 1366                         bp->b_pages[j] = mreq;
 1367                 }
 1368                 VM_OBJECT_WUNLOCK(object);
 1369                 bp->b_npages = n;
 1370                 /*
 1371                  * Must set dirty range for NFS to work.
 1372                  */
 1373                 bp->b_dirtyoff = 0;
 1374                 bp->b_dirtyend = bp->b_bcount;
 1375 
 1376                 PCPU_INC(cnt.v_swapout);
 1377                 PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
 1378 
 1379                 /*
 1380                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
 1381                  * can call the async completion routine at the end of a
 1382                  * synchronous I/O operation.  Otherwise, our caller would
 1383                  * perform duplicate unbusy and wakeup operations on the page
 1384                  * and object, respectively.
 1385                  */
 1386                 for (j = 0; j < n; j++)
 1387                         rtvals[i + j] = VM_PAGER_PEND;
 1388 
 1389                 /*
 1390                  * asynchronous
 1391                  *
 1392                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1393                  */
 1394                 if (sync == FALSE) {
 1395                         bp->b_iodone = swp_pager_async_iodone;
 1396                         BUF_KERNPROC(bp);
 1397                         swp_pager_strategy(bp);
 1398                         continue;
 1399                 }
 1400 
 1401                 /*
 1402                  * synchronous
 1403                  *
 1404                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1405                  */
 1406                 bp->b_iodone = bdone;
 1407                 swp_pager_strategy(bp);
 1408 
 1409                 /*
 1410                  * Wait for the sync I/O to complete.
 1411                  */
 1412                 bwait(bp, PVM, "swwrt");
 1413 
 1414                 /*
 1415                  * Now that we are through with the bp, we can call the
 1416                  * normal async completion, which frees everything up.
 1417                  */
 1418                 swp_pager_async_iodone(bp);
 1419         }
 1420         VM_OBJECT_WLOCK(object);
 1421 }
 1422 
 1423 /*
 1424  *      swp_pager_async_iodone:
 1425  *
 1426  *      Completion routine for asynchronous reads and writes from/to swap.
 1427  *      Also called manually by synchronous code to finish up a bp.
 1428  *
 1429  *      This routine may not sleep.
 1430  */
 1431 static void
 1432 swp_pager_async_iodone(struct buf *bp)
 1433 {
 1434         int i;
 1435         vm_object_t object = NULL;
 1436 
 1437         /*
 1438          * report error
 1439          */
 1440         if (bp->b_ioflags & BIO_ERROR) {
 1441                 printf(
 1442                     "swap_pager: I/O error - %s failed; blkno %ld,"
 1443                         "size %ld, error %d\n",
 1444                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
 1445                     (long)bp->b_blkno,
 1446                     (long)bp->b_bcount,
 1447                     bp->b_error
 1448                 );
 1449         }
 1450 
 1451         /*
 1452          * remove the mapping for kernel virtual
 1453          */
 1454         if (buf_mapped(bp))
 1455                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
 1456         else
 1457                 bp->b_data = bp->b_kvabase;
 1458 
 1459         if (bp->b_npages) {
 1460                 object = bp->b_pages[0]->object;
 1461                 VM_OBJECT_WLOCK(object);
 1462         }
 1463 
 1464         /*
 1465          * cleanup pages.  If an error occurs writing to swap, we are in
 1466          * very serious trouble.  If it happens to be a disk error, though,
 1467          * we may be able to recover by reassigning the swap later on.  So
 1468          * in this case we remove the m->swapblk assignment for the page
 1469          * but do not free it in the rlist.  The errornous block(s) are thus
 1470          * never reallocated as swap.  Redirty the page and continue.
 1471          */
 1472         for (i = 0; i < bp->b_npages; ++i) {
 1473                 vm_page_t m = bp->b_pages[i];
 1474 
 1475                 m->oflags &= ~VPO_SWAPINPROG;
 1476                 if (m->oflags & VPO_SWAPSLEEP) {
 1477                         m->oflags &= ~VPO_SWAPSLEEP;
 1478                         wakeup(&object->paging_in_progress);
 1479                 }
 1480 
 1481                 if (bp->b_ioflags & BIO_ERROR) {
 1482                         /*
 1483                          * If an error occurs I'd love to throw the swapblk
 1484                          * away without freeing it back to swapspace, so it
 1485                          * can never be used again.  But I can't from an
 1486                          * interrupt.
 1487                          */
 1488                         if (bp->b_iocmd == BIO_READ) {
 1489                                 /*
 1490                                  * NOTE: for reads, m->dirty will probably
 1491                                  * be overridden by the original caller of
 1492                                  * getpages so don't play cute tricks here.
 1493                                  */
 1494                                 m->valid = 0;
 1495                         } else {
 1496                                 /*
 1497                                  * If a write error occurs, reactivate page
 1498                                  * so it doesn't clog the inactive list,
 1499                                  * then finish the I/O.
 1500                                  */
 1501                                 vm_page_dirty(m);
 1502                                 vm_page_lock(m);
 1503                                 vm_page_activate(m);
 1504                                 vm_page_unlock(m);
 1505                                 vm_page_sunbusy(m);
 1506                         }
 1507                 } else if (bp->b_iocmd == BIO_READ) {
 1508                         /*
 1509                          * NOTE: for reads, m->dirty will probably be
 1510                          * overridden by the original caller of getpages so
 1511                          * we cannot set them in order to free the underlying
 1512                          * swap in a low-swap situation.  I don't think we'd
 1513                          * want to do that anyway, but it was an optimization
 1514                          * that existed in the old swapper for a time before
 1515                          * it got ripped out due to precisely this problem.
 1516                          */
 1517                         KASSERT(!pmap_page_is_mapped(m),
 1518                             ("swp_pager_async_iodone: page %p is mapped", m));
 1519                         KASSERT(m->dirty == 0,
 1520                             ("swp_pager_async_iodone: page %p is dirty", m));
 1521                         m->valid = VM_PAGE_BITS_ALL;
 1522                 } else {
 1523                         /*
 1524                          * For write success, clear the dirty
 1525                          * status, then finish the I/O ( which decrements the
 1526                          * busy count and possibly wakes waiter's up ).
 1527                          */
 1528                         KASSERT(!pmap_page_is_write_mapped(m),
 1529                             ("swp_pager_async_iodone: page %p is not write"
 1530                             " protected", m));
 1531                         vm_page_undirty(m);
 1532                         vm_page_sunbusy(m);
 1533                         if (vm_page_count_severe()) {
 1534                                 vm_page_lock(m);
 1535                                 vm_page_try_to_cache(m);
 1536                                 vm_page_unlock(m);
 1537                         }
 1538                 }
 1539         }
 1540 
 1541         /*
 1542          * adjust pip.  NOTE: the original parent may still have its own
 1543          * pip refs on the object.
 1544          */
 1545         if (object != NULL) {
 1546                 vm_object_pip_wakeupn(object, bp->b_npages);
 1547                 VM_OBJECT_WUNLOCK(object);
 1548         }
 1549 
 1550         /*
 1551          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
 1552          * bstrategy(). Set them back to NULL now we're done with it, or we'll
 1553          * trigger a KASSERT in relpbuf().
 1554          */
 1555         if (bp->b_vp) {
 1556                     bp->b_vp = NULL;
 1557                     bp->b_bufobj = NULL;
 1558         }
 1559         /*
 1560          * release the physical I/O buffer
 1561          */
 1562         relpbuf(
 1563             bp,
 1564             ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
 1565                 ((bp->b_flags & B_ASYNC) ?
 1566                     &nsw_wcount_async :
 1567                     &nsw_wcount_sync
 1568                 )
 1569             )
 1570         );
 1571 }
 1572 
 1573 /*
 1574  *      swap_pager_isswapped:
 1575  *
 1576  *      Return 1 if at least one page in the given object is paged
 1577  *      out to the given swap device.
 1578  *
 1579  *      This routine may not sleep.
 1580  */
 1581 int
 1582 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
 1583 {
 1584         daddr_t index = 0;
 1585         int bcount;
 1586         int i;
 1587 
 1588         VM_OBJECT_ASSERT_WLOCKED(object);
 1589         if (object->type != OBJT_SWAP)
 1590                 return (0);
 1591 
 1592         mtx_lock(&swhash_mtx);
 1593         for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
 1594                 struct swblock *swap;
 1595 
 1596                 if ((swap = *swp_pager_hash(object, index)) != NULL) {
 1597                         for (i = 0; i < SWAP_META_PAGES; ++i) {
 1598                                 if (swp_pager_isondev(swap->swb_pages[i], sp)) {
 1599                                         mtx_unlock(&swhash_mtx);
 1600                                         return (1);
 1601                                 }
 1602                         }
 1603                 }
 1604                 index += SWAP_META_PAGES;
 1605         }
 1606         mtx_unlock(&swhash_mtx);
 1607         return (0);
 1608 }
 1609 
 1610 /*
 1611  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
 1612  *
 1613  *      This routine dissociates the page at the given index within a
 1614  *      swap block from its backing store, paging it in if necessary.
 1615  *      If the page is paged in, it is placed in the inactive queue,
 1616  *      since it had its backing store ripped out from under it.
 1617  *      We also attempt to swap in all other pages in the swap block,
 1618  *      we only guarantee that the one at the specified index is
 1619  *      paged in.
 1620  *
 1621  *      XXX - The code to page the whole block in doesn't work, so we
 1622  *            revert to the one-by-one behavior for now.  Sigh.
 1623  */
 1624 static inline void
 1625 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
 1626 {
 1627         vm_page_t m;
 1628 
 1629         vm_object_pip_add(object, 1);
 1630         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
 1631         if (m->valid == VM_PAGE_BITS_ALL) {
 1632                 vm_object_pip_wakeup(object);
 1633                 vm_page_dirty(m);
 1634                 vm_page_lock(m);
 1635                 vm_page_activate(m);
 1636                 vm_page_unlock(m);
 1637                 vm_page_xunbusy(m);
 1638                 vm_pager_page_unswapped(m);
 1639                 return;
 1640         }
 1641 
 1642         if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
 1643                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
 1644         vm_object_pip_wakeup(object);
 1645         vm_page_dirty(m);
 1646         vm_page_lock(m);
 1647         vm_page_deactivate(m);
 1648         vm_page_unlock(m);
 1649         vm_page_xunbusy(m);
 1650         vm_pager_page_unswapped(m);
 1651 }
 1652 
 1653 /*
 1654  *      swap_pager_swapoff:
 1655  *
 1656  *      Page in all of the pages that have been paged out to the
 1657  *      given device.  The corresponding blocks in the bitmap must be
 1658  *      marked as allocated and the device must be flagged SW_CLOSING.
 1659  *      There may be no processes swapped out to the device.
 1660  *
 1661  *      This routine may block.
 1662  */
 1663 static void
 1664 swap_pager_swapoff(struct swdevt *sp)
 1665 {
 1666         struct swblock *swap;
 1667         int i, j, retries;
 1668 
 1669         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
 1670 
 1671         retries = 0;
 1672 full_rescan:
 1673         mtx_lock(&swhash_mtx);
 1674         for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
 1675 restart:
 1676                 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
 1677                         vm_object_t object = swap->swb_object;
 1678                         vm_pindex_t pindex = swap->swb_index;
 1679                         for (j = 0; j < SWAP_META_PAGES; ++j) {
 1680                                 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
 1681                                         /* avoid deadlock */
 1682                                         if (!VM_OBJECT_TRYWLOCK(object)) {
 1683                                                 break;
 1684                                         } else {
 1685                                                 mtx_unlock(&swhash_mtx);
 1686                                                 swp_pager_force_pagein(object,
 1687                                                     pindex + j);
 1688                                                 VM_OBJECT_WUNLOCK(object);
 1689                                                 mtx_lock(&swhash_mtx);
 1690                                                 goto restart;
 1691                                         }
 1692                                 }
 1693                         }
 1694                 }
 1695         }
 1696         mtx_unlock(&swhash_mtx);
 1697         if (sp->sw_used) {
 1698                 /*
 1699                  * Objects may be locked or paging to the device being
 1700                  * removed, so we will miss their pages and need to
 1701                  * make another pass.  We have marked this device as
 1702                  * SW_CLOSING, so the activity should finish soon.
 1703                  */
 1704                 retries++;
 1705                 if (retries > 100) {
 1706                         panic("swapoff: failed to locate %d swap blocks",
 1707                             sp->sw_used);
 1708                 }
 1709                 pause("swpoff", hz / 20);
 1710                 goto full_rescan;
 1711         }
 1712 }
 1713 
 1714 /************************************************************************
 1715  *                              SWAP META DATA                          *
 1716  ************************************************************************
 1717  *
 1718  *      These routines manipulate the swap metadata stored in the
 1719  *      OBJT_SWAP object.
 1720  *
 1721  *      Swap metadata is implemented with a global hash and not directly
 1722  *      linked into the object.  Instead the object simply contains
 1723  *      appropriate tracking counters.
 1724  */
 1725 
 1726 /*
 1727  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
 1728  *
 1729  *      We first convert the object to a swap object if it is a default
 1730  *      object.
 1731  *
 1732  *      The specified swapblk is added to the object's swap metadata.  If
 1733  *      the swapblk is not valid, it is freed instead.  Any previously
 1734  *      assigned swapblk is freed.
 1735  */
 1736 static void
 1737 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
 1738 {
 1739         static volatile int exhausted;
 1740         struct swblock *swap;
 1741         struct swblock **pswap;
 1742         int idx;
 1743 
 1744         VM_OBJECT_ASSERT_WLOCKED(object);
 1745         /*
 1746          * Convert default object to swap object if necessary
 1747          */
 1748         if (object->type != OBJT_SWAP) {
 1749                 object->type = OBJT_SWAP;
 1750                 object->un_pager.swp.swp_bcount = 0;
 1751                 KASSERT(object->handle == NULL, ("default pager with handle"));
 1752         }
 1753 
 1754         /*
 1755          * Locate hash entry.  If not found create, but if we aren't adding
 1756          * anything just return.  If we run out of space in the map we wait
 1757          * and, since the hash table may have changed, retry.
 1758          */
 1759 retry:
 1760         mtx_lock(&swhash_mtx);
 1761         pswap = swp_pager_hash(object, pindex);
 1762 
 1763         if ((swap = *pswap) == NULL) {
 1764                 int i;
 1765 
 1766                 if (swapblk == SWAPBLK_NONE)
 1767                         goto done;
 1768 
 1769                 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT |
 1770                     (curproc == pageproc ? M_USE_RESERVE : 0));
 1771                 if (swap == NULL) {
 1772                         mtx_unlock(&swhash_mtx);
 1773                         VM_OBJECT_WUNLOCK(object);
 1774                         if (uma_zone_exhausted(swap_zone)) {
 1775                                 if (atomic_cmpset_int(&exhausted, 0, 1))
 1776                                         printf("swap zone exhausted, "
 1777                                             "increase kern.maxswzone\n");
 1778                                 vm_pageout_oom(VM_OOM_SWAPZ);
 1779                                 pause("swzonex", 10);
 1780                         } else
 1781                                 VM_WAIT;
 1782                         VM_OBJECT_WLOCK(object);
 1783                         goto retry;
 1784                 }
 1785 
 1786                 if (atomic_cmpset_int(&exhausted, 1, 0))
 1787                         printf("swap zone ok\n");
 1788 
 1789                 swap->swb_hnext = NULL;
 1790                 swap->swb_object = object;
 1791                 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
 1792                 swap->swb_count = 0;
 1793 
 1794                 ++object->un_pager.swp.swp_bcount;
 1795 
 1796                 for (i = 0; i < SWAP_META_PAGES; ++i)
 1797                         swap->swb_pages[i] = SWAPBLK_NONE;
 1798         }
 1799 
 1800         /*
 1801          * Delete prior contents of metadata
 1802          */
 1803         idx = pindex & SWAP_META_MASK;
 1804 
 1805         if (swap->swb_pages[idx] != SWAPBLK_NONE) {
 1806                 swp_pager_freeswapspace(swap->swb_pages[idx], 1);
 1807                 --swap->swb_count;
 1808         }
 1809 
 1810         /*
 1811          * Enter block into metadata
 1812          */
 1813         swap->swb_pages[idx] = swapblk;
 1814         if (swapblk != SWAPBLK_NONE)
 1815                 ++swap->swb_count;
 1816 done:
 1817         mtx_unlock(&swhash_mtx);
 1818 }
 1819 
 1820 /*
 1821  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
 1822  *
 1823  *      The requested range of blocks is freed, with any associated swap
 1824  *      returned to the swap bitmap.
 1825  *
 1826  *      This routine will free swap metadata structures as they are cleaned
 1827  *      out.  This routine does *NOT* operate on swap metadata associated
 1828  *      with resident pages.
 1829  */
 1830 static void
 1831 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
 1832 {
 1833 
 1834         VM_OBJECT_ASSERT_LOCKED(object);
 1835         if (object->type != OBJT_SWAP)
 1836                 return;
 1837 
 1838         while (count > 0) {
 1839                 struct swblock **pswap;
 1840                 struct swblock *swap;
 1841 
 1842                 mtx_lock(&swhash_mtx);
 1843                 pswap = swp_pager_hash(object, index);
 1844 
 1845                 if ((swap = *pswap) != NULL) {
 1846                         daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
 1847 
 1848                         if (v != SWAPBLK_NONE) {
 1849                                 swp_pager_freeswapspace(v, 1);
 1850                                 swap->swb_pages[index & SWAP_META_MASK] =
 1851                                         SWAPBLK_NONE;
 1852                                 if (--swap->swb_count == 0) {
 1853                                         *pswap = swap->swb_hnext;
 1854                                         uma_zfree(swap_zone, swap);
 1855                                         --object->un_pager.swp.swp_bcount;
 1856                                 }
 1857                         }
 1858                         --count;
 1859                         ++index;
 1860                 } else {
 1861                         int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
 1862                         count -= n;
 1863                         index += n;
 1864                 }
 1865                 mtx_unlock(&swhash_mtx);
 1866         }
 1867 }
 1868 
 1869 /*
 1870  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
 1871  *
 1872  *      This routine locates and destroys all swap metadata associated with
 1873  *      an object.
 1874  */
 1875 static void
 1876 swp_pager_meta_free_all(vm_object_t object)
 1877 {
 1878         daddr_t index = 0;
 1879 
 1880         VM_OBJECT_ASSERT_WLOCKED(object);
 1881         if (object->type != OBJT_SWAP)
 1882                 return;
 1883 
 1884         while (object->un_pager.swp.swp_bcount) {
 1885                 struct swblock **pswap;
 1886                 struct swblock *swap;
 1887 
 1888                 mtx_lock(&swhash_mtx);
 1889                 pswap = swp_pager_hash(object, index);
 1890                 if ((swap = *pswap) != NULL) {
 1891                         int i;
 1892 
 1893                         for (i = 0; i < SWAP_META_PAGES; ++i) {
 1894                                 daddr_t v = swap->swb_pages[i];
 1895                                 if (v != SWAPBLK_NONE) {
 1896                                         --swap->swb_count;
 1897                                         swp_pager_freeswapspace(v, 1);
 1898                                 }
 1899                         }
 1900                         if (swap->swb_count != 0)
 1901                                 panic("swap_pager_meta_free_all: swb_count != 0");
 1902                         *pswap = swap->swb_hnext;
 1903                         uma_zfree(swap_zone, swap);
 1904                         --object->un_pager.swp.swp_bcount;
 1905                 }
 1906                 mtx_unlock(&swhash_mtx);
 1907                 index += SWAP_META_PAGES;
 1908         }
 1909 }
 1910 
 1911 /*
 1912  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
 1913  *
 1914  *      This routine is capable of looking up, popping, or freeing
 1915  *      swapblk assignments in the swap meta data or in the vm_page_t.
 1916  *      The routine typically returns the swapblk being looked-up, or popped,
 1917  *      or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
 1918  *      was invalid.  This routine will automatically free any invalid
 1919  *      meta-data swapblks.
 1920  *
 1921  *      It is not possible to store invalid swapblks in the swap meta data
 1922  *      (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
 1923  *
 1924  *      When acting on a busy resident page and paging is in progress, we
 1925  *      have to wait until paging is complete but otherwise can act on the
 1926  *      busy page.
 1927  *
 1928  *      SWM_FREE        remove and free swap block from metadata
 1929  *      SWM_POP         remove from meta data but do not free.. pop it out
 1930  */
 1931 static daddr_t
 1932 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
 1933 {
 1934         struct swblock **pswap;
 1935         struct swblock *swap;
 1936         daddr_t r1;
 1937         int idx;
 1938 
 1939         VM_OBJECT_ASSERT_LOCKED(object);
 1940         /*
 1941          * The meta data only exists of the object is OBJT_SWAP
 1942          * and even then might not be allocated yet.
 1943          */
 1944         if (object->type != OBJT_SWAP)
 1945                 return (SWAPBLK_NONE);
 1946 
 1947         r1 = SWAPBLK_NONE;
 1948         mtx_lock(&swhash_mtx);
 1949         pswap = swp_pager_hash(object, pindex);
 1950 
 1951         if ((swap = *pswap) != NULL) {
 1952                 idx = pindex & SWAP_META_MASK;
 1953                 r1 = swap->swb_pages[idx];
 1954 
 1955                 if (r1 != SWAPBLK_NONE) {
 1956                         if (flags & SWM_FREE) {
 1957                                 swp_pager_freeswapspace(r1, 1);
 1958                                 r1 = SWAPBLK_NONE;
 1959                         }
 1960                         if (flags & (SWM_FREE|SWM_POP)) {
 1961                                 swap->swb_pages[idx] = SWAPBLK_NONE;
 1962                                 if (--swap->swb_count == 0) {
 1963                                         *pswap = swap->swb_hnext;
 1964                                         uma_zfree(swap_zone, swap);
 1965                                         --object->un_pager.swp.swp_bcount;
 1966                                 }
 1967                         }
 1968                 }
 1969         }
 1970         mtx_unlock(&swhash_mtx);
 1971         return (r1);
 1972 }
 1973 
 1974 /*
 1975  * System call swapon(name) enables swapping on device name,
 1976  * which must be in the swdevsw.  Return EBUSY
 1977  * if already swapping on this device.
 1978  */
 1979 #ifndef _SYS_SYSPROTO_H_
 1980 struct swapon_args {
 1981         char *name;
 1982 };
 1983 #endif
 1984 
 1985 /*
 1986  * MPSAFE
 1987  */
 1988 /* ARGSUSED */
 1989 int
 1990 sys_swapon(struct thread *td, struct swapon_args *uap)
 1991 {
 1992         struct vattr attr;
 1993         struct vnode *vp;
 1994         struct nameidata nd;
 1995         int error;
 1996 
 1997         error = priv_check(td, PRIV_SWAPON);
 1998         if (error)
 1999                 return (error);
 2000 
 2001         sx_xlock(&swdev_syscall_lock);
 2002 
 2003         /*
 2004          * Swap metadata may not fit in the KVM if we have physical
 2005          * memory of >1GB.
 2006          */
 2007         if (swap_zone == NULL) {
 2008                 error = ENOMEM;
 2009                 goto done;
 2010         }
 2011 
 2012         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
 2013             uap->name, td);
 2014         error = namei(&nd);
 2015         if (error)
 2016                 goto done;
 2017 
 2018         NDFREE(&nd, NDF_ONLY_PNBUF);
 2019         vp = nd.ni_vp;
 2020 
 2021         if (vn_isdisk(vp, &error)) {
 2022                 error = swapongeom(vp);
 2023         } else if (vp->v_type == VREG &&
 2024             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 2025             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
 2026                 /*
 2027                  * Allow direct swapping to NFS regular files in the same
 2028                  * way that nfs_mountroot() sets up diskless swapping.
 2029                  */
 2030                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
 2031         }
 2032 
 2033         if (error)
 2034                 vrele(vp);
 2035 done:
 2036         sx_xunlock(&swdev_syscall_lock);
 2037         return (error);
 2038 }
 2039 
 2040 /*
 2041  * Check that the total amount of swap currently configured does not
 2042  * exceed half the theoretical maximum.  If it does, print a warning
 2043  * message and return -1; otherwise, return 0.
 2044  */
 2045 static int
 2046 swapon_check_swzone(unsigned long npages)
 2047 {
 2048         unsigned long maxpages;
 2049 
 2050         /* absolute maximum we can handle assuming 100% efficiency */
 2051         maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES;
 2052 
 2053         /* recommend using no more than half that amount */
 2054         if (npages > maxpages / 2) {
 2055                 printf("warning: total configured swap (%lu pages) "
 2056                     "exceeds maximum recommended amount (%lu pages).\n",
 2057                     npages, maxpages / 2);
 2058                 printf("warning: increase kern.maxswzone "
 2059                     "or reduce amount of swap.\n");
 2060                 return (-1);
 2061         }
 2062         return (0);
 2063 }
 2064 
 2065 static void
 2066 swaponsomething(struct vnode *vp, void *id, u_long nblks,
 2067     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
 2068 {
 2069         struct swdevt *sp, *tsp;
 2070         swblk_t dvbase;
 2071         u_long mblocks;
 2072 
 2073         /*
 2074          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
 2075          * First chop nblks off to page-align it, then convert.
 2076          *
 2077          * sw->sw_nblks is in page-sized chunks now too.
 2078          */
 2079         nblks &= ~(ctodb(1) - 1);
 2080         nblks = dbtoc(nblks);
 2081 
 2082         /*
 2083          * If we go beyond this, we get overflows in the radix
 2084          * tree bitmap code.
 2085          */
 2086         mblocks = 0x40000000 / BLIST_META_RADIX;
 2087         if (nblks > mblocks) {
 2088                 printf(
 2089     "WARNING: reducing swap size to maximum of %luMB per unit\n",
 2090                     mblocks / 1024 / 1024 * PAGE_SIZE);
 2091                 nblks = mblocks;
 2092         }
 2093 
 2094         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
 2095         sp->sw_vp = vp;
 2096         sp->sw_id = id;
 2097         sp->sw_dev = dev;
 2098         sp->sw_flags = 0;
 2099         sp->sw_nblks = nblks;
 2100         sp->sw_used = 0;
 2101         sp->sw_strategy = strategy;
 2102         sp->sw_close = close;
 2103         sp->sw_flags = flags;
 2104 
 2105         sp->sw_blist = blist_create(nblks, M_WAITOK);
 2106         /*
 2107          * Do not free the first two block in order to avoid overwriting
 2108          * any bsd label at the front of the partition
 2109          */
 2110         blist_free(sp->sw_blist, 2, nblks - 2);
 2111 
 2112         dvbase = 0;
 2113         mtx_lock(&sw_dev_mtx);
 2114         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
 2115                 if (tsp->sw_end >= dvbase) {
 2116                         /*
 2117                          * We put one uncovered page between the devices
 2118                          * in order to definitively prevent any cross-device
 2119                          * I/O requests
 2120                          */
 2121                         dvbase = tsp->sw_end + 1;
 2122                 }
 2123         }
 2124         sp->sw_first = dvbase;
 2125         sp->sw_end = dvbase + nblks;
 2126         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
 2127         nswapdev++;
 2128         swap_pager_avail += nblks;
 2129         swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
 2130         swapon_check_swzone(swap_total / PAGE_SIZE);
 2131         swp_sizecheck();
 2132         mtx_unlock(&sw_dev_mtx);
 2133 }
 2134 
 2135 /*
 2136  * SYSCALL: swapoff(devname)
 2137  *
 2138  * Disable swapping on the given device.
 2139  *
 2140  * XXX: Badly designed system call: it should use a device index
 2141  * rather than filename as specification.  We keep sw_vp around
 2142  * only to make this work.
 2143  */
 2144 #ifndef _SYS_SYSPROTO_H_
 2145 struct swapoff_args {
 2146         char *name;
 2147 };
 2148 #endif
 2149 
 2150 /*
 2151  * MPSAFE
 2152  */
 2153 /* ARGSUSED */
 2154 int
 2155 sys_swapoff(struct thread *td, struct swapoff_args *uap)
 2156 {
 2157         struct vnode *vp;
 2158         struct nameidata nd;
 2159         struct swdevt *sp;
 2160         int error;
 2161 
 2162         error = priv_check(td, PRIV_SWAPOFF);
 2163         if (error)
 2164                 return (error);
 2165 
 2166         sx_xlock(&swdev_syscall_lock);
 2167 
 2168         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
 2169             td);
 2170         error = namei(&nd);
 2171         if (error)
 2172                 goto done;
 2173         NDFREE(&nd, NDF_ONLY_PNBUF);
 2174         vp = nd.ni_vp;
 2175 
 2176         mtx_lock(&sw_dev_mtx);
 2177         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2178                 if (sp->sw_vp == vp)
 2179                         break;
 2180         }
 2181         mtx_unlock(&sw_dev_mtx);
 2182         if (sp == NULL) {
 2183                 error = EINVAL;
 2184                 goto done;
 2185         }
 2186         error = swapoff_one(sp, td->td_ucred);
 2187 done:
 2188         sx_xunlock(&swdev_syscall_lock);
 2189         return (error);
 2190 }
 2191 
 2192 static int
 2193 swapoff_one(struct swdevt *sp, struct ucred *cred)
 2194 {
 2195         u_long nblks, dvbase;
 2196 #ifdef MAC
 2197         int error;
 2198 #endif
 2199 
 2200         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
 2201 #ifdef MAC
 2202         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
 2203         error = mac_system_check_swapoff(cred, sp->sw_vp);
 2204         (void) VOP_UNLOCK(sp->sw_vp, 0);
 2205         if (error != 0)
 2206                 return (error);
 2207 #endif
 2208         nblks = sp->sw_nblks;
 2209 
 2210         /*
 2211          * We can turn off this swap device safely only if the
 2212          * available virtual memory in the system will fit the amount
 2213          * of data we will have to page back in, plus an epsilon so
 2214          * the system doesn't become critically low on swap space.
 2215          */
 2216         if (vm_cnt.v_free_count + vm_cnt.v_cache_count + swap_pager_avail <
 2217             nblks + nswap_lowat) {
 2218                 return (ENOMEM);
 2219         }
 2220 
 2221         /*
 2222          * Prevent further allocations on this device.
 2223          */
 2224         mtx_lock(&sw_dev_mtx);
 2225         sp->sw_flags |= SW_CLOSING;
 2226         for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
 2227                 swap_pager_avail -= blist_fill(sp->sw_blist,
 2228                      dvbase, dmmax);
 2229         }
 2230         swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
 2231         mtx_unlock(&sw_dev_mtx);
 2232 
 2233         /*
 2234          * Page in the contents of the device and close it.
 2235          */
 2236         swap_pager_swapoff(sp);
 2237 
 2238         sp->sw_close(curthread, sp);
 2239         mtx_lock(&sw_dev_mtx);
 2240         sp->sw_id = NULL;
 2241         TAILQ_REMOVE(&swtailq, sp, sw_list);
 2242         nswapdev--;
 2243         if (nswapdev == 0) {
 2244                 swap_pager_full = 2;
 2245                 swap_pager_almost_full = 1;
 2246         }
 2247         if (swdevhd == sp)
 2248                 swdevhd = NULL;
 2249         mtx_unlock(&sw_dev_mtx);
 2250         blist_destroy(sp->sw_blist);
 2251         free(sp, M_VMPGDATA);
 2252         return (0);
 2253 }
 2254 
 2255 void
 2256 swapoff_all(void)
 2257 {
 2258         struct swdevt *sp, *spt;
 2259         const char *devname;
 2260         int error;
 2261 
 2262         sx_xlock(&swdev_syscall_lock);
 2263 
 2264         mtx_lock(&sw_dev_mtx);
 2265         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
 2266                 mtx_unlock(&sw_dev_mtx);
 2267                 if (vn_isdisk(sp->sw_vp, NULL))
 2268                         devname = devtoname(sp->sw_vp->v_rdev);
 2269                 else
 2270                         devname = "[file]";
 2271                 error = swapoff_one(sp, thread0.td_ucred);
 2272                 if (error != 0) {
 2273                         printf("Cannot remove swap device %s (error=%d), "
 2274                             "skipping.\n", devname, error);
 2275                 } else if (bootverbose) {
 2276                         printf("Swap device %s removed.\n", devname);
 2277                 }
 2278                 mtx_lock(&sw_dev_mtx);
 2279         }
 2280         mtx_unlock(&sw_dev_mtx);
 2281 
 2282         sx_xunlock(&swdev_syscall_lock);
 2283 }
 2284 
 2285 void
 2286 swap_pager_status(int *total, int *used)
 2287 {
 2288         struct swdevt *sp;
 2289 
 2290         *total = 0;
 2291         *used = 0;
 2292         mtx_lock(&sw_dev_mtx);
 2293         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2294                 *total += sp->sw_nblks;
 2295                 *used += sp->sw_used;
 2296         }
 2297         mtx_unlock(&sw_dev_mtx);
 2298 }
 2299 
 2300 int
 2301 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
 2302 {
 2303         struct swdevt *sp;
 2304         const char *tmp_devname;
 2305         int error, n;
 2306 
 2307         n = 0;
 2308         error = ENOENT;
 2309         mtx_lock(&sw_dev_mtx);
 2310         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2311                 if (n != name) {
 2312                         n++;
 2313                         continue;
 2314                 }
 2315                 xs->xsw_version = XSWDEV_VERSION;
 2316                 xs->xsw_dev = sp->sw_dev;
 2317                 xs->xsw_flags = sp->sw_flags;
 2318                 xs->xsw_nblks = sp->sw_nblks;
 2319                 xs->xsw_used = sp->sw_used;
 2320                 if (devname != NULL) {
 2321                         if (vn_isdisk(sp->sw_vp, NULL))
 2322                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
 2323                         else
 2324                                 tmp_devname = "[file]";
 2325                         strncpy(devname, tmp_devname, len);
 2326                 }
 2327                 error = 0;
 2328                 break;
 2329         }
 2330         mtx_unlock(&sw_dev_mtx);
 2331         return (error);
 2332 }
 2333 
 2334 static int
 2335 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
 2336 {
 2337         struct xswdev xs;
 2338         int error;
 2339 
 2340         if (arg2 != 1)                  /* name length */
 2341                 return (EINVAL);
 2342         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
 2343         if (error != 0)
 2344                 return (error);
 2345         error = SYSCTL_OUT(req, &xs, sizeof(xs));
 2346         return (error);
 2347 }
 2348 
 2349 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
 2350     "Number of swap devices");
 2351 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2352     sysctl_vm_swap_info,
 2353     "Swap statistics by device");
 2354 
 2355 /*
 2356  * vmspace_swap_count() - count the approximate swap usage in pages for a
 2357  *                        vmspace.
 2358  *
 2359  *      The map must be locked.
 2360  *
 2361  *      Swap usage is determined by taking the proportional swap used by
 2362  *      VM objects backing the VM map.  To make up for fractional losses,
 2363  *      if the VM object has any swap use at all the associated map entries
 2364  *      count for at least 1 swap page.
 2365  */
 2366 long
 2367 vmspace_swap_count(struct vmspace *vmspace)
 2368 {
 2369         vm_map_t map;
 2370         vm_map_entry_t cur;
 2371         vm_object_t object;
 2372         long count, n;
 2373 
 2374         map = &vmspace->vm_map;
 2375         count = 0;
 2376 
 2377         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
 2378                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
 2379                     (object = cur->object.vm_object) != NULL) {
 2380                         VM_OBJECT_WLOCK(object);
 2381                         if (object->type == OBJT_SWAP &&
 2382                             object->un_pager.swp.swp_bcount != 0) {
 2383                                 n = (cur->end - cur->start) / PAGE_SIZE;
 2384                                 count += object->un_pager.swp.swp_bcount *
 2385                                     SWAP_META_PAGES * n / object->size + 1;
 2386                         }
 2387                         VM_OBJECT_WUNLOCK(object);
 2388                 }
 2389         }
 2390         return (count);
 2391 }
 2392 
 2393 /*
 2394  * GEOM backend
 2395  *
 2396  * Swapping onto disk devices.
 2397  *
 2398  */
 2399 
 2400 static g_orphan_t swapgeom_orphan;
 2401 
 2402 static struct g_class g_swap_class = {
 2403         .name = "SWAP",
 2404         .version = G_VERSION,
 2405         .orphan = swapgeom_orphan,
 2406 };
 2407 
 2408 DECLARE_GEOM_CLASS(g_swap_class, g_class);
 2409 
 2410 
 2411 static void
 2412 swapgeom_close_ev(void *arg, int flags)
 2413 {
 2414         struct g_consumer *cp;
 2415 
 2416         cp = arg;
 2417         g_access(cp, -1, -1, 0);
 2418         g_detach(cp);
 2419         g_destroy_consumer(cp);
 2420 }
 2421 
 2422 /*
 2423  * Add a reference to the g_consumer for an inflight transaction.
 2424  */
 2425 static void
 2426 swapgeom_acquire(struct g_consumer *cp)
 2427 {
 2428 
 2429         mtx_assert(&sw_dev_mtx, MA_OWNED);
 2430         cp->index++;
 2431 }
 2432 
 2433 /*
 2434  * Remove a reference from the g_consumer.  Post a close event if all
 2435  * references go away, since the function might be called from the
 2436  * biodone context.
 2437  */
 2438 static void
 2439 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
 2440 {
 2441 
 2442         mtx_assert(&sw_dev_mtx, MA_OWNED);
 2443         cp->index--;
 2444         if (cp->index == 0) {
 2445                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
 2446                         sp->sw_id = NULL;
 2447         }
 2448 }
 2449 
 2450 static void
 2451 swapgeom_done(struct bio *bp2)
 2452 {
 2453         struct swdevt *sp;
 2454         struct buf *bp;
 2455         struct g_consumer *cp;
 2456 
 2457         bp = bp2->bio_caller2;
 2458         cp = bp2->bio_from;
 2459         bp->b_ioflags = bp2->bio_flags;
 2460         if (bp2->bio_error)
 2461                 bp->b_ioflags |= BIO_ERROR;
 2462         bp->b_resid = bp->b_bcount - bp2->bio_completed;
 2463         bp->b_error = bp2->bio_error;
 2464         bufdone(bp);
 2465         sp = bp2->bio_caller1;
 2466         mtx_lock(&sw_dev_mtx);
 2467         swapgeom_release(cp, sp);
 2468         mtx_unlock(&sw_dev_mtx);
 2469         g_destroy_bio(bp2);
 2470 }
 2471 
 2472 static void
 2473 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
 2474 {
 2475         struct bio *bio;
 2476         struct g_consumer *cp;
 2477 
 2478         mtx_lock(&sw_dev_mtx);
 2479         cp = sp->sw_id;
 2480         if (cp == NULL) {
 2481                 mtx_unlock(&sw_dev_mtx);
 2482                 bp->b_error = ENXIO;
 2483                 bp->b_ioflags |= BIO_ERROR;
 2484                 bufdone(bp);
 2485                 return;
 2486         }
 2487         swapgeom_acquire(cp);
 2488         mtx_unlock(&sw_dev_mtx);
 2489         if (bp->b_iocmd == BIO_WRITE)
 2490                 bio = g_new_bio();
 2491         else
 2492                 bio = g_alloc_bio();
 2493         if (bio == NULL) {
 2494                 mtx_lock(&sw_dev_mtx);
 2495                 swapgeom_release(cp, sp);
 2496                 mtx_unlock(&sw_dev_mtx);
 2497                 bp->b_error = ENOMEM;
 2498                 bp->b_ioflags |= BIO_ERROR;
 2499                 bufdone(bp);
 2500                 return;
 2501         }
 2502 
 2503         bio->bio_caller1 = sp;
 2504         bio->bio_caller2 = bp;
 2505         bio->bio_cmd = bp->b_iocmd;
 2506         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
 2507         bio->bio_length = bp->b_bcount;
 2508         bio->bio_done = swapgeom_done;
 2509         if (!buf_mapped(bp)) {
 2510                 bio->bio_ma = bp->b_pages;
 2511                 bio->bio_data = unmapped_buf;
 2512                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
 2513                 bio->bio_ma_n = bp->b_npages;
 2514                 bio->bio_flags |= BIO_UNMAPPED;
 2515         } else {
 2516                 bio->bio_data = bp->b_data;
 2517                 bio->bio_ma = NULL;
 2518         }
 2519         g_io_request(bio, cp);
 2520         return;
 2521 }
 2522 
 2523 static void
 2524 swapgeom_orphan(struct g_consumer *cp)
 2525 {
 2526         struct swdevt *sp;
 2527         int destroy;
 2528 
 2529         mtx_lock(&sw_dev_mtx);
 2530         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2531                 if (sp->sw_id == cp) {
 2532                         sp->sw_flags |= SW_CLOSING;
 2533                         break;
 2534                 }
 2535         }
 2536         /*
 2537          * Drop reference we were created with. Do directly since we're in a
 2538          * special context where we don't have to queue the call to
 2539          * swapgeom_close_ev().
 2540          */
 2541         cp->index--;
 2542         destroy = ((sp != NULL) && (cp->index == 0));
 2543         if (destroy)
 2544                 sp->sw_id = NULL;
 2545         mtx_unlock(&sw_dev_mtx);
 2546         if (destroy)
 2547                 swapgeom_close_ev(cp, 0);
 2548 }
 2549 
 2550 static void
 2551 swapgeom_close(struct thread *td, struct swdevt *sw)
 2552 {
 2553         struct g_consumer *cp;
 2554 
 2555         mtx_lock(&sw_dev_mtx);
 2556         cp = sw->sw_id;
 2557         sw->sw_id = NULL;
 2558         mtx_unlock(&sw_dev_mtx);
 2559 
 2560         /*
 2561          * swapgeom_close() may be called from the biodone context,
 2562          * where we cannot perform topology changes.  Delegate the
 2563          * work to the events thread.
 2564          */
 2565         if (cp != NULL)
 2566                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
 2567 }
 2568 
 2569 static int
 2570 swapongeom_locked(struct cdev *dev, struct vnode *vp)
 2571 {
 2572         struct g_provider *pp;
 2573         struct g_consumer *cp;
 2574         static struct g_geom *gp;
 2575         struct swdevt *sp;
 2576         u_long nblks;
 2577         int error;
 2578 
 2579         pp = g_dev_getprovider(dev);
 2580         if (pp == NULL)
 2581                 return (ENODEV);
 2582         mtx_lock(&sw_dev_mtx);
 2583         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2584                 cp = sp->sw_id;
 2585                 if (cp != NULL && cp->provider == pp) {
 2586                         mtx_unlock(&sw_dev_mtx);
 2587                         return (EBUSY);
 2588                 }
 2589         }
 2590         mtx_unlock(&sw_dev_mtx);
 2591         if (gp == NULL)
 2592                 gp = g_new_geomf(&g_swap_class, "swap");
 2593         cp = g_new_consumer(gp);
 2594         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
 2595         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
 2596         g_attach(cp, pp);
 2597         /*
 2598          * XXX: Every time you think you can improve the margin for
 2599          * footshooting, somebody depends on the ability to do so:
 2600          * savecore(8) wants to write to our swapdev so we cannot
 2601          * set an exclusive count :-(
 2602          */
 2603         error = g_access(cp, 1, 1, 0);
 2604         if (error != 0) {
 2605                 g_detach(cp);
 2606                 g_destroy_consumer(cp);
 2607                 return (error);
 2608         }
 2609         nblks = pp->mediasize / DEV_BSIZE;
 2610         swaponsomething(vp, cp, nblks, swapgeom_strategy,
 2611             swapgeom_close, dev2udev(dev),
 2612             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
 2613         return (0);
 2614 }
 2615 
 2616 static int
 2617 swapongeom(struct vnode *vp)
 2618 {
 2619         int error;
 2620 
 2621         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2622         if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
 2623                 error = ENOENT;
 2624         } else {
 2625                 g_topology_lock();
 2626                 error = swapongeom_locked(vp->v_rdev, vp);
 2627                 g_topology_unlock();
 2628         }
 2629         VOP_UNLOCK(vp, 0);
 2630         return (error);
 2631 }
 2632 
 2633 /*
 2634  * VNODE backend
 2635  *
 2636  * This is used mainly for network filesystem (read: probably only tested
 2637  * with NFS) swapfiles.
 2638  *
 2639  */
 2640 
 2641 static void
 2642 swapdev_strategy(struct buf *bp, struct swdevt *sp)
 2643 {
 2644         struct vnode *vp2;
 2645 
 2646         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
 2647 
 2648         vp2 = sp->sw_id;
 2649         vhold(vp2);
 2650         if (bp->b_iocmd == BIO_WRITE) {
 2651                 if (bp->b_bufobj)
 2652                         bufobj_wdrop(bp->b_bufobj);
 2653                 bufobj_wref(&vp2->v_bufobj);
 2654         }
 2655         if (bp->b_bufobj != &vp2->v_bufobj)
 2656                 bp->b_bufobj = &vp2->v_bufobj;
 2657         bp->b_vp = vp2;
 2658         bp->b_iooffset = dbtob(bp->b_blkno);
 2659         bstrategy(bp);
 2660         return;
 2661 }
 2662 
 2663 static void
 2664 swapdev_close(struct thread *td, struct swdevt *sp)
 2665 {
 2666 
 2667         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
 2668         vrele(sp->sw_vp);
 2669 }
 2670 
 2671 
 2672 static int
 2673 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
 2674 {
 2675         struct swdevt *sp;
 2676         int error;
 2677 
 2678         if (nblks == 0)
 2679                 return (ENXIO);
 2680         mtx_lock(&sw_dev_mtx);
 2681         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2682                 if (sp->sw_id == vp) {
 2683                         mtx_unlock(&sw_dev_mtx);
 2684                         return (EBUSY);
 2685                 }
 2686         }
 2687         mtx_unlock(&sw_dev_mtx);
 2688 
 2689         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2690 #ifdef MAC
 2691         error = mac_system_check_swapon(td->td_ucred, vp);
 2692         if (error == 0)
 2693 #endif
 2694                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
 2695         (void) VOP_UNLOCK(vp, 0);
 2696         if (error)
 2697                 return (error);
 2698 
 2699         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
 2700             NODEV, 0);
 2701         return (0);
 2702 }
 2703 
 2704 static int
 2705 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
 2706 {
 2707         int error, new, n;
 2708 
 2709         new = nsw_wcount_async_max;
 2710         error = sysctl_handle_int(oidp, &new, 0, req);
 2711         if (error != 0 || req->newptr == NULL)
 2712                 return (error);
 2713 
 2714         if (new > nswbuf / 2 || new < 1)
 2715                 return (EINVAL);
 2716 
 2717         mtx_lock(&pbuf_mtx);
 2718         while (nsw_wcount_async_max != new) {
 2719                 /*
 2720                  * Adjust difference.  If the current async count is too low,
 2721                  * we will need to sqeeze our update slowly in.  Sleep with a
 2722                  * higher priority than getpbuf() to finish faster.
 2723                  */
 2724                 n = new - nsw_wcount_async_max;
 2725                 if (nsw_wcount_async + n >= 0) {
 2726                         nsw_wcount_async += n;
 2727                         nsw_wcount_async_max += n;
 2728                         wakeup(&nsw_wcount_async);
 2729                 } else {
 2730                         nsw_wcount_async_max -= nsw_wcount_async;
 2731                         nsw_wcount_async = 0;
 2732                         msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
 2733                             "swpsysctl", 0);
 2734                 }
 2735         }
 2736         mtx_unlock(&pbuf_mtx);
 2737 
 2738         return (0);
 2739 }

Cache object: cf99dc9baf2b28ed380160d9bd66e8d1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.