The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/swap_pager.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-4-Clause
    3  *
    4  * Copyright (c) 1998 Matthew Dillon,
    5  * Copyright (c) 1994 John S. Dyson
    6  * Copyright (c) 1990 University of Utah.
    7  * Copyright (c) 1982, 1986, 1989, 1993
    8  *      The Regents of the University of California.  All rights reserved.
    9  *
   10  * This code is derived from software contributed to Berkeley by
   11  * the Systems Programming Group of the University of Utah Computer
   12  * Science Department.
   13  *
   14  * Redistribution and use in source and binary forms, with or without
   15  * modification, are permitted provided that the following conditions
   16  * are met:
   17  * 1. Redistributions of source code must retain the above copyright
   18  *    notice, this list of conditions and the following disclaimer.
   19  * 2. Redistributions in binary form must reproduce the above copyright
   20  *    notice, this list of conditions and the following disclaimer in the
   21  *    documentation and/or other materials provided with the distribution.
   22  * 3. All advertising materials mentioning features or use of this software
   23  *    must display the following acknowledgement:
   24  *      This product includes software developed by the University of
   25  *      California, Berkeley and its contributors.
   26  * 4. Neither the name of the University nor the names of its contributors
   27  *    may be used to endorse or promote products derived from this software
   28  *    without specific prior written permission.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   40  * SUCH DAMAGE.
   41  *
   42  *                              New Swap System
   43  *                              Matthew Dillon
   44  *
   45  * Radix Bitmap 'blists'.
   46  *
   47  *      - The new swapper uses the new radix bitmap code.  This should scale
   48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
   49  *        arbitrary degree of fragmentation.
   50  *
   51  * Features:
   52  *
   53  *      - on the fly reallocation of swap during putpages.  The new system
   54  *        does not try to keep previously allocated swap blocks for dirty
   55  *        pages.
   56  *
   57  *      - on the fly deallocation of swap
   58  *
   59  *      - No more garbage collection required.  Unnecessarily allocated swap
   60  *        blocks only exist for dirty vm_page_t's now and these are already
   61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
   62  *        removal of invalidated swap blocks when a page is destroyed
   63  *        or renamed.
   64  *
   65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
   66  *
   67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
   68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
   69  */
   70 
   71 #include <sys/cdefs.h>
   72 __FBSDID("$FreeBSD: releng/12.0/sys/vm/swap_pager.c 340333 2018-11-10 20:36:48Z markj $");
   73 
   74 #include "opt_swap.h"
   75 #include "opt_vm.h"
   76 
   77 #include <sys/param.h>
   78 #include <sys/systm.h>
   79 #include <sys/conf.h>
   80 #include <sys/kernel.h>
   81 #include <sys/priv.h>
   82 #include <sys/proc.h>
   83 #include <sys/bio.h>
   84 #include <sys/buf.h>
   85 #include <sys/disk.h>
   86 #include <sys/fcntl.h>
   87 #include <sys/mount.h>
   88 #include <sys/namei.h>
   89 #include <sys/vnode.h>
   90 #include <sys/malloc.h>
   91 #include <sys/pctrie.h>
   92 #include <sys/racct.h>
   93 #include <sys/resource.h>
   94 #include <sys/resourcevar.h>
   95 #include <sys/rwlock.h>
   96 #include <sys/sbuf.h>
   97 #include <sys/sysctl.h>
   98 #include <sys/sysproto.h>
   99 #include <sys/blist.h>
  100 #include <sys/lock.h>
  101 #include <sys/sx.h>
  102 #include <sys/vmmeter.h>
  103 
  104 #include <security/mac/mac_framework.h>
  105 
  106 #include <vm/vm.h>
  107 #include <vm/pmap.h>
  108 #include <vm/vm_map.h>
  109 #include <vm/vm_kern.h>
  110 #include <vm/vm_object.h>
  111 #include <vm/vm_page.h>
  112 #include <vm/vm_pager.h>
  113 #include <vm/vm_pageout.h>
  114 #include <vm/vm_param.h>
  115 #include <vm/swap_pager.h>
  116 #include <vm/vm_extern.h>
  117 #include <vm/uma.h>
  118 
  119 #include <geom/geom.h>
  120 
  121 /*
  122  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
  123  * The 64-page limit is due to the radix code (kern/subr_blist.c).
  124  */
  125 #ifndef MAX_PAGEOUT_CLUSTER
  126 #define MAX_PAGEOUT_CLUSTER     32
  127 #endif
  128 
  129 #if !defined(SWB_NPAGES)
  130 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
  131 #endif
  132 
  133 #define SWAP_META_PAGES         PCTRIE_COUNT
  134 
  135 /*
  136  * A swblk structure maps each page index within a
  137  * SWAP_META_PAGES-aligned and sized range to the address of an
  138  * on-disk swap block (or SWAPBLK_NONE). The collection of these
  139  * mappings for an entire vm object is implemented as a pc-trie.
  140  */
  141 struct swblk {
  142         vm_pindex_t     p;
  143         daddr_t         d[SWAP_META_PAGES];
  144 };
  145 
  146 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
  147 static struct mtx sw_dev_mtx;
  148 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
  149 static struct swdevt *swdevhd;  /* Allocate from here next */
  150 static int nswapdev;            /* Number of swap devices */
  151 int swap_pager_avail;
  152 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
  153 
  154 static u_long swap_reserved;
  155 static u_long swap_total;
  156 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
  157 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
  158     &swap_reserved, 0, sysctl_page_shift, "A", 
  159     "Amount of swap storage needed to back all allocated anonymous memory.");
  160 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
  161     &swap_total, 0, sysctl_page_shift, "A", 
  162     "Total amount of available swap storage.");
  163 
  164 static int overcommit = 0;
  165 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
  166     "Configure virtual memory overcommit behavior. See tuning(7) "
  167     "for details.");
  168 static unsigned long swzone;
  169 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
  170     "Actual size of swap metadata zone");
  171 static unsigned long swap_maxpages;
  172 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
  173     "Maximum amount of swap supported");
  174 
  175 /* bits from overcommit */
  176 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
  177 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
  178 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
  179 
  180 static int
  181 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
  182 {
  183         uint64_t newval;
  184         u_long value = *(u_long *)arg1;
  185 
  186         newval = ((uint64_t)value) << PAGE_SHIFT;
  187         return (sysctl_handle_64(oidp, &newval, 0, req));
  188 }
  189 
  190 int
  191 swap_reserve(vm_ooffset_t incr)
  192 {
  193 
  194         return (swap_reserve_by_cred(incr, curthread->td_ucred));
  195 }
  196 
  197 int
  198 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
  199 {
  200         u_long r, s, prev, pincr;
  201         int res, error;
  202         static int curfail;
  203         static struct timeval lastfail;
  204         struct uidinfo *uip;
  205 
  206         uip = cred->cr_ruidinfo;
  207 
  208         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
  209             (uintmax_t)incr));
  210 
  211 #ifdef RACCT
  212         if (racct_enable) {
  213                 PROC_LOCK(curproc);
  214                 error = racct_add(curproc, RACCT_SWAP, incr);
  215                 PROC_UNLOCK(curproc);
  216                 if (error != 0)
  217                         return (0);
  218         }
  219 #endif
  220 
  221         pincr = atop(incr);
  222         res = 0;
  223         prev = atomic_fetchadd_long(&swap_reserved, pincr);
  224         r = prev + pincr;
  225         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
  226                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
  227                     vm_wire_count();
  228         } else
  229                 s = 0;
  230         s += swap_total;
  231         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
  232             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
  233                 res = 1;
  234         } else {
  235                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
  236                 if (prev < pincr)
  237                         panic("swap_reserved < incr on overcommit fail");
  238         }
  239         if (res) {
  240                 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
  241                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
  242                     prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
  243                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) {
  244                         res = 0;
  245                         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
  246                         if (prev < pincr)
  247                                 panic("uip->ui_vmsize < incr on overcommit fail");
  248                 }
  249         }
  250         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
  251                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
  252                     uip->ui_uid, curproc->p_pid, incr);
  253         }
  254 
  255 #ifdef RACCT
  256         if (racct_enable && !res) {
  257                 PROC_LOCK(curproc);
  258                 racct_sub(curproc, RACCT_SWAP, incr);
  259                 PROC_UNLOCK(curproc);
  260         }
  261 #endif
  262 
  263         return (res);
  264 }
  265 
  266 void
  267 swap_reserve_force(vm_ooffset_t incr)
  268 {
  269         struct uidinfo *uip;
  270         u_long pincr;
  271 
  272         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
  273             (uintmax_t)incr));
  274 
  275         PROC_LOCK(curproc);
  276 #ifdef RACCT
  277         if (racct_enable)
  278                 racct_add_force(curproc, RACCT_SWAP, incr);
  279 #endif
  280         pincr = atop(incr);
  281         atomic_add_long(&swap_reserved, pincr);
  282         uip = curproc->p_ucred->cr_ruidinfo;
  283         atomic_add_long(&uip->ui_vmsize, pincr);
  284         PROC_UNLOCK(curproc);
  285 }
  286 
  287 void
  288 swap_release(vm_ooffset_t decr)
  289 {
  290         struct ucred *cred;
  291 
  292         PROC_LOCK(curproc);
  293         cred = curproc->p_ucred;
  294         swap_release_by_cred(decr, cred);
  295         PROC_UNLOCK(curproc);
  296 }
  297 
  298 void
  299 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
  300 {
  301         u_long prev, pdecr;
  302         struct uidinfo *uip;
  303 
  304         uip = cred->cr_ruidinfo;
  305 
  306         KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
  307             (uintmax_t)decr));
  308 
  309         pdecr = atop(decr);
  310         prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
  311         if (prev < pdecr)
  312                 panic("swap_reserved < decr");
  313 
  314         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
  315         if (prev < pdecr)
  316                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
  317 #ifdef RACCT
  318         if (racct_enable)
  319                 racct_sub_cred(cred, RACCT_SWAP, decr);
  320 #endif
  321 }
  322 
  323 #define SWM_POP         0x01    /* pop out                      */
  324 
  325 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
  326 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
  327 static int nsw_rcount;          /* free read buffers                    */
  328 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
  329 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
  330 static int nsw_wcount_async_max;/* assigned maximum                     */
  331 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
  332 
  333 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
  334 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
  335     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
  336     "Maximum running async swap ops");
  337 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
  338 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
  339     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
  340     "Swap Fragmentation Info");
  341 
  342 static struct sx sw_alloc_sx;
  343 
  344 /*
  345  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
  346  * of searching a named list by hashing it just a little.
  347  */
  348 
  349 #define NOBJLISTS               8
  350 
  351 #define NOBJLIST(handle)        \
  352         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
  353 
  354 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
  355 static uma_zone_t swblk_zone;
  356 static uma_zone_t swpctrie_zone;
  357 
  358 /*
  359  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
  360  * calls hooked from other parts of the VM system and do not appear here.
  361  * (see vm/swap_pager.h).
  362  */
  363 static vm_object_t
  364                 swap_pager_alloc(void *handle, vm_ooffset_t size,
  365                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
  366 static void     swap_pager_dealloc(vm_object_t object);
  367 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
  368     int *);
  369 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
  370     int *, pgo_getpages_iodone_t, void *);
  371 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
  372 static boolean_t
  373                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
  374 static void     swap_pager_init(void);
  375 static void     swap_pager_unswapped(vm_page_t);
  376 static void     swap_pager_swapoff(struct swdevt *sp);
  377 
  378 struct pagerops swappagerops = {
  379         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
  380         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
  381         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
  382         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
  383         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
  384         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
  385         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
  386         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
  387 };
  388 
  389 /*
  390  * swap_*() routines are externally accessible.  swp_*() routines are
  391  * internal.
  392  */
  393 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
  394 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
  395 
  396 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
  397     "Maximum size of a swap block in pages");
  398 
  399 static void     swp_sizecheck(void);
  400 static void     swp_pager_async_iodone(struct buf *bp);
  401 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
  402 static int      swapongeom(struct vnode *);
  403 static int      swaponvp(struct thread *, struct vnode *, u_long);
  404 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
  405 
  406 /*
  407  * Swap bitmap functions
  408  */
  409 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
  410 static daddr_t  swp_pager_getswapspace(int npages);
  411 
  412 /*
  413  * Metadata functions
  414  */
  415 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
  416 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
  417 static void swp_pager_meta_free_all(vm_object_t);
  418 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
  419 
  420 static void
  421 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
  422 {
  423 
  424         *start = SWAPBLK_NONE;
  425         *num = 0;
  426 }
  427 
  428 static void
  429 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
  430 {
  431 
  432         if (*start + *num == addr) {
  433                 (*num)++;
  434         } else {
  435                 swp_pager_freeswapspace(*start, *num);
  436                 *start = addr;
  437                 *num = 1;
  438         }
  439 }
  440 
  441 static void *
  442 swblk_trie_alloc(struct pctrie *ptree)
  443 {
  444 
  445         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
  446             M_USE_RESERVE : 0)));
  447 }
  448 
  449 static void
  450 swblk_trie_free(struct pctrie *ptree, void *node)
  451 {
  452 
  453         uma_zfree(swpctrie_zone, node);
  454 }
  455 
  456 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
  457 
  458 /*
  459  * SWP_SIZECHECK() -    update swap_pager_full indication
  460  *
  461  *      update the swap_pager_almost_full indication and warn when we are
  462  *      about to run out of swap space, using lowat/hiwat hysteresis.
  463  *
  464  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
  465  *
  466  *      No restrictions on call
  467  *      This routine may not block.
  468  */
  469 static void
  470 swp_sizecheck(void)
  471 {
  472 
  473         if (swap_pager_avail < nswap_lowat) {
  474                 if (swap_pager_almost_full == 0) {
  475                         printf("swap_pager: out of swap space\n");
  476                         swap_pager_almost_full = 1;
  477                 }
  478         } else {
  479                 swap_pager_full = 0;
  480                 if (swap_pager_avail > nswap_hiwat)
  481                         swap_pager_almost_full = 0;
  482         }
  483 }
  484 
  485 /*
  486  * SWAP_PAGER_INIT() -  initialize the swap pager!
  487  *
  488  *      Expected to be started from system init.  NOTE:  This code is run
  489  *      before much else so be careful what you depend on.  Most of the VM
  490  *      system has yet to be initialized at this point.
  491  */
  492 static void
  493 swap_pager_init(void)
  494 {
  495         /*
  496          * Initialize object lists
  497          */
  498         int i;
  499 
  500         for (i = 0; i < NOBJLISTS; ++i)
  501                 TAILQ_INIT(&swap_pager_object_list[i]);
  502         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
  503         sx_init(&sw_alloc_sx, "swspsx");
  504         sx_init(&swdev_syscall_lock, "swsysc");
  505 }
  506 
  507 /*
  508  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
  509  *
  510  *      Expected to be started from pageout process once, prior to entering
  511  *      its main loop.
  512  */
  513 void
  514 swap_pager_swap_init(void)
  515 {
  516         unsigned long n, n2;
  517 
  518         /*
  519          * Number of in-transit swap bp operations.  Don't
  520          * exhaust the pbufs completely.  Make sure we
  521          * initialize workable values (0 will work for hysteresis
  522          * but it isn't very efficient).
  523          *
  524          * The nsw_cluster_max is constrained by the bp->b_pages[]
  525          * array (MAXPHYS/PAGE_SIZE) and our locally defined
  526          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
  527          * constrained by the swap device interleave stripe size.
  528          *
  529          * Currently we hardwire nsw_wcount_async to 4.  This limit is
  530          * designed to prevent other I/O from having high latencies due to
  531          * our pageout I/O.  The value 4 works well for one or two active swap
  532          * devices but is probably a little low if you have more.  Even so,
  533          * a higher value would probably generate only a limited improvement
  534          * with three or four active swap devices since the system does not
  535          * typically have to pageout at extreme bandwidths.   We will want
  536          * at least 2 per swap devices, and 4 is a pretty good value if you
  537          * have one NFS swap device due to the command/ack latency over NFS.
  538          * So it all works out pretty well.
  539          */
  540         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
  541 
  542         mtx_lock(&pbuf_mtx);
  543         nsw_rcount = (nswbuf + 1) / 2;
  544         nsw_wcount_sync = (nswbuf + 3) / 4;
  545         nsw_wcount_async = 4;
  546         nsw_wcount_async_max = nsw_wcount_async;
  547         mtx_unlock(&pbuf_mtx);
  548 
  549         /*
  550          * Initialize our zone, guessing on the number we need based
  551          * on the number of pages in the system.
  552          */
  553         n = vm_cnt.v_page_count / 2;
  554         if (maxswzone && n > maxswzone / sizeof(struct swblk))
  555                 n = maxswzone / sizeof(struct swblk);
  556         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
  557             pctrie_zone_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
  558         if (swpctrie_zone == NULL)
  559                 panic("failed to create swap pctrie zone.");
  560         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
  561             NULL, NULL, _Alignof(struct swblk) - 1, UMA_ZONE_VM);
  562         if (swblk_zone == NULL)
  563                 panic("failed to create swap blk zone.");
  564         n2 = n;
  565         do {
  566                 if (uma_zone_reserve_kva(swblk_zone, n))
  567                         break;
  568                 /*
  569                  * if the allocation failed, try a zone two thirds the
  570                  * size of the previous attempt.
  571                  */
  572                 n -= ((n + 2) / 3);
  573         } while (n > 0);
  574 
  575         /*
  576          * Often uma_zone_reserve_kva() cannot reserve exactly the
  577          * requested size.  Account for the difference when
  578          * calculating swap_maxpages.
  579          */
  580         n = uma_zone_get_max(swblk_zone);
  581 
  582         if (n < n2)
  583                 printf("Swap blk zone entries reduced from %lu to %lu.\n",
  584                     n2, n);
  585         swap_maxpages = n * SWAP_META_PAGES;
  586         swzone = n * sizeof(struct swblk);
  587         if (!uma_zone_reserve_kva(swpctrie_zone, n))
  588                 printf("Cannot reserve swap pctrie zone, "
  589                     "reduce kern.maxswzone.\n");
  590 }
  591 
  592 static vm_object_t
  593 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
  594     vm_ooffset_t offset)
  595 {
  596         vm_object_t object;
  597 
  598         if (cred != NULL) {
  599                 if (!swap_reserve_by_cred(size, cred))
  600                         return (NULL);
  601                 crhold(cred);
  602         }
  603 
  604         /*
  605          * The un_pager.swp.swp_blks trie is initialized by
  606          * vm_object_allocate() to ensure the correct order of
  607          * visibility to other threads.
  608          */
  609         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
  610             PAGE_MASK + size));
  611 
  612         object->handle = handle;
  613         if (cred != NULL) {
  614                 object->cred = cred;
  615                 object->charge = size;
  616         }
  617         return (object);
  618 }
  619 
  620 /*
  621  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
  622  *                      its metadata structures.
  623  *
  624  *      This routine is called from the mmap and fork code to create a new
  625  *      OBJT_SWAP object.
  626  *
  627  *      This routine must ensure that no live duplicate is created for
  628  *      the named object request, which is protected against by
  629  *      holding the sw_alloc_sx lock in case handle != NULL.
  630  */
  631 static vm_object_t
  632 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
  633     vm_ooffset_t offset, struct ucred *cred)
  634 {
  635         vm_object_t object;
  636 
  637         if (handle != NULL) {
  638                 /*
  639                  * Reference existing named region or allocate new one.  There
  640                  * should not be a race here against swp_pager_meta_build()
  641                  * as called from vm_page_remove() in regards to the lookup
  642                  * of the handle.
  643                  */
  644                 sx_xlock(&sw_alloc_sx);
  645                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
  646                 if (object == NULL) {
  647                         object = swap_pager_alloc_init(handle, cred, size,
  648                             offset);
  649                         if (object != NULL) {
  650                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
  651                                     object, pager_object_list);
  652                         }
  653                 }
  654                 sx_xunlock(&sw_alloc_sx);
  655         } else {
  656                 object = swap_pager_alloc_init(handle, cred, size, offset);
  657         }
  658         return (object);
  659 }
  660 
  661 /*
  662  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
  663  *
  664  *      The swap backing for the object is destroyed.  The code is
  665  *      designed such that we can reinstantiate it later, but this
  666  *      routine is typically called only when the entire object is
  667  *      about to be destroyed.
  668  *
  669  *      The object must be locked.
  670  */
  671 static void
  672 swap_pager_dealloc(vm_object_t object)
  673 {
  674 
  675         VM_OBJECT_ASSERT_WLOCKED(object);
  676         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
  677 
  678         /*
  679          * Remove from list right away so lookups will fail if we block for
  680          * pageout completion.
  681          */
  682         if (object->handle != NULL) {
  683                 VM_OBJECT_WUNLOCK(object);
  684                 sx_xlock(&sw_alloc_sx);
  685                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
  686                     pager_object_list);
  687                 sx_xunlock(&sw_alloc_sx);
  688                 VM_OBJECT_WLOCK(object);
  689         }
  690 
  691         vm_object_pip_wait(object, "swpdea");
  692 
  693         /*
  694          * Free all remaining metadata.  We only bother to free it from
  695          * the swap meta data.  We do not attempt to free swapblk's still
  696          * associated with vm_page_t's for this object.  We do not care
  697          * if paging is still in progress on some objects.
  698          */
  699         swp_pager_meta_free_all(object);
  700         object->handle = NULL;
  701         object->type = OBJT_DEAD;
  702 }
  703 
  704 /************************************************************************
  705  *                      SWAP PAGER BITMAP ROUTINES                      *
  706  ************************************************************************/
  707 
  708 /*
  709  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
  710  *
  711  *      Allocate swap for the requested number of pages.  The starting
  712  *      swap block number (a page index) is returned or SWAPBLK_NONE
  713  *      if the allocation failed.
  714  *
  715  *      Also has the side effect of advising that somebody made a mistake
  716  *      when they configured swap and didn't configure enough.
  717  *
  718  *      This routine may not sleep.
  719  *
  720  *      We allocate in round-robin fashion from the configured devices.
  721  */
  722 static daddr_t
  723 swp_pager_getswapspace(int npages)
  724 {
  725         daddr_t blk;
  726         struct swdevt *sp;
  727         int i;
  728 
  729         blk = SWAPBLK_NONE;
  730         mtx_lock(&sw_dev_mtx);
  731         sp = swdevhd;
  732         for (i = 0; i < nswapdev; i++) {
  733                 if (sp == NULL)
  734                         sp = TAILQ_FIRST(&swtailq);
  735                 if (!(sp->sw_flags & SW_CLOSING)) {
  736                         blk = blist_alloc(sp->sw_blist, npages);
  737                         if (blk != SWAPBLK_NONE) {
  738                                 blk += sp->sw_first;
  739                                 sp->sw_used += npages;
  740                                 swap_pager_avail -= npages;
  741                                 swp_sizecheck();
  742                                 swdevhd = TAILQ_NEXT(sp, sw_list);
  743                                 goto done;
  744                         }
  745                 }
  746                 sp = TAILQ_NEXT(sp, sw_list);
  747         }
  748         if (swap_pager_full != 2) {
  749                 printf("swap_pager_getswapspace(%d): failed\n", npages);
  750                 swap_pager_full = 2;
  751                 swap_pager_almost_full = 1;
  752         }
  753         swdevhd = NULL;
  754 done:
  755         mtx_unlock(&sw_dev_mtx);
  756         return (blk);
  757 }
  758 
  759 static int
  760 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
  761 {
  762 
  763         return (blk >= sp->sw_first && blk < sp->sw_end);
  764 }
  765 
  766 static void
  767 swp_pager_strategy(struct buf *bp)
  768 {
  769         struct swdevt *sp;
  770 
  771         mtx_lock(&sw_dev_mtx);
  772         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  773                 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
  774                         mtx_unlock(&sw_dev_mtx);
  775                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
  776                             unmapped_buf_allowed) {
  777                                 bp->b_data = unmapped_buf;
  778                                 bp->b_offset = 0;
  779                         } else {
  780                                 pmap_qenter((vm_offset_t)bp->b_data,
  781                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
  782                         }
  783                         sp->sw_strategy(bp, sp);
  784                         return;
  785                 }
  786         }
  787         panic("Swapdev not found");
  788 }
  789 
  790 
  791 /*
  792  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
  793  *
  794  *      This routine returns the specified swap blocks back to the bitmap.
  795  *
  796  *      This routine may not sleep.
  797  */
  798 static void
  799 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
  800 {
  801         struct swdevt *sp;
  802 
  803         if (npages == 0)
  804                 return;
  805         mtx_lock(&sw_dev_mtx);
  806         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  807                 if (blk >= sp->sw_first && blk < sp->sw_end) {
  808                         sp->sw_used -= npages;
  809                         /*
  810                          * If we are attempting to stop swapping on
  811                          * this device, we don't want to mark any
  812                          * blocks free lest they be reused.
  813                          */
  814                         if ((sp->sw_flags & SW_CLOSING) == 0) {
  815                                 blist_free(sp->sw_blist, blk - sp->sw_first,
  816                                     npages);
  817                                 swap_pager_avail += npages;
  818                                 swp_sizecheck();
  819                         }
  820                         mtx_unlock(&sw_dev_mtx);
  821                         return;
  822                 }
  823         }
  824         panic("Swapdev not found");
  825 }
  826 
  827 /*
  828  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
  829  */
  830 static int
  831 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
  832 {
  833         struct sbuf sbuf;
  834         struct swdevt *sp;
  835         const char *devname;
  836         int error;
  837 
  838         error = sysctl_wire_old_buffer(req, 0);
  839         if (error != 0)
  840                 return (error);
  841         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
  842         mtx_lock(&sw_dev_mtx);
  843         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  844                 if (vn_isdisk(sp->sw_vp, NULL))
  845                         devname = devtoname(sp->sw_vp->v_rdev);
  846                 else
  847                         devname = "[file]";
  848                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
  849                 blist_stats(sp->sw_blist, &sbuf);
  850         }
  851         mtx_unlock(&sw_dev_mtx);
  852         error = sbuf_finish(&sbuf);
  853         sbuf_delete(&sbuf);
  854         return (error);
  855 }
  856 
  857 /*
  858  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
  859  *                              range within an object.
  860  *
  861  *      This is a globally accessible routine.
  862  *
  863  *      This routine removes swapblk assignments from swap metadata.
  864  *
  865  *      The external callers of this routine typically have already destroyed
  866  *      or renamed vm_page_t's associated with this range in the object so
  867  *      we should be ok.
  868  *
  869  *      The object must be locked.
  870  */
  871 void
  872 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
  873 {
  874 
  875         swp_pager_meta_free(object, start, size);
  876 }
  877 
  878 /*
  879  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
  880  *
  881  *      Assigns swap blocks to the specified range within the object.  The
  882  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
  883  *
  884  *      Returns 0 on success, -1 on failure.
  885  */
  886 int
  887 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
  888 {
  889         int n = 0;
  890         daddr_t blk = SWAPBLK_NONE;
  891         vm_pindex_t beg = start;        /* save start index */
  892         daddr_t addr, n_free, s_free;
  893 
  894         swp_pager_init_freerange(&s_free, &n_free);
  895         VM_OBJECT_WLOCK(object);
  896         while (size) {
  897                 if (n == 0) {
  898                         n = BLIST_MAX_ALLOC;
  899                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
  900                                 n >>= 1;
  901                                 if (n == 0) {
  902                                         swp_pager_meta_free(object, beg, start - beg);
  903                                         VM_OBJECT_WUNLOCK(object);
  904                                         return (-1);
  905                                 }
  906                         }
  907                 }
  908                 addr = swp_pager_meta_build(object, start, blk);
  909                 if (addr != SWAPBLK_NONE)
  910                         swp_pager_update_freerange(&s_free, &n_free, addr);
  911                 --size;
  912                 ++start;
  913                 ++blk;
  914                 --n;
  915         }
  916         swp_pager_freeswapspace(s_free, n_free);
  917         swp_pager_meta_free(object, start, n);
  918         VM_OBJECT_WUNLOCK(object);
  919         return (0);
  920 }
  921 
  922 /*
  923  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
  924  *                      and destroy the source.
  925  *
  926  *      Copy any valid swapblks from the source to the destination.  In
  927  *      cases where both the source and destination have a valid swapblk,
  928  *      we keep the destination's.
  929  *
  930  *      This routine is allowed to sleep.  It may sleep allocating metadata
  931  *      indirectly through swp_pager_meta_build() or if paging is still in
  932  *      progress on the source.
  933  *
  934  *      The source object contains no vm_page_t's (which is just as well)
  935  *
  936  *      The source object is of type OBJT_SWAP.
  937  *
  938  *      The source and destination objects must be locked.
  939  *      Both object locks may temporarily be released.
  940  */
  941 void
  942 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
  943     vm_pindex_t offset, int destroysource)
  944 {
  945         vm_pindex_t i;
  946         daddr_t dstaddr, n_free, s_free, srcaddr;
  947 
  948         VM_OBJECT_ASSERT_WLOCKED(srcobject);
  949         VM_OBJECT_ASSERT_WLOCKED(dstobject);
  950 
  951         /*
  952          * If destroysource is set, we remove the source object from the
  953          * swap_pager internal queue now.
  954          */
  955         if (destroysource && srcobject->handle != NULL) {
  956                 vm_object_pip_add(srcobject, 1);
  957                 VM_OBJECT_WUNLOCK(srcobject);
  958                 vm_object_pip_add(dstobject, 1);
  959                 VM_OBJECT_WUNLOCK(dstobject);
  960                 sx_xlock(&sw_alloc_sx);
  961                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
  962                     pager_object_list);
  963                 sx_xunlock(&sw_alloc_sx);
  964                 VM_OBJECT_WLOCK(dstobject);
  965                 vm_object_pip_wakeup(dstobject);
  966                 VM_OBJECT_WLOCK(srcobject);
  967                 vm_object_pip_wakeup(srcobject);
  968         }
  969 
  970         /*
  971          * Transfer source to destination.
  972          */
  973         swp_pager_init_freerange(&s_free, &n_free);
  974         for (i = 0; i < dstobject->size; ++i) {
  975                 srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP);
  976                 if (srcaddr == SWAPBLK_NONE)
  977                         continue;
  978                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
  979                 if (dstaddr != SWAPBLK_NONE) {
  980                         /*
  981                          * Destination has valid swapblk or it is represented
  982                          * by a resident page.  We destroy the source block.
  983                          */
  984                         swp_pager_update_freerange(&s_free, &n_free, srcaddr);
  985                         continue;
  986                 }
  987 
  988                 /*
  989                  * Destination has no swapblk and is not resident,
  990                  * copy source.
  991                  *
  992                  * swp_pager_meta_build() can sleep.
  993                  */
  994                 vm_object_pip_add(srcobject, 1);
  995                 VM_OBJECT_WUNLOCK(srcobject);
  996                 vm_object_pip_add(dstobject, 1);
  997                 dstaddr = swp_pager_meta_build(dstobject, i, srcaddr);
  998                 KASSERT(dstaddr == SWAPBLK_NONE,
  999                     ("Unexpected destination swapblk"));
 1000                 vm_object_pip_wakeup(dstobject);
 1001                 VM_OBJECT_WLOCK(srcobject);
 1002                 vm_object_pip_wakeup(srcobject);
 1003         }
 1004         swp_pager_freeswapspace(s_free, n_free);
 1005 
 1006         /*
 1007          * Free left over swap blocks in source.
 1008          *
 1009          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
 1010          * double-remove the object from the swap queues.
 1011          */
 1012         if (destroysource) {
 1013                 swp_pager_meta_free_all(srcobject);
 1014                 /*
 1015                  * Reverting the type is not necessary, the caller is going
 1016                  * to destroy srcobject directly, but I'm doing it here
 1017                  * for consistency since we've removed the object from its
 1018                  * queues.
 1019                  */
 1020                 srcobject->type = OBJT_DEFAULT;
 1021         }
 1022 }
 1023 
 1024 /*
 1025  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
 1026  *                              the requested page.
 1027  *
 1028  *      We determine whether good backing store exists for the requested
 1029  *      page and return TRUE if it does, FALSE if it doesn't.
 1030  *
 1031  *      If TRUE, we also try to determine how much valid, contiguous backing
 1032  *      store exists before and after the requested page.
 1033  */
 1034 static boolean_t
 1035 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
 1036     int *after)
 1037 {
 1038         daddr_t blk, blk0;
 1039         int i;
 1040 
 1041         VM_OBJECT_ASSERT_LOCKED(object);
 1042 
 1043         /*
 1044          * do we have good backing store at the requested index ?
 1045          */
 1046         blk0 = swp_pager_meta_ctl(object, pindex, 0);
 1047         if (blk0 == SWAPBLK_NONE) {
 1048                 if (before)
 1049                         *before = 0;
 1050                 if (after)
 1051                         *after = 0;
 1052                 return (FALSE);
 1053         }
 1054 
 1055         /*
 1056          * find backwards-looking contiguous good backing store
 1057          */
 1058         if (before != NULL) {
 1059                 for (i = 1; i < SWB_NPAGES; i++) {
 1060                         if (i > pindex)
 1061                                 break;
 1062                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
 1063                         if (blk != blk0 - i)
 1064                                 break;
 1065                 }
 1066                 *before = i - 1;
 1067         }
 1068 
 1069         /*
 1070          * find forward-looking contiguous good backing store
 1071          */
 1072         if (after != NULL) {
 1073                 for (i = 1; i < SWB_NPAGES; i++) {
 1074                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
 1075                         if (blk != blk0 + i)
 1076                                 break;
 1077                 }
 1078                 *after = i - 1;
 1079         }
 1080         return (TRUE);
 1081 }
 1082 
 1083 /*
 1084  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
 1085  *
 1086  *      This removes any associated swap backing store, whether valid or
 1087  *      not, from the page.
 1088  *
 1089  *      This routine is typically called when a page is made dirty, at
 1090  *      which point any associated swap can be freed.  MADV_FREE also
 1091  *      calls us in a special-case situation
 1092  *
 1093  *      NOTE!!!  If the page is clean and the swap was valid, the caller
 1094  *      should make the page dirty before calling this routine.  This routine
 1095  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
 1096  *      depends on it.
 1097  *
 1098  *      This routine may not sleep.
 1099  *
 1100  *      The object containing the page must be locked.
 1101  */
 1102 static void
 1103 swap_pager_unswapped(vm_page_t m)
 1104 {
 1105         daddr_t srcaddr;
 1106 
 1107         srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP);
 1108         if (srcaddr != SWAPBLK_NONE)
 1109                 swp_pager_freeswapspace(srcaddr, 1);
 1110 }
 1111 
 1112 /*
 1113  * swap_pager_getpages() - bring pages in from swap
 1114  *
 1115  *      Attempt to page in the pages in array "ma" of length "count".  The
 1116  *      caller may optionally specify that additional pages preceding and
 1117  *      succeeding the specified range be paged in.  The number of such pages
 1118  *      is returned in the "rbehind" and "rahead" parameters, and they will
 1119  *      be in the inactive queue upon return.
 1120  *
 1121  *      The pages in "ma" must be busied and will remain busied upon return.
 1122  */
 1123 static int
 1124 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
 1125     int *rahead)
 1126 {
 1127         struct buf *bp;
 1128         vm_page_t bm, mpred, msucc, p;
 1129         vm_pindex_t pindex;
 1130         daddr_t blk;
 1131         int i, maxahead, maxbehind, reqcount;
 1132 
 1133         reqcount = count;
 1134 
 1135         /*
 1136          * Determine the final number of read-behind pages and
 1137          * allocate them BEFORE releasing the object lock.  Otherwise,
 1138          * there can be a problematic race with vm_object_split().
 1139          * Specifically, vm_object_split() might first transfer pages
 1140          * that precede ma[0] in the current object to a new object,
 1141          * and then this function incorrectly recreates those pages as
 1142          * read-behind pages in the current object.
 1143          */
 1144         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead))
 1145                 return (VM_PAGER_FAIL);
 1146 
 1147         /*
 1148          * Clip the readahead and readbehind ranges to exclude resident pages.
 1149          */
 1150         if (rahead != NULL) {
 1151                 KASSERT(reqcount - 1 <= maxahead,
 1152                     ("page count %d extends beyond swap block", reqcount));
 1153                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
 1154                 pindex = ma[reqcount - 1]->pindex;
 1155                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
 1156                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
 1157                         *rahead = msucc->pindex - pindex - 1;
 1158         }
 1159         if (rbehind != NULL) {
 1160                 *rbehind = imin(*rbehind, maxbehind);
 1161                 pindex = ma[0]->pindex;
 1162                 mpred = TAILQ_PREV(ma[0], pglist, listq);
 1163                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
 1164                         *rbehind = pindex - mpred->pindex - 1;
 1165         }
 1166 
 1167         bm = ma[0];
 1168         for (i = 0; i < count; i++)
 1169                 ma[i]->oflags |= VPO_SWAPINPROG;
 1170 
 1171         /*
 1172          * Allocate readahead and readbehind pages.
 1173          */
 1174         if (rbehind != NULL) {
 1175                 for (i = 1; i <= *rbehind; i++) {
 1176                         p = vm_page_alloc(object, ma[0]->pindex - i,
 1177                             VM_ALLOC_NORMAL);
 1178                         if (p == NULL)
 1179                                 break;
 1180                         p->oflags |= VPO_SWAPINPROG;
 1181                         bm = p;
 1182                 }
 1183                 *rbehind = i - 1;
 1184         }
 1185         if (rahead != NULL) {
 1186                 for (i = 0; i < *rahead; i++) {
 1187                         p = vm_page_alloc(object,
 1188                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
 1189                         if (p == NULL)
 1190                                 break;
 1191                         p->oflags |= VPO_SWAPINPROG;
 1192                 }
 1193                 *rahead = i;
 1194         }
 1195         if (rbehind != NULL)
 1196                 count += *rbehind;
 1197         if (rahead != NULL)
 1198                 count += *rahead;
 1199 
 1200         vm_object_pip_add(object, count);
 1201 
 1202         pindex = bm->pindex;
 1203         blk = swp_pager_meta_ctl(object, pindex, 0);
 1204         KASSERT(blk != SWAPBLK_NONE,
 1205             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
 1206 
 1207         VM_OBJECT_WUNLOCK(object);
 1208         bp = getpbuf(&nsw_rcount);
 1209         /* Pages cannot leave the object while busy. */
 1210         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
 1211                 MPASS(p->pindex == bm->pindex + i);
 1212                 bp->b_pages[i] = p;
 1213         }
 1214 
 1215         bp->b_flags |= B_PAGING;
 1216         bp->b_iocmd = BIO_READ;
 1217         bp->b_iodone = swp_pager_async_iodone;
 1218         bp->b_rcred = crhold(thread0.td_ucred);
 1219         bp->b_wcred = crhold(thread0.td_ucred);
 1220         bp->b_blkno = blk;
 1221         bp->b_bcount = PAGE_SIZE * count;
 1222         bp->b_bufsize = PAGE_SIZE * count;
 1223         bp->b_npages = count;
 1224         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
 1225         bp->b_pgafter = rahead != NULL ? *rahead : 0;
 1226 
 1227         VM_CNT_INC(v_swapin);
 1228         VM_CNT_ADD(v_swappgsin, count);
 1229 
 1230         /*
 1231          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
 1232          * this point because we automatically release it on completion.
 1233          * Instead, we look at the one page we are interested in which we
 1234          * still hold a lock on even through the I/O completion.
 1235          *
 1236          * The other pages in our ma[] array are also released on completion,
 1237          * so we cannot assume they are valid anymore either.
 1238          *
 1239          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1240          */
 1241         BUF_KERNPROC(bp);
 1242         swp_pager_strategy(bp);
 1243 
 1244         /*
 1245          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
 1246          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
 1247          * is set in the metadata for each page in the request.
 1248          */
 1249         VM_OBJECT_WLOCK(object);
 1250         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
 1251                 ma[0]->oflags |= VPO_SWAPSLEEP;
 1252                 VM_CNT_INC(v_intrans);
 1253                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
 1254                     "swread", hz * 20)) {
 1255                         printf(
 1256 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
 1257                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
 1258                 }
 1259         }
 1260 
 1261         /*
 1262          * If we had an unrecoverable read error pages will not be valid.
 1263          */
 1264         for (i = 0; i < reqcount; i++)
 1265                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
 1266                         return (VM_PAGER_ERROR);
 1267 
 1268         return (VM_PAGER_OK);
 1269 
 1270         /*
 1271          * A final note: in a low swap situation, we cannot deallocate swap
 1272          * and mark a page dirty here because the caller is likely to mark
 1273          * the page clean when we return, causing the page to possibly revert
 1274          * to all-zero's later.
 1275          */
 1276 }
 1277 
 1278 /*
 1279  *      swap_pager_getpages_async():
 1280  *
 1281  *      Right now this is emulation of asynchronous operation on top of
 1282  *      swap_pager_getpages().
 1283  */
 1284 static int
 1285 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
 1286     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
 1287 {
 1288         int r, error;
 1289 
 1290         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
 1291         VM_OBJECT_WUNLOCK(object);
 1292         switch (r) {
 1293         case VM_PAGER_OK:
 1294                 error = 0;
 1295                 break;
 1296         case VM_PAGER_ERROR:
 1297                 error = EIO;
 1298                 break;
 1299         case VM_PAGER_FAIL:
 1300                 error = EINVAL;
 1301                 break;
 1302         default:
 1303                 panic("unhandled swap_pager_getpages() error %d", r);
 1304         }
 1305         (iodone)(arg, ma, count, error);
 1306         VM_OBJECT_WLOCK(object);
 1307 
 1308         return (r);
 1309 }
 1310 
 1311 /*
 1312  *      swap_pager_putpages:
 1313  *
 1314  *      Assign swap (if necessary) and initiate I/O on the specified pages.
 1315  *
 1316  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
 1317  *      are automatically converted to SWAP objects.
 1318  *
 1319  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
 1320  *      vm_page reservation system coupled with properly written VFS devices
 1321  *      should ensure that no low-memory deadlock occurs.  This is an area
 1322  *      which needs work.
 1323  *
 1324  *      The parent has N vm_object_pip_add() references prior to
 1325  *      calling us and will remove references for rtvals[] that are
 1326  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
 1327  *      completion.
 1328  *
 1329  *      The parent has soft-busy'd the pages it passes us and will unbusy
 1330  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
 1331  *      We need to unbusy the rest on I/O completion.
 1332  */
 1333 static void
 1334 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
 1335     int flags, int *rtvals)
 1336 {
 1337         int i, n;
 1338         boolean_t sync;
 1339         daddr_t addr, n_free, s_free;
 1340 
 1341         swp_pager_init_freerange(&s_free, &n_free);
 1342         if (count && ma[0]->object != object) {
 1343                 panic("swap_pager_putpages: object mismatch %p/%p",
 1344                     object,
 1345                     ma[0]->object
 1346                 );
 1347         }
 1348 
 1349         /*
 1350          * Step 1
 1351          *
 1352          * Turn object into OBJT_SWAP
 1353          * check for bogus sysops
 1354          * force sync if not pageout process
 1355          */
 1356         if (object->type != OBJT_SWAP) {
 1357                 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
 1358                 KASSERT(addr == SWAPBLK_NONE,
 1359                     ("unexpected object swap block"));
 1360         }
 1361         VM_OBJECT_WUNLOCK(object);
 1362 
 1363         n = 0;
 1364         if (curproc != pageproc)
 1365                 sync = TRUE;
 1366         else
 1367                 sync = (flags & VM_PAGER_PUT_SYNC) != 0;
 1368 
 1369         /*
 1370          * Step 2
 1371          *
 1372          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
 1373          * The page is left dirty until the pageout operation completes
 1374          * successfully.
 1375          */
 1376         for (i = 0; i < count; i += n) {
 1377                 int j;
 1378                 struct buf *bp;
 1379                 daddr_t blk;
 1380 
 1381                 /*
 1382                  * Maximum I/O size is limited by a number of factors.
 1383                  */
 1384                 n = min(BLIST_MAX_ALLOC, count - i);
 1385                 n = min(n, nsw_cluster_max);
 1386 
 1387                 /*
 1388                  * Get biggest block of swap we can.  If we fail, fall
 1389                  * back and try to allocate a smaller block.  Don't go
 1390                  * overboard trying to allocate space if it would overly
 1391                  * fragment swap.
 1392                  */
 1393                 while (
 1394                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
 1395                     n > 4
 1396                 ) {
 1397                         n >>= 1;
 1398                 }
 1399                 if (blk == SWAPBLK_NONE) {
 1400                         for (j = 0; j < n; ++j)
 1401                                 rtvals[i+j] = VM_PAGER_FAIL;
 1402                         continue;
 1403                 }
 1404 
 1405                 /*
 1406                  * All I/O parameters have been satisfied, build the I/O
 1407                  * request and assign the swap space.
 1408                  */
 1409                 if (sync == TRUE) {
 1410                         bp = getpbuf(&nsw_wcount_sync);
 1411                 } else {
 1412                         bp = getpbuf(&nsw_wcount_async);
 1413                         bp->b_flags = B_ASYNC;
 1414                 }
 1415                 bp->b_flags |= B_PAGING;
 1416                 bp->b_iocmd = BIO_WRITE;
 1417 
 1418                 bp->b_rcred = crhold(thread0.td_ucred);
 1419                 bp->b_wcred = crhold(thread0.td_ucred);
 1420                 bp->b_bcount = PAGE_SIZE * n;
 1421                 bp->b_bufsize = PAGE_SIZE * n;
 1422                 bp->b_blkno = blk;
 1423 
 1424                 VM_OBJECT_WLOCK(object);
 1425                 for (j = 0; j < n; ++j) {
 1426                         vm_page_t mreq = ma[i+j];
 1427 
 1428                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
 1429                             blk + j);
 1430                         if (addr != SWAPBLK_NONE)
 1431                                 swp_pager_update_freerange(&s_free, &n_free,
 1432                                     addr);
 1433                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
 1434                         mreq->oflags |= VPO_SWAPINPROG;
 1435                         bp->b_pages[j] = mreq;
 1436                 }
 1437                 VM_OBJECT_WUNLOCK(object);
 1438                 bp->b_npages = n;
 1439                 /*
 1440                  * Must set dirty range for NFS to work.
 1441                  */
 1442                 bp->b_dirtyoff = 0;
 1443                 bp->b_dirtyend = bp->b_bcount;
 1444 
 1445                 VM_CNT_INC(v_swapout);
 1446                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
 1447 
 1448                 /*
 1449                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
 1450                  * can call the async completion routine at the end of a
 1451                  * synchronous I/O operation.  Otherwise, our caller would
 1452                  * perform duplicate unbusy and wakeup operations on the page
 1453                  * and object, respectively.
 1454                  */
 1455                 for (j = 0; j < n; j++)
 1456                         rtvals[i + j] = VM_PAGER_PEND;
 1457 
 1458                 /*
 1459                  * asynchronous
 1460                  *
 1461                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1462                  */
 1463                 if (sync == FALSE) {
 1464                         bp->b_iodone = swp_pager_async_iodone;
 1465                         BUF_KERNPROC(bp);
 1466                         swp_pager_strategy(bp);
 1467                         continue;
 1468                 }
 1469 
 1470                 /*
 1471                  * synchronous
 1472                  *
 1473                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1474                  */
 1475                 bp->b_iodone = bdone;
 1476                 swp_pager_strategy(bp);
 1477 
 1478                 /*
 1479                  * Wait for the sync I/O to complete.
 1480                  */
 1481                 bwait(bp, PVM, "swwrt");
 1482 
 1483                 /*
 1484                  * Now that we are through with the bp, we can call the
 1485                  * normal async completion, which frees everything up.
 1486                  */
 1487                 swp_pager_async_iodone(bp);
 1488         }
 1489         VM_OBJECT_WLOCK(object);
 1490         swp_pager_freeswapspace(s_free, n_free);
 1491 }
 1492 
 1493 /*
 1494  *      swp_pager_async_iodone:
 1495  *
 1496  *      Completion routine for asynchronous reads and writes from/to swap.
 1497  *      Also called manually by synchronous code to finish up a bp.
 1498  *
 1499  *      This routine may not sleep.
 1500  */
 1501 static void
 1502 swp_pager_async_iodone(struct buf *bp)
 1503 {
 1504         int i;
 1505         vm_object_t object = NULL;
 1506 
 1507         /*
 1508          * report error
 1509          */
 1510         if (bp->b_ioflags & BIO_ERROR) {
 1511                 printf(
 1512                     "swap_pager: I/O error - %s failed; blkno %ld,"
 1513                         "size %ld, error %d\n",
 1514                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
 1515                     (long)bp->b_blkno,
 1516                     (long)bp->b_bcount,
 1517                     bp->b_error
 1518                 );
 1519         }
 1520 
 1521         /*
 1522          * remove the mapping for kernel virtual
 1523          */
 1524         if (buf_mapped(bp))
 1525                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
 1526         else
 1527                 bp->b_data = bp->b_kvabase;
 1528 
 1529         if (bp->b_npages) {
 1530                 object = bp->b_pages[0]->object;
 1531                 VM_OBJECT_WLOCK(object);
 1532         }
 1533 
 1534         /*
 1535          * cleanup pages.  If an error occurs writing to swap, we are in
 1536          * very serious trouble.  If it happens to be a disk error, though,
 1537          * we may be able to recover by reassigning the swap later on.  So
 1538          * in this case we remove the m->swapblk assignment for the page
 1539          * but do not free it in the rlist.  The errornous block(s) are thus
 1540          * never reallocated as swap.  Redirty the page and continue.
 1541          */
 1542         for (i = 0; i < bp->b_npages; ++i) {
 1543                 vm_page_t m = bp->b_pages[i];
 1544 
 1545                 m->oflags &= ~VPO_SWAPINPROG;
 1546                 if (m->oflags & VPO_SWAPSLEEP) {
 1547                         m->oflags &= ~VPO_SWAPSLEEP;
 1548                         wakeup(&object->paging_in_progress);
 1549                 }
 1550 
 1551                 if (bp->b_ioflags & BIO_ERROR) {
 1552                         /*
 1553                          * If an error occurs I'd love to throw the swapblk
 1554                          * away without freeing it back to swapspace, so it
 1555                          * can never be used again.  But I can't from an
 1556                          * interrupt.
 1557                          */
 1558                         if (bp->b_iocmd == BIO_READ) {
 1559                                 /*
 1560                                  * NOTE: for reads, m->dirty will probably
 1561                                  * be overridden by the original caller of
 1562                                  * getpages so don't play cute tricks here.
 1563                                  */
 1564                                 m->valid = 0;
 1565                         } else {
 1566                                 /*
 1567                                  * If a write error occurs, reactivate page
 1568                                  * so it doesn't clog the inactive list,
 1569                                  * then finish the I/O.
 1570                                  */
 1571                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
 1572                                 vm_page_lock(m);
 1573                                 vm_page_activate(m);
 1574                                 vm_page_unlock(m);
 1575                                 vm_page_sunbusy(m);
 1576                         }
 1577                 } else if (bp->b_iocmd == BIO_READ) {
 1578                         /*
 1579                          * NOTE: for reads, m->dirty will probably be
 1580                          * overridden by the original caller of getpages so
 1581                          * we cannot set them in order to free the underlying
 1582                          * swap in a low-swap situation.  I don't think we'd
 1583                          * want to do that anyway, but it was an optimization
 1584                          * that existed in the old swapper for a time before
 1585                          * it got ripped out due to precisely this problem.
 1586                          */
 1587                         KASSERT(!pmap_page_is_mapped(m),
 1588                             ("swp_pager_async_iodone: page %p is mapped", m));
 1589                         KASSERT(m->dirty == 0,
 1590                             ("swp_pager_async_iodone: page %p is dirty", m));
 1591 
 1592                         m->valid = VM_PAGE_BITS_ALL;
 1593                         if (i < bp->b_pgbefore ||
 1594                             i >= bp->b_npages - bp->b_pgafter)
 1595                                 vm_page_readahead_finish(m);
 1596                 } else {
 1597                         /*
 1598                          * For write success, clear the dirty
 1599                          * status, then finish the I/O ( which decrements the
 1600                          * busy count and possibly wakes waiter's up ).
 1601                          * A page is only written to swap after a period of
 1602                          * inactivity.  Therefore, we do not expect it to be
 1603                          * reused.
 1604                          */
 1605                         KASSERT(!pmap_page_is_write_mapped(m),
 1606                             ("swp_pager_async_iodone: page %p is not write"
 1607                             " protected", m));
 1608                         vm_page_undirty(m);
 1609                         vm_page_lock(m);
 1610                         vm_page_deactivate_noreuse(m);
 1611                         vm_page_unlock(m);
 1612                         vm_page_sunbusy(m);
 1613                 }
 1614         }
 1615 
 1616         /*
 1617          * adjust pip.  NOTE: the original parent may still have its own
 1618          * pip refs on the object.
 1619          */
 1620         if (object != NULL) {
 1621                 vm_object_pip_wakeupn(object, bp->b_npages);
 1622                 VM_OBJECT_WUNLOCK(object);
 1623         }
 1624 
 1625         /*
 1626          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
 1627          * bstrategy(). Set them back to NULL now we're done with it, or we'll
 1628          * trigger a KASSERT in relpbuf().
 1629          */
 1630         if (bp->b_vp) {
 1631                     bp->b_vp = NULL;
 1632                     bp->b_bufobj = NULL;
 1633         }
 1634         /*
 1635          * release the physical I/O buffer
 1636          */
 1637         relpbuf(
 1638             bp,
 1639             ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
 1640                 ((bp->b_flags & B_ASYNC) ?
 1641                     &nsw_wcount_async :
 1642                     &nsw_wcount_sync
 1643                 )
 1644             )
 1645         );
 1646 }
 1647 
 1648 int
 1649 swap_pager_nswapdev(void)
 1650 {
 1651 
 1652         return (nswapdev);
 1653 }
 1654 
 1655 /*
 1656  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
 1657  *
 1658  *      This routine dissociates the page at the given index within an object
 1659  *      from its backing store, paging it in if it does not reside in memory.
 1660  *      If the page is paged in, it is marked dirty and placed in the laundry
 1661  *      queue.  The page is marked dirty because it no longer has backing
 1662  *      store.  It is placed in the laundry queue because it has not been
 1663  *      accessed recently.  Otherwise, it would already reside in memory.
 1664  *
 1665  *      We also attempt to swap in all other pages in the swap block.
 1666  *      However, we only guarantee that the one at the specified index is
 1667  *      paged in.
 1668  *
 1669  *      XXX - The code to page the whole block in doesn't work, so we
 1670  *            revert to the one-by-one behavior for now.  Sigh.
 1671  */
 1672 static inline void
 1673 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
 1674 {
 1675         vm_page_t m;
 1676 
 1677         vm_object_pip_add(object, 1);
 1678         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
 1679         if (m->valid == VM_PAGE_BITS_ALL) {
 1680                 vm_object_pip_wakeup(object);
 1681                 vm_page_dirty(m);
 1682 #ifdef INVARIANTS
 1683                 vm_page_lock(m);
 1684                 if (m->wire_count == 0 && m->queue == PQ_NONE)
 1685                         panic("page %p is neither wired nor queued", m);
 1686                 vm_page_unlock(m);
 1687 #endif
 1688                 vm_page_xunbusy(m);
 1689                 vm_pager_page_unswapped(m);
 1690                 return;
 1691         }
 1692 
 1693         if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
 1694                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
 1695         vm_object_pip_wakeup(object);
 1696         vm_page_dirty(m);
 1697         vm_page_lock(m);
 1698         vm_page_launder(m);
 1699         vm_page_unlock(m);
 1700         vm_page_xunbusy(m);
 1701         vm_pager_page_unswapped(m);
 1702 }
 1703 
 1704 /*
 1705  *      swap_pager_swapoff:
 1706  *
 1707  *      Page in all of the pages that have been paged out to the
 1708  *      given device.  The corresponding blocks in the bitmap must be
 1709  *      marked as allocated and the device must be flagged SW_CLOSING.
 1710  *      There may be no processes swapped out to the device.
 1711  *
 1712  *      This routine may block.
 1713  */
 1714 static void
 1715 swap_pager_swapoff(struct swdevt *sp)
 1716 {
 1717         struct swblk *sb;
 1718         vm_object_t object;
 1719         vm_pindex_t pi;
 1720         int i, retries;
 1721 
 1722         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
 1723 
 1724         retries = 0;
 1725 full_rescan:
 1726         mtx_lock(&vm_object_list_mtx);
 1727         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 1728                 if (object->type != OBJT_SWAP)
 1729                         continue;
 1730                 mtx_unlock(&vm_object_list_mtx);
 1731                 /* Depends on type-stability. */
 1732                 VM_OBJECT_WLOCK(object);
 1733 
 1734                 /*
 1735                  * Dead objects are eventually terminated on their own.
 1736                  */
 1737                 if ((object->flags & OBJ_DEAD) != 0)
 1738                         goto next_obj;
 1739 
 1740                 /*
 1741                  * Sync with fences placed after pctrie
 1742                  * initialization.  We must not access pctrie below
 1743                  * unless we checked that our object is swap and not
 1744                  * dead.
 1745                  */
 1746                 atomic_thread_fence_acq();
 1747                 if (object->type != OBJT_SWAP)
 1748                         goto next_obj;
 1749 
 1750                 for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
 1751                     &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
 1752                         pi = sb->p + SWAP_META_PAGES;
 1753                         for (i = 0; i < SWAP_META_PAGES; i++) {
 1754                                 if (sb->d[i] == SWAPBLK_NONE)
 1755                                         continue;
 1756                                 if (swp_pager_isondev(sb->d[i], sp))
 1757                                         swp_pager_force_pagein(object,
 1758                                             sb->p + i);
 1759                         }
 1760                 }
 1761 next_obj:
 1762                 VM_OBJECT_WUNLOCK(object);
 1763                 mtx_lock(&vm_object_list_mtx);
 1764         }
 1765         mtx_unlock(&vm_object_list_mtx);
 1766 
 1767         if (sp->sw_used) {
 1768                 /*
 1769                  * Objects may be locked or paging to the device being
 1770                  * removed, so we will miss their pages and need to
 1771                  * make another pass.  We have marked this device as
 1772                  * SW_CLOSING, so the activity should finish soon.
 1773                  */
 1774                 retries++;
 1775                 if (retries > 100) {
 1776                         panic("swapoff: failed to locate %d swap blocks",
 1777                             sp->sw_used);
 1778                 }
 1779                 pause("swpoff", hz / 20);
 1780                 goto full_rescan;
 1781         }
 1782         EVENTHANDLER_INVOKE(swapoff, sp);
 1783 }
 1784 
 1785 /************************************************************************
 1786  *                              SWAP META DATA                          *
 1787  ************************************************************************
 1788  *
 1789  *      These routines manipulate the swap metadata stored in the
 1790  *      OBJT_SWAP object.
 1791  *
 1792  *      Swap metadata is implemented with a global hash and not directly
 1793  *      linked into the object.  Instead the object simply contains
 1794  *      appropriate tracking counters.
 1795  */
 1796 
 1797 /*
 1798  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
 1799  */
 1800 static bool
 1801 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
 1802 {
 1803         int i;
 1804 
 1805         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
 1806         for (i = start; i < limit; i++) {
 1807                 if (sb->d[i] != SWAPBLK_NONE)
 1808                         return (false);
 1809         }
 1810         return (true);
 1811 }
 1812    
 1813 /*
 1814  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
 1815  *
 1816  *      We first convert the object to a swap object if it is a default
 1817  *      object.
 1818  *
 1819  *      The specified swapblk is added to the object's swap metadata.  If
 1820  *      the swapblk is not valid, it is freed instead.  Any previously
 1821  *      assigned swapblk is returned.
 1822  */
 1823 static daddr_t
 1824 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
 1825 {
 1826         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
 1827         struct swblk *sb, *sb1;
 1828         vm_pindex_t modpi, rdpi;
 1829         daddr_t prev_swapblk;
 1830         int error, i;
 1831 
 1832         VM_OBJECT_ASSERT_WLOCKED(object);
 1833 
 1834         /*
 1835          * Convert default object to swap object if necessary
 1836          */
 1837         if (object->type != OBJT_SWAP) {
 1838                 pctrie_init(&object->un_pager.swp.swp_blks);
 1839 
 1840                 /*
 1841                  * Ensure that swap_pager_swapoff()'s iteration over
 1842                  * object_list does not see a garbage pctrie.
 1843                  */
 1844                 atomic_thread_fence_rel();
 1845 
 1846                 object->type = OBJT_SWAP;
 1847                 KASSERT(object->handle == NULL, ("default pager with handle"));
 1848         }
 1849 
 1850         rdpi = rounddown(pindex, SWAP_META_PAGES);
 1851         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
 1852         if (sb == NULL) {
 1853                 if (swapblk == SWAPBLK_NONE)
 1854                         return (SWAPBLK_NONE);
 1855                 for (;;) {
 1856                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
 1857                             pageproc ? M_USE_RESERVE : 0));
 1858                         if (sb != NULL) {
 1859                                 sb->p = rdpi;
 1860                                 for (i = 0; i < SWAP_META_PAGES; i++)
 1861                                         sb->d[i] = SWAPBLK_NONE;
 1862                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
 1863                                     1, 0))
 1864                                         printf("swblk zone ok\n");
 1865                                 break;
 1866                         }
 1867                         VM_OBJECT_WUNLOCK(object);
 1868                         if (uma_zone_exhausted(swblk_zone)) {
 1869                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
 1870                                     0, 1))
 1871                                         printf("swap blk zone exhausted, "
 1872                                             "increase kern.maxswzone\n");
 1873                                 vm_pageout_oom(VM_OOM_SWAPZ);
 1874                                 pause("swzonxb", 10);
 1875                         } else
 1876                                 uma_zwait(swblk_zone);
 1877                         VM_OBJECT_WLOCK(object);
 1878                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
 1879                             rdpi);
 1880                         if (sb != NULL)
 1881                                 /*
 1882                                  * Somebody swapped out a nearby page,
 1883                                  * allocating swblk at the rdpi index,
 1884                                  * while we dropped the object lock.
 1885                                  */
 1886                                 goto allocated;
 1887                 }
 1888                 for (;;) {
 1889                         error = SWAP_PCTRIE_INSERT(
 1890                             &object->un_pager.swp.swp_blks, sb);
 1891                         if (error == 0) {
 1892                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
 1893                                     1, 0))
 1894                                         printf("swpctrie zone ok\n");
 1895                                 break;
 1896                         }
 1897                         VM_OBJECT_WUNLOCK(object);
 1898                         if (uma_zone_exhausted(swpctrie_zone)) {
 1899                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
 1900                                     0, 1))
 1901                                         printf("swap pctrie zone exhausted, "
 1902                                             "increase kern.maxswzone\n");
 1903                                 vm_pageout_oom(VM_OOM_SWAPZ);
 1904                                 pause("swzonxp", 10);
 1905                         } else
 1906                                 uma_zwait(swpctrie_zone);
 1907                         VM_OBJECT_WLOCK(object);
 1908                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
 1909                             rdpi);
 1910                         if (sb1 != NULL) {
 1911                                 uma_zfree(swblk_zone, sb);
 1912                                 sb = sb1;
 1913                                 goto allocated;
 1914                         }
 1915                 }
 1916         }
 1917 allocated:
 1918         MPASS(sb->p == rdpi);
 1919 
 1920         modpi = pindex % SWAP_META_PAGES;
 1921         /* Return prior contents of metadata. */
 1922         prev_swapblk = sb->d[modpi];
 1923         /* Enter block into metadata. */
 1924         sb->d[modpi] = swapblk;
 1925 
 1926         /*
 1927          * Free the swblk if we end up with the empty page run.
 1928          */
 1929         if (swapblk == SWAPBLK_NONE &&
 1930             swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
 1931                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi);
 1932                 uma_zfree(swblk_zone, sb);
 1933         }
 1934         return (prev_swapblk);
 1935 }
 1936 
 1937 /*
 1938  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
 1939  *
 1940  *      The requested range of blocks is freed, with any associated swap
 1941  *      returned to the swap bitmap.
 1942  *
 1943  *      This routine will free swap metadata structures as they are cleaned
 1944  *      out.  This routine does *NOT* operate on swap metadata associated
 1945  *      with resident pages.
 1946  */
 1947 static void
 1948 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
 1949 {
 1950         struct swblk *sb;
 1951         daddr_t n_free, s_free;
 1952         vm_pindex_t last;
 1953         int i, limit, start;
 1954 
 1955         VM_OBJECT_ASSERT_WLOCKED(object);
 1956         if (object->type != OBJT_SWAP || count == 0)
 1957                 return;
 1958 
 1959         swp_pager_init_freerange(&s_free, &n_free);
 1960         last = pindex + count;
 1961         for (;;) {
 1962                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
 1963                     rounddown(pindex, SWAP_META_PAGES));
 1964                 if (sb == NULL || sb->p >= last)
 1965                         break;
 1966                 start = pindex > sb->p ? pindex - sb->p : 0;
 1967                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
 1968                     SWAP_META_PAGES;
 1969                 for (i = start; i < limit; i++) {
 1970                         if (sb->d[i] == SWAPBLK_NONE)
 1971                                 continue;
 1972                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
 1973                         sb->d[i] = SWAPBLK_NONE;
 1974                 }
 1975                 pindex = sb->p + SWAP_META_PAGES;
 1976                 if (swp_pager_swblk_empty(sb, 0, start) &&
 1977                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
 1978                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
 1979                             sb->p);
 1980                         uma_zfree(swblk_zone, sb);
 1981                 }
 1982         }
 1983         swp_pager_freeswapspace(s_free, n_free);
 1984 }
 1985 
 1986 /*
 1987  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
 1988  *
 1989  *      This routine locates and destroys all swap metadata associated with
 1990  *      an object.
 1991  */
 1992 static void
 1993 swp_pager_meta_free_all(vm_object_t object)
 1994 {
 1995         struct swblk *sb;
 1996         daddr_t n_free, s_free;
 1997         vm_pindex_t pindex;
 1998         int i;
 1999 
 2000         VM_OBJECT_ASSERT_WLOCKED(object);
 2001         if (object->type != OBJT_SWAP)
 2002                 return;
 2003 
 2004         swp_pager_init_freerange(&s_free, &n_free);
 2005         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
 2006             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
 2007                 pindex = sb->p + SWAP_META_PAGES;
 2008                 for (i = 0; i < SWAP_META_PAGES; i++) {
 2009                         if (sb->d[i] == SWAPBLK_NONE)
 2010                                 continue;
 2011                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
 2012                 }
 2013                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
 2014                 uma_zfree(swblk_zone, sb);
 2015         }
 2016         swp_pager_freeswapspace(s_free, n_free);
 2017 }
 2018 
 2019 /*
 2020  * SWP_PAGER_METACTL() -  misc control of swap meta data.
 2021  *
 2022  *      This routine is capable of looking up, or removing swapblk
 2023  *      assignments in the swap meta data.  It returns the swapblk being
 2024  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
 2025  *
 2026  *      When acting on a busy resident page and paging is in progress, we
 2027  *      have to wait until paging is complete but otherwise can act on the
 2028  *      busy page.
 2029  *
 2030  *      SWM_POP         remove from meta data but do not free it
 2031  */
 2032 static daddr_t
 2033 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
 2034 {
 2035         struct swblk *sb;
 2036         daddr_t r1;
 2037 
 2038         if ((flags & SWM_POP) != 0)
 2039                 VM_OBJECT_ASSERT_WLOCKED(object);
 2040         else
 2041                 VM_OBJECT_ASSERT_LOCKED(object);
 2042 
 2043         /*
 2044          * The meta data only exists if the object is OBJT_SWAP
 2045          * and even then might not be allocated yet.
 2046          */
 2047         if (object->type != OBJT_SWAP)
 2048                 return (SWAPBLK_NONE);
 2049 
 2050         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
 2051             rounddown(pindex, SWAP_META_PAGES));
 2052         if (sb == NULL)
 2053                 return (SWAPBLK_NONE);
 2054         r1 = sb->d[pindex % SWAP_META_PAGES];
 2055         if (r1 == SWAPBLK_NONE)
 2056                 return (SWAPBLK_NONE);
 2057         if ((flags & SWM_POP) != 0) {
 2058                 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
 2059                 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
 2060                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
 2061                             rounddown(pindex, SWAP_META_PAGES));
 2062                         uma_zfree(swblk_zone, sb);
 2063                 }
 2064         }
 2065         return (r1);
 2066 }
 2067 
 2068 /*
 2069  * Returns the least page index which is greater than or equal to the
 2070  * parameter pindex and for which there is a swap block allocated.
 2071  * Returns object's size if the object's type is not swap or if there
 2072  * are no allocated swap blocks for the object after the requested
 2073  * pindex.
 2074  */
 2075 vm_pindex_t
 2076 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
 2077 {
 2078         struct swblk *sb;
 2079         int i;
 2080 
 2081         VM_OBJECT_ASSERT_LOCKED(object);
 2082         if (object->type != OBJT_SWAP)
 2083                 return (object->size);
 2084 
 2085         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
 2086             rounddown(pindex, SWAP_META_PAGES));
 2087         if (sb == NULL)
 2088                 return (object->size);
 2089         if (sb->p < pindex) {
 2090                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
 2091                         if (sb->d[i] != SWAPBLK_NONE)
 2092                                 return (sb->p + i);
 2093                 }
 2094                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
 2095                     roundup(pindex, SWAP_META_PAGES));
 2096                 if (sb == NULL)
 2097                         return (object->size);
 2098         }
 2099         for (i = 0; i < SWAP_META_PAGES; i++) {
 2100                 if (sb->d[i] != SWAPBLK_NONE)
 2101                         return (sb->p + i);
 2102         }
 2103 
 2104         /*
 2105          * We get here if a swblk is present in the trie but it
 2106          * doesn't map any blocks.
 2107          */
 2108         MPASS(0);
 2109         return (object->size);
 2110 }
 2111 
 2112 /*
 2113  * System call swapon(name) enables swapping on device name,
 2114  * which must be in the swdevsw.  Return EBUSY
 2115  * if already swapping on this device.
 2116  */
 2117 #ifndef _SYS_SYSPROTO_H_
 2118 struct swapon_args {
 2119         char *name;
 2120 };
 2121 #endif
 2122 
 2123 /*
 2124  * MPSAFE
 2125  */
 2126 /* ARGSUSED */
 2127 int
 2128 sys_swapon(struct thread *td, struct swapon_args *uap)
 2129 {
 2130         struct vattr attr;
 2131         struct vnode *vp;
 2132         struct nameidata nd;
 2133         int error;
 2134 
 2135         error = priv_check(td, PRIV_SWAPON);
 2136         if (error)
 2137                 return (error);
 2138 
 2139         sx_xlock(&swdev_syscall_lock);
 2140 
 2141         /*
 2142          * Swap metadata may not fit in the KVM if we have physical
 2143          * memory of >1GB.
 2144          */
 2145         if (swblk_zone == NULL) {
 2146                 error = ENOMEM;
 2147                 goto done;
 2148         }
 2149 
 2150         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
 2151             uap->name, td);
 2152         error = namei(&nd);
 2153         if (error)
 2154                 goto done;
 2155 
 2156         NDFREE(&nd, NDF_ONLY_PNBUF);
 2157         vp = nd.ni_vp;
 2158 
 2159         if (vn_isdisk(vp, &error)) {
 2160                 error = swapongeom(vp);
 2161         } else if (vp->v_type == VREG &&
 2162             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 2163             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
 2164                 /*
 2165                  * Allow direct swapping to NFS regular files in the same
 2166                  * way that nfs_mountroot() sets up diskless swapping.
 2167                  */
 2168                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
 2169         }
 2170 
 2171         if (error)
 2172                 vrele(vp);
 2173 done:
 2174         sx_xunlock(&swdev_syscall_lock);
 2175         return (error);
 2176 }
 2177 
 2178 /*
 2179  * Check that the total amount of swap currently configured does not
 2180  * exceed half the theoretical maximum.  If it does, print a warning
 2181  * message.
 2182  */
 2183 static void
 2184 swapon_check_swzone(void)
 2185 {
 2186         unsigned long maxpages, npages;
 2187 
 2188         npages = swap_total;
 2189         /* absolute maximum we can handle assuming 100% efficiency */
 2190         maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
 2191 
 2192         /* recommend using no more than half that amount */
 2193         if (npages > maxpages / 2) {
 2194                 printf("warning: total configured swap (%lu pages) "
 2195                     "exceeds maximum recommended amount (%lu pages).\n",
 2196                     npages, maxpages / 2);
 2197                 printf("warning: increase kern.maxswzone "
 2198                     "or reduce amount of swap.\n");
 2199         }
 2200 }
 2201 
 2202 static void
 2203 swaponsomething(struct vnode *vp, void *id, u_long nblks,
 2204     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
 2205 {
 2206         struct swdevt *sp, *tsp;
 2207         swblk_t dvbase;
 2208         u_long mblocks;
 2209 
 2210         /*
 2211          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
 2212          * First chop nblks off to page-align it, then convert.
 2213          *
 2214          * sw->sw_nblks is in page-sized chunks now too.
 2215          */
 2216         nblks &= ~(ctodb(1) - 1);
 2217         nblks = dbtoc(nblks);
 2218 
 2219         /*
 2220          * If we go beyond this, we get overflows in the radix
 2221          * tree bitmap code.
 2222          */
 2223         mblocks = 0x40000000 / BLIST_META_RADIX;
 2224         if (nblks > mblocks) {
 2225                 printf(
 2226     "WARNING: reducing swap size to maximum of %luMB per unit\n",
 2227                     mblocks / 1024 / 1024 * PAGE_SIZE);
 2228                 nblks = mblocks;
 2229         }
 2230 
 2231         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
 2232         sp->sw_vp = vp;
 2233         sp->sw_id = id;
 2234         sp->sw_dev = dev;
 2235         sp->sw_flags = 0;
 2236         sp->sw_nblks = nblks;
 2237         sp->sw_used = 0;
 2238         sp->sw_strategy = strategy;
 2239         sp->sw_close = close;
 2240         sp->sw_flags = flags;
 2241 
 2242         sp->sw_blist = blist_create(nblks, M_WAITOK);
 2243         /*
 2244          * Do not free the first two block in order to avoid overwriting
 2245          * any bsd label at the front of the partition
 2246          */
 2247         blist_free(sp->sw_blist, 2, nblks - 2);
 2248 
 2249         dvbase = 0;
 2250         mtx_lock(&sw_dev_mtx);
 2251         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
 2252                 if (tsp->sw_end >= dvbase) {
 2253                         /*
 2254                          * We put one uncovered page between the devices
 2255                          * in order to definitively prevent any cross-device
 2256                          * I/O requests
 2257                          */
 2258                         dvbase = tsp->sw_end + 1;
 2259                 }
 2260         }
 2261         sp->sw_first = dvbase;
 2262         sp->sw_end = dvbase + nblks;
 2263         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
 2264         nswapdev++;
 2265         swap_pager_avail += nblks - 2;
 2266         swap_total += nblks;
 2267         swapon_check_swzone();
 2268         swp_sizecheck();
 2269         mtx_unlock(&sw_dev_mtx);
 2270         EVENTHANDLER_INVOKE(swapon, sp);
 2271 }
 2272 
 2273 /*
 2274  * SYSCALL: swapoff(devname)
 2275  *
 2276  * Disable swapping on the given device.
 2277  *
 2278  * XXX: Badly designed system call: it should use a device index
 2279  * rather than filename as specification.  We keep sw_vp around
 2280  * only to make this work.
 2281  */
 2282 #ifndef _SYS_SYSPROTO_H_
 2283 struct swapoff_args {
 2284         char *name;
 2285 };
 2286 #endif
 2287 
 2288 /*
 2289  * MPSAFE
 2290  */
 2291 /* ARGSUSED */
 2292 int
 2293 sys_swapoff(struct thread *td, struct swapoff_args *uap)
 2294 {
 2295         struct vnode *vp;
 2296         struct nameidata nd;
 2297         struct swdevt *sp;
 2298         int error;
 2299 
 2300         error = priv_check(td, PRIV_SWAPOFF);
 2301         if (error)
 2302                 return (error);
 2303 
 2304         sx_xlock(&swdev_syscall_lock);
 2305 
 2306         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
 2307             td);
 2308         error = namei(&nd);
 2309         if (error)
 2310                 goto done;
 2311         NDFREE(&nd, NDF_ONLY_PNBUF);
 2312         vp = nd.ni_vp;
 2313 
 2314         mtx_lock(&sw_dev_mtx);
 2315         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2316                 if (sp->sw_vp == vp)
 2317                         break;
 2318         }
 2319         mtx_unlock(&sw_dev_mtx);
 2320         if (sp == NULL) {
 2321                 error = EINVAL;
 2322                 goto done;
 2323         }
 2324         error = swapoff_one(sp, td->td_ucred);
 2325 done:
 2326         sx_xunlock(&swdev_syscall_lock);
 2327         return (error);
 2328 }
 2329 
 2330 static int
 2331 swapoff_one(struct swdevt *sp, struct ucred *cred)
 2332 {
 2333         u_long nblks;
 2334 #ifdef MAC
 2335         int error;
 2336 #endif
 2337 
 2338         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
 2339 #ifdef MAC
 2340         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
 2341         error = mac_system_check_swapoff(cred, sp->sw_vp);
 2342         (void) VOP_UNLOCK(sp->sw_vp, 0);
 2343         if (error != 0)
 2344                 return (error);
 2345 #endif
 2346         nblks = sp->sw_nblks;
 2347 
 2348         /*
 2349          * We can turn off this swap device safely only if the
 2350          * available virtual memory in the system will fit the amount
 2351          * of data we will have to page back in, plus an epsilon so
 2352          * the system doesn't become critically low on swap space.
 2353          */
 2354         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
 2355                 return (ENOMEM);
 2356 
 2357         /*
 2358          * Prevent further allocations on this device.
 2359          */
 2360         mtx_lock(&sw_dev_mtx);
 2361         sp->sw_flags |= SW_CLOSING;
 2362         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
 2363         swap_total -= nblks;
 2364         mtx_unlock(&sw_dev_mtx);
 2365 
 2366         /*
 2367          * Page in the contents of the device and close it.
 2368          */
 2369         swap_pager_swapoff(sp);
 2370 
 2371         sp->sw_close(curthread, sp);
 2372         mtx_lock(&sw_dev_mtx);
 2373         sp->sw_id = NULL;
 2374         TAILQ_REMOVE(&swtailq, sp, sw_list);
 2375         nswapdev--;
 2376         if (nswapdev == 0) {
 2377                 swap_pager_full = 2;
 2378                 swap_pager_almost_full = 1;
 2379         }
 2380         if (swdevhd == sp)
 2381                 swdevhd = NULL;
 2382         mtx_unlock(&sw_dev_mtx);
 2383         blist_destroy(sp->sw_blist);
 2384         free(sp, M_VMPGDATA);
 2385         return (0);
 2386 }
 2387 
 2388 void
 2389 swapoff_all(void)
 2390 {
 2391         struct swdevt *sp, *spt;
 2392         const char *devname;
 2393         int error;
 2394 
 2395         sx_xlock(&swdev_syscall_lock);
 2396 
 2397         mtx_lock(&sw_dev_mtx);
 2398         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
 2399                 mtx_unlock(&sw_dev_mtx);
 2400                 if (vn_isdisk(sp->sw_vp, NULL))
 2401                         devname = devtoname(sp->sw_vp->v_rdev);
 2402                 else
 2403                         devname = "[file]";
 2404                 error = swapoff_one(sp, thread0.td_ucred);
 2405                 if (error != 0) {
 2406                         printf("Cannot remove swap device %s (error=%d), "
 2407                             "skipping.\n", devname, error);
 2408                 } else if (bootverbose) {
 2409                         printf("Swap device %s removed.\n", devname);
 2410                 }
 2411                 mtx_lock(&sw_dev_mtx);
 2412         }
 2413         mtx_unlock(&sw_dev_mtx);
 2414 
 2415         sx_xunlock(&swdev_syscall_lock);
 2416 }
 2417 
 2418 void
 2419 swap_pager_status(int *total, int *used)
 2420 {
 2421         struct swdevt *sp;
 2422 
 2423         *total = 0;
 2424         *used = 0;
 2425         mtx_lock(&sw_dev_mtx);
 2426         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2427                 *total += sp->sw_nblks;
 2428                 *used += sp->sw_used;
 2429         }
 2430         mtx_unlock(&sw_dev_mtx);
 2431 }
 2432 
 2433 int
 2434 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
 2435 {
 2436         struct swdevt *sp;
 2437         const char *tmp_devname;
 2438         int error, n;
 2439 
 2440         n = 0;
 2441         error = ENOENT;
 2442         mtx_lock(&sw_dev_mtx);
 2443         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2444                 if (n != name) {
 2445                         n++;
 2446                         continue;
 2447                 }
 2448                 xs->xsw_version = XSWDEV_VERSION;
 2449                 xs->xsw_dev = sp->sw_dev;
 2450                 xs->xsw_flags = sp->sw_flags;
 2451                 xs->xsw_nblks = sp->sw_nblks;
 2452                 xs->xsw_used = sp->sw_used;
 2453                 if (devname != NULL) {
 2454                         if (vn_isdisk(sp->sw_vp, NULL))
 2455                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
 2456                         else
 2457                                 tmp_devname = "[file]";
 2458                         strncpy(devname, tmp_devname, len);
 2459                 }
 2460                 error = 0;
 2461                 break;
 2462         }
 2463         mtx_unlock(&sw_dev_mtx);
 2464         return (error);
 2465 }
 2466 
 2467 #if defined(COMPAT_FREEBSD11)
 2468 #define XSWDEV_VERSION_11       1
 2469 struct xswdev11 {
 2470         u_int   xsw_version;
 2471         uint32_t xsw_dev;
 2472         int     xsw_flags;
 2473         int     xsw_nblks;
 2474         int     xsw_used;
 2475 };
 2476 #endif
 2477 
 2478 static int
 2479 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
 2480 {
 2481         struct xswdev xs;
 2482 #if defined(COMPAT_FREEBSD11)
 2483         struct xswdev11 xs11;
 2484 #endif
 2485         int error;
 2486 
 2487         if (arg2 != 1)                  /* name length */
 2488                 return (EINVAL);
 2489         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
 2490         if (error != 0)
 2491                 return (error);
 2492 #if defined(COMPAT_FREEBSD11)
 2493         if (req->oldlen == sizeof(xs11)) {
 2494                 xs11.xsw_version = XSWDEV_VERSION_11;
 2495                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
 2496                 xs11.xsw_flags = xs.xsw_flags;
 2497                 xs11.xsw_nblks = xs.xsw_nblks;
 2498                 xs11.xsw_used = xs.xsw_used;
 2499                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
 2500         } else
 2501 #endif
 2502                 error = SYSCTL_OUT(req, &xs, sizeof(xs));
 2503         return (error);
 2504 }
 2505 
 2506 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
 2507     "Number of swap devices");
 2508 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2509     sysctl_vm_swap_info,
 2510     "Swap statistics by device");
 2511 
 2512 /*
 2513  * Count the approximate swap usage in pages for a vmspace.  The
 2514  * shadowed or not yet copied on write swap blocks are not accounted.
 2515  * The map must be locked.
 2516  */
 2517 long
 2518 vmspace_swap_count(struct vmspace *vmspace)
 2519 {
 2520         vm_map_t map;
 2521         vm_map_entry_t cur;
 2522         vm_object_t object;
 2523         struct swblk *sb;
 2524         vm_pindex_t e, pi;
 2525         long count;
 2526         int i;
 2527 
 2528         map = &vmspace->vm_map;
 2529         count = 0;
 2530 
 2531         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
 2532                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
 2533                         continue;
 2534                 object = cur->object.vm_object;
 2535                 if (object == NULL || object->type != OBJT_SWAP)
 2536                         continue;
 2537                 VM_OBJECT_RLOCK(object);
 2538                 if (object->type != OBJT_SWAP)
 2539                         goto unlock;
 2540                 pi = OFF_TO_IDX(cur->offset);
 2541                 e = pi + OFF_TO_IDX(cur->end - cur->start);
 2542                 for (;; pi = sb->p + SWAP_META_PAGES) {
 2543                         sb = SWAP_PCTRIE_LOOKUP_GE(
 2544                             &object->un_pager.swp.swp_blks, pi);
 2545                         if (sb == NULL || sb->p >= e)
 2546                                 break;
 2547                         for (i = 0; i < SWAP_META_PAGES; i++) {
 2548                                 if (sb->p + i < e &&
 2549                                     sb->d[i] != SWAPBLK_NONE)
 2550                                         count++;
 2551                         }
 2552                 }
 2553 unlock:
 2554                 VM_OBJECT_RUNLOCK(object);
 2555         }
 2556         return (count);
 2557 }
 2558 
 2559 /*
 2560  * GEOM backend
 2561  *
 2562  * Swapping onto disk devices.
 2563  *
 2564  */
 2565 
 2566 static g_orphan_t swapgeom_orphan;
 2567 
 2568 static struct g_class g_swap_class = {
 2569         .name = "SWAP",
 2570         .version = G_VERSION,
 2571         .orphan = swapgeom_orphan,
 2572 };
 2573 
 2574 DECLARE_GEOM_CLASS(g_swap_class, g_class);
 2575 
 2576 
 2577 static void
 2578 swapgeom_close_ev(void *arg, int flags)
 2579 {
 2580         struct g_consumer *cp;
 2581 
 2582         cp = arg;
 2583         g_access(cp, -1, -1, 0);
 2584         g_detach(cp);
 2585         g_destroy_consumer(cp);
 2586 }
 2587 
 2588 /*
 2589  * Add a reference to the g_consumer for an inflight transaction.
 2590  */
 2591 static void
 2592 swapgeom_acquire(struct g_consumer *cp)
 2593 {
 2594 
 2595         mtx_assert(&sw_dev_mtx, MA_OWNED);
 2596         cp->index++;
 2597 }
 2598 
 2599 /*
 2600  * Remove a reference from the g_consumer.  Post a close event if all
 2601  * references go away, since the function might be called from the
 2602  * biodone context.
 2603  */
 2604 static void
 2605 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
 2606 {
 2607 
 2608         mtx_assert(&sw_dev_mtx, MA_OWNED);
 2609         cp->index--;
 2610         if (cp->index == 0) {
 2611                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
 2612                         sp->sw_id = NULL;
 2613         }
 2614 }
 2615 
 2616 static void
 2617 swapgeom_done(struct bio *bp2)
 2618 {
 2619         struct swdevt *sp;
 2620         struct buf *bp;
 2621         struct g_consumer *cp;
 2622 
 2623         bp = bp2->bio_caller2;
 2624         cp = bp2->bio_from;
 2625         bp->b_ioflags = bp2->bio_flags;
 2626         if (bp2->bio_error)
 2627                 bp->b_ioflags |= BIO_ERROR;
 2628         bp->b_resid = bp->b_bcount - bp2->bio_completed;
 2629         bp->b_error = bp2->bio_error;
 2630         bufdone(bp);
 2631         sp = bp2->bio_caller1;
 2632         mtx_lock(&sw_dev_mtx);
 2633         swapgeom_release(cp, sp);
 2634         mtx_unlock(&sw_dev_mtx);
 2635         g_destroy_bio(bp2);
 2636 }
 2637 
 2638 static void
 2639 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
 2640 {
 2641         struct bio *bio;
 2642         struct g_consumer *cp;
 2643 
 2644         mtx_lock(&sw_dev_mtx);
 2645         cp = sp->sw_id;
 2646         if (cp == NULL) {
 2647                 mtx_unlock(&sw_dev_mtx);
 2648                 bp->b_error = ENXIO;
 2649                 bp->b_ioflags |= BIO_ERROR;
 2650                 bufdone(bp);
 2651                 return;
 2652         }
 2653         swapgeom_acquire(cp);
 2654         mtx_unlock(&sw_dev_mtx);
 2655         if (bp->b_iocmd == BIO_WRITE)
 2656                 bio = g_new_bio();
 2657         else
 2658                 bio = g_alloc_bio();
 2659         if (bio == NULL) {
 2660                 mtx_lock(&sw_dev_mtx);
 2661                 swapgeom_release(cp, sp);
 2662                 mtx_unlock(&sw_dev_mtx);
 2663                 bp->b_error = ENOMEM;
 2664                 bp->b_ioflags |= BIO_ERROR;
 2665                 bufdone(bp);
 2666                 return;
 2667         }
 2668 
 2669         bio->bio_caller1 = sp;
 2670         bio->bio_caller2 = bp;
 2671         bio->bio_cmd = bp->b_iocmd;
 2672         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
 2673         bio->bio_length = bp->b_bcount;
 2674         bio->bio_done = swapgeom_done;
 2675         if (!buf_mapped(bp)) {
 2676                 bio->bio_ma = bp->b_pages;
 2677                 bio->bio_data = unmapped_buf;
 2678                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
 2679                 bio->bio_ma_n = bp->b_npages;
 2680                 bio->bio_flags |= BIO_UNMAPPED;
 2681         } else {
 2682                 bio->bio_data = bp->b_data;
 2683                 bio->bio_ma = NULL;
 2684         }
 2685         g_io_request(bio, cp);
 2686         return;
 2687 }
 2688 
 2689 static void
 2690 swapgeom_orphan(struct g_consumer *cp)
 2691 {
 2692         struct swdevt *sp;
 2693         int destroy;
 2694 
 2695         mtx_lock(&sw_dev_mtx);
 2696         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2697                 if (sp->sw_id == cp) {
 2698                         sp->sw_flags |= SW_CLOSING;
 2699                         break;
 2700                 }
 2701         }
 2702         /*
 2703          * Drop reference we were created with. Do directly since we're in a
 2704          * special context where we don't have to queue the call to
 2705          * swapgeom_close_ev().
 2706          */
 2707         cp->index--;
 2708         destroy = ((sp != NULL) && (cp->index == 0));
 2709         if (destroy)
 2710                 sp->sw_id = NULL;
 2711         mtx_unlock(&sw_dev_mtx);
 2712         if (destroy)
 2713                 swapgeom_close_ev(cp, 0);
 2714 }
 2715 
 2716 static void
 2717 swapgeom_close(struct thread *td, struct swdevt *sw)
 2718 {
 2719         struct g_consumer *cp;
 2720 
 2721         mtx_lock(&sw_dev_mtx);
 2722         cp = sw->sw_id;
 2723         sw->sw_id = NULL;
 2724         mtx_unlock(&sw_dev_mtx);
 2725 
 2726         /*
 2727          * swapgeom_close() may be called from the biodone context,
 2728          * where we cannot perform topology changes.  Delegate the
 2729          * work to the events thread.
 2730          */
 2731         if (cp != NULL)
 2732                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
 2733 }
 2734 
 2735 static int
 2736 swapongeom_locked(struct cdev *dev, struct vnode *vp)
 2737 {
 2738         struct g_provider *pp;
 2739         struct g_consumer *cp;
 2740         static struct g_geom *gp;
 2741         struct swdevt *sp;
 2742         u_long nblks;
 2743         int error;
 2744 
 2745         pp = g_dev_getprovider(dev);
 2746         if (pp == NULL)
 2747                 return (ENODEV);
 2748         mtx_lock(&sw_dev_mtx);
 2749         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2750                 cp = sp->sw_id;
 2751                 if (cp != NULL && cp->provider == pp) {
 2752                         mtx_unlock(&sw_dev_mtx);
 2753                         return (EBUSY);
 2754                 }
 2755         }
 2756         mtx_unlock(&sw_dev_mtx);
 2757         if (gp == NULL)
 2758                 gp = g_new_geomf(&g_swap_class, "swap");
 2759         cp = g_new_consumer(gp);
 2760         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
 2761         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
 2762         g_attach(cp, pp);
 2763         /*
 2764          * XXX: Every time you think you can improve the margin for
 2765          * footshooting, somebody depends on the ability to do so:
 2766          * savecore(8) wants to write to our swapdev so we cannot
 2767          * set an exclusive count :-(
 2768          */
 2769         error = g_access(cp, 1, 1, 0);
 2770         if (error != 0) {
 2771                 g_detach(cp);
 2772                 g_destroy_consumer(cp);
 2773                 return (error);
 2774         }
 2775         nblks = pp->mediasize / DEV_BSIZE;
 2776         swaponsomething(vp, cp, nblks, swapgeom_strategy,
 2777             swapgeom_close, dev2udev(dev),
 2778             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
 2779         return (0);
 2780 }
 2781 
 2782 static int
 2783 swapongeom(struct vnode *vp)
 2784 {
 2785         int error;
 2786 
 2787         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2788         if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
 2789                 error = ENOENT;
 2790         } else {
 2791                 g_topology_lock();
 2792                 error = swapongeom_locked(vp->v_rdev, vp);
 2793                 g_topology_unlock();
 2794         }
 2795         VOP_UNLOCK(vp, 0);
 2796         return (error);
 2797 }
 2798 
 2799 /*
 2800  * VNODE backend
 2801  *
 2802  * This is used mainly for network filesystem (read: probably only tested
 2803  * with NFS) swapfiles.
 2804  *
 2805  */
 2806 
 2807 static void
 2808 swapdev_strategy(struct buf *bp, struct swdevt *sp)
 2809 {
 2810         struct vnode *vp2;
 2811 
 2812         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
 2813 
 2814         vp2 = sp->sw_id;
 2815         vhold(vp2);
 2816         if (bp->b_iocmd == BIO_WRITE) {
 2817                 if (bp->b_bufobj)
 2818                         bufobj_wdrop(bp->b_bufobj);
 2819                 bufobj_wref(&vp2->v_bufobj);
 2820         }
 2821         if (bp->b_bufobj != &vp2->v_bufobj)
 2822                 bp->b_bufobj = &vp2->v_bufobj;
 2823         bp->b_vp = vp2;
 2824         bp->b_iooffset = dbtob(bp->b_blkno);
 2825         bstrategy(bp);
 2826         return;
 2827 }
 2828 
 2829 static void
 2830 swapdev_close(struct thread *td, struct swdevt *sp)
 2831 {
 2832 
 2833         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
 2834         vrele(sp->sw_vp);
 2835 }
 2836 
 2837 
 2838 static int
 2839 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
 2840 {
 2841         struct swdevt *sp;
 2842         int error;
 2843 
 2844         if (nblks == 0)
 2845                 return (ENXIO);
 2846         mtx_lock(&sw_dev_mtx);
 2847         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2848                 if (sp->sw_id == vp) {
 2849                         mtx_unlock(&sw_dev_mtx);
 2850                         return (EBUSY);
 2851                 }
 2852         }
 2853         mtx_unlock(&sw_dev_mtx);
 2854 
 2855         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2856 #ifdef MAC
 2857         error = mac_system_check_swapon(td->td_ucred, vp);
 2858         if (error == 0)
 2859 #endif
 2860                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
 2861         (void) VOP_UNLOCK(vp, 0);
 2862         if (error)
 2863                 return (error);
 2864 
 2865         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
 2866             NODEV, 0);
 2867         return (0);
 2868 }
 2869 
 2870 static int
 2871 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
 2872 {
 2873         int error, new, n;
 2874 
 2875         new = nsw_wcount_async_max;
 2876         error = sysctl_handle_int(oidp, &new, 0, req);
 2877         if (error != 0 || req->newptr == NULL)
 2878                 return (error);
 2879 
 2880         if (new > nswbuf / 2 || new < 1)
 2881                 return (EINVAL);
 2882 
 2883         mtx_lock(&pbuf_mtx);
 2884         while (nsw_wcount_async_max != new) {
 2885                 /*
 2886                  * Adjust difference.  If the current async count is too low,
 2887                  * we will need to sqeeze our update slowly in.  Sleep with a
 2888                  * higher priority than getpbuf() to finish faster.
 2889                  */
 2890                 n = new - nsw_wcount_async_max;
 2891                 if (nsw_wcount_async + n >= 0) {
 2892                         nsw_wcount_async += n;
 2893                         nsw_wcount_async_max += n;
 2894                         wakeup(&nsw_wcount_async);
 2895                 } else {
 2896                         nsw_wcount_async_max -= nsw_wcount_async;
 2897                         nsw_wcount_async = 0;
 2898                         msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
 2899                             "swpsysctl", 0);
 2900                 }
 2901         }
 2902         mtx_unlock(&pbuf_mtx);
 2903 
 2904         return (0);
 2905 }

Cache object: da5de3b2af2d2b63e6fda0dbe1616f40


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.