The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/swap_pager.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1998 Matthew Dillon,
    3  * Copyright (c) 1994 John S. Dyson
    4  * Copyright (c) 1990 University of Utah.
    5  * Copyright (c) 1982, 1986, 1989, 1993
    6  *      The Regents of the University of California.  All rights reserved.
    7  *
    8  * This code is derived from software contributed to Berkeley by
    9  * the Systems Programming Group of the University of Utah Computer
   10  * Science Department.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. All advertising materials mentioning features or use of this software
   21  *    must display the following acknowledgement:
   22  *      This product includes software developed by the University of
   23  *      California, Berkeley and its contributors.
   24  * 4. Neither the name of the University nor the names of its contributors
   25  *    may be used to endorse or promote products derived from this software
   26  *    without specific prior written permission.
   27  *
   28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   38  * SUCH DAMAGE.
   39  *
   40  *                              New Swap System
   41  *                              Matthew Dillon
   42  *
   43  * Radix Bitmap 'blists'.
   44  *
   45  *      - The new swapper uses the new radix bitmap code.  This should scale
   46  *        to arbitrarily small or arbitrarily large swap spaces and an almost
   47  *        arbitrary degree of fragmentation.
   48  *
   49  * Features:
   50  *
   51  *      - on the fly reallocation of swap during putpages.  The new system
   52  *        does not try to keep previously allocated swap blocks for dirty
   53  *        pages.
   54  *
   55  *      - on the fly deallocation of swap
   56  *
   57  *      - No more garbage collection required.  Unnecessarily allocated swap
   58  *        blocks only exist for dirty vm_page_t's now and these are already
   59  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
   60  *        removal of invalidated swap blocks when a page is destroyed
   61  *        or renamed.
   62  *
   63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
   64  *
   65  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
   66  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
   67  */
   68 
   69 #include <sys/cdefs.h>
   70 __FBSDID("$FreeBSD: releng/11.1/sys/vm/swap_pager.c 320693 2017-07-05 19:24:53Z markj $");
   71 
   72 #include "opt_swap.h"
   73 #include "opt_vm.h"
   74 
   75 #include <sys/param.h>
   76 #include <sys/systm.h>
   77 #include <sys/conf.h>
   78 #include <sys/kernel.h>
   79 #include <sys/priv.h>
   80 #include <sys/proc.h>
   81 #include <sys/bio.h>
   82 #include <sys/buf.h>
   83 #include <sys/disk.h>
   84 #include <sys/fcntl.h>
   85 #include <sys/mount.h>
   86 #include <sys/namei.h>
   87 #include <sys/vnode.h>
   88 #include <sys/malloc.h>
   89 #include <sys/racct.h>
   90 #include <sys/resource.h>
   91 #include <sys/resourcevar.h>
   92 #include <sys/rwlock.h>
   93 #include <sys/sysctl.h>
   94 #include <sys/sysproto.h>
   95 #include <sys/blist.h>
   96 #include <sys/lock.h>
   97 #include <sys/sx.h>
   98 #include <sys/vmmeter.h>
   99 
  100 #include <security/mac/mac_framework.h>
  101 
  102 #include <vm/vm.h>
  103 #include <vm/pmap.h>
  104 #include <vm/vm_map.h>
  105 #include <vm/vm_kern.h>
  106 #include <vm/vm_object.h>
  107 #include <vm/vm_page.h>
  108 #include <vm/vm_pager.h>
  109 #include <vm/vm_pageout.h>
  110 #include <vm/vm_param.h>
  111 #include <vm/swap_pager.h>
  112 #include <vm/vm_extern.h>
  113 #include <vm/uma.h>
  114 
  115 #include <geom/geom.h>
  116 
  117 /*
  118  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
  119  * The 64-page limit is due to the radix code (kern/subr_blist.c).
  120  */
  121 #ifndef MAX_PAGEOUT_CLUSTER
  122 #define MAX_PAGEOUT_CLUSTER 16
  123 #endif
  124 
  125 #if !defined(SWB_NPAGES)
  126 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
  127 #endif
  128 
  129 /*
  130  * The swblock structure maps an object and a small, fixed-size range
  131  * of page indices to disk addresses within a swap area.
  132  * The collection of these mappings is implemented as a hash table.
  133  * Unused disk addresses within a swap area are allocated and managed
  134  * using a blist.
  135  */
  136 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
  137 #define SWAP_META_PAGES         (SWB_NPAGES * 2)
  138 #define SWAP_META_MASK          (SWAP_META_PAGES - 1)
  139 
  140 struct swblock {
  141         struct swblock  *swb_hnext;
  142         vm_object_t     swb_object;
  143         vm_pindex_t     swb_index;
  144         int             swb_count;
  145         daddr_t         swb_pages[SWAP_META_PAGES];
  146 };
  147 
  148 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
  149 static struct mtx sw_dev_mtx;
  150 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
  151 static struct swdevt *swdevhd;  /* Allocate from here next */
  152 static int nswapdev;            /* Number of swap devices */
  153 int swap_pager_avail;
  154 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
  155 
  156 static vm_ooffset_t swap_total;
  157 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
  158     "Total amount of available swap storage.");
  159 static vm_ooffset_t swap_reserved;
  160 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
  161     "Amount of swap storage needed to back all allocated anonymous memory.");
  162 static int overcommit = 0;
  163 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
  164     "Configure virtual memory overcommit behavior. See tuning(7) "
  165     "for details.");
  166 static unsigned long swzone;
  167 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
  168     "Actual size of swap metadata zone");
  169 static unsigned long swap_maxpages;
  170 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
  171     "Maximum amount of swap supported");
  172 
  173 /* bits from overcommit */
  174 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
  175 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
  176 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
  177 
  178 int
  179 swap_reserve(vm_ooffset_t incr)
  180 {
  181 
  182         return (swap_reserve_by_cred(incr, curthread->td_ucred));
  183 }
  184 
  185 int
  186 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
  187 {
  188         vm_ooffset_t r, s;
  189         int res, error;
  190         static int curfail;
  191         static struct timeval lastfail;
  192         struct uidinfo *uip;
  193 
  194         uip = cred->cr_ruidinfo;
  195 
  196         if (incr & PAGE_MASK)
  197                 panic("swap_reserve: & PAGE_MASK");
  198 
  199 #ifdef RACCT
  200         if (racct_enable) {
  201                 PROC_LOCK(curproc);
  202                 error = racct_add(curproc, RACCT_SWAP, incr);
  203                 PROC_UNLOCK(curproc);
  204                 if (error != 0)
  205                         return (0);
  206         }
  207 #endif
  208 
  209         res = 0;
  210         mtx_lock(&sw_dev_mtx);
  211         r = swap_reserved + incr;
  212         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
  213                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count;
  214                 s *= PAGE_SIZE;
  215         } else
  216                 s = 0;
  217         s += swap_total;
  218         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
  219             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
  220                 res = 1;
  221                 swap_reserved = r;
  222         }
  223         mtx_unlock(&sw_dev_mtx);
  224 
  225         if (res) {
  226                 UIDINFO_VMSIZE_LOCK(uip);
  227                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
  228                     uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) &&
  229                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
  230                         res = 0;
  231                 else
  232                         uip->ui_vmsize += incr;
  233                 UIDINFO_VMSIZE_UNLOCK(uip);
  234                 if (!res) {
  235                         mtx_lock(&sw_dev_mtx);
  236                         swap_reserved -= incr;
  237                         mtx_unlock(&sw_dev_mtx);
  238                 }
  239         }
  240         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
  241                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
  242                     uip->ui_uid, curproc->p_pid, incr);
  243         }
  244 
  245 #ifdef RACCT
  246         if (!res) {
  247                 PROC_LOCK(curproc);
  248                 racct_sub(curproc, RACCT_SWAP, incr);
  249                 PROC_UNLOCK(curproc);
  250         }
  251 #endif
  252 
  253         return (res);
  254 }
  255 
  256 void
  257 swap_reserve_force(vm_ooffset_t incr)
  258 {
  259         struct uidinfo *uip;
  260 
  261         mtx_lock(&sw_dev_mtx);
  262         swap_reserved += incr;
  263         mtx_unlock(&sw_dev_mtx);
  264 
  265 #ifdef RACCT
  266         PROC_LOCK(curproc);
  267         racct_add_force(curproc, RACCT_SWAP, incr);
  268         PROC_UNLOCK(curproc);
  269 #endif
  270 
  271         uip = curthread->td_ucred->cr_ruidinfo;
  272         PROC_LOCK(curproc);
  273         UIDINFO_VMSIZE_LOCK(uip);
  274         uip->ui_vmsize += incr;
  275         UIDINFO_VMSIZE_UNLOCK(uip);
  276         PROC_UNLOCK(curproc);
  277 }
  278 
  279 void
  280 swap_release(vm_ooffset_t decr)
  281 {
  282         struct ucred *cred;
  283 
  284         PROC_LOCK(curproc);
  285         cred = curthread->td_ucred;
  286         swap_release_by_cred(decr, cred);
  287         PROC_UNLOCK(curproc);
  288 }
  289 
  290 void
  291 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
  292 {
  293         struct uidinfo *uip;
  294 
  295         uip = cred->cr_ruidinfo;
  296 
  297         if (decr & PAGE_MASK)
  298                 panic("swap_release: & PAGE_MASK");
  299 
  300         mtx_lock(&sw_dev_mtx);
  301         if (swap_reserved < decr)
  302                 panic("swap_reserved < decr");
  303         swap_reserved -= decr;
  304         mtx_unlock(&sw_dev_mtx);
  305 
  306         UIDINFO_VMSIZE_LOCK(uip);
  307         if (uip->ui_vmsize < decr)
  308                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
  309         uip->ui_vmsize -= decr;
  310         UIDINFO_VMSIZE_UNLOCK(uip);
  311 
  312         racct_sub_cred(cred, RACCT_SWAP, decr);
  313 }
  314 
  315 #define SWM_FREE        0x02    /* free, period                 */
  316 #define SWM_POP         0x04    /* pop out                      */
  317 
  318 int swap_pager_full = 2;        /* swap space exhaustion (task killing) */
  319 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
  320 static int nsw_rcount;          /* free read buffers                    */
  321 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
  322 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
  323 static int nsw_wcount_async_max;/* assigned maximum                     */
  324 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
  325 
  326 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
  327 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
  328     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
  329     "Maximum running async swap ops");
  330 
  331 static struct swblock **swhash;
  332 static int swhash_mask;
  333 static struct mtx swhash_mtx;
  334 
  335 static struct sx sw_alloc_sx;
  336 
  337 /*
  338  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
  339  * of searching a named list by hashing it just a little.
  340  */
  341 
  342 #define NOBJLISTS               8
  343 
  344 #define NOBJLIST(handle)        \
  345         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
  346 
  347 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
  348 static uma_zone_t       swap_zone;
  349 
  350 /*
  351  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
  352  * calls hooked from other parts of the VM system and do not appear here.
  353  * (see vm/swap_pager.h).
  354  */
  355 static vm_object_t
  356                 swap_pager_alloc(void *handle, vm_ooffset_t size,
  357                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
  358 static void     swap_pager_dealloc(vm_object_t object);
  359 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
  360     int *);
  361 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
  362     int *, pgo_getpages_iodone_t, void *);
  363 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
  364 static boolean_t
  365                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
  366 static void     swap_pager_init(void);
  367 static void     swap_pager_unswapped(vm_page_t);
  368 static void     swap_pager_swapoff(struct swdevt *sp);
  369 
  370 struct pagerops swappagerops = {
  371         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
  372         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
  373         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
  374         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
  375         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
  376         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
  377         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
  378         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
  379 };
  380 
  381 /*
  382  * swap_*() routines are externally accessible.  swp_*() routines are
  383  * internal.
  384  */
  385 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
  386 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
  387 
  388 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
  389     "Maximum size of a swap block in pages");
  390 
  391 static void     swp_sizecheck(void);
  392 static void     swp_pager_async_iodone(struct buf *bp);
  393 static int      swapongeom(struct vnode *);
  394 static int      swaponvp(struct thread *, struct vnode *, u_long);
  395 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
  396 
  397 /*
  398  * Swap bitmap functions
  399  */
  400 static void     swp_pager_freeswapspace(daddr_t blk, int npages);
  401 static daddr_t  swp_pager_getswapspace(int npages);
  402 
  403 /*
  404  * Metadata functions
  405  */
  406 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
  407 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
  408 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
  409 static void swp_pager_meta_free_all(vm_object_t);
  410 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
  411 
  412 /*
  413  * SWP_SIZECHECK() -    update swap_pager_full indication
  414  *
  415  *      update the swap_pager_almost_full indication and warn when we are
  416  *      about to run out of swap space, using lowat/hiwat hysteresis.
  417  *
  418  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
  419  *
  420  *      No restrictions on call
  421  *      This routine may not block.
  422  */
  423 static void
  424 swp_sizecheck(void)
  425 {
  426 
  427         if (swap_pager_avail < nswap_lowat) {
  428                 if (swap_pager_almost_full == 0) {
  429                         printf("swap_pager: out of swap space\n");
  430                         swap_pager_almost_full = 1;
  431                 }
  432         } else {
  433                 swap_pager_full = 0;
  434                 if (swap_pager_avail > nswap_hiwat)
  435                         swap_pager_almost_full = 0;
  436         }
  437 }
  438 
  439 /*
  440  * SWP_PAGER_HASH() -   hash swap meta data
  441  *
  442  *      This is an helper function which hashes the swapblk given
  443  *      the object and page index.  It returns a pointer to a pointer
  444  *      to the object, or a pointer to a NULL pointer if it could not
  445  *      find a swapblk.
  446  */
  447 static struct swblock **
  448 swp_pager_hash(vm_object_t object, vm_pindex_t index)
  449 {
  450         struct swblock **pswap;
  451         struct swblock *swap;
  452 
  453         index &= ~(vm_pindex_t)SWAP_META_MASK;
  454         pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
  455         while ((swap = *pswap) != NULL) {
  456                 if (swap->swb_object == object &&
  457                     swap->swb_index == index
  458                 ) {
  459                         break;
  460                 }
  461                 pswap = &swap->swb_hnext;
  462         }
  463         return (pswap);
  464 }
  465 
  466 /*
  467  * SWAP_PAGER_INIT() -  initialize the swap pager!
  468  *
  469  *      Expected to be started from system init.  NOTE:  This code is run
  470  *      before much else so be careful what you depend on.  Most of the VM
  471  *      system has yet to be initialized at this point.
  472  */
  473 static void
  474 swap_pager_init(void)
  475 {
  476         /*
  477          * Initialize object lists
  478          */
  479         int i;
  480 
  481         for (i = 0; i < NOBJLISTS; ++i)
  482                 TAILQ_INIT(&swap_pager_object_list[i]);
  483         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
  484         sx_init(&sw_alloc_sx, "swspsx");
  485         sx_init(&swdev_syscall_lock, "swsysc");
  486 }
  487 
  488 /*
  489  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
  490  *
  491  *      Expected to be started from pageout process once, prior to entering
  492  *      its main loop.
  493  */
  494 void
  495 swap_pager_swap_init(void)
  496 {
  497         unsigned long n, n2;
  498 
  499         /*
  500          * Number of in-transit swap bp operations.  Don't
  501          * exhaust the pbufs completely.  Make sure we
  502          * initialize workable values (0 will work for hysteresis
  503          * but it isn't very efficient).
  504          *
  505          * The nsw_cluster_max is constrained by the bp->b_pages[]
  506          * array (MAXPHYS/PAGE_SIZE) and our locally defined
  507          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
  508          * constrained by the swap device interleave stripe size.
  509          *
  510          * Currently we hardwire nsw_wcount_async to 4.  This limit is
  511          * designed to prevent other I/O from having high latencies due to
  512          * our pageout I/O.  The value 4 works well for one or two active swap
  513          * devices but is probably a little low if you have more.  Even so,
  514          * a higher value would probably generate only a limited improvement
  515          * with three or four active swap devices since the system does not
  516          * typically have to pageout at extreme bandwidths.   We will want
  517          * at least 2 per swap devices, and 4 is a pretty good value if you
  518          * have one NFS swap device due to the command/ack latency over NFS.
  519          * So it all works out pretty well.
  520          */
  521         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
  522 
  523         mtx_lock(&pbuf_mtx);
  524         nsw_rcount = (nswbuf + 1) / 2;
  525         nsw_wcount_sync = (nswbuf + 3) / 4;
  526         nsw_wcount_async = 4;
  527         nsw_wcount_async_max = nsw_wcount_async;
  528         mtx_unlock(&pbuf_mtx);
  529 
  530         /*
  531          * Initialize our zone.  Right now I'm just guessing on the number
  532          * we need based on the number of pages in the system.  Each swblock
  533          * can hold 32 pages, so this is probably overkill.  This reservation
  534          * is typically limited to around 32MB by default.
  535          */
  536         n = vm_cnt.v_page_count / 2;
  537         if (maxswzone && n > maxswzone / sizeof(struct swblock))
  538                 n = maxswzone / sizeof(struct swblock);
  539         n2 = n;
  540         swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
  541             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
  542         if (swap_zone == NULL)
  543                 panic("failed to create swap_zone.");
  544         do {
  545                 if (uma_zone_reserve_kva(swap_zone, n))
  546                         break;
  547                 /*
  548                  * if the allocation failed, try a zone two thirds the
  549                  * size of the previous attempt.
  550                  */
  551                 n -= ((n + 2) / 3);
  552         } while (n > 0);
  553         if (n2 != n)
  554                 printf("Swap zone entries reduced from %lu to %lu.\n", n2, n);
  555         swap_maxpages = n * SWAP_META_PAGES;
  556         swzone = n * sizeof(struct swblock);
  557         n2 = n;
  558 
  559         /*
  560          * Initialize our meta-data hash table.  The swapper does not need to
  561          * be quite as efficient as the VM system, so we do not use an
  562          * oversized hash table.
  563          *
  564          *      n:              size of hash table, must be power of 2
  565          *      swhash_mask:    hash table index mask
  566          */
  567         for (n = 1; n < n2 / 8; n *= 2)
  568                 ;
  569         swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
  570         swhash_mask = n - 1;
  571         mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
  572 }
  573 
  574 static vm_object_t
  575 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
  576     vm_ooffset_t offset)
  577 {
  578         vm_object_t object;
  579 
  580         if (cred != NULL) {
  581                 if (!swap_reserve_by_cred(size, cred))
  582                         return (NULL);
  583                 crhold(cred);
  584         }
  585         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
  586             PAGE_MASK + size));
  587         object->handle = handle;
  588         if (cred != NULL) {
  589                 object->cred = cred;
  590                 object->charge = size;
  591         }
  592         object->un_pager.swp.swp_bcount = 0;
  593         return (object);
  594 }
  595 
  596 /*
  597  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
  598  *                      its metadata structures.
  599  *
  600  *      This routine is called from the mmap and fork code to create a new
  601  *      OBJT_SWAP object.
  602  *
  603  *      This routine must ensure that no live duplicate is created for
  604  *      the named object request, which is protected against by
  605  *      holding the sw_alloc_sx lock in case handle != NULL.
  606  */
  607 static vm_object_t
  608 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
  609     vm_ooffset_t offset, struct ucred *cred)
  610 {
  611         vm_object_t object;
  612 
  613         if (handle != NULL) {
  614                 /*
  615                  * Reference existing named region or allocate new one.  There
  616                  * should not be a race here against swp_pager_meta_build()
  617                  * as called from vm_page_remove() in regards to the lookup
  618                  * of the handle.
  619                  */
  620                 sx_xlock(&sw_alloc_sx);
  621                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
  622                 if (object == NULL) {
  623                         object = swap_pager_alloc_init(handle, cred, size,
  624                             offset);
  625                         if (object != NULL) {
  626                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
  627                                     object, pager_object_list);
  628                         }
  629                 }
  630                 sx_xunlock(&sw_alloc_sx);
  631         } else {
  632                 object = swap_pager_alloc_init(handle, cred, size, offset);
  633         }
  634         return (object);
  635 }
  636 
  637 /*
  638  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
  639  *
  640  *      The swap backing for the object is destroyed.  The code is
  641  *      designed such that we can reinstantiate it later, but this
  642  *      routine is typically called only when the entire object is
  643  *      about to be destroyed.
  644  *
  645  *      The object must be locked.
  646  */
  647 static void
  648 swap_pager_dealloc(vm_object_t object)
  649 {
  650 
  651         VM_OBJECT_ASSERT_WLOCKED(object);
  652         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
  653 
  654         /*
  655          * Remove from list right away so lookups will fail if we block for
  656          * pageout completion.
  657          */
  658         if (object->handle != NULL) {
  659                 VM_OBJECT_WUNLOCK(object);
  660                 sx_xlock(&sw_alloc_sx);
  661                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
  662                     pager_object_list);
  663                 sx_xunlock(&sw_alloc_sx);
  664                 VM_OBJECT_WLOCK(object);
  665         }
  666 
  667         vm_object_pip_wait(object, "swpdea");
  668 
  669         /*
  670          * Free all remaining metadata.  We only bother to free it from
  671          * the swap meta data.  We do not attempt to free swapblk's still
  672          * associated with vm_page_t's for this object.  We do not care
  673          * if paging is still in progress on some objects.
  674          */
  675         swp_pager_meta_free_all(object);
  676         object->handle = NULL;
  677         object->type = OBJT_DEAD;
  678 }
  679 
  680 /************************************************************************
  681  *                      SWAP PAGER BITMAP ROUTINES                      *
  682  ************************************************************************/
  683 
  684 /*
  685  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
  686  *
  687  *      Allocate swap for the requested number of pages.  The starting
  688  *      swap block number (a page index) is returned or SWAPBLK_NONE
  689  *      if the allocation failed.
  690  *
  691  *      Also has the side effect of advising that somebody made a mistake
  692  *      when they configured swap and didn't configure enough.
  693  *
  694  *      This routine may not sleep.
  695  *
  696  *      We allocate in round-robin fashion from the configured devices.
  697  */
  698 static daddr_t
  699 swp_pager_getswapspace(int npages)
  700 {
  701         daddr_t blk;
  702         struct swdevt *sp;
  703         int i;
  704 
  705         blk = SWAPBLK_NONE;
  706         mtx_lock(&sw_dev_mtx);
  707         sp = swdevhd;
  708         for (i = 0; i < nswapdev; i++) {
  709                 if (sp == NULL)
  710                         sp = TAILQ_FIRST(&swtailq);
  711                 if (!(sp->sw_flags & SW_CLOSING)) {
  712                         blk = blist_alloc(sp->sw_blist, npages);
  713                         if (blk != SWAPBLK_NONE) {
  714                                 blk += sp->sw_first;
  715                                 sp->sw_used += npages;
  716                                 swap_pager_avail -= npages;
  717                                 swp_sizecheck();
  718                                 swdevhd = TAILQ_NEXT(sp, sw_list);
  719                                 goto done;
  720                         }
  721                 }
  722                 sp = TAILQ_NEXT(sp, sw_list);
  723         }
  724         if (swap_pager_full != 2) {
  725                 printf("swap_pager_getswapspace(%d): failed\n", npages);
  726                 swap_pager_full = 2;
  727                 swap_pager_almost_full = 1;
  728         }
  729         swdevhd = NULL;
  730 done:
  731         mtx_unlock(&sw_dev_mtx);
  732         return (blk);
  733 }
  734 
  735 static int
  736 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
  737 {
  738 
  739         return (blk >= sp->sw_first && blk < sp->sw_end);
  740 }
  741 
  742 static void
  743 swp_pager_strategy(struct buf *bp)
  744 {
  745         struct swdevt *sp;
  746 
  747         mtx_lock(&sw_dev_mtx);
  748         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  749                 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
  750                         mtx_unlock(&sw_dev_mtx);
  751                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
  752                             unmapped_buf_allowed) {
  753                                 bp->b_data = unmapped_buf;
  754                                 bp->b_offset = 0;
  755                         } else {
  756                                 pmap_qenter((vm_offset_t)bp->b_data,
  757                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
  758                         }
  759                         sp->sw_strategy(bp, sp);
  760                         return;
  761                 }
  762         }
  763         panic("Swapdev not found");
  764 }
  765 
  766 
  767 /*
  768  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
  769  *
  770  *      This routine returns the specified swap blocks back to the bitmap.
  771  *
  772  *      This routine may not sleep.
  773  */
  774 static void
  775 swp_pager_freeswapspace(daddr_t blk, int npages)
  776 {
  777         struct swdevt *sp;
  778 
  779         mtx_lock(&sw_dev_mtx);
  780         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  781                 if (blk >= sp->sw_first && blk < sp->sw_end) {
  782                         sp->sw_used -= npages;
  783                         /*
  784                          * If we are attempting to stop swapping on
  785                          * this device, we don't want to mark any
  786                          * blocks free lest they be reused.
  787                          */
  788                         if ((sp->sw_flags & SW_CLOSING) == 0) {
  789                                 blist_free(sp->sw_blist, blk - sp->sw_first,
  790                                     npages);
  791                                 swap_pager_avail += npages;
  792                                 swp_sizecheck();
  793                         }
  794                         mtx_unlock(&sw_dev_mtx);
  795                         return;
  796                 }
  797         }
  798         panic("Swapdev not found");
  799 }
  800 
  801 /*
  802  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
  803  *                              range within an object.
  804  *
  805  *      This is a globally accessible routine.
  806  *
  807  *      This routine removes swapblk assignments from swap metadata.
  808  *
  809  *      The external callers of this routine typically have already destroyed
  810  *      or renamed vm_page_t's associated with this range in the object so
  811  *      we should be ok.
  812  *
  813  *      The object must be locked.
  814  */
  815 void
  816 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
  817 {
  818 
  819         swp_pager_meta_free(object, start, size);
  820 }
  821 
  822 /*
  823  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
  824  *
  825  *      Assigns swap blocks to the specified range within the object.  The
  826  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
  827  *
  828  *      Returns 0 on success, -1 on failure.
  829  */
  830 int
  831 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
  832 {
  833         int n = 0;
  834         daddr_t blk = SWAPBLK_NONE;
  835         vm_pindex_t beg = start;        /* save start index */
  836 
  837         VM_OBJECT_WLOCK(object);
  838         while (size) {
  839                 if (n == 0) {
  840                         n = BLIST_MAX_ALLOC;
  841                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
  842                                 n >>= 1;
  843                                 if (n == 0) {
  844                                         swp_pager_meta_free(object, beg, start - beg);
  845                                         VM_OBJECT_WUNLOCK(object);
  846                                         return (-1);
  847                                 }
  848                         }
  849                 }
  850                 swp_pager_meta_build(object, start, blk);
  851                 --size;
  852                 ++start;
  853                 ++blk;
  854                 --n;
  855         }
  856         swp_pager_meta_free(object, start, n);
  857         VM_OBJECT_WUNLOCK(object);
  858         return (0);
  859 }
  860 
  861 /*
  862  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
  863  *                      and destroy the source.
  864  *
  865  *      Copy any valid swapblks from the source to the destination.  In
  866  *      cases where both the source and destination have a valid swapblk,
  867  *      we keep the destination's.
  868  *
  869  *      This routine is allowed to sleep.  It may sleep allocating metadata
  870  *      indirectly through swp_pager_meta_build() or if paging is still in
  871  *      progress on the source.
  872  *
  873  *      The source object contains no vm_page_t's (which is just as well)
  874  *
  875  *      The source object is of type OBJT_SWAP.
  876  *
  877  *      The source and destination objects must be locked.
  878  *      Both object locks may temporarily be released.
  879  */
  880 void
  881 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
  882     vm_pindex_t offset, int destroysource)
  883 {
  884         vm_pindex_t i;
  885 
  886         VM_OBJECT_ASSERT_WLOCKED(srcobject);
  887         VM_OBJECT_ASSERT_WLOCKED(dstobject);
  888 
  889         /*
  890          * If destroysource is set, we remove the source object from the
  891          * swap_pager internal queue now.
  892          */
  893         if (destroysource && srcobject->handle != NULL) {
  894                 vm_object_pip_add(srcobject, 1);
  895                 VM_OBJECT_WUNLOCK(srcobject);
  896                 vm_object_pip_add(dstobject, 1);
  897                 VM_OBJECT_WUNLOCK(dstobject);
  898                 sx_xlock(&sw_alloc_sx);
  899                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
  900                     pager_object_list);
  901                 sx_xunlock(&sw_alloc_sx);
  902                 VM_OBJECT_WLOCK(dstobject);
  903                 vm_object_pip_wakeup(dstobject);
  904                 VM_OBJECT_WLOCK(srcobject);
  905                 vm_object_pip_wakeup(srcobject);
  906         }
  907 
  908         /*
  909          * transfer source to destination.
  910          */
  911         for (i = 0; i < dstobject->size; ++i) {
  912                 daddr_t dstaddr;
  913 
  914                 /*
  915                  * Locate (without changing) the swapblk on the destination,
  916                  * unless it is invalid in which case free it silently, or
  917                  * if the destination is a resident page, in which case the
  918                  * source is thrown away.
  919                  */
  920                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
  921 
  922                 if (dstaddr == SWAPBLK_NONE) {
  923                         /*
  924                          * Destination has no swapblk and is not resident,
  925                          * copy source.
  926                          */
  927                         daddr_t srcaddr;
  928 
  929                         srcaddr = swp_pager_meta_ctl(
  930                             srcobject,
  931                             i + offset,
  932                             SWM_POP
  933                         );
  934 
  935                         if (srcaddr != SWAPBLK_NONE) {
  936                                 /*
  937                                  * swp_pager_meta_build() can sleep.
  938                                  */
  939                                 vm_object_pip_add(srcobject, 1);
  940                                 VM_OBJECT_WUNLOCK(srcobject);
  941                                 vm_object_pip_add(dstobject, 1);
  942                                 swp_pager_meta_build(dstobject, i, srcaddr);
  943                                 vm_object_pip_wakeup(dstobject);
  944                                 VM_OBJECT_WLOCK(srcobject);
  945                                 vm_object_pip_wakeup(srcobject);
  946                         }
  947                 } else {
  948                         /*
  949                          * Destination has valid swapblk or it is represented
  950                          * by a resident page.  We destroy the sourceblock.
  951                          */
  952 
  953                         swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
  954                 }
  955         }
  956 
  957         /*
  958          * Free left over swap blocks in source.
  959          *
  960          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
  961          * double-remove the object from the swap queues.
  962          */
  963         if (destroysource) {
  964                 swp_pager_meta_free_all(srcobject);
  965                 /*
  966                  * Reverting the type is not necessary, the caller is going
  967                  * to destroy srcobject directly, but I'm doing it here
  968                  * for consistency since we've removed the object from its
  969                  * queues.
  970                  */
  971                 srcobject->type = OBJT_DEFAULT;
  972         }
  973 }
  974 
  975 /*
  976  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
  977  *                              the requested page.
  978  *
  979  *      We determine whether good backing store exists for the requested
  980  *      page and return TRUE if it does, FALSE if it doesn't.
  981  *
  982  *      If TRUE, we also try to determine how much valid, contiguous backing
  983  *      store exists before and after the requested page.
  984  */
  985 static boolean_t
  986 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
  987     int *after)
  988 {
  989         daddr_t blk, blk0;
  990         int i;
  991 
  992         VM_OBJECT_ASSERT_LOCKED(object);
  993 
  994         /*
  995          * do we have good backing store at the requested index ?
  996          */
  997         blk0 = swp_pager_meta_ctl(object, pindex, 0);
  998         if (blk0 == SWAPBLK_NONE) {
  999                 if (before)
 1000                         *before = 0;
 1001                 if (after)
 1002                         *after = 0;
 1003                 return (FALSE);
 1004         }
 1005 
 1006         /*
 1007          * find backwards-looking contiguous good backing store
 1008          */
 1009         if (before != NULL) {
 1010                 for (i = 1; i < SWB_NPAGES; i++) {
 1011                         if (i > pindex)
 1012                                 break;
 1013                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
 1014                         if (blk != blk0 - i)
 1015                                 break;
 1016                 }
 1017                 *before = i - 1;
 1018         }
 1019 
 1020         /*
 1021          * find forward-looking contiguous good backing store
 1022          */
 1023         if (after != NULL) {
 1024                 for (i = 1; i < SWB_NPAGES; i++) {
 1025                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
 1026                         if (blk != blk0 + i)
 1027                                 break;
 1028                 }
 1029                 *after = i - 1;
 1030         }
 1031         return (TRUE);
 1032 }
 1033 
 1034 /*
 1035  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
 1036  *
 1037  *      This removes any associated swap backing store, whether valid or
 1038  *      not, from the page.
 1039  *
 1040  *      This routine is typically called when a page is made dirty, at
 1041  *      which point any associated swap can be freed.  MADV_FREE also
 1042  *      calls us in a special-case situation
 1043  *
 1044  *      NOTE!!!  If the page is clean and the swap was valid, the caller
 1045  *      should make the page dirty before calling this routine.  This routine
 1046  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
 1047  *      depends on it.
 1048  *
 1049  *      This routine may not sleep.
 1050  *
 1051  *      The object containing the page must be locked.
 1052  */
 1053 static void
 1054 swap_pager_unswapped(vm_page_t m)
 1055 {
 1056 
 1057         swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
 1058 }
 1059 
 1060 /*
 1061  * swap_pager_getpages() - bring pages in from swap
 1062  *
 1063  *      Attempt to page in the pages in array "m" of length "count".  The caller
 1064  *      may optionally specify that additional pages preceding and succeeding
 1065  *      the specified range be paged in.  The number of such pages is returned
 1066  *      in the "rbehind" and "rahead" parameters, and they will be in the
 1067  *      inactive queue upon return.
 1068  *
 1069  *      The pages in "m" must be busied and will remain busied upon return.
 1070  */
 1071 static int
 1072 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
 1073     int *rahead)
 1074 {
 1075         struct buf *bp;
 1076         vm_page_t mpred, msucc, p;
 1077         vm_pindex_t pindex;
 1078         daddr_t blk;
 1079         int i, j, maxahead, maxbehind, reqcount, shift;
 1080 
 1081         reqcount = count;
 1082 
 1083         VM_OBJECT_WUNLOCK(object);
 1084         bp = getpbuf(&nsw_rcount);
 1085         VM_OBJECT_WLOCK(object);
 1086 
 1087         if (!swap_pager_haspage(object, m[0]->pindex, &maxbehind, &maxahead)) {
 1088                 relpbuf(bp, &nsw_rcount);
 1089                 return (VM_PAGER_FAIL);
 1090         }
 1091 
 1092         /*
 1093          * Clip the readahead and readbehind ranges to exclude resident pages.
 1094          */
 1095         if (rahead != NULL) {
 1096                 KASSERT(reqcount - 1 <= maxahead,
 1097                     ("page count %d extends beyond swap block", reqcount));
 1098                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
 1099                 pindex = m[reqcount - 1]->pindex;
 1100                 msucc = TAILQ_NEXT(m[reqcount - 1], listq);
 1101                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
 1102                         *rahead = msucc->pindex - pindex - 1;
 1103         }
 1104         if (rbehind != NULL) {
 1105                 *rbehind = imin(*rbehind, maxbehind);
 1106                 pindex = m[0]->pindex;
 1107                 mpred = TAILQ_PREV(m[0], pglist, listq);
 1108                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
 1109                         *rbehind = pindex - mpred->pindex - 1;
 1110         }
 1111 
 1112         /*
 1113          * Allocate readahead and readbehind pages.
 1114          */
 1115         shift = rbehind != NULL ? *rbehind : 0;
 1116         if (shift != 0) {
 1117                 for (i = 1; i <= shift; i++) {
 1118                         p = vm_page_alloc(object, m[0]->pindex - i,
 1119                             VM_ALLOC_NORMAL);
 1120                         if (p == NULL) {
 1121                                 /* Shift allocated pages to the left. */
 1122                                 for (j = 0; j < i - 1; j++)
 1123                                         bp->b_pages[j] =
 1124                                             bp->b_pages[j + shift - i + 1];
 1125                                 break;
 1126                         }
 1127                         bp->b_pages[shift - i] = p;
 1128                 }
 1129                 shift = i - 1;
 1130                 *rbehind = shift;
 1131         }
 1132         for (i = 0; i < reqcount; i++)
 1133                 bp->b_pages[i + shift] = m[i];
 1134         if (rahead != NULL) {
 1135                 for (i = 0; i < *rahead; i++) {
 1136                         p = vm_page_alloc(object,
 1137                             m[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
 1138                         if (p == NULL)
 1139                                 break;
 1140                         bp->b_pages[shift + reqcount + i] = p;
 1141                 }
 1142                 *rahead = i;
 1143         }
 1144         if (rbehind != NULL)
 1145                 count += *rbehind;
 1146         if (rahead != NULL)
 1147                 count += *rahead;
 1148 
 1149         vm_object_pip_add(object, count);
 1150 
 1151         for (i = 0; i < count; i++)
 1152                 bp->b_pages[i]->oflags |= VPO_SWAPINPROG;
 1153 
 1154         pindex = bp->b_pages[0]->pindex;
 1155         blk = swp_pager_meta_ctl(object, pindex, 0);
 1156         KASSERT(blk != SWAPBLK_NONE,
 1157             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
 1158 
 1159         VM_OBJECT_WUNLOCK(object);
 1160 
 1161         bp->b_flags |= B_PAGING;
 1162         bp->b_iocmd = BIO_READ;
 1163         bp->b_iodone = swp_pager_async_iodone;
 1164         bp->b_rcred = crhold(thread0.td_ucred);
 1165         bp->b_wcred = crhold(thread0.td_ucred);
 1166         bp->b_blkno = blk;
 1167         bp->b_bcount = PAGE_SIZE * count;
 1168         bp->b_bufsize = PAGE_SIZE * count;
 1169         bp->b_npages = count;
 1170         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
 1171         bp->b_pgafter = rahead != NULL ? *rahead : 0;
 1172 
 1173         PCPU_INC(cnt.v_swapin);
 1174         PCPU_ADD(cnt.v_swappgsin, count);
 1175 
 1176         /*
 1177          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
 1178          * this point because we automatically release it on completion.
 1179          * Instead, we look at the one page we are interested in which we
 1180          * still hold a lock on even through the I/O completion.
 1181          *
 1182          * The other pages in our m[] array are also released on completion,
 1183          * so we cannot assume they are valid anymore either.
 1184          *
 1185          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1186          */
 1187         BUF_KERNPROC(bp);
 1188         swp_pager_strategy(bp);
 1189 
 1190         /*
 1191          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
 1192          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
 1193          * is set in the metadata for each page in the request.
 1194          */
 1195         VM_OBJECT_WLOCK(object);
 1196         while ((m[0]->oflags & VPO_SWAPINPROG) != 0) {
 1197                 m[0]->oflags |= VPO_SWAPSLEEP;
 1198                 PCPU_INC(cnt.v_intrans);
 1199                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
 1200                     "swread", hz * 20)) {
 1201                         printf(
 1202 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
 1203                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
 1204                 }
 1205         }
 1206 
 1207         /*
 1208          * If we had an unrecoverable read error pages will not be valid.
 1209          */
 1210         for (i = 0; i < reqcount; i++)
 1211                 if (m[i]->valid != VM_PAGE_BITS_ALL)
 1212                         return (VM_PAGER_ERROR);
 1213 
 1214         return (VM_PAGER_OK);
 1215 
 1216         /*
 1217          * A final note: in a low swap situation, we cannot deallocate swap
 1218          * and mark a page dirty here because the caller is likely to mark
 1219          * the page clean when we return, causing the page to possibly revert
 1220          * to all-zero's later.
 1221          */
 1222 }
 1223 
 1224 /*
 1225  *      swap_pager_getpages_async():
 1226  *
 1227  *      Right now this is emulation of asynchronous operation on top of
 1228  *      swap_pager_getpages().
 1229  */
 1230 static int
 1231 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
 1232     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
 1233 {
 1234         int r, error;
 1235 
 1236         r = swap_pager_getpages(object, m, count, rbehind, rahead);
 1237         VM_OBJECT_WUNLOCK(object);
 1238         switch (r) {
 1239         case VM_PAGER_OK:
 1240                 error = 0;
 1241                 break;
 1242         case VM_PAGER_ERROR:
 1243                 error = EIO;
 1244                 break;
 1245         case VM_PAGER_FAIL:
 1246                 error = EINVAL;
 1247                 break;
 1248         default:
 1249                 panic("unhandled swap_pager_getpages() error %d", r);
 1250         }
 1251         (iodone)(arg, m, count, error);
 1252         VM_OBJECT_WLOCK(object);
 1253 
 1254         return (r);
 1255 }
 1256 
 1257 /*
 1258  *      swap_pager_putpages:
 1259  *
 1260  *      Assign swap (if necessary) and initiate I/O on the specified pages.
 1261  *
 1262  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
 1263  *      are automatically converted to SWAP objects.
 1264  *
 1265  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
 1266  *      vm_page reservation system coupled with properly written VFS devices
 1267  *      should ensure that no low-memory deadlock occurs.  This is an area
 1268  *      which needs work.
 1269  *
 1270  *      The parent has N vm_object_pip_add() references prior to
 1271  *      calling us and will remove references for rtvals[] that are
 1272  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
 1273  *      completion.
 1274  *
 1275  *      The parent has soft-busy'd the pages it passes us and will unbusy
 1276  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
 1277  *      We need to unbusy the rest on I/O completion.
 1278  */
 1279 static void
 1280 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
 1281     int flags, int *rtvals)
 1282 {
 1283         int i, n;
 1284         boolean_t sync;
 1285 
 1286         if (count && m[0]->object != object) {
 1287                 panic("swap_pager_putpages: object mismatch %p/%p",
 1288                     object,
 1289                     m[0]->object
 1290                 );
 1291         }
 1292 
 1293         /*
 1294          * Step 1
 1295          *
 1296          * Turn object into OBJT_SWAP
 1297          * check for bogus sysops
 1298          * force sync if not pageout process
 1299          */
 1300         if (object->type != OBJT_SWAP)
 1301                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
 1302         VM_OBJECT_WUNLOCK(object);
 1303 
 1304         n = 0;
 1305         if (curproc != pageproc)
 1306                 sync = TRUE;
 1307         else
 1308                 sync = (flags & VM_PAGER_PUT_SYNC) != 0;
 1309 
 1310         /*
 1311          * Step 2
 1312          *
 1313          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
 1314          * The page is left dirty until the pageout operation completes
 1315          * successfully.
 1316          */
 1317         for (i = 0; i < count; i += n) {
 1318                 int j;
 1319                 struct buf *bp;
 1320                 daddr_t blk;
 1321 
 1322                 /*
 1323                  * Maximum I/O size is limited by a number of factors.
 1324                  */
 1325                 n = min(BLIST_MAX_ALLOC, count - i);
 1326                 n = min(n, nsw_cluster_max);
 1327 
 1328                 /*
 1329                  * Get biggest block of swap we can.  If we fail, fall
 1330                  * back and try to allocate a smaller block.  Don't go
 1331                  * overboard trying to allocate space if it would overly
 1332                  * fragment swap.
 1333                  */
 1334                 while (
 1335                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
 1336                     n > 4
 1337                 ) {
 1338                         n >>= 1;
 1339                 }
 1340                 if (blk == SWAPBLK_NONE) {
 1341                         for (j = 0; j < n; ++j)
 1342                                 rtvals[i+j] = VM_PAGER_FAIL;
 1343                         continue;
 1344                 }
 1345 
 1346                 /*
 1347                  * All I/O parameters have been satisfied, build the I/O
 1348                  * request and assign the swap space.
 1349                  */
 1350                 if (sync == TRUE) {
 1351                         bp = getpbuf(&nsw_wcount_sync);
 1352                 } else {
 1353                         bp = getpbuf(&nsw_wcount_async);
 1354                         bp->b_flags = B_ASYNC;
 1355                 }
 1356                 bp->b_flags |= B_PAGING;
 1357                 bp->b_iocmd = BIO_WRITE;
 1358 
 1359                 bp->b_rcred = crhold(thread0.td_ucred);
 1360                 bp->b_wcred = crhold(thread0.td_ucred);
 1361                 bp->b_bcount = PAGE_SIZE * n;
 1362                 bp->b_bufsize = PAGE_SIZE * n;
 1363                 bp->b_blkno = blk;
 1364 
 1365                 VM_OBJECT_WLOCK(object);
 1366                 for (j = 0; j < n; ++j) {
 1367                         vm_page_t mreq = m[i+j];
 1368 
 1369                         swp_pager_meta_build(
 1370                             mreq->object,
 1371                             mreq->pindex,
 1372                             blk + j
 1373                         );
 1374                         vm_page_dirty(mreq);
 1375                         mreq->oflags |= VPO_SWAPINPROG;
 1376                         bp->b_pages[j] = mreq;
 1377                 }
 1378                 VM_OBJECT_WUNLOCK(object);
 1379                 bp->b_npages = n;
 1380                 /*
 1381                  * Must set dirty range for NFS to work.
 1382                  */
 1383                 bp->b_dirtyoff = 0;
 1384                 bp->b_dirtyend = bp->b_bcount;
 1385 
 1386                 PCPU_INC(cnt.v_swapout);
 1387                 PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
 1388 
 1389                 /*
 1390                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
 1391                  * can call the async completion routine at the end of a
 1392                  * synchronous I/O operation.  Otherwise, our caller would
 1393                  * perform duplicate unbusy and wakeup operations on the page
 1394                  * and object, respectively.
 1395                  */
 1396                 for (j = 0; j < n; j++)
 1397                         rtvals[i + j] = VM_PAGER_PEND;
 1398 
 1399                 /*
 1400                  * asynchronous
 1401                  *
 1402                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1403                  */
 1404                 if (sync == FALSE) {
 1405                         bp->b_iodone = swp_pager_async_iodone;
 1406                         BUF_KERNPROC(bp);
 1407                         swp_pager_strategy(bp);
 1408                         continue;
 1409                 }
 1410 
 1411                 /*
 1412                  * synchronous
 1413                  *
 1414                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1415                  */
 1416                 bp->b_iodone = bdone;
 1417                 swp_pager_strategy(bp);
 1418 
 1419                 /*
 1420                  * Wait for the sync I/O to complete.
 1421                  */
 1422                 bwait(bp, PVM, "swwrt");
 1423 
 1424                 /*
 1425                  * Now that we are through with the bp, we can call the
 1426                  * normal async completion, which frees everything up.
 1427                  */
 1428                 swp_pager_async_iodone(bp);
 1429         }
 1430         VM_OBJECT_WLOCK(object);
 1431 }
 1432 
 1433 /*
 1434  *      swp_pager_async_iodone:
 1435  *
 1436  *      Completion routine for asynchronous reads and writes from/to swap.
 1437  *      Also called manually by synchronous code to finish up a bp.
 1438  *
 1439  *      This routine may not sleep.
 1440  */
 1441 static void
 1442 swp_pager_async_iodone(struct buf *bp)
 1443 {
 1444         int i;
 1445         vm_object_t object = NULL;
 1446 
 1447         /*
 1448          * report error
 1449          */
 1450         if (bp->b_ioflags & BIO_ERROR) {
 1451                 printf(
 1452                     "swap_pager: I/O error - %s failed; blkno %ld,"
 1453                         "size %ld, error %d\n",
 1454                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
 1455                     (long)bp->b_blkno,
 1456                     (long)bp->b_bcount,
 1457                     bp->b_error
 1458                 );
 1459         }
 1460 
 1461         /*
 1462          * remove the mapping for kernel virtual
 1463          */
 1464         if (buf_mapped(bp))
 1465                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
 1466         else
 1467                 bp->b_data = bp->b_kvabase;
 1468 
 1469         if (bp->b_npages) {
 1470                 object = bp->b_pages[0]->object;
 1471                 VM_OBJECT_WLOCK(object);
 1472         }
 1473 
 1474         /*
 1475          * cleanup pages.  If an error occurs writing to swap, we are in
 1476          * very serious trouble.  If it happens to be a disk error, though,
 1477          * we may be able to recover by reassigning the swap later on.  So
 1478          * in this case we remove the m->swapblk assignment for the page
 1479          * but do not free it in the rlist.  The errornous block(s) are thus
 1480          * never reallocated as swap.  Redirty the page and continue.
 1481          */
 1482         for (i = 0; i < bp->b_npages; ++i) {
 1483                 vm_page_t m = bp->b_pages[i];
 1484 
 1485                 m->oflags &= ~VPO_SWAPINPROG;
 1486                 if (m->oflags & VPO_SWAPSLEEP) {
 1487                         m->oflags &= ~VPO_SWAPSLEEP;
 1488                         wakeup(&object->paging_in_progress);
 1489                 }
 1490 
 1491                 if (bp->b_ioflags & BIO_ERROR) {
 1492                         /*
 1493                          * If an error occurs I'd love to throw the swapblk
 1494                          * away without freeing it back to swapspace, so it
 1495                          * can never be used again.  But I can't from an
 1496                          * interrupt.
 1497                          */
 1498                         if (bp->b_iocmd == BIO_READ) {
 1499                                 /*
 1500                                  * NOTE: for reads, m->dirty will probably
 1501                                  * be overridden by the original caller of
 1502                                  * getpages so don't play cute tricks here.
 1503                                  */
 1504                                 m->valid = 0;
 1505                         } else {
 1506                                 /*
 1507                                  * If a write error occurs, reactivate page
 1508                                  * so it doesn't clog the inactive list,
 1509                                  * then finish the I/O.
 1510                                  */
 1511                                 vm_page_dirty(m);
 1512                                 vm_page_lock(m);
 1513                                 vm_page_activate(m);
 1514                                 vm_page_unlock(m);
 1515                                 vm_page_sunbusy(m);
 1516                         }
 1517                 } else if (bp->b_iocmd == BIO_READ) {
 1518                         /*
 1519                          * NOTE: for reads, m->dirty will probably be
 1520                          * overridden by the original caller of getpages so
 1521                          * we cannot set them in order to free the underlying
 1522                          * swap in a low-swap situation.  I don't think we'd
 1523                          * want to do that anyway, but it was an optimization
 1524                          * that existed in the old swapper for a time before
 1525                          * it got ripped out due to precisely this problem.
 1526                          */
 1527                         KASSERT(!pmap_page_is_mapped(m),
 1528                             ("swp_pager_async_iodone: page %p is mapped", m));
 1529                         KASSERT(m->dirty == 0,
 1530                             ("swp_pager_async_iodone: page %p is dirty", m));
 1531 
 1532                         m->valid = VM_PAGE_BITS_ALL;
 1533                         if (i < bp->b_pgbefore ||
 1534                             i >= bp->b_npages - bp->b_pgafter)
 1535                                 vm_page_readahead_finish(m);
 1536                 } else {
 1537                         /*
 1538                          * For write success, clear the dirty
 1539                          * status, then finish the I/O ( which decrements the
 1540                          * busy count and possibly wakes waiter's up ).
 1541                          * A page is only written to swap after a period of
 1542                          * inactivity.  Therefore, we do not expect it to be
 1543                          * reused.
 1544                          */
 1545                         KASSERT(!pmap_page_is_write_mapped(m),
 1546                             ("swp_pager_async_iodone: page %p is not write"
 1547                             " protected", m));
 1548                         vm_page_undirty(m);
 1549                         vm_page_lock(m);
 1550                         vm_page_deactivate_noreuse(m);
 1551                         vm_page_unlock(m);
 1552                         vm_page_sunbusy(m);
 1553                 }
 1554         }
 1555 
 1556         /*
 1557          * adjust pip.  NOTE: the original parent may still have its own
 1558          * pip refs on the object.
 1559          */
 1560         if (object != NULL) {
 1561                 vm_object_pip_wakeupn(object, bp->b_npages);
 1562                 VM_OBJECT_WUNLOCK(object);
 1563         }
 1564 
 1565         /*
 1566          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
 1567          * bstrategy(). Set them back to NULL now we're done with it, or we'll
 1568          * trigger a KASSERT in relpbuf().
 1569          */
 1570         if (bp->b_vp) {
 1571                     bp->b_vp = NULL;
 1572                     bp->b_bufobj = NULL;
 1573         }
 1574         /*
 1575          * release the physical I/O buffer
 1576          */
 1577         relpbuf(
 1578             bp,
 1579             ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
 1580                 ((bp->b_flags & B_ASYNC) ?
 1581                     &nsw_wcount_async :
 1582                     &nsw_wcount_sync
 1583                 )
 1584             )
 1585         );
 1586 }
 1587 
 1588 /*
 1589  *      swap_pager_isswapped:
 1590  *
 1591  *      Return 1 if at least one page in the given object is paged
 1592  *      out to the given swap device.
 1593  *
 1594  *      This routine may not sleep.
 1595  */
 1596 int
 1597 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
 1598 {
 1599         daddr_t index = 0;
 1600         int bcount;
 1601         int i;
 1602 
 1603         VM_OBJECT_ASSERT_WLOCKED(object);
 1604         if (object->type != OBJT_SWAP)
 1605                 return (0);
 1606 
 1607         mtx_lock(&swhash_mtx);
 1608         for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
 1609                 struct swblock *swap;
 1610 
 1611                 if ((swap = *swp_pager_hash(object, index)) != NULL) {
 1612                         for (i = 0; i < SWAP_META_PAGES; ++i) {
 1613                                 if (swp_pager_isondev(swap->swb_pages[i], sp)) {
 1614                                         mtx_unlock(&swhash_mtx);
 1615                                         return (1);
 1616                                 }
 1617                         }
 1618                 }
 1619                 index += SWAP_META_PAGES;
 1620         }
 1621         mtx_unlock(&swhash_mtx);
 1622         return (0);
 1623 }
 1624 
 1625 /*
 1626  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
 1627  *
 1628  *      This routine dissociates the page at the given index within an object
 1629  *      from its backing store, paging it in if it does not reside in memory.
 1630  *      If the page is paged in, it is marked dirty and placed in the laundry
 1631  *      queue.  The page is marked dirty because it no longer has backing
 1632  *      store.  It is placed in the laundry queue because it has not been
 1633  *      accessed recently.  Otherwise, it would already reside in memory.
 1634  *
 1635  *      We also attempt to swap in all other pages in the swap block.
 1636  *      However, we only guarantee that the one at the specified index is
 1637  *      paged in.
 1638  *
 1639  *      XXX - The code to page the whole block in doesn't work, so we
 1640  *            revert to the one-by-one behavior for now.  Sigh.
 1641  */
 1642 static inline void
 1643 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
 1644 {
 1645         vm_page_t m;
 1646 
 1647         vm_object_pip_add(object, 1);
 1648         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
 1649         if (m->valid == VM_PAGE_BITS_ALL) {
 1650                 vm_object_pip_wakeup(object);
 1651                 vm_page_dirty(m);
 1652                 vm_page_lock(m);
 1653                 vm_page_activate(m);
 1654                 vm_page_unlock(m);
 1655                 vm_page_xunbusy(m);
 1656                 vm_pager_page_unswapped(m);
 1657                 return;
 1658         }
 1659 
 1660         if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
 1661                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
 1662         vm_object_pip_wakeup(object);
 1663         vm_page_dirty(m);
 1664         vm_page_lock(m);
 1665         vm_page_launder(m);
 1666         vm_page_unlock(m);
 1667         vm_page_xunbusy(m);
 1668         vm_pager_page_unswapped(m);
 1669 }
 1670 
 1671 /*
 1672  *      swap_pager_swapoff:
 1673  *
 1674  *      Page in all of the pages that have been paged out to the
 1675  *      given device.  The corresponding blocks in the bitmap must be
 1676  *      marked as allocated and the device must be flagged SW_CLOSING.
 1677  *      There may be no processes swapped out to the device.
 1678  *
 1679  *      This routine may block.
 1680  */
 1681 static void
 1682 swap_pager_swapoff(struct swdevt *sp)
 1683 {
 1684         struct swblock *swap;
 1685         vm_object_t locked_obj, object;
 1686         vm_pindex_t pindex;
 1687         int i, j, retries;
 1688 
 1689         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
 1690 
 1691         retries = 0;
 1692         locked_obj = NULL;
 1693 full_rescan:
 1694         mtx_lock(&swhash_mtx);
 1695         for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
 1696 restart:
 1697                 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
 1698                         object = swap->swb_object;
 1699                         pindex = swap->swb_index;
 1700                         for (j = 0; j < SWAP_META_PAGES; ++j) {
 1701                                 if (!swp_pager_isondev(swap->swb_pages[j], sp))
 1702                                         continue;
 1703                                 if (locked_obj != object) {
 1704                                         if (locked_obj != NULL)
 1705                                                 VM_OBJECT_WUNLOCK(locked_obj);
 1706                                         locked_obj = object;
 1707                                         if (!VM_OBJECT_TRYWLOCK(object)) {
 1708                                                 mtx_unlock(&swhash_mtx);
 1709                                                 /* Depends on type-stability. */
 1710                                                 VM_OBJECT_WLOCK(object);
 1711                                                 mtx_lock(&swhash_mtx);
 1712                                                 goto restart;
 1713                                         }
 1714                                 }
 1715                                 MPASS(locked_obj == object);
 1716                                 mtx_unlock(&swhash_mtx);
 1717                                 swp_pager_force_pagein(object, pindex + j);
 1718                                 mtx_lock(&swhash_mtx);
 1719                                 goto restart;
 1720                         }
 1721                 }
 1722         }
 1723         mtx_unlock(&swhash_mtx);
 1724         if (locked_obj != NULL) {
 1725                 VM_OBJECT_WUNLOCK(locked_obj);
 1726                 locked_obj = NULL;
 1727         }
 1728         if (sp->sw_used) {
 1729                 /*
 1730                  * Objects may be locked or paging to the device being
 1731                  * removed, so we will miss their pages and need to
 1732                  * make another pass.  We have marked this device as
 1733                  * SW_CLOSING, so the activity should finish soon.
 1734                  */
 1735                 retries++;
 1736                 if (retries > 100) {
 1737                         panic("swapoff: failed to locate %d swap blocks",
 1738                             sp->sw_used);
 1739                 }
 1740                 pause("swpoff", hz / 20);
 1741                 goto full_rescan;
 1742         }
 1743 }
 1744 
 1745 /************************************************************************
 1746  *                              SWAP META DATA                          *
 1747  ************************************************************************
 1748  *
 1749  *      These routines manipulate the swap metadata stored in the
 1750  *      OBJT_SWAP object.
 1751  *
 1752  *      Swap metadata is implemented with a global hash and not directly
 1753  *      linked into the object.  Instead the object simply contains
 1754  *      appropriate tracking counters.
 1755  */
 1756 
 1757 /*
 1758  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
 1759  *
 1760  *      We first convert the object to a swap object if it is a default
 1761  *      object.
 1762  *
 1763  *      The specified swapblk is added to the object's swap metadata.  If
 1764  *      the swapblk is not valid, it is freed instead.  Any previously
 1765  *      assigned swapblk is freed.
 1766  */
 1767 static void
 1768 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
 1769 {
 1770         static volatile int exhausted;
 1771         struct swblock *swap;
 1772         struct swblock **pswap;
 1773         int idx;
 1774 
 1775         VM_OBJECT_ASSERT_WLOCKED(object);
 1776         /*
 1777          * Convert default object to swap object if necessary
 1778          */
 1779         if (object->type != OBJT_SWAP) {
 1780                 object->type = OBJT_SWAP;
 1781                 object->un_pager.swp.swp_bcount = 0;
 1782                 KASSERT(object->handle == NULL, ("default pager with handle"));
 1783         }
 1784 
 1785         /*
 1786          * Locate hash entry.  If not found create, but if we aren't adding
 1787          * anything just return.  If we run out of space in the map we wait
 1788          * and, since the hash table may have changed, retry.
 1789          */
 1790 retry:
 1791         mtx_lock(&swhash_mtx);
 1792         pswap = swp_pager_hash(object, pindex);
 1793 
 1794         if ((swap = *pswap) == NULL) {
 1795                 int i;
 1796 
 1797                 if (swapblk == SWAPBLK_NONE)
 1798                         goto done;
 1799 
 1800                 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT |
 1801                     (curproc == pageproc ? M_USE_RESERVE : 0));
 1802                 if (swap == NULL) {
 1803                         mtx_unlock(&swhash_mtx);
 1804                         VM_OBJECT_WUNLOCK(object);
 1805                         if (uma_zone_exhausted(swap_zone)) {
 1806                                 if (atomic_cmpset_int(&exhausted, 0, 1))
 1807                                         printf("swap zone exhausted, "
 1808                                             "increase kern.maxswzone\n");
 1809                                 vm_pageout_oom(VM_OOM_SWAPZ);
 1810                                 pause("swzonex", 10);
 1811                         } else
 1812                                 VM_WAIT;
 1813                         VM_OBJECT_WLOCK(object);
 1814                         goto retry;
 1815                 }
 1816 
 1817                 if (atomic_cmpset_int(&exhausted, 1, 0))
 1818                         printf("swap zone ok\n");
 1819 
 1820                 swap->swb_hnext = NULL;
 1821                 swap->swb_object = object;
 1822                 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
 1823                 swap->swb_count = 0;
 1824 
 1825                 ++object->un_pager.swp.swp_bcount;
 1826 
 1827                 for (i = 0; i < SWAP_META_PAGES; ++i)
 1828                         swap->swb_pages[i] = SWAPBLK_NONE;
 1829         }
 1830 
 1831         /*
 1832          * Delete prior contents of metadata
 1833          */
 1834         idx = pindex & SWAP_META_MASK;
 1835 
 1836         if (swap->swb_pages[idx] != SWAPBLK_NONE) {
 1837                 swp_pager_freeswapspace(swap->swb_pages[idx], 1);
 1838                 --swap->swb_count;
 1839         }
 1840 
 1841         /*
 1842          * Enter block into metadata
 1843          */
 1844         swap->swb_pages[idx] = swapblk;
 1845         if (swapblk != SWAPBLK_NONE)
 1846                 ++swap->swb_count;
 1847 done:
 1848         mtx_unlock(&swhash_mtx);
 1849 }
 1850 
 1851 /*
 1852  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
 1853  *
 1854  *      The requested range of blocks is freed, with any associated swap
 1855  *      returned to the swap bitmap.
 1856  *
 1857  *      This routine will free swap metadata structures as they are cleaned
 1858  *      out.  This routine does *NOT* operate on swap metadata associated
 1859  *      with resident pages.
 1860  */
 1861 static void
 1862 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
 1863 {
 1864         struct swblock **pswap, *swap;
 1865         vm_pindex_t c;
 1866         daddr_t v;
 1867         int n, sidx;
 1868 
 1869         VM_OBJECT_ASSERT_LOCKED(object);
 1870         if (object->type != OBJT_SWAP || count == 0)
 1871                 return;
 1872 
 1873         mtx_lock(&swhash_mtx);
 1874         for (c = 0; c < count;) {
 1875                 pswap = swp_pager_hash(object, index);
 1876                 sidx = index & SWAP_META_MASK;
 1877                 n = SWAP_META_PAGES - sidx;
 1878                 index += n;
 1879                 if ((swap = *pswap) == NULL) {
 1880                         c += n;
 1881                         continue;
 1882                 }
 1883                 for (; c < count && sidx < SWAP_META_PAGES; ++c, ++sidx) {
 1884                         if ((v = swap->swb_pages[sidx]) == SWAPBLK_NONE)
 1885                                 continue;
 1886                         swp_pager_freeswapspace(v, 1);
 1887                         swap->swb_pages[sidx] = SWAPBLK_NONE;
 1888                         if (--swap->swb_count == 0) {
 1889                                 *pswap = swap->swb_hnext;
 1890                                 uma_zfree(swap_zone, swap);
 1891                                 --object->un_pager.swp.swp_bcount;
 1892                                 c += SWAP_META_PAGES - sidx;
 1893                                 break;
 1894                         }
 1895                 }
 1896         }
 1897         mtx_unlock(&swhash_mtx);
 1898 }
 1899 
 1900 /*
 1901  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
 1902  *
 1903  *      This routine locates and destroys all swap metadata associated with
 1904  *      an object.
 1905  */
 1906 static void
 1907 swp_pager_meta_free_all(vm_object_t object)
 1908 {
 1909         struct swblock **pswap, *swap;
 1910         vm_pindex_t index;
 1911         daddr_t v;
 1912         int i;
 1913 
 1914         VM_OBJECT_ASSERT_WLOCKED(object);
 1915         if (object->type != OBJT_SWAP)
 1916                 return;
 1917 
 1918         index = 0;
 1919         while (object->un_pager.swp.swp_bcount != 0) {
 1920                 mtx_lock(&swhash_mtx);
 1921                 pswap = swp_pager_hash(object, index);
 1922                 if ((swap = *pswap) != NULL) {
 1923                         for (i = 0; i < SWAP_META_PAGES; ++i) {
 1924                                 v = swap->swb_pages[i];
 1925                                 if (v != SWAPBLK_NONE) {
 1926                                         --swap->swb_count;
 1927                                         swp_pager_freeswapspace(v, 1);
 1928                                 }
 1929                         }
 1930                         if (swap->swb_count != 0)
 1931                                 panic(
 1932                                     "swap_pager_meta_free_all: swb_count != 0");
 1933                         *pswap = swap->swb_hnext;
 1934                         uma_zfree(swap_zone, swap);
 1935                         --object->un_pager.swp.swp_bcount;
 1936                 }
 1937                 mtx_unlock(&swhash_mtx);
 1938                 index += SWAP_META_PAGES;
 1939         }
 1940 }
 1941 
 1942 /*
 1943  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
 1944  *
 1945  *      This routine is capable of looking up, popping, or freeing
 1946  *      swapblk assignments in the swap meta data or in the vm_page_t.
 1947  *      The routine typically returns the swapblk being looked-up, or popped,
 1948  *      or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
 1949  *      was invalid.  This routine will automatically free any invalid
 1950  *      meta-data swapblks.
 1951  *
 1952  *      It is not possible to store invalid swapblks in the swap meta data
 1953  *      (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
 1954  *
 1955  *      When acting on a busy resident page and paging is in progress, we
 1956  *      have to wait until paging is complete but otherwise can act on the
 1957  *      busy page.
 1958  *
 1959  *      SWM_FREE        remove and free swap block from metadata
 1960  *      SWM_POP         remove from meta data but do not free.. pop it out
 1961  */
 1962 static daddr_t
 1963 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
 1964 {
 1965         struct swblock **pswap;
 1966         struct swblock *swap;
 1967         daddr_t r1;
 1968         int idx;
 1969 
 1970         VM_OBJECT_ASSERT_LOCKED(object);
 1971         /*
 1972          * The meta data only exists of the object is OBJT_SWAP
 1973          * and even then might not be allocated yet.
 1974          */
 1975         if (object->type != OBJT_SWAP)
 1976                 return (SWAPBLK_NONE);
 1977 
 1978         r1 = SWAPBLK_NONE;
 1979         mtx_lock(&swhash_mtx);
 1980         pswap = swp_pager_hash(object, pindex);
 1981 
 1982         if ((swap = *pswap) != NULL) {
 1983                 idx = pindex & SWAP_META_MASK;
 1984                 r1 = swap->swb_pages[idx];
 1985 
 1986                 if (r1 != SWAPBLK_NONE) {
 1987                         if (flags & SWM_FREE) {
 1988                                 swp_pager_freeswapspace(r1, 1);
 1989                                 r1 = SWAPBLK_NONE;
 1990                         }
 1991                         if (flags & (SWM_FREE|SWM_POP)) {
 1992                                 swap->swb_pages[idx] = SWAPBLK_NONE;
 1993                                 if (--swap->swb_count == 0) {
 1994                                         *pswap = swap->swb_hnext;
 1995                                         uma_zfree(swap_zone, swap);
 1996                                         --object->un_pager.swp.swp_bcount;
 1997                                 }
 1998                         }
 1999                 }
 2000         }
 2001         mtx_unlock(&swhash_mtx);
 2002         return (r1);
 2003 }
 2004 
 2005 /*
 2006  * Returns the least page index which is greater than or equal to the
 2007  * parameter pindex and for which there is a swap block allocated.
 2008  * Returns object's size if the object's type is not swap or if there
 2009  * are no allocated swap blocks for the object after the requested
 2010  * pindex.
 2011  */
 2012 vm_pindex_t
 2013 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
 2014 {
 2015         struct swblock **pswap, *swap;
 2016         vm_pindex_t i, j, lim;
 2017         int idx;
 2018 
 2019         VM_OBJECT_ASSERT_LOCKED(object);
 2020         if (object->type != OBJT_SWAP || object->un_pager.swp.swp_bcount == 0)
 2021                 return (object->size);
 2022 
 2023         mtx_lock(&swhash_mtx);
 2024         for (j = pindex; j < object->size; j = lim) {
 2025                 pswap = swp_pager_hash(object, j);
 2026                 lim = rounddown2(j + SWAP_META_PAGES, SWAP_META_PAGES);
 2027                 if (lim > object->size)
 2028                         lim = object->size;
 2029                 if ((swap = *pswap) != NULL) {
 2030                         for (idx = j & SWAP_META_MASK, i = j; i < lim;
 2031                             i++, idx++) {
 2032                                 if (swap->swb_pages[idx] != SWAPBLK_NONE)
 2033                                         goto found;
 2034                         }
 2035                 }
 2036         }
 2037         i = object->size;
 2038 found:
 2039         mtx_unlock(&swhash_mtx);
 2040         return (i);
 2041 }
 2042 
 2043 /*
 2044  * System call swapon(name) enables swapping on device name,
 2045  * which must be in the swdevsw.  Return EBUSY
 2046  * if already swapping on this device.
 2047  */
 2048 #ifndef _SYS_SYSPROTO_H_
 2049 struct swapon_args {
 2050         char *name;
 2051 };
 2052 #endif
 2053 
 2054 /*
 2055  * MPSAFE
 2056  */
 2057 /* ARGSUSED */
 2058 int
 2059 sys_swapon(struct thread *td, struct swapon_args *uap)
 2060 {
 2061         struct vattr attr;
 2062         struct vnode *vp;
 2063         struct nameidata nd;
 2064         int error;
 2065 
 2066         error = priv_check(td, PRIV_SWAPON);
 2067         if (error)
 2068                 return (error);
 2069 
 2070         sx_xlock(&swdev_syscall_lock);
 2071 
 2072         /*
 2073          * Swap metadata may not fit in the KVM if we have physical
 2074          * memory of >1GB.
 2075          */
 2076         if (swap_zone == NULL) {
 2077                 error = ENOMEM;
 2078                 goto done;
 2079         }
 2080 
 2081         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
 2082             uap->name, td);
 2083         error = namei(&nd);
 2084         if (error)
 2085                 goto done;
 2086 
 2087         NDFREE(&nd, NDF_ONLY_PNBUF);
 2088         vp = nd.ni_vp;
 2089 
 2090         if (vn_isdisk(vp, &error)) {
 2091                 error = swapongeom(vp);
 2092         } else if (vp->v_type == VREG &&
 2093             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 2094             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
 2095                 /*
 2096                  * Allow direct swapping to NFS regular files in the same
 2097                  * way that nfs_mountroot() sets up diskless swapping.
 2098                  */
 2099                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
 2100         }
 2101 
 2102         if (error)
 2103                 vrele(vp);
 2104 done:
 2105         sx_xunlock(&swdev_syscall_lock);
 2106         return (error);
 2107 }
 2108 
 2109 /*
 2110  * Check that the total amount of swap currently configured does not
 2111  * exceed half the theoretical maximum.  If it does, print a warning
 2112  * message and return -1; otherwise, return 0.
 2113  */
 2114 static int
 2115 swapon_check_swzone(unsigned long npages)
 2116 {
 2117         unsigned long maxpages;
 2118 
 2119         /* absolute maximum we can handle assuming 100% efficiency */
 2120         maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES;
 2121 
 2122         /* recommend using no more than half that amount */
 2123         if (npages > maxpages / 2) {
 2124                 printf("warning: total configured swap (%lu pages) "
 2125                     "exceeds maximum recommended amount (%lu pages).\n",
 2126                     npages, maxpages / 2);
 2127                 printf("warning: increase kern.maxswzone "
 2128                     "or reduce amount of swap.\n");
 2129                 return (-1);
 2130         }
 2131         return (0);
 2132 }
 2133 
 2134 static void
 2135 swaponsomething(struct vnode *vp, void *id, u_long nblks,
 2136     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
 2137 {
 2138         struct swdevt *sp, *tsp;
 2139         swblk_t dvbase;
 2140         u_long mblocks;
 2141 
 2142         /*
 2143          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
 2144          * First chop nblks off to page-align it, then convert.
 2145          *
 2146          * sw->sw_nblks is in page-sized chunks now too.
 2147          */
 2148         nblks &= ~(ctodb(1) - 1);
 2149         nblks = dbtoc(nblks);
 2150 
 2151         /*
 2152          * If we go beyond this, we get overflows in the radix
 2153          * tree bitmap code.
 2154          */
 2155         mblocks = 0x40000000 / BLIST_META_RADIX;
 2156         if (nblks > mblocks) {
 2157                 printf(
 2158     "WARNING: reducing swap size to maximum of %luMB per unit\n",
 2159                     mblocks / 1024 / 1024 * PAGE_SIZE);
 2160                 nblks = mblocks;
 2161         }
 2162 
 2163         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
 2164         sp->sw_vp = vp;
 2165         sp->sw_id = id;
 2166         sp->sw_dev = dev;
 2167         sp->sw_flags = 0;
 2168         sp->sw_nblks = nblks;
 2169         sp->sw_used = 0;
 2170         sp->sw_strategy = strategy;
 2171         sp->sw_close = close;
 2172         sp->sw_flags = flags;
 2173 
 2174         sp->sw_blist = blist_create(nblks, M_WAITOK);
 2175         /*
 2176          * Do not free the first two block in order to avoid overwriting
 2177          * any bsd label at the front of the partition
 2178          */
 2179         blist_free(sp->sw_blist, 2, nblks - 2);
 2180 
 2181         dvbase = 0;
 2182         mtx_lock(&sw_dev_mtx);
 2183         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
 2184                 if (tsp->sw_end >= dvbase) {
 2185                         /*
 2186                          * We put one uncovered page between the devices
 2187                          * in order to definitively prevent any cross-device
 2188                          * I/O requests
 2189                          */
 2190                         dvbase = tsp->sw_end + 1;
 2191                 }
 2192         }
 2193         sp->sw_first = dvbase;
 2194         sp->sw_end = dvbase + nblks;
 2195         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
 2196         nswapdev++;
 2197         swap_pager_avail += nblks - 2;
 2198         swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
 2199         swapon_check_swzone(swap_total / PAGE_SIZE);
 2200         swp_sizecheck();
 2201         mtx_unlock(&sw_dev_mtx);
 2202 }
 2203 
 2204 /*
 2205  * SYSCALL: swapoff(devname)
 2206  *
 2207  * Disable swapping on the given device.
 2208  *
 2209  * XXX: Badly designed system call: it should use a device index
 2210  * rather than filename as specification.  We keep sw_vp around
 2211  * only to make this work.
 2212  */
 2213 #ifndef _SYS_SYSPROTO_H_
 2214 struct swapoff_args {
 2215         char *name;
 2216 };
 2217 #endif
 2218 
 2219 /*
 2220  * MPSAFE
 2221  */
 2222 /* ARGSUSED */
 2223 int
 2224 sys_swapoff(struct thread *td, struct swapoff_args *uap)
 2225 {
 2226         struct vnode *vp;
 2227         struct nameidata nd;
 2228         struct swdevt *sp;
 2229         int error;
 2230 
 2231         error = priv_check(td, PRIV_SWAPOFF);
 2232         if (error)
 2233                 return (error);
 2234 
 2235         sx_xlock(&swdev_syscall_lock);
 2236 
 2237         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
 2238             td);
 2239         error = namei(&nd);
 2240         if (error)
 2241                 goto done;
 2242         NDFREE(&nd, NDF_ONLY_PNBUF);
 2243         vp = nd.ni_vp;
 2244 
 2245         mtx_lock(&sw_dev_mtx);
 2246         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2247                 if (sp->sw_vp == vp)
 2248                         break;
 2249         }
 2250         mtx_unlock(&sw_dev_mtx);
 2251         if (sp == NULL) {
 2252                 error = EINVAL;
 2253                 goto done;
 2254         }
 2255         error = swapoff_one(sp, td->td_ucred);
 2256 done:
 2257         sx_xunlock(&swdev_syscall_lock);
 2258         return (error);
 2259 }
 2260 
 2261 static int
 2262 swapoff_one(struct swdevt *sp, struct ucred *cred)
 2263 {
 2264         u_long nblks;
 2265 #ifdef MAC
 2266         int error;
 2267 #endif
 2268 
 2269         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
 2270 #ifdef MAC
 2271         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
 2272         error = mac_system_check_swapoff(cred, sp->sw_vp);
 2273         (void) VOP_UNLOCK(sp->sw_vp, 0);
 2274         if (error != 0)
 2275                 return (error);
 2276 #endif
 2277         nblks = sp->sw_nblks;
 2278 
 2279         /*
 2280          * We can turn off this swap device safely only if the
 2281          * available virtual memory in the system will fit the amount
 2282          * of data we will have to page back in, plus an epsilon so
 2283          * the system doesn't become critically low on swap space.
 2284          */
 2285         if (vm_cnt.v_free_count + swap_pager_avail < nblks + nswap_lowat)
 2286                 return (ENOMEM);
 2287 
 2288         /*
 2289          * Prevent further allocations on this device.
 2290          */
 2291         mtx_lock(&sw_dev_mtx);
 2292         sp->sw_flags |= SW_CLOSING;
 2293         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
 2294         swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
 2295         mtx_unlock(&sw_dev_mtx);
 2296 
 2297         /*
 2298          * Page in the contents of the device and close it.
 2299          */
 2300         swap_pager_swapoff(sp);
 2301 
 2302         sp->sw_close(curthread, sp);
 2303         mtx_lock(&sw_dev_mtx);
 2304         sp->sw_id = NULL;
 2305         TAILQ_REMOVE(&swtailq, sp, sw_list);
 2306         nswapdev--;
 2307         if (nswapdev == 0) {
 2308                 swap_pager_full = 2;
 2309                 swap_pager_almost_full = 1;
 2310         }
 2311         if (swdevhd == sp)
 2312                 swdevhd = NULL;
 2313         mtx_unlock(&sw_dev_mtx);
 2314         blist_destroy(sp->sw_blist);
 2315         free(sp, M_VMPGDATA);
 2316         return (0);
 2317 }
 2318 
 2319 void
 2320 swapoff_all(void)
 2321 {
 2322         struct swdevt *sp, *spt;
 2323         const char *devname;
 2324         int error;
 2325 
 2326         sx_xlock(&swdev_syscall_lock);
 2327 
 2328         mtx_lock(&sw_dev_mtx);
 2329         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
 2330                 mtx_unlock(&sw_dev_mtx);
 2331                 if (vn_isdisk(sp->sw_vp, NULL))
 2332                         devname = devtoname(sp->sw_vp->v_rdev);
 2333                 else
 2334                         devname = "[file]";
 2335                 error = swapoff_one(sp, thread0.td_ucred);
 2336                 if (error != 0) {
 2337                         printf("Cannot remove swap device %s (error=%d), "
 2338                             "skipping.\n", devname, error);
 2339                 } else if (bootverbose) {
 2340                         printf("Swap device %s removed.\n", devname);
 2341                 }
 2342                 mtx_lock(&sw_dev_mtx);
 2343         }
 2344         mtx_unlock(&sw_dev_mtx);
 2345 
 2346         sx_xunlock(&swdev_syscall_lock);
 2347 }
 2348 
 2349 void
 2350 swap_pager_status(int *total, int *used)
 2351 {
 2352         struct swdevt *sp;
 2353 
 2354         *total = 0;
 2355         *used = 0;
 2356         mtx_lock(&sw_dev_mtx);
 2357         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2358                 *total += sp->sw_nblks;
 2359                 *used += sp->sw_used;
 2360         }
 2361         mtx_unlock(&sw_dev_mtx);
 2362 }
 2363 
 2364 int
 2365 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
 2366 {
 2367         struct swdevt *sp;
 2368         const char *tmp_devname;
 2369         int error, n;
 2370 
 2371         n = 0;
 2372         error = ENOENT;
 2373         mtx_lock(&sw_dev_mtx);
 2374         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2375                 if (n != name) {
 2376                         n++;
 2377                         continue;
 2378                 }
 2379                 xs->xsw_version = XSWDEV_VERSION;
 2380                 xs->xsw_dev = sp->sw_dev;
 2381                 xs->xsw_flags = sp->sw_flags;
 2382                 xs->xsw_nblks = sp->sw_nblks;
 2383                 xs->xsw_used = sp->sw_used;
 2384                 if (devname != NULL) {
 2385                         if (vn_isdisk(sp->sw_vp, NULL))
 2386                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
 2387                         else
 2388                                 tmp_devname = "[file]";
 2389                         strncpy(devname, tmp_devname, len);
 2390                 }
 2391                 error = 0;
 2392                 break;
 2393         }
 2394         mtx_unlock(&sw_dev_mtx);
 2395         return (error);
 2396 }
 2397 
 2398 static int
 2399 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
 2400 {
 2401         struct xswdev xs;
 2402         int error;
 2403 
 2404         if (arg2 != 1)                  /* name length */
 2405                 return (EINVAL);
 2406         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
 2407         if (error != 0)
 2408                 return (error);
 2409         error = SYSCTL_OUT(req, &xs, sizeof(xs));
 2410         return (error);
 2411 }
 2412 
 2413 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
 2414     "Number of swap devices");
 2415 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2416     sysctl_vm_swap_info,
 2417     "Swap statistics by device");
 2418 
 2419 /*
 2420  * vmspace_swap_count() - count the approximate swap usage in pages for a
 2421  *                        vmspace.
 2422  *
 2423  *      The map must be locked.
 2424  *
 2425  *      Swap usage is determined by taking the proportional swap used by
 2426  *      VM objects backing the VM map.  To make up for fractional losses,
 2427  *      if the VM object has any swap use at all the associated map entries
 2428  *      count for at least 1 swap page.
 2429  */
 2430 long
 2431 vmspace_swap_count(struct vmspace *vmspace)
 2432 {
 2433         vm_map_t map;
 2434         vm_map_entry_t cur;
 2435         vm_object_t object;
 2436         long count, n;
 2437 
 2438         map = &vmspace->vm_map;
 2439         count = 0;
 2440 
 2441         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
 2442                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
 2443                     (object = cur->object.vm_object) != NULL) {
 2444                         VM_OBJECT_WLOCK(object);
 2445                         if (object->type == OBJT_SWAP &&
 2446                             object->un_pager.swp.swp_bcount != 0) {
 2447                                 n = (cur->end - cur->start) / PAGE_SIZE;
 2448                                 count += object->un_pager.swp.swp_bcount *
 2449                                     SWAP_META_PAGES * n / object->size + 1;
 2450                         }
 2451                         VM_OBJECT_WUNLOCK(object);
 2452                 }
 2453         }
 2454         return (count);
 2455 }
 2456 
 2457 /*
 2458  * GEOM backend
 2459  *
 2460  * Swapping onto disk devices.
 2461  *
 2462  */
 2463 
 2464 static g_orphan_t swapgeom_orphan;
 2465 
 2466 static struct g_class g_swap_class = {
 2467         .name = "SWAP",
 2468         .version = G_VERSION,
 2469         .orphan = swapgeom_orphan,
 2470 };
 2471 
 2472 DECLARE_GEOM_CLASS(g_swap_class, g_class);
 2473 
 2474 
 2475 static void
 2476 swapgeom_close_ev(void *arg, int flags)
 2477 {
 2478         struct g_consumer *cp;
 2479 
 2480         cp = arg;
 2481         g_access(cp, -1, -1, 0);
 2482         g_detach(cp);
 2483         g_destroy_consumer(cp);
 2484 }
 2485 
 2486 /*
 2487  * Add a reference to the g_consumer for an inflight transaction.
 2488  */
 2489 static void
 2490 swapgeom_acquire(struct g_consumer *cp)
 2491 {
 2492 
 2493         mtx_assert(&sw_dev_mtx, MA_OWNED);
 2494         cp->index++;
 2495 }
 2496 
 2497 /*
 2498  * Remove a reference from the g_consumer.  Post a close event if all
 2499  * references go away, since the function might be called from the
 2500  * biodone context.
 2501  */
 2502 static void
 2503 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
 2504 {
 2505 
 2506         mtx_assert(&sw_dev_mtx, MA_OWNED);
 2507         cp->index--;
 2508         if (cp->index == 0) {
 2509                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
 2510                         sp->sw_id = NULL;
 2511         }
 2512 }
 2513 
 2514 static void
 2515 swapgeom_done(struct bio *bp2)
 2516 {
 2517         struct swdevt *sp;
 2518         struct buf *bp;
 2519         struct g_consumer *cp;
 2520 
 2521         bp = bp2->bio_caller2;
 2522         cp = bp2->bio_from;
 2523         bp->b_ioflags = bp2->bio_flags;
 2524         if (bp2->bio_error)
 2525                 bp->b_ioflags |= BIO_ERROR;
 2526         bp->b_resid = bp->b_bcount - bp2->bio_completed;
 2527         bp->b_error = bp2->bio_error;
 2528         bufdone(bp);
 2529         sp = bp2->bio_caller1;
 2530         mtx_lock(&sw_dev_mtx);
 2531         swapgeom_release(cp, sp);
 2532         mtx_unlock(&sw_dev_mtx);
 2533         g_destroy_bio(bp2);
 2534 }
 2535 
 2536 static void
 2537 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
 2538 {
 2539         struct bio *bio;
 2540         struct g_consumer *cp;
 2541 
 2542         mtx_lock(&sw_dev_mtx);
 2543         cp = sp->sw_id;
 2544         if (cp == NULL) {
 2545                 mtx_unlock(&sw_dev_mtx);
 2546                 bp->b_error = ENXIO;
 2547                 bp->b_ioflags |= BIO_ERROR;
 2548                 bufdone(bp);
 2549                 return;
 2550         }
 2551         swapgeom_acquire(cp);
 2552         mtx_unlock(&sw_dev_mtx);
 2553         if (bp->b_iocmd == BIO_WRITE)
 2554                 bio = g_new_bio();
 2555         else
 2556                 bio = g_alloc_bio();
 2557         if (bio == NULL) {
 2558                 mtx_lock(&sw_dev_mtx);
 2559                 swapgeom_release(cp, sp);
 2560                 mtx_unlock(&sw_dev_mtx);
 2561                 bp->b_error = ENOMEM;
 2562                 bp->b_ioflags |= BIO_ERROR;
 2563                 bufdone(bp);
 2564                 return;
 2565         }
 2566 
 2567         bio->bio_caller1 = sp;
 2568         bio->bio_caller2 = bp;
 2569         bio->bio_cmd = bp->b_iocmd;
 2570         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
 2571         bio->bio_length = bp->b_bcount;
 2572         bio->bio_done = swapgeom_done;
 2573         if (!buf_mapped(bp)) {
 2574                 bio->bio_ma = bp->b_pages;
 2575                 bio->bio_data = unmapped_buf;
 2576                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
 2577                 bio->bio_ma_n = bp->b_npages;
 2578                 bio->bio_flags |= BIO_UNMAPPED;
 2579         } else {
 2580                 bio->bio_data = bp->b_data;
 2581                 bio->bio_ma = NULL;
 2582         }
 2583         g_io_request(bio, cp);
 2584         return;
 2585 }
 2586 
 2587 static void
 2588 swapgeom_orphan(struct g_consumer *cp)
 2589 {
 2590         struct swdevt *sp;
 2591         int destroy;
 2592 
 2593         mtx_lock(&sw_dev_mtx);
 2594         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2595                 if (sp->sw_id == cp) {
 2596                         sp->sw_flags |= SW_CLOSING;
 2597                         break;
 2598                 }
 2599         }
 2600         /*
 2601          * Drop reference we were created with. Do directly since we're in a
 2602          * special context where we don't have to queue the call to
 2603          * swapgeom_close_ev().
 2604          */
 2605         cp->index--;
 2606         destroy = ((sp != NULL) && (cp->index == 0));
 2607         if (destroy)
 2608                 sp->sw_id = NULL;
 2609         mtx_unlock(&sw_dev_mtx);
 2610         if (destroy)
 2611                 swapgeom_close_ev(cp, 0);
 2612 }
 2613 
 2614 static void
 2615 swapgeom_close(struct thread *td, struct swdevt *sw)
 2616 {
 2617         struct g_consumer *cp;
 2618 
 2619         mtx_lock(&sw_dev_mtx);
 2620         cp = sw->sw_id;
 2621         sw->sw_id = NULL;
 2622         mtx_unlock(&sw_dev_mtx);
 2623 
 2624         /*
 2625          * swapgeom_close() may be called from the biodone context,
 2626          * where we cannot perform topology changes.  Delegate the
 2627          * work to the events thread.
 2628          */
 2629         if (cp != NULL)
 2630                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
 2631 }
 2632 
 2633 static int
 2634 swapongeom_locked(struct cdev *dev, struct vnode *vp)
 2635 {
 2636         struct g_provider *pp;
 2637         struct g_consumer *cp;
 2638         static struct g_geom *gp;
 2639         struct swdevt *sp;
 2640         u_long nblks;
 2641         int error;
 2642 
 2643         pp = g_dev_getprovider(dev);
 2644         if (pp == NULL)
 2645                 return (ENODEV);
 2646         mtx_lock(&sw_dev_mtx);
 2647         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2648                 cp = sp->sw_id;
 2649                 if (cp != NULL && cp->provider == pp) {
 2650                         mtx_unlock(&sw_dev_mtx);
 2651                         return (EBUSY);
 2652                 }
 2653         }
 2654         mtx_unlock(&sw_dev_mtx);
 2655         if (gp == NULL)
 2656                 gp = g_new_geomf(&g_swap_class, "swap");
 2657         cp = g_new_consumer(gp);
 2658         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
 2659         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
 2660         g_attach(cp, pp);
 2661         /*
 2662          * XXX: Every time you think you can improve the margin for
 2663          * footshooting, somebody depends on the ability to do so:
 2664          * savecore(8) wants to write to our swapdev so we cannot
 2665          * set an exclusive count :-(
 2666          */
 2667         error = g_access(cp, 1, 1, 0);
 2668         if (error != 0) {
 2669                 g_detach(cp);
 2670                 g_destroy_consumer(cp);
 2671                 return (error);
 2672         }
 2673         nblks = pp->mediasize / DEV_BSIZE;
 2674         swaponsomething(vp, cp, nblks, swapgeom_strategy,
 2675             swapgeom_close, dev2udev(dev),
 2676             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
 2677         return (0);
 2678 }
 2679 
 2680 static int
 2681 swapongeom(struct vnode *vp)
 2682 {
 2683         int error;
 2684 
 2685         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2686         if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
 2687                 error = ENOENT;
 2688         } else {
 2689                 g_topology_lock();
 2690                 error = swapongeom_locked(vp->v_rdev, vp);
 2691                 g_topology_unlock();
 2692         }
 2693         VOP_UNLOCK(vp, 0);
 2694         return (error);
 2695 }
 2696 
 2697 /*
 2698  * VNODE backend
 2699  *
 2700  * This is used mainly for network filesystem (read: probably only tested
 2701  * with NFS) swapfiles.
 2702  *
 2703  */
 2704 
 2705 static void
 2706 swapdev_strategy(struct buf *bp, struct swdevt *sp)
 2707 {
 2708         struct vnode *vp2;
 2709 
 2710         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
 2711 
 2712         vp2 = sp->sw_id;
 2713         vhold(vp2);
 2714         if (bp->b_iocmd == BIO_WRITE) {
 2715                 if (bp->b_bufobj)
 2716                         bufobj_wdrop(bp->b_bufobj);
 2717                 bufobj_wref(&vp2->v_bufobj);
 2718         }
 2719         if (bp->b_bufobj != &vp2->v_bufobj)
 2720                 bp->b_bufobj = &vp2->v_bufobj;
 2721         bp->b_vp = vp2;
 2722         bp->b_iooffset = dbtob(bp->b_blkno);
 2723         bstrategy(bp);
 2724         return;
 2725 }
 2726 
 2727 static void
 2728 swapdev_close(struct thread *td, struct swdevt *sp)
 2729 {
 2730 
 2731         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
 2732         vrele(sp->sw_vp);
 2733 }
 2734 
 2735 
 2736 static int
 2737 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
 2738 {
 2739         struct swdevt *sp;
 2740         int error;
 2741 
 2742         if (nblks == 0)
 2743                 return (ENXIO);
 2744         mtx_lock(&sw_dev_mtx);
 2745         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2746                 if (sp->sw_id == vp) {
 2747                         mtx_unlock(&sw_dev_mtx);
 2748                         return (EBUSY);
 2749                 }
 2750         }
 2751         mtx_unlock(&sw_dev_mtx);
 2752 
 2753         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2754 #ifdef MAC
 2755         error = mac_system_check_swapon(td->td_ucred, vp);
 2756         if (error == 0)
 2757 #endif
 2758                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
 2759         (void) VOP_UNLOCK(vp, 0);
 2760         if (error)
 2761                 return (error);
 2762 
 2763         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
 2764             NODEV, 0);
 2765         return (0);
 2766 }
 2767 
 2768 static int
 2769 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
 2770 {
 2771         int error, new, n;
 2772 
 2773         new = nsw_wcount_async_max;
 2774         error = sysctl_handle_int(oidp, &new, 0, req);
 2775         if (error != 0 || req->newptr == NULL)
 2776                 return (error);
 2777 
 2778         if (new > nswbuf / 2 || new < 1)
 2779                 return (EINVAL);
 2780 
 2781         mtx_lock(&pbuf_mtx);
 2782         while (nsw_wcount_async_max != new) {
 2783                 /*
 2784                  * Adjust difference.  If the current async count is too low,
 2785                  * we will need to sqeeze our update slowly in.  Sleep with a
 2786                  * higher priority than getpbuf() to finish faster.
 2787                  */
 2788                 n = new - nsw_wcount_async_max;
 2789                 if (nsw_wcount_async + n >= 0) {
 2790                         nsw_wcount_async += n;
 2791                         nsw_wcount_async_max += n;
 2792                         wakeup(&nsw_wcount_async);
 2793                 } else {
 2794                         nsw_wcount_async_max -= nsw_wcount_async;
 2795                         nsw_wcount_async = 0;
 2796                         msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
 2797                             "swpsysctl", 0);
 2798                 }
 2799         }
 2800         mtx_unlock(&pbuf_mtx);
 2801 
 2802         return (0);
 2803 }

Cache object: 7cfdb7ef44bd9654310d4670508771dc


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.