FreeBSD/Linux Kernel Cross Reference
sys/vm/swap_pager.c
1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1998 Matthew Dillon,
5 * Copyright (c) 1994 John S. Dyson
6 * Copyright (c) 1990 University of Utah.
7 * Copyright (c) 1982, 1986, 1989, 1993
8 * The Regents of the University of California. All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * the Systems Programming Group of the University of Utah Computer
12 * Science Department.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * New Swap System
43 * Matthew Dillon
44 *
45 * Radix Bitmap 'blists'.
46 *
47 * - The new swapper uses the new radix bitmap code. This should scale
48 * to arbitrarily small or arbitrarily large swap spaces and an almost
49 * arbitrary degree of fragmentation.
50 *
51 * Features:
52 *
53 * - on the fly reallocation of swap during putpages. The new system
54 * does not try to keep previously allocated swap blocks for dirty
55 * pages.
56 *
57 * - on the fly deallocation of swap
58 *
59 * - No more garbage collection required. Unnecessarily allocated swap
60 * blocks only exist for dirty vm_page_t's now and these are already
61 * cycled (in a high-load system) by the pager. We also do on-the-fly
62 * removal of invalidated swap blocks when a page is destroyed
63 * or renamed.
64 *
65 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66 *
67 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94
68 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94
69 */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD: releng/12.0/sys/vm/swap_pager.c 340333 2018-11-10 20:36:48Z markj $");
73
74 #include "opt_swap.h"
75 #include "opt_vm.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/conf.h>
80 #include <sys/kernel.h>
81 #include <sys/priv.h>
82 #include <sys/proc.h>
83 #include <sys/bio.h>
84 #include <sys/buf.h>
85 #include <sys/disk.h>
86 #include <sys/fcntl.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/vnode.h>
90 #include <sys/malloc.h>
91 #include <sys/pctrie.h>
92 #include <sys/racct.h>
93 #include <sys/resource.h>
94 #include <sys/resourcevar.h>
95 #include <sys/rwlock.h>
96 #include <sys/sbuf.h>
97 #include <sys/sysctl.h>
98 #include <sys/sysproto.h>
99 #include <sys/blist.h>
100 #include <sys/lock.h>
101 #include <sys/sx.h>
102 #include <sys/vmmeter.h>
103
104 #include <security/mac/mac_framework.h>
105
106 #include <vm/vm.h>
107 #include <vm/pmap.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_object.h>
111 #include <vm/vm_page.h>
112 #include <vm/vm_pager.h>
113 #include <vm/vm_pageout.h>
114 #include <vm/vm_param.h>
115 #include <vm/swap_pager.h>
116 #include <vm/vm_extern.h>
117 #include <vm/uma.h>
118
119 #include <geom/geom.h>
120
121 /*
122 * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
123 * The 64-page limit is due to the radix code (kern/subr_blist.c).
124 */
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER 32
127 #endif
128
129 #if !defined(SWB_NPAGES)
130 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER
131 #endif
132
133 #define SWAP_META_PAGES PCTRIE_COUNT
134
135 /*
136 * A swblk structure maps each page index within a
137 * SWAP_META_PAGES-aligned and sized range to the address of an
138 * on-disk swap block (or SWAPBLK_NONE). The collection of these
139 * mappings for an entire vm object is implemented as a pc-trie.
140 */
141 struct swblk {
142 vm_pindex_t p;
143 daddr_t d[SWAP_META_PAGES];
144 };
145
146 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
147 static struct mtx sw_dev_mtx;
148 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
149 static struct swdevt *swdevhd; /* Allocate from here next */
150 static int nswapdev; /* Number of swap devices */
151 int swap_pager_avail;
152 static struct sx swdev_syscall_lock; /* serialize swap(on|off) */
153
154 static u_long swap_reserved;
155 static u_long swap_total;
156 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
157 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
158 &swap_reserved, 0, sysctl_page_shift, "A",
159 "Amount of swap storage needed to back all allocated anonymous memory.");
160 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
161 &swap_total, 0, sysctl_page_shift, "A",
162 "Total amount of available swap storage.");
163
164 static int overcommit = 0;
165 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
166 "Configure virtual memory overcommit behavior. See tuning(7) "
167 "for details.");
168 static unsigned long swzone;
169 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
170 "Actual size of swap metadata zone");
171 static unsigned long swap_maxpages;
172 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
173 "Maximum amount of swap supported");
174
175 /* bits from overcommit */
176 #define SWAP_RESERVE_FORCE_ON (1 << 0)
177 #define SWAP_RESERVE_RLIMIT_ON (1 << 1)
178 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2)
179
180 static int
181 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
182 {
183 uint64_t newval;
184 u_long value = *(u_long *)arg1;
185
186 newval = ((uint64_t)value) << PAGE_SHIFT;
187 return (sysctl_handle_64(oidp, &newval, 0, req));
188 }
189
190 int
191 swap_reserve(vm_ooffset_t incr)
192 {
193
194 return (swap_reserve_by_cred(incr, curthread->td_ucred));
195 }
196
197 int
198 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
199 {
200 u_long r, s, prev, pincr;
201 int res, error;
202 static int curfail;
203 static struct timeval lastfail;
204 struct uidinfo *uip;
205
206 uip = cred->cr_ruidinfo;
207
208 KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
209 (uintmax_t)incr));
210
211 #ifdef RACCT
212 if (racct_enable) {
213 PROC_LOCK(curproc);
214 error = racct_add(curproc, RACCT_SWAP, incr);
215 PROC_UNLOCK(curproc);
216 if (error != 0)
217 return (0);
218 }
219 #endif
220
221 pincr = atop(incr);
222 res = 0;
223 prev = atomic_fetchadd_long(&swap_reserved, pincr);
224 r = prev + pincr;
225 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
226 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
227 vm_wire_count();
228 } else
229 s = 0;
230 s += swap_total;
231 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
232 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
233 res = 1;
234 } else {
235 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
236 if (prev < pincr)
237 panic("swap_reserved < incr on overcommit fail");
238 }
239 if (res) {
240 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
241 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
242 prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
243 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) {
244 res = 0;
245 prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
246 if (prev < pincr)
247 panic("uip->ui_vmsize < incr on overcommit fail");
248 }
249 }
250 if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
251 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
252 uip->ui_uid, curproc->p_pid, incr);
253 }
254
255 #ifdef RACCT
256 if (racct_enable && !res) {
257 PROC_LOCK(curproc);
258 racct_sub(curproc, RACCT_SWAP, incr);
259 PROC_UNLOCK(curproc);
260 }
261 #endif
262
263 return (res);
264 }
265
266 void
267 swap_reserve_force(vm_ooffset_t incr)
268 {
269 struct uidinfo *uip;
270 u_long pincr;
271
272 KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
273 (uintmax_t)incr));
274
275 PROC_LOCK(curproc);
276 #ifdef RACCT
277 if (racct_enable)
278 racct_add_force(curproc, RACCT_SWAP, incr);
279 #endif
280 pincr = atop(incr);
281 atomic_add_long(&swap_reserved, pincr);
282 uip = curproc->p_ucred->cr_ruidinfo;
283 atomic_add_long(&uip->ui_vmsize, pincr);
284 PROC_UNLOCK(curproc);
285 }
286
287 void
288 swap_release(vm_ooffset_t decr)
289 {
290 struct ucred *cred;
291
292 PROC_LOCK(curproc);
293 cred = curproc->p_ucred;
294 swap_release_by_cred(decr, cred);
295 PROC_UNLOCK(curproc);
296 }
297
298 void
299 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
300 {
301 u_long prev, pdecr;
302 struct uidinfo *uip;
303
304 uip = cred->cr_ruidinfo;
305
306 KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
307 (uintmax_t)decr));
308
309 pdecr = atop(decr);
310 prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
311 if (prev < pdecr)
312 panic("swap_reserved < decr");
313
314 prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
315 if (prev < pdecr)
316 printf("negative vmsize for uid = %d\n", uip->ui_uid);
317 #ifdef RACCT
318 if (racct_enable)
319 racct_sub_cred(cred, RACCT_SWAP, decr);
320 #endif
321 }
322
323 #define SWM_POP 0x01 /* pop out */
324
325 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
326 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
327 static int nsw_rcount; /* free read buffers */
328 static int nsw_wcount_sync; /* limit write buffers / synchronous */
329 static int nsw_wcount_async; /* limit write buffers / asynchronous */
330 static int nsw_wcount_async_max;/* assigned maximum */
331 static int nsw_cluster_max; /* maximum VOP I/O allowed */
332
333 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
334 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
335 CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
336 "Maximum running async swap ops");
337 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
338 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
339 CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
340 "Swap Fragmentation Info");
341
342 static struct sx sw_alloc_sx;
343
344 /*
345 * "named" and "unnamed" anon region objects. Try to reduce the overhead
346 * of searching a named list by hashing it just a little.
347 */
348
349 #define NOBJLISTS 8
350
351 #define NOBJLIST(handle) \
352 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
353
354 static struct pagerlst swap_pager_object_list[NOBJLISTS];
355 static uma_zone_t swblk_zone;
356 static uma_zone_t swpctrie_zone;
357
358 /*
359 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure
360 * calls hooked from other parts of the VM system and do not appear here.
361 * (see vm/swap_pager.h).
362 */
363 static vm_object_t
364 swap_pager_alloc(void *handle, vm_ooffset_t size,
365 vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
366 static void swap_pager_dealloc(vm_object_t object);
367 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
368 int *);
369 static int swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
370 int *, pgo_getpages_iodone_t, void *);
371 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
372 static boolean_t
373 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
374 static void swap_pager_init(void);
375 static void swap_pager_unswapped(vm_page_t);
376 static void swap_pager_swapoff(struct swdevt *sp);
377
378 struct pagerops swappagerops = {
379 .pgo_init = swap_pager_init, /* early system initialization of pager */
380 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */
381 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */
382 .pgo_getpages = swap_pager_getpages, /* pagein */
383 .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */
384 .pgo_putpages = swap_pager_putpages, /* pageout */
385 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */
386 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */
387 };
388
389 /*
390 * swap_*() routines are externally accessible. swp_*() routines are
391 * internal.
392 */
393 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */
394 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */
395
396 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
397 "Maximum size of a swap block in pages");
398
399 static void swp_sizecheck(void);
400 static void swp_pager_async_iodone(struct buf *bp);
401 static bool swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
402 static int swapongeom(struct vnode *);
403 static int swaponvp(struct thread *, struct vnode *, u_long);
404 static int swapoff_one(struct swdevt *sp, struct ucred *cred);
405
406 /*
407 * Swap bitmap functions
408 */
409 static void swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
410 static daddr_t swp_pager_getswapspace(int npages);
411
412 /*
413 * Metadata functions
414 */
415 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
416 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
417 static void swp_pager_meta_free_all(vm_object_t);
418 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
419
420 static void
421 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
422 {
423
424 *start = SWAPBLK_NONE;
425 *num = 0;
426 }
427
428 static void
429 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
430 {
431
432 if (*start + *num == addr) {
433 (*num)++;
434 } else {
435 swp_pager_freeswapspace(*start, *num);
436 *start = addr;
437 *num = 1;
438 }
439 }
440
441 static void *
442 swblk_trie_alloc(struct pctrie *ptree)
443 {
444
445 return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
446 M_USE_RESERVE : 0)));
447 }
448
449 static void
450 swblk_trie_free(struct pctrie *ptree, void *node)
451 {
452
453 uma_zfree(swpctrie_zone, node);
454 }
455
456 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
457
458 /*
459 * SWP_SIZECHECK() - update swap_pager_full indication
460 *
461 * update the swap_pager_almost_full indication and warn when we are
462 * about to run out of swap space, using lowat/hiwat hysteresis.
463 *
464 * Clear swap_pager_full ( task killing ) indication when lowat is met.
465 *
466 * No restrictions on call
467 * This routine may not block.
468 */
469 static void
470 swp_sizecheck(void)
471 {
472
473 if (swap_pager_avail < nswap_lowat) {
474 if (swap_pager_almost_full == 0) {
475 printf("swap_pager: out of swap space\n");
476 swap_pager_almost_full = 1;
477 }
478 } else {
479 swap_pager_full = 0;
480 if (swap_pager_avail > nswap_hiwat)
481 swap_pager_almost_full = 0;
482 }
483 }
484
485 /*
486 * SWAP_PAGER_INIT() - initialize the swap pager!
487 *
488 * Expected to be started from system init. NOTE: This code is run
489 * before much else so be careful what you depend on. Most of the VM
490 * system has yet to be initialized at this point.
491 */
492 static void
493 swap_pager_init(void)
494 {
495 /*
496 * Initialize object lists
497 */
498 int i;
499
500 for (i = 0; i < NOBJLISTS; ++i)
501 TAILQ_INIT(&swap_pager_object_list[i]);
502 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
503 sx_init(&sw_alloc_sx, "swspsx");
504 sx_init(&swdev_syscall_lock, "swsysc");
505 }
506
507 /*
508 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
509 *
510 * Expected to be started from pageout process once, prior to entering
511 * its main loop.
512 */
513 void
514 swap_pager_swap_init(void)
515 {
516 unsigned long n, n2;
517
518 /*
519 * Number of in-transit swap bp operations. Don't
520 * exhaust the pbufs completely. Make sure we
521 * initialize workable values (0 will work for hysteresis
522 * but it isn't very efficient).
523 *
524 * The nsw_cluster_max is constrained by the bp->b_pages[]
525 * array (MAXPHYS/PAGE_SIZE) and our locally defined
526 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are
527 * constrained by the swap device interleave stripe size.
528 *
529 * Currently we hardwire nsw_wcount_async to 4. This limit is
530 * designed to prevent other I/O from having high latencies due to
531 * our pageout I/O. The value 4 works well for one or two active swap
532 * devices but is probably a little low if you have more. Even so,
533 * a higher value would probably generate only a limited improvement
534 * with three or four active swap devices since the system does not
535 * typically have to pageout at extreme bandwidths. We will want
536 * at least 2 per swap devices, and 4 is a pretty good value if you
537 * have one NFS swap device due to the command/ack latency over NFS.
538 * So it all works out pretty well.
539 */
540 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
541
542 mtx_lock(&pbuf_mtx);
543 nsw_rcount = (nswbuf + 1) / 2;
544 nsw_wcount_sync = (nswbuf + 3) / 4;
545 nsw_wcount_async = 4;
546 nsw_wcount_async_max = nsw_wcount_async;
547 mtx_unlock(&pbuf_mtx);
548
549 /*
550 * Initialize our zone, guessing on the number we need based
551 * on the number of pages in the system.
552 */
553 n = vm_cnt.v_page_count / 2;
554 if (maxswzone && n > maxswzone / sizeof(struct swblk))
555 n = maxswzone / sizeof(struct swblk);
556 swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
557 pctrie_zone_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
558 if (swpctrie_zone == NULL)
559 panic("failed to create swap pctrie zone.");
560 swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
561 NULL, NULL, _Alignof(struct swblk) - 1, UMA_ZONE_VM);
562 if (swblk_zone == NULL)
563 panic("failed to create swap blk zone.");
564 n2 = n;
565 do {
566 if (uma_zone_reserve_kva(swblk_zone, n))
567 break;
568 /*
569 * if the allocation failed, try a zone two thirds the
570 * size of the previous attempt.
571 */
572 n -= ((n + 2) / 3);
573 } while (n > 0);
574
575 /*
576 * Often uma_zone_reserve_kva() cannot reserve exactly the
577 * requested size. Account for the difference when
578 * calculating swap_maxpages.
579 */
580 n = uma_zone_get_max(swblk_zone);
581
582 if (n < n2)
583 printf("Swap blk zone entries reduced from %lu to %lu.\n",
584 n2, n);
585 swap_maxpages = n * SWAP_META_PAGES;
586 swzone = n * sizeof(struct swblk);
587 if (!uma_zone_reserve_kva(swpctrie_zone, n))
588 printf("Cannot reserve swap pctrie zone, "
589 "reduce kern.maxswzone.\n");
590 }
591
592 static vm_object_t
593 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
594 vm_ooffset_t offset)
595 {
596 vm_object_t object;
597
598 if (cred != NULL) {
599 if (!swap_reserve_by_cred(size, cred))
600 return (NULL);
601 crhold(cred);
602 }
603
604 /*
605 * The un_pager.swp.swp_blks trie is initialized by
606 * vm_object_allocate() to ensure the correct order of
607 * visibility to other threads.
608 */
609 object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
610 PAGE_MASK + size));
611
612 object->handle = handle;
613 if (cred != NULL) {
614 object->cred = cred;
615 object->charge = size;
616 }
617 return (object);
618 }
619
620 /*
621 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
622 * its metadata structures.
623 *
624 * This routine is called from the mmap and fork code to create a new
625 * OBJT_SWAP object.
626 *
627 * This routine must ensure that no live duplicate is created for
628 * the named object request, which is protected against by
629 * holding the sw_alloc_sx lock in case handle != NULL.
630 */
631 static vm_object_t
632 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
633 vm_ooffset_t offset, struct ucred *cred)
634 {
635 vm_object_t object;
636
637 if (handle != NULL) {
638 /*
639 * Reference existing named region or allocate new one. There
640 * should not be a race here against swp_pager_meta_build()
641 * as called from vm_page_remove() in regards to the lookup
642 * of the handle.
643 */
644 sx_xlock(&sw_alloc_sx);
645 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
646 if (object == NULL) {
647 object = swap_pager_alloc_init(handle, cred, size,
648 offset);
649 if (object != NULL) {
650 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
651 object, pager_object_list);
652 }
653 }
654 sx_xunlock(&sw_alloc_sx);
655 } else {
656 object = swap_pager_alloc_init(handle, cred, size, offset);
657 }
658 return (object);
659 }
660
661 /*
662 * SWAP_PAGER_DEALLOC() - remove swap metadata from object
663 *
664 * The swap backing for the object is destroyed. The code is
665 * designed such that we can reinstantiate it later, but this
666 * routine is typically called only when the entire object is
667 * about to be destroyed.
668 *
669 * The object must be locked.
670 */
671 static void
672 swap_pager_dealloc(vm_object_t object)
673 {
674
675 VM_OBJECT_ASSERT_WLOCKED(object);
676 KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
677
678 /*
679 * Remove from list right away so lookups will fail if we block for
680 * pageout completion.
681 */
682 if (object->handle != NULL) {
683 VM_OBJECT_WUNLOCK(object);
684 sx_xlock(&sw_alloc_sx);
685 TAILQ_REMOVE(NOBJLIST(object->handle), object,
686 pager_object_list);
687 sx_xunlock(&sw_alloc_sx);
688 VM_OBJECT_WLOCK(object);
689 }
690
691 vm_object_pip_wait(object, "swpdea");
692
693 /*
694 * Free all remaining metadata. We only bother to free it from
695 * the swap meta data. We do not attempt to free swapblk's still
696 * associated with vm_page_t's for this object. We do not care
697 * if paging is still in progress on some objects.
698 */
699 swp_pager_meta_free_all(object);
700 object->handle = NULL;
701 object->type = OBJT_DEAD;
702 }
703
704 /************************************************************************
705 * SWAP PAGER BITMAP ROUTINES *
706 ************************************************************************/
707
708 /*
709 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space
710 *
711 * Allocate swap for the requested number of pages. The starting
712 * swap block number (a page index) is returned or SWAPBLK_NONE
713 * if the allocation failed.
714 *
715 * Also has the side effect of advising that somebody made a mistake
716 * when they configured swap and didn't configure enough.
717 *
718 * This routine may not sleep.
719 *
720 * We allocate in round-robin fashion from the configured devices.
721 */
722 static daddr_t
723 swp_pager_getswapspace(int npages)
724 {
725 daddr_t blk;
726 struct swdevt *sp;
727 int i;
728
729 blk = SWAPBLK_NONE;
730 mtx_lock(&sw_dev_mtx);
731 sp = swdevhd;
732 for (i = 0; i < nswapdev; i++) {
733 if (sp == NULL)
734 sp = TAILQ_FIRST(&swtailq);
735 if (!(sp->sw_flags & SW_CLOSING)) {
736 blk = blist_alloc(sp->sw_blist, npages);
737 if (blk != SWAPBLK_NONE) {
738 blk += sp->sw_first;
739 sp->sw_used += npages;
740 swap_pager_avail -= npages;
741 swp_sizecheck();
742 swdevhd = TAILQ_NEXT(sp, sw_list);
743 goto done;
744 }
745 }
746 sp = TAILQ_NEXT(sp, sw_list);
747 }
748 if (swap_pager_full != 2) {
749 printf("swap_pager_getswapspace(%d): failed\n", npages);
750 swap_pager_full = 2;
751 swap_pager_almost_full = 1;
752 }
753 swdevhd = NULL;
754 done:
755 mtx_unlock(&sw_dev_mtx);
756 return (blk);
757 }
758
759 static int
760 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
761 {
762
763 return (blk >= sp->sw_first && blk < sp->sw_end);
764 }
765
766 static void
767 swp_pager_strategy(struct buf *bp)
768 {
769 struct swdevt *sp;
770
771 mtx_lock(&sw_dev_mtx);
772 TAILQ_FOREACH(sp, &swtailq, sw_list) {
773 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
774 mtx_unlock(&sw_dev_mtx);
775 if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
776 unmapped_buf_allowed) {
777 bp->b_data = unmapped_buf;
778 bp->b_offset = 0;
779 } else {
780 pmap_qenter((vm_offset_t)bp->b_data,
781 &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
782 }
783 sp->sw_strategy(bp, sp);
784 return;
785 }
786 }
787 panic("Swapdev not found");
788 }
789
790
791 /*
792 * SWP_PAGER_FREESWAPSPACE() - free raw swap space
793 *
794 * This routine returns the specified swap blocks back to the bitmap.
795 *
796 * This routine may not sleep.
797 */
798 static void
799 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
800 {
801 struct swdevt *sp;
802
803 if (npages == 0)
804 return;
805 mtx_lock(&sw_dev_mtx);
806 TAILQ_FOREACH(sp, &swtailq, sw_list) {
807 if (blk >= sp->sw_first && blk < sp->sw_end) {
808 sp->sw_used -= npages;
809 /*
810 * If we are attempting to stop swapping on
811 * this device, we don't want to mark any
812 * blocks free lest they be reused.
813 */
814 if ((sp->sw_flags & SW_CLOSING) == 0) {
815 blist_free(sp->sw_blist, blk - sp->sw_first,
816 npages);
817 swap_pager_avail += npages;
818 swp_sizecheck();
819 }
820 mtx_unlock(&sw_dev_mtx);
821 return;
822 }
823 }
824 panic("Swapdev not found");
825 }
826
827 /*
828 * SYSCTL_SWAP_FRAGMENTATION() - produce raw swap space stats
829 */
830 static int
831 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
832 {
833 struct sbuf sbuf;
834 struct swdevt *sp;
835 const char *devname;
836 int error;
837
838 error = sysctl_wire_old_buffer(req, 0);
839 if (error != 0)
840 return (error);
841 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
842 mtx_lock(&sw_dev_mtx);
843 TAILQ_FOREACH(sp, &swtailq, sw_list) {
844 if (vn_isdisk(sp->sw_vp, NULL))
845 devname = devtoname(sp->sw_vp->v_rdev);
846 else
847 devname = "[file]";
848 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
849 blist_stats(sp->sw_blist, &sbuf);
850 }
851 mtx_unlock(&sw_dev_mtx);
852 error = sbuf_finish(&sbuf);
853 sbuf_delete(&sbuf);
854 return (error);
855 }
856
857 /*
858 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page
859 * range within an object.
860 *
861 * This is a globally accessible routine.
862 *
863 * This routine removes swapblk assignments from swap metadata.
864 *
865 * The external callers of this routine typically have already destroyed
866 * or renamed vm_page_t's associated with this range in the object so
867 * we should be ok.
868 *
869 * The object must be locked.
870 */
871 void
872 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
873 {
874
875 swp_pager_meta_free(object, start, size);
876 }
877
878 /*
879 * SWAP_PAGER_RESERVE() - reserve swap blocks in object
880 *
881 * Assigns swap blocks to the specified range within the object. The
882 * swap blocks are not zeroed. Any previous swap assignment is destroyed.
883 *
884 * Returns 0 on success, -1 on failure.
885 */
886 int
887 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
888 {
889 int n = 0;
890 daddr_t blk = SWAPBLK_NONE;
891 vm_pindex_t beg = start; /* save start index */
892 daddr_t addr, n_free, s_free;
893
894 swp_pager_init_freerange(&s_free, &n_free);
895 VM_OBJECT_WLOCK(object);
896 while (size) {
897 if (n == 0) {
898 n = BLIST_MAX_ALLOC;
899 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
900 n >>= 1;
901 if (n == 0) {
902 swp_pager_meta_free(object, beg, start - beg);
903 VM_OBJECT_WUNLOCK(object);
904 return (-1);
905 }
906 }
907 }
908 addr = swp_pager_meta_build(object, start, blk);
909 if (addr != SWAPBLK_NONE)
910 swp_pager_update_freerange(&s_free, &n_free, addr);
911 --size;
912 ++start;
913 ++blk;
914 --n;
915 }
916 swp_pager_freeswapspace(s_free, n_free);
917 swp_pager_meta_free(object, start, n);
918 VM_OBJECT_WUNLOCK(object);
919 return (0);
920 }
921
922 /*
923 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager
924 * and destroy the source.
925 *
926 * Copy any valid swapblks from the source to the destination. In
927 * cases where both the source and destination have a valid swapblk,
928 * we keep the destination's.
929 *
930 * This routine is allowed to sleep. It may sleep allocating metadata
931 * indirectly through swp_pager_meta_build() or if paging is still in
932 * progress on the source.
933 *
934 * The source object contains no vm_page_t's (which is just as well)
935 *
936 * The source object is of type OBJT_SWAP.
937 *
938 * The source and destination objects must be locked.
939 * Both object locks may temporarily be released.
940 */
941 void
942 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
943 vm_pindex_t offset, int destroysource)
944 {
945 vm_pindex_t i;
946 daddr_t dstaddr, n_free, s_free, srcaddr;
947
948 VM_OBJECT_ASSERT_WLOCKED(srcobject);
949 VM_OBJECT_ASSERT_WLOCKED(dstobject);
950
951 /*
952 * If destroysource is set, we remove the source object from the
953 * swap_pager internal queue now.
954 */
955 if (destroysource && srcobject->handle != NULL) {
956 vm_object_pip_add(srcobject, 1);
957 VM_OBJECT_WUNLOCK(srcobject);
958 vm_object_pip_add(dstobject, 1);
959 VM_OBJECT_WUNLOCK(dstobject);
960 sx_xlock(&sw_alloc_sx);
961 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
962 pager_object_list);
963 sx_xunlock(&sw_alloc_sx);
964 VM_OBJECT_WLOCK(dstobject);
965 vm_object_pip_wakeup(dstobject);
966 VM_OBJECT_WLOCK(srcobject);
967 vm_object_pip_wakeup(srcobject);
968 }
969
970 /*
971 * Transfer source to destination.
972 */
973 swp_pager_init_freerange(&s_free, &n_free);
974 for (i = 0; i < dstobject->size; ++i) {
975 srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP);
976 if (srcaddr == SWAPBLK_NONE)
977 continue;
978 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
979 if (dstaddr != SWAPBLK_NONE) {
980 /*
981 * Destination has valid swapblk or it is represented
982 * by a resident page. We destroy the source block.
983 */
984 swp_pager_update_freerange(&s_free, &n_free, srcaddr);
985 continue;
986 }
987
988 /*
989 * Destination has no swapblk and is not resident,
990 * copy source.
991 *
992 * swp_pager_meta_build() can sleep.
993 */
994 vm_object_pip_add(srcobject, 1);
995 VM_OBJECT_WUNLOCK(srcobject);
996 vm_object_pip_add(dstobject, 1);
997 dstaddr = swp_pager_meta_build(dstobject, i, srcaddr);
998 KASSERT(dstaddr == SWAPBLK_NONE,
999 ("Unexpected destination swapblk"));
1000 vm_object_pip_wakeup(dstobject);
1001 VM_OBJECT_WLOCK(srcobject);
1002 vm_object_pip_wakeup(srcobject);
1003 }
1004 swp_pager_freeswapspace(s_free, n_free);
1005
1006 /*
1007 * Free left over swap blocks in source.
1008 *
1009 * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1010 * double-remove the object from the swap queues.
1011 */
1012 if (destroysource) {
1013 swp_pager_meta_free_all(srcobject);
1014 /*
1015 * Reverting the type is not necessary, the caller is going
1016 * to destroy srcobject directly, but I'm doing it here
1017 * for consistency since we've removed the object from its
1018 * queues.
1019 */
1020 srcobject->type = OBJT_DEFAULT;
1021 }
1022 }
1023
1024 /*
1025 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for
1026 * the requested page.
1027 *
1028 * We determine whether good backing store exists for the requested
1029 * page and return TRUE if it does, FALSE if it doesn't.
1030 *
1031 * If TRUE, we also try to determine how much valid, contiguous backing
1032 * store exists before and after the requested page.
1033 */
1034 static boolean_t
1035 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1036 int *after)
1037 {
1038 daddr_t blk, blk0;
1039 int i;
1040
1041 VM_OBJECT_ASSERT_LOCKED(object);
1042
1043 /*
1044 * do we have good backing store at the requested index ?
1045 */
1046 blk0 = swp_pager_meta_ctl(object, pindex, 0);
1047 if (blk0 == SWAPBLK_NONE) {
1048 if (before)
1049 *before = 0;
1050 if (after)
1051 *after = 0;
1052 return (FALSE);
1053 }
1054
1055 /*
1056 * find backwards-looking contiguous good backing store
1057 */
1058 if (before != NULL) {
1059 for (i = 1; i < SWB_NPAGES; i++) {
1060 if (i > pindex)
1061 break;
1062 blk = swp_pager_meta_ctl(object, pindex - i, 0);
1063 if (blk != blk0 - i)
1064 break;
1065 }
1066 *before = i - 1;
1067 }
1068
1069 /*
1070 * find forward-looking contiguous good backing store
1071 */
1072 if (after != NULL) {
1073 for (i = 1; i < SWB_NPAGES; i++) {
1074 blk = swp_pager_meta_ctl(object, pindex + i, 0);
1075 if (blk != blk0 + i)
1076 break;
1077 }
1078 *after = i - 1;
1079 }
1080 return (TRUE);
1081 }
1082
1083 /*
1084 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1085 *
1086 * This removes any associated swap backing store, whether valid or
1087 * not, from the page.
1088 *
1089 * This routine is typically called when a page is made dirty, at
1090 * which point any associated swap can be freed. MADV_FREE also
1091 * calls us in a special-case situation
1092 *
1093 * NOTE!!! If the page is clean and the swap was valid, the caller
1094 * should make the page dirty before calling this routine. This routine
1095 * does NOT change the m->dirty status of the page. Also: MADV_FREE
1096 * depends on it.
1097 *
1098 * This routine may not sleep.
1099 *
1100 * The object containing the page must be locked.
1101 */
1102 static void
1103 swap_pager_unswapped(vm_page_t m)
1104 {
1105 daddr_t srcaddr;
1106
1107 srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP);
1108 if (srcaddr != SWAPBLK_NONE)
1109 swp_pager_freeswapspace(srcaddr, 1);
1110 }
1111
1112 /*
1113 * swap_pager_getpages() - bring pages in from swap
1114 *
1115 * Attempt to page in the pages in array "ma" of length "count". The
1116 * caller may optionally specify that additional pages preceding and
1117 * succeeding the specified range be paged in. The number of such pages
1118 * is returned in the "rbehind" and "rahead" parameters, and they will
1119 * be in the inactive queue upon return.
1120 *
1121 * The pages in "ma" must be busied and will remain busied upon return.
1122 */
1123 static int
1124 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
1125 int *rahead)
1126 {
1127 struct buf *bp;
1128 vm_page_t bm, mpred, msucc, p;
1129 vm_pindex_t pindex;
1130 daddr_t blk;
1131 int i, maxahead, maxbehind, reqcount;
1132
1133 reqcount = count;
1134
1135 /*
1136 * Determine the final number of read-behind pages and
1137 * allocate them BEFORE releasing the object lock. Otherwise,
1138 * there can be a problematic race with vm_object_split().
1139 * Specifically, vm_object_split() might first transfer pages
1140 * that precede ma[0] in the current object to a new object,
1141 * and then this function incorrectly recreates those pages as
1142 * read-behind pages in the current object.
1143 */
1144 if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead))
1145 return (VM_PAGER_FAIL);
1146
1147 /*
1148 * Clip the readahead and readbehind ranges to exclude resident pages.
1149 */
1150 if (rahead != NULL) {
1151 KASSERT(reqcount - 1 <= maxahead,
1152 ("page count %d extends beyond swap block", reqcount));
1153 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1154 pindex = ma[reqcount - 1]->pindex;
1155 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1156 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1157 *rahead = msucc->pindex - pindex - 1;
1158 }
1159 if (rbehind != NULL) {
1160 *rbehind = imin(*rbehind, maxbehind);
1161 pindex = ma[0]->pindex;
1162 mpred = TAILQ_PREV(ma[0], pglist, listq);
1163 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1164 *rbehind = pindex - mpred->pindex - 1;
1165 }
1166
1167 bm = ma[0];
1168 for (i = 0; i < count; i++)
1169 ma[i]->oflags |= VPO_SWAPINPROG;
1170
1171 /*
1172 * Allocate readahead and readbehind pages.
1173 */
1174 if (rbehind != NULL) {
1175 for (i = 1; i <= *rbehind; i++) {
1176 p = vm_page_alloc(object, ma[0]->pindex - i,
1177 VM_ALLOC_NORMAL);
1178 if (p == NULL)
1179 break;
1180 p->oflags |= VPO_SWAPINPROG;
1181 bm = p;
1182 }
1183 *rbehind = i - 1;
1184 }
1185 if (rahead != NULL) {
1186 for (i = 0; i < *rahead; i++) {
1187 p = vm_page_alloc(object,
1188 ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1189 if (p == NULL)
1190 break;
1191 p->oflags |= VPO_SWAPINPROG;
1192 }
1193 *rahead = i;
1194 }
1195 if (rbehind != NULL)
1196 count += *rbehind;
1197 if (rahead != NULL)
1198 count += *rahead;
1199
1200 vm_object_pip_add(object, count);
1201
1202 pindex = bm->pindex;
1203 blk = swp_pager_meta_ctl(object, pindex, 0);
1204 KASSERT(blk != SWAPBLK_NONE,
1205 ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1206
1207 VM_OBJECT_WUNLOCK(object);
1208 bp = getpbuf(&nsw_rcount);
1209 /* Pages cannot leave the object while busy. */
1210 for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1211 MPASS(p->pindex == bm->pindex + i);
1212 bp->b_pages[i] = p;
1213 }
1214
1215 bp->b_flags |= B_PAGING;
1216 bp->b_iocmd = BIO_READ;
1217 bp->b_iodone = swp_pager_async_iodone;
1218 bp->b_rcred = crhold(thread0.td_ucred);
1219 bp->b_wcred = crhold(thread0.td_ucred);
1220 bp->b_blkno = blk;
1221 bp->b_bcount = PAGE_SIZE * count;
1222 bp->b_bufsize = PAGE_SIZE * count;
1223 bp->b_npages = count;
1224 bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1225 bp->b_pgafter = rahead != NULL ? *rahead : 0;
1226
1227 VM_CNT_INC(v_swapin);
1228 VM_CNT_ADD(v_swappgsin, count);
1229
1230 /*
1231 * perform the I/O. NOTE!!! bp cannot be considered valid after
1232 * this point because we automatically release it on completion.
1233 * Instead, we look at the one page we are interested in which we
1234 * still hold a lock on even through the I/O completion.
1235 *
1236 * The other pages in our ma[] array are also released on completion,
1237 * so we cannot assume they are valid anymore either.
1238 *
1239 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1240 */
1241 BUF_KERNPROC(bp);
1242 swp_pager_strategy(bp);
1243
1244 /*
1245 * Wait for the pages we want to complete. VPO_SWAPINPROG is always
1246 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE
1247 * is set in the metadata for each page in the request.
1248 */
1249 VM_OBJECT_WLOCK(object);
1250 while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1251 ma[0]->oflags |= VPO_SWAPSLEEP;
1252 VM_CNT_INC(v_intrans);
1253 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1254 "swread", hz * 20)) {
1255 printf(
1256 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1257 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1258 }
1259 }
1260
1261 /*
1262 * If we had an unrecoverable read error pages will not be valid.
1263 */
1264 for (i = 0; i < reqcount; i++)
1265 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1266 return (VM_PAGER_ERROR);
1267
1268 return (VM_PAGER_OK);
1269
1270 /*
1271 * A final note: in a low swap situation, we cannot deallocate swap
1272 * and mark a page dirty here because the caller is likely to mark
1273 * the page clean when we return, causing the page to possibly revert
1274 * to all-zero's later.
1275 */
1276 }
1277
1278 /*
1279 * swap_pager_getpages_async():
1280 *
1281 * Right now this is emulation of asynchronous operation on top of
1282 * swap_pager_getpages().
1283 */
1284 static int
1285 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1286 int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1287 {
1288 int r, error;
1289
1290 r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1291 VM_OBJECT_WUNLOCK(object);
1292 switch (r) {
1293 case VM_PAGER_OK:
1294 error = 0;
1295 break;
1296 case VM_PAGER_ERROR:
1297 error = EIO;
1298 break;
1299 case VM_PAGER_FAIL:
1300 error = EINVAL;
1301 break;
1302 default:
1303 panic("unhandled swap_pager_getpages() error %d", r);
1304 }
1305 (iodone)(arg, ma, count, error);
1306 VM_OBJECT_WLOCK(object);
1307
1308 return (r);
1309 }
1310
1311 /*
1312 * swap_pager_putpages:
1313 *
1314 * Assign swap (if necessary) and initiate I/O on the specified pages.
1315 *
1316 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects
1317 * are automatically converted to SWAP objects.
1318 *
1319 * In a low memory situation we may block in VOP_STRATEGY(), but the new
1320 * vm_page reservation system coupled with properly written VFS devices
1321 * should ensure that no low-memory deadlock occurs. This is an area
1322 * which needs work.
1323 *
1324 * The parent has N vm_object_pip_add() references prior to
1325 * calling us and will remove references for rtvals[] that are
1326 * not set to VM_PAGER_PEND. We need to remove the rest on I/O
1327 * completion.
1328 *
1329 * The parent has soft-busy'd the pages it passes us and will unbusy
1330 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1331 * We need to unbusy the rest on I/O completion.
1332 */
1333 static void
1334 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1335 int flags, int *rtvals)
1336 {
1337 int i, n;
1338 boolean_t sync;
1339 daddr_t addr, n_free, s_free;
1340
1341 swp_pager_init_freerange(&s_free, &n_free);
1342 if (count && ma[0]->object != object) {
1343 panic("swap_pager_putpages: object mismatch %p/%p",
1344 object,
1345 ma[0]->object
1346 );
1347 }
1348
1349 /*
1350 * Step 1
1351 *
1352 * Turn object into OBJT_SWAP
1353 * check for bogus sysops
1354 * force sync if not pageout process
1355 */
1356 if (object->type != OBJT_SWAP) {
1357 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1358 KASSERT(addr == SWAPBLK_NONE,
1359 ("unexpected object swap block"));
1360 }
1361 VM_OBJECT_WUNLOCK(object);
1362
1363 n = 0;
1364 if (curproc != pageproc)
1365 sync = TRUE;
1366 else
1367 sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1368
1369 /*
1370 * Step 2
1371 *
1372 * Assign swap blocks and issue I/O. We reallocate swap on the fly.
1373 * The page is left dirty until the pageout operation completes
1374 * successfully.
1375 */
1376 for (i = 0; i < count; i += n) {
1377 int j;
1378 struct buf *bp;
1379 daddr_t blk;
1380
1381 /*
1382 * Maximum I/O size is limited by a number of factors.
1383 */
1384 n = min(BLIST_MAX_ALLOC, count - i);
1385 n = min(n, nsw_cluster_max);
1386
1387 /*
1388 * Get biggest block of swap we can. If we fail, fall
1389 * back and try to allocate a smaller block. Don't go
1390 * overboard trying to allocate space if it would overly
1391 * fragment swap.
1392 */
1393 while (
1394 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1395 n > 4
1396 ) {
1397 n >>= 1;
1398 }
1399 if (blk == SWAPBLK_NONE) {
1400 for (j = 0; j < n; ++j)
1401 rtvals[i+j] = VM_PAGER_FAIL;
1402 continue;
1403 }
1404
1405 /*
1406 * All I/O parameters have been satisfied, build the I/O
1407 * request and assign the swap space.
1408 */
1409 if (sync == TRUE) {
1410 bp = getpbuf(&nsw_wcount_sync);
1411 } else {
1412 bp = getpbuf(&nsw_wcount_async);
1413 bp->b_flags = B_ASYNC;
1414 }
1415 bp->b_flags |= B_PAGING;
1416 bp->b_iocmd = BIO_WRITE;
1417
1418 bp->b_rcred = crhold(thread0.td_ucred);
1419 bp->b_wcred = crhold(thread0.td_ucred);
1420 bp->b_bcount = PAGE_SIZE * n;
1421 bp->b_bufsize = PAGE_SIZE * n;
1422 bp->b_blkno = blk;
1423
1424 VM_OBJECT_WLOCK(object);
1425 for (j = 0; j < n; ++j) {
1426 vm_page_t mreq = ma[i+j];
1427
1428 addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1429 blk + j);
1430 if (addr != SWAPBLK_NONE)
1431 swp_pager_update_freerange(&s_free, &n_free,
1432 addr);
1433 MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1434 mreq->oflags |= VPO_SWAPINPROG;
1435 bp->b_pages[j] = mreq;
1436 }
1437 VM_OBJECT_WUNLOCK(object);
1438 bp->b_npages = n;
1439 /*
1440 * Must set dirty range for NFS to work.
1441 */
1442 bp->b_dirtyoff = 0;
1443 bp->b_dirtyend = bp->b_bcount;
1444
1445 VM_CNT_INC(v_swapout);
1446 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1447
1448 /*
1449 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1450 * can call the async completion routine at the end of a
1451 * synchronous I/O operation. Otherwise, our caller would
1452 * perform duplicate unbusy and wakeup operations on the page
1453 * and object, respectively.
1454 */
1455 for (j = 0; j < n; j++)
1456 rtvals[i + j] = VM_PAGER_PEND;
1457
1458 /*
1459 * asynchronous
1460 *
1461 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1462 */
1463 if (sync == FALSE) {
1464 bp->b_iodone = swp_pager_async_iodone;
1465 BUF_KERNPROC(bp);
1466 swp_pager_strategy(bp);
1467 continue;
1468 }
1469
1470 /*
1471 * synchronous
1472 *
1473 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1474 */
1475 bp->b_iodone = bdone;
1476 swp_pager_strategy(bp);
1477
1478 /*
1479 * Wait for the sync I/O to complete.
1480 */
1481 bwait(bp, PVM, "swwrt");
1482
1483 /*
1484 * Now that we are through with the bp, we can call the
1485 * normal async completion, which frees everything up.
1486 */
1487 swp_pager_async_iodone(bp);
1488 }
1489 VM_OBJECT_WLOCK(object);
1490 swp_pager_freeswapspace(s_free, n_free);
1491 }
1492
1493 /*
1494 * swp_pager_async_iodone:
1495 *
1496 * Completion routine for asynchronous reads and writes from/to swap.
1497 * Also called manually by synchronous code to finish up a bp.
1498 *
1499 * This routine may not sleep.
1500 */
1501 static void
1502 swp_pager_async_iodone(struct buf *bp)
1503 {
1504 int i;
1505 vm_object_t object = NULL;
1506
1507 /*
1508 * report error
1509 */
1510 if (bp->b_ioflags & BIO_ERROR) {
1511 printf(
1512 "swap_pager: I/O error - %s failed; blkno %ld,"
1513 "size %ld, error %d\n",
1514 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1515 (long)bp->b_blkno,
1516 (long)bp->b_bcount,
1517 bp->b_error
1518 );
1519 }
1520
1521 /*
1522 * remove the mapping for kernel virtual
1523 */
1524 if (buf_mapped(bp))
1525 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1526 else
1527 bp->b_data = bp->b_kvabase;
1528
1529 if (bp->b_npages) {
1530 object = bp->b_pages[0]->object;
1531 VM_OBJECT_WLOCK(object);
1532 }
1533
1534 /*
1535 * cleanup pages. If an error occurs writing to swap, we are in
1536 * very serious trouble. If it happens to be a disk error, though,
1537 * we may be able to recover by reassigning the swap later on. So
1538 * in this case we remove the m->swapblk assignment for the page
1539 * but do not free it in the rlist. The errornous block(s) are thus
1540 * never reallocated as swap. Redirty the page and continue.
1541 */
1542 for (i = 0; i < bp->b_npages; ++i) {
1543 vm_page_t m = bp->b_pages[i];
1544
1545 m->oflags &= ~VPO_SWAPINPROG;
1546 if (m->oflags & VPO_SWAPSLEEP) {
1547 m->oflags &= ~VPO_SWAPSLEEP;
1548 wakeup(&object->paging_in_progress);
1549 }
1550
1551 if (bp->b_ioflags & BIO_ERROR) {
1552 /*
1553 * If an error occurs I'd love to throw the swapblk
1554 * away without freeing it back to swapspace, so it
1555 * can never be used again. But I can't from an
1556 * interrupt.
1557 */
1558 if (bp->b_iocmd == BIO_READ) {
1559 /*
1560 * NOTE: for reads, m->dirty will probably
1561 * be overridden by the original caller of
1562 * getpages so don't play cute tricks here.
1563 */
1564 m->valid = 0;
1565 } else {
1566 /*
1567 * If a write error occurs, reactivate page
1568 * so it doesn't clog the inactive list,
1569 * then finish the I/O.
1570 */
1571 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1572 vm_page_lock(m);
1573 vm_page_activate(m);
1574 vm_page_unlock(m);
1575 vm_page_sunbusy(m);
1576 }
1577 } else if (bp->b_iocmd == BIO_READ) {
1578 /*
1579 * NOTE: for reads, m->dirty will probably be
1580 * overridden by the original caller of getpages so
1581 * we cannot set them in order to free the underlying
1582 * swap in a low-swap situation. I don't think we'd
1583 * want to do that anyway, but it was an optimization
1584 * that existed in the old swapper for a time before
1585 * it got ripped out due to precisely this problem.
1586 */
1587 KASSERT(!pmap_page_is_mapped(m),
1588 ("swp_pager_async_iodone: page %p is mapped", m));
1589 KASSERT(m->dirty == 0,
1590 ("swp_pager_async_iodone: page %p is dirty", m));
1591
1592 m->valid = VM_PAGE_BITS_ALL;
1593 if (i < bp->b_pgbefore ||
1594 i >= bp->b_npages - bp->b_pgafter)
1595 vm_page_readahead_finish(m);
1596 } else {
1597 /*
1598 * For write success, clear the dirty
1599 * status, then finish the I/O ( which decrements the
1600 * busy count and possibly wakes waiter's up ).
1601 * A page is only written to swap after a period of
1602 * inactivity. Therefore, we do not expect it to be
1603 * reused.
1604 */
1605 KASSERT(!pmap_page_is_write_mapped(m),
1606 ("swp_pager_async_iodone: page %p is not write"
1607 " protected", m));
1608 vm_page_undirty(m);
1609 vm_page_lock(m);
1610 vm_page_deactivate_noreuse(m);
1611 vm_page_unlock(m);
1612 vm_page_sunbusy(m);
1613 }
1614 }
1615
1616 /*
1617 * adjust pip. NOTE: the original parent may still have its own
1618 * pip refs on the object.
1619 */
1620 if (object != NULL) {
1621 vm_object_pip_wakeupn(object, bp->b_npages);
1622 VM_OBJECT_WUNLOCK(object);
1623 }
1624
1625 /*
1626 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1627 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1628 * trigger a KASSERT in relpbuf().
1629 */
1630 if (bp->b_vp) {
1631 bp->b_vp = NULL;
1632 bp->b_bufobj = NULL;
1633 }
1634 /*
1635 * release the physical I/O buffer
1636 */
1637 relpbuf(
1638 bp,
1639 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1640 ((bp->b_flags & B_ASYNC) ?
1641 &nsw_wcount_async :
1642 &nsw_wcount_sync
1643 )
1644 )
1645 );
1646 }
1647
1648 int
1649 swap_pager_nswapdev(void)
1650 {
1651
1652 return (nswapdev);
1653 }
1654
1655 /*
1656 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1657 *
1658 * This routine dissociates the page at the given index within an object
1659 * from its backing store, paging it in if it does not reside in memory.
1660 * If the page is paged in, it is marked dirty and placed in the laundry
1661 * queue. The page is marked dirty because it no longer has backing
1662 * store. It is placed in the laundry queue because it has not been
1663 * accessed recently. Otherwise, it would already reside in memory.
1664 *
1665 * We also attempt to swap in all other pages in the swap block.
1666 * However, we only guarantee that the one at the specified index is
1667 * paged in.
1668 *
1669 * XXX - The code to page the whole block in doesn't work, so we
1670 * revert to the one-by-one behavior for now. Sigh.
1671 */
1672 static inline void
1673 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1674 {
1675 vm_page_t m;
1676
1677 vm_object_pip_add(object, 1);
1678 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1679 if (m->valid == VM_PAGE_BITS_ALL) {
1680 vm_object_pip_wakeup(object);
1681 vm_page_dirty(m);
1682 #ifdef INVARIANTS
1683 vm_page_lock(m);
1684 if (m->wire_count == 0 && m->queue == PQ_NONE)
1685 panic("page %p is neither wired nor queued", m);
1686 vm_page_unlock(m);
1687 #endif
1688 vm_page_xunbusy(m);
1689 vm_pager_page_unswapped(m);
1690 return;
1691 }
1692
1693 if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
1694 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1695 vm_object_pip_wakeup(object);
1696 vm_page_dirty(m);
1697 vm_page_lock(m);
1698 vm_page_launder(m);
1699 vm_page_unlock(m);
1700 vm_page_xunbusy(m);
1701 vm_pager_page_unswapped(m);
1702 }
1703
1704 /*
1705 * swap_pager_swapoff:
1706 *
1707 * Page in all of the pages that have been paged out to the
1708 * given device. The corresponding blocks in the bitmap must be
1709 * marked as allocated and the device must be flagged SW_CLOSING.
1710 * There may be no processes swapped out to the device.
1711 *
1712 * This routine may block.
1713 */
1714 static void
1715 swap_pager_swapoff(struct swdevt *sp)
1716 {
1717 struct swblk *sb;
1718 vm_object_t object;
1719 vm_pindex_t pi;
1720 int i, retries;
1721
1722 sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1723
1724 retries = 0;
1725 full_rescan:
1726 mtx_lock(&vm_object_list_mtx);
1727 TAILQ_FOREACH(object, &vm_object_list, object_list) {
1728 if (object->type != OBJT_SWAP)
1729 continue;
1730 mtx_unlock(&vm_object_list_mtx);
1731 /* Depends on type-stability. */
1732 VM_OBJECT_WLOCK(object);
1733
1734 /*
1735 * Dead objects are eventually terminated on their own.
1736 */
1737 if ((object->flags & OBJ_DEAD) != 0)
1738 goto next_obj;
1739
1740 /*
1741 * Sync with fences placed after pctrie
1742 * initialization. We must not access pctrie below
1743 * unless we checked that our object is swap and not
1744 * dead.
1745 */
1746 atomic_thread_fence_acq();
1747 if (object->type != OBJT_SWAP)
1748 goto next_obj;
1749
1750 for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1751 &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1752 pi = sb->p + SWAP_META_PAGES;
1753 for (i = 0; i < SWAP_META_PAGES; i++) {
1754 if (sb->d[i] == SWAPBLK_NONE)
1755 continue;
1756 if (swp_pager_isondev(sb->d[i], sp))
1757 swp_pager_force_pagein(object,
1758 sb->p + i);
1759 }
1760 }
1761 next_obj:
1762 VM_OBJECT_WUNLOCK(object);
1763 mtx_lock(&vm_object_list_mtx);
1764 }
1765 mtx_unlock(&vm_object_list_mtx);
1766
1767 if (sp->sw_used) {
1768 /*
1769 * Objects may be locked or paging to the device being
1770 * removed, so we will miss their pages and need to
1771 * make another pass. We have marked this device as
1772 * SW_CLOSING, so the activity should finish soon.
1773 */
1774 retries++;
1775 if (retries > 100) {
1776 panic("swapoff: failed to locate %d swap blocks",
1777 sp->sw_used);
1778 }
1779 pause("swpoff", hz / 20);
1780 goto full_rescan;
1781 }
1782 EVENTHANDLER_INVOKE(swapoff, sp);
1783 }
1784
1785 /************************************************************************
1786 * SWAP META DATA *
1787 ************************************************************************
1788 *
1789 * These routines manipulate the swap metadata stored in the
1790 * OBJT_SWAP object.
1791 *
1792 * Swap metadata is implemented with a global hash and not directly
1793 * linked into the object. Instead the object simply contains
1794 * appropriate tracking counters.
1795 */
1796
1797 /*
1798 * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1799 */
1800 static bool
1801 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1802 {
1803 int i;
1804
1805 MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1806 for (i = start; i < limit; i++) {
1807 if (sb->d[i] != SWAPBLK_NONE)
1808 return (false);
1809 }
1810 return (true);
1811 }
1812
1813 /*
1814 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object
1815 *
1816 * We first convert the object to a swap object if it is a default
1817 * object.
1818 *
1819 * The specified swapblk is added to the object's swap metadata. If
1820 * the swapblk is not valid, it is freed instead. Any previously
1821 * assigned swapblk is returned.
1822 */
1823 static daddr_t
1824 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1825 {
1826 static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1827 struct swblk *sb, *sb1;
1828 vm_pindex_t modpi, rdpi;
1829 daddr_t prev_swapblk;
1830 int error, i;
1831
1832 VM_OBJECT_ASSERT_WLOCKED(object);
1833
1834 /*
1835 * Convert default object to swap object if necessary
1836 */
1837 if (object->type != OBJT_SWAP) {
1838 pctrie_init(&object->un_pager.swp.swp_blks);
1839
1840 /*
1841 * Ensure that swap_pager_swapoff()'s iteration over
1842 * object_list does not see a garbage pctrie.
1843 */
1844 atomic_thread_fence_rel();
1845
1846 object->type = OBJT_SWAP;
1847 KASSERT(object->handle == NULL, ("default pager with handle"));
1848 }
1849
1850 rdpi = rounddown(pindex, SWAP_META_PAGES);
1851 sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1852 if (sb == NULL) {
1853 if (swapblk == SWAPBLK_NONE)
1854 return (SWAPBLK_NONE);
1855 for (;;) {
1856 sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1857 pageproc ? M_USE_RESERVE : 0));
1858 if (sb != NULL) {
1859 sb->p = rdpi;
1860 for (i = 0; i < SWAP_META_PAGES; i++)
1861 sb->d[i] = SWAPBLK_NONE;
1862 if (atomic_cmpset_int(&swblk_zone_exhausted,
1863 1, 0))
1864 printf("swblk zone ok\n");
1865 break;
1866 }
1867 VM_OBJECT_WUNLOCK(object);
1868 if (uma_zone_exhausted(swblk_zone)) {
1869 if (atomic_cmpset_int(&swblk_zone_exhausted,
1870 0, 1))
1871 printf("swap blk zone exhausted, "
1872 "increase kern.maxswzone\n");
1873 vm_pageout_oom(VM_OOM_SWAPZ);
1874 pause("swzonxb", 10);
1875 } else
1876 uma_zwait(swblk_zone);
1877 VM_OBJECT_WLOCK(object);
1878 sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1879 rdpi);
1880 if (sb != NULL)
1881 /*
1882 * Somebody swapped out a nearby page,
1883 * allocating swblk at the rdpi index,
1884 * while we dropped the object lock.
1885 */
1886 goto allocated;
1887 }
1888 for (;;) {
1889 error = SWAP_PCTRIE_INSERT(
1890 &object->un_pager.swp.swp_blks, sb);
1891 if (error == 0) {
1892 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1893 1, 0))
1894 printf("swpctrie zone ok\n");
1895 break;
1896 }
1897 VM_OBJECT_WUNLOCK(object);
1898 if (uma_zone_exhausted(swpctrie_zone)) {
1899 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1900 0, 1))
1901 printf("swap pctrie zone exhausted, "
1902 "increase kern.maxswzone\n");
1903 vm_pageout_oom(VM_OOM_SWAPZ);
1904 pause("swzonxp", 10);
1905 } else
1906 uma_zwait(swpctrie_zone);
1907 VM_OBJECT_WLOCK(object);
1908 sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1909 rdpi);
1910 if (sb1 != NULL) {
1911 uma_zfree(swblk_zone, sb);
1912 sb = sb1;
1913 goto allocated;
1914 }
1915 }
1916 }
1917 allocated:
1918 MPASS(sb->p == rdpi);
1919
1920 modpi = pindex % SWAP_META_PAGES;
1921 /* Return prior contents of metadata. */
1922 prev_swapblk = sb->d[modpi];
1923 /* Enter block into metadata. */
1924 sb->d[modpi] = swapblk;
1925
1926 /*
1927 * Free the swblk if we end up with the empty page run.
1928 */
1929 if (swapblk == SWAPBLK_NONE &&
1930 swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1931 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi);
1932 uma_zfree(swblk_zone, sb);
1933 }
1934 return (prev_swapblk);
1935 }
1936
1937 /*
1938 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1939 *
1940 * The requested range of blocks is freed, with any associated swap
1941 * returned to the swap bitmap.
1942 *
1943 * This routine will free swap metadata structures as they are cleaned
1944 * out. This routine does *NOT* operate on swap metadata associated
1945 * with resident pages.
1946 */
1947 static void
1948 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
1949 {
1950 struct swblk *sb;
1951 daddr_t n_free, s_free;
1952 vm_pindex_t last;
1953 int i, limit, start;
1954
1955 VM_OBJECT_ASSERT_WLOCKED(object);
1956 if (object->type != OBJT_SWAP || count == 0)
1957 return;
1958
1959 swp_pager_init_freerange(&s_free, &n_free);
1960 last = pindex + count;
1961 for (;;) {
1962 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
1963 rounddown(pindex, SWAP_META_PAGES));
1964 if (sb == NULL || sb->p >= last)
1965 break;
1966 start = pindex > sb->p ? pindex - sb->p : 0;
1967 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
1968 SWAP_META_PAGES;
1969 for (i = start; i < limit; i++) {
1970 if (sb->d[i] == SWAPBLK_NONE)
1971 continue;
1972 swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
1973 sb->d[i] = SWAPBLK_NONE;
1974 }
1975 pindex = sb->p + SWAP_META_PAGES;
1976 if (swp_pager_swblk_empty(sb, 0, start) &&
1977 swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
1978 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
1979 sb->p);
1980 uma_zfree(swblk_zone, sb);
1981 }
1982 }
1983 swp_pager_freeswapspace(s_free, n_free);
1984 }
1985
1986 /*
1987 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1988 *
1989 * This routine locates and destroys all swap metadata associated with
1990 * an object.
1991 */
1992 static void
1993 swp_pager_meta_free_all(vm_object_t object)
1994 {
1995 struct swblk *sb;
1996 daddr_t n_free, s_free;
1997 vm_pindex_t pindex;
1998 int i;
1999
2000 VM_OBJECT_ASSERT_WLOCKED(object);
2001 if (object->type != OBJT_SWAP)
2002 return;
2003
2004 swp_pager_init_freerange(&s_free, &n_free);
2005 for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2006 &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2007 pindex = sb->p + SWAP_META_PAGES;
2008 for (i = 0; i < SWAP_META_PAGES; i++) {
2009 if (sb->d[i] == SWAPBLK_NONE)
2010 continue;
2011 swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2012 }
2013 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2014 uma_zfree(swblk_zone, sb);
2015 }
2016 swp_pager_freeswapspace(s_free, n_free);
2017 }
2018
2019 /*
2020 * SWP_PAGER_METACTL() - misc control of swap meta data.
2021 *
2022 * This routine is capable of looking up, or removing swapblk
2023 * assignments in the swap meta data. It returns the swapblk being
2024 * looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2025 *
2026 * When acting on a busy resident page and paging is in progress, we
2027 * have to wait until paging is complete but otherwise can act on the
2028 * busy page.
2029 *
2030 * SWM_POP remove from meta data but do not free it
2031 */
2032 static daddr_t
2033 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2034 {
2035 struct swblk *sb;
2036 daddr_t r1;
2037
2038 if ((flags & SWM_POP) != 0)
2039 VM_OBJECT_ASSERT_WLOCKED(object);
2040 else
2041 VM_OBJECT_ASSERT_LOCKED(object);
2042
2043 /*
2044 * The meta data only exists if the object is OBJT_SWAP
2045 * and even then might not be allocated yet.
2046 */
2047 if (object->type != OBJT_SWAP)
2048 return (SWAPBLK_NONE);
2049
2050 sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2051 rounddown(pindex, SWAP_META_PAGES));
2052 if (sb == NULL)
2053 return (SWAPBLK_NONE);
2054 r1 = sb->d[pindex % SWAP_META_PAGES];
2055 if (r1 == SWAPBLK_NONE)
2056 return (SWAPBLK_NONE);
2057 if ((flags & SWM_POP) != 0) {
2058 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
2059 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2060 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2061 rounddown(pindex, SWAP_META_PAGES));
2062 uma_zfree(swblk_zone, sb);
2063 }
2064 }
2065 return (r1);
2066 }
2067
2068 /*
2069 * Returns the least page index which is greater than or equal to the
2070 * parameter pindex and for which there is a swap block allocated.
2071 * Returns object's size if the object's type is not swap or if there
2072 * are no allocated swap blocks for the object after the requested
2073 * pindex.
2074 */
2075 vm_pindex_t
2076 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2077 {
2078 struct swblk *sb;
2079 int i;
2080
2081 VM_OBJECT_ASSERT_LOCKED(object);
2082 if (object->type != OBJT_SWAP)
2083 return (object->size);
2084
2085 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2086 rounddown(pindex, SWAP_META_PAGES));
2087 if (sb == NULL)
2088 return (object->size);
2089 if (sb->p < pindex) {
2090 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2091 if (sb->d[i] != SWAPBLK_NONE)
2092 return (sb->p + i);
2093 }
2094 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2095 roundup(pindex, SWAP_META_PAGES));
2096 if (sb == NULL)
2097 return (object->size);
2098 }
2099 for (i = 0; i < SWAP_META_PAGES; i++) {
2100 if (sb->d[i] != SWAPBLK_NONE)
2101 return (sb->p + i);
2102 }
2103
2104 /*
2105 * We get here if a swblk is present in the trie but it
2106 * doesn't map any blocks.
2107 */
2108 MPASS(0);
2109 return (object->size);
2110 }
2111
2112 /*
2113 * System call swapon(name) enables swapping on device name,
2114 * which must be in the swdevsw. Return EBUSY
2115 * if already swapping on this device.
2116 */
2117 #ifndef _SYS_SYSPROTO_H_
2118 struct swapon_args {
2119 char *name;
2120 };
2121 #endif
2122
2123 /*
2124 * MPSAFE
2125 */
2126 /* ARGSUSED */
2127 int
2128 sys_swapon(struct thread *td, struct swapon_args *uap)
2129 {
2130 struct vattr attr;
2131 struct vnode *vp;
2132 struct nameidata nd;
2133 int error;
2134
2135 error = priv_check(td, PRIV_SWAPON);
2136 if (error)
2137 return (error);
2138
2139 sx_xlock(&swdev_syscall_lock);
2140
2141 /*
2142 * Swap metadata may not fit in the KVM if we have physical
2143 * memory of >1GB.
2144 */
2145 if (swblk_zone == NULL) {
2146 error = ENOMEM;
2147 goto done;
2148 }
2149
2150 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2151 uap->name, td);
2152 error = namei(&nd);
2153 if (error)
2154 goto done;
2155
2156 NDFREE(&nd, NDF_ONLY_PNBUF);
2157 vp = nd.ni_vp;
2158
2159 if (vn_isdisk(vp, &error)) {
2160 error = swapongeom(vp);
2161 } else if (vp->v_type == VREG &&
2162 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2163 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2164 /*
2165 * Allow direct swapping to NFS regular files in the same
2166 * way that nfs_mountroot() sets up diskless swapping.
2167 */
2168 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2169 }
2170
2171 if (error)
2172 vrele(vp);
2173 done:
2174 sx_xunlock(&swdev_syscall_lock);
2175 return (error);
2176 }
2177
2178 /*
2179 * Check that the total amount of swap currently configured does not
2180 * exceed half the theoretical maximum. If it does, print a warning
2181 * message.
2182 */
2183 static void
2184 swapon_check_swzone(void)
2185 {
2186 unsigned long maxpages, npages;
2187
2188 npages = swap_total;
2189 /* absolute maximum we can handle assuming 100% efficiency */
2190 maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
2191
2192 /* recommend using no more than half that amount */
2193 if (npages > maxpages / 2) {
2194 printf("warning: total configured swap (%lu pages) "
2195 "exceeds maximum recommended amount (%lu pages).\n",
2196 npages, maxpages / 2);
2197 printf("warning: increase kern.maxswzone "
2198 "or reduce amount of swap.\n");
2199 }
2200 }
2201
2202 static void
2203 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2204 sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2205 {
2206 struct swdevt *sp, *tsp;
2207 swblk_t dvbase;
2208 u_long mblocks;
2209
2210 /*
2211 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2212 * First chop nblks off to page-align it, then convert.
2213 *
2214 * sw->sw_nblks is in page-sized chunks now too.
2215 */
2216 nblks &= ~(ctodb(1) - 1);
2217 nblks = dbtoc(nblks);
2218
2219 /*
2220 * If we go beyond this, we get overflows in the radix
2221 * tree bitmap code.
2222 */
2223 mblocks = 0x40000000 / BLIST_META_RADIX;
2224 if (nblks > mblocks) {
2225 printf(
2226 "WARNING: reducing swap size to maximum of %luMB per unit\n",
2227 mblocks / 1024 / 1024 * PAGE_SIZE);
2228 nblks = mblocks;
2229 }
2230
2231 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2232 sp->sw_vp = vp;
2233 sp->sw_id = id;
2234 sp->sw_dev = dev;
2235 sp->sw_flags = 0;
2236 sp->sw_nblks = nblks;
2237 sp->sw_used = 0;
2238 sp->sw_strategy = strategy;
2239 sp->sw_close = close;
2240 sp->sw_flags = flags;
2241
2242 sp->sw_blist = blist_create(nblks, M_WAITOK);
2243 /*
2244 * Do not free the first two block in order to avoid overwriting
2245 * any bsd label at the front of the partition
2246 */
2247 blist_free(sp->sw_blist, 2, nblks - 2);
2248
2249 dvbase = 0;
2250 mtx_lock(&sw_dev_mtx);
2251 TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2252 if (tsp->sw_end >= dvbase) {
2253 /*
2254 * We put one uncovered page between the devices
2255 * in order to definitively prevent any cross-device
2256 * I/O requests
2257 */
2258 dvbase = tsp->sw_end + 1;
2259 }
2260 }
2261 sp->sw_first = dvbase;
2262 sp->sw_end = dvbase + nblks;
2263 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2264 nswapdev++;
2265 swap_pager_avail += nblks - 2;
2266 swap_total += nblks;
2267 swapon_check_swzone();
2268 swp_sizecheck();
2269 mtx_unlock(&sw_dev_mtx);
2270 EVENTHANDLER_INVOKE(swapon, sp);
2271 }
2272
2273 /*
2274 * SYSCALL: swapoff(devname)
2275 *
2276 * Disable swapping on the given device.
2277 *
2278 * XXX: Badly designed system call: it should use a device index
2279 * rather than filename as specification. We keep sw_vp around
2280 * only to make this work.
2281 */
2282 #ifndef _SYS_SYSPROTO_H_
2283 struct swapoff_args {
2284 char *name;
2285 };
2286 #endif
2287
2288 /*
2289 * MPSAFE
2290 */
2291 /* ARGSUSED */
2292 int
2293 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2294 {
2295 struct vnode *vp;
2296 struct nameidata nd;
2297 struct swdevt *sp;
2298 int error;
2299
2300 error = priv_check(td, PRIV_SWAPOFF);
2301 if (error)
2302 return (error);
2303
2304 sx_xlock(&swdev_syscall_lock);
2305
2306 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2307 td);
2308 error = namei(&nd);
2309 if (error)
2310 goto done;
2311 NDFREE(&nd, NDF_ONLY_PNBUF);
2312 vp = nd.ni_vp;
2313
2314 mtx_lock(&sw_dev_mtx);
2315 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2316 if (sp->sw_vp == vp)
2317 break;
2318 }
2319 mtx_unlock(&sw_dev_mtx);
2320 if (sp == NULL) {
2321 error = EINVAL;
2322 goto done;
2323 }
2324 error = swapoff_one(sp, td->td_ucred);
2325 done:
2326 sx_xunlock(&swdev_syscall_lock);
2327 return (error);
2328 }
2329
2330 static int
2331 swapoff_one(struct swdevt *sp, struct ucred *cred)
2332 {
2333 u_long nblks;
2334 #ifdef MAC
2335 int error;
2336 #endif
2337
2338 sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2339 #ifdef MAC
2340 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2341 error = mac_system_check_swapoff(cred, sp->sw_vp);
2342 (void) VOP_UNLOCK(sp->sw_vp, 0);
2343 if (error != 0)
2344 return (error);
2345 #endif
2346 nblks = sp->sw_nblks;
2347
2348 /*
2349 * We can turn off this swap device safely only if the
2350 * available virtual memory in the system will fit the amount
2351 * of data we will have to page back in, plus an epsilon so
2352 * the system doesn't become critically low on swap space.
2353 */
2354 if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2355 return (ENOMEM);
2356
2357 /*
2358 * Prevent further allocations on this device.
2359 */
2360 mtx_lock(&sw_dev_mtx);
2361 sp->sw_flags |= SW_CLOSING;
2362 swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2363 swap_total -= nblks;
2364 mtx_unlock(&sw_dev_mtx);
2365
2366 /*
2367 * Page in the contents of the device and close it.
2368 */
2369 swap_pager_swapoff(sp);
2370
2371 sp->sw_close(curthread, sp);
2372 mtx_lock(&sw_dev_mtx);
2373 sp->sw_id = NULL;
2374 TAILQ_REMOVE(&swtailq, sp, sw_list);
2375 nswapdev--;
2376 if (nswapdev == 0) {
2377 swap_pager_full = 2;
2378 swap_pager_almost_full = 1;
2379 }
2380 if (swdevhd == sp)
2381 swdevhd = NULL;
2382 mtx_unlock(&sw_dev_mtx);
2383 blist_destroy(sp->sw_blist);
2384 free(sp, M_VMPGDATA);
2385 return (0);
2386 }
2387
2388 void
2389 swapoff_all(void)
2390 {
2391 struct swdevt *sp, *spt;
2392 const char *devname;
2393 int error;
2394
2395 sx_xlock(&swdev_syscall_lock);
2396
2397 mtx_lock(&sw_dev_mtx);
2398 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2399 mtx_unlock(&sw_dev_mtx);
2400 if (vn_isdisk(sp->sw_vp, NULL))
2401 devname = devtoname(sp->sw_vp->v_rdev);
2402 else
2403 devname = "[file]";
2404 error = swapoff_one(sp, thread0.td_ucred);
2405 if (error != 0) {
2406 printf("Cannot remove swap device %s (error=%d), "
2407 "skipping.\n", devname, error);
2408 } else if (bootverbose) {
2409 printf("Swap device %s removed.\n", devname);
2410 }
2411 mtx_lock(&sw_dev_mtx);
2412 }
2413 mtx_unlock(&sw_dev_mtx);
2414
2415 sx_xunlock(&swdev_syscall_lock);
2416 }
2417
2418 void
2419 swap_pager_status(int *total, int *used)
2420 {
2421 struct swdevt *sp;
2422
2423 *total = 0;
2424 *used = 0;
2425 mtx_lock(&sw_dev_mtx);
2426 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2427 *total += sp->sw_nblks;
2428 *used += sp->sw_used;
2429 }
2430 mtx_unlock(&sw_dev_mtx);
2431 }
2432
2433 int
2434 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2435 {
2436 struct swdevt *sp;
2437 const char *tmp_devname;
2438 int error, n;
2439
2440 n = 0;
2441 error = ENOENT;
2442 mtx_lock(&sw_dev_mtx);
2443 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2444 if (n != name) {
2445 n++;
2446 continue;
2447 }
2448 xs->xsw_version = XSWDEV_VERSION;
2449 xs->xsw_dev = sp->sw_dev;
2450 xs->xsw_flags = sp->sw_flags;
2451 xs->xsw_nblks = sp->sw_nblks;
2452 xs->xsw_used = sp->sw_used;
2453 if (devname != NULL) {
2454 if (vn_isdisk(sp->sw_vp, NULL))
2455 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2456 else
2457 tmp_devname = "[file]";
2458 strncpy(devname, tmp_devname, len);
2459 }
2460 error = 0;
2461 break;
2462 }
2463 mtx_unlock(&sw_dev_mtx);
2464 return (error);
2465 }
2466
2467 #if defined(COMPAT_FREEBSD11)
2468 #define XSWDEV_VERSION_11 1
2469 struct xswdev11 {
2470 u_int xsw_version;
2471 uint32_t xsw_dev;
2472 int xsw_flags;
2473 int xsw_nblks;
2474 int xsw_used;
2475 };
2476 #endif
2477
2478 static int
2479 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2480 {
2481 struct xswdev xs;
2482 #if defined(COMPAT_FREEBSD11)
2483 struct xswdev11 xs11;
2484 #endif
2485 int error;
2486
2487 if (arg2 != 1) /* name length */
2488 return (EINVAL);
2489 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2490 if (error != 0)
2491 return (error);
2492 #if defined(COMPAT_FREEBSD11)
2493 if (req->oldlen == sizeof(xs11)) {
2494 xs11.xsw_version = XSWDEV_VERSION_11;
2495 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2496 xs11.xsw_flags = xs.xsw_flags;
2497 xs11.xsw_nblks = xs.xsw_nblks;
2498 xs11.xsw_used = xs.xsw_used;
2499 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2500 } else
2501 #endif
2502 error = SYSCTL_OUT(req, &xs, sizeof(xs));
2503 return (error);
2504 }
2505
2506 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2507 "Number of swap devices");
2508 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2509 sysctl_vm_swap_info,
2510 "Swap statistics by device");
2511
2512 /*
2513 * Count the approximate swap usage in pages for a vmspace. The
2514 * shadowed or not yet copied on write swap blocks are not accounted.
2515 * The map must be locked.
2516 */
2517 long
2518 vmspace_swap_count(struct vmspace *vmspace)
2519 {
2520 vm_map_t map;
2521 vm_map_entry_t cur;
2522 vm_object_t object;
2523 struct swblk *sb;
2524 vm_pindex_t e, pi;
2525 long count;
2526 int i;
2527
2528 map = &vmspace->vm_map;
2529 count = 0;
2530
2531 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2532 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2533 continue;
2534 object = cur->object.vm_object;
2535 if (object == NULL || object->type != OBJT_SWAP)
2536 continue;
2537 VM_OBJECT_RLOCK(object);
2538 if (object->type != OBJT_SWAP)
2539 goto unlock;
2540 pi = OFF_TO_IDX(cur->offset);
2541 e = pi + OFF_TO_IDX(cur->end - cur->start);
2542 for (;; pi = sb->p + SWAP_META_PAGES) {
2543 sb = SWAP_PCTRIE_LOOKUP_GE(
2544 &object->un_pager.swp.swp_blks, pi);
2545 if (sb == NULL || sb->p >= e)
2546 break;
2547 for (i = 0; i < SWAP_META_PAGES; i++) {
2548 if (sb->p + i < e &&
2549 sb->d[i] != SWAPBLK_NONE)
2550 count++;
2551 }
2552 }
2553 unlock:
2554 VM_OBJECT_RUNLOCK(object);
2555 }
2556 return (count);
2557 }
2558
2559 /*
2560 * GEOM backend
2561 *
2562 * Swapping onto disk devices.
2563 *
2564 */
2565
2566 static g_orphan_t swapgeom_orphan;
2567
2568 static struct g_class g_swap_class = {
2569 .name = "SWAP",
2570 .version = G_VERSION,
2571 .orphan = swapgeom_orphan,
2572 };
2573
2574 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2575
2576
2577 static void
2578 swapgeom_close_ev(void *arg, int flags)
2579 {
2580 struct g_consumer *cp;
2581
2582 cp = arg;
2583 g_access(cp, -1, -1, 0);
2584 g_detach(cp);
2585 g_destroy_consumer(cp);
2586 }
2587
2588 /*
2589 * Add a reference to the g_consumer for an inflight transaction.
2590 */
2591 static void
2592 swapgeom_acquire(struct g_consumer *cp)
2593 {
2594
2595 mtx_assert(&sw_dev_mtx, MA_OWNED);
2596 cp->index++;
2597 }
2598
2599 /*
2600 * Remove a reference from the g_consumer. Post a close event if all
2601 * references go away, since the function might be called from the
2602 * biodone context.
2603 */
2604 static void
2605 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2606 {
2607
2608 mtx_assert(&sw_dev_mtx, MA_OWNED);
2609 cp->index--;
2610 if (cp->index == 0) {
2611 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2612 sp->sw_id = NULL;
2613 }
2614 }
2615
2616 static void
2617 swapgeom_done(struct bio *bp2)
2618 {
2619 struct swdevt *sp;
2620 struct buf *bp;
2621 struct g_consumer *cp;
2622
2623 bp = bp2->bio_caller2;
2624 cp = bp2->bio_from;
2625 bp->b_ioflags = bp2->bio_flags;
2626 if (bp2->bio_error)
2627 bp->b_ioflags |= BIO_ERROR;
2628 bp->b_resid = bp->b_bcount - bp2->bio_completed;
2629 bp->b_error = bp2->bio_error;
2630 bufdone(bp);
2631 sp = bp2->bio_caller1;
2632 mtx_lock(&sw_dev_mtx);
2633 swapgeom_release(cp, sp);
2634 mtx_unlock(&sw_dev_mtx);
2635 g_destroy_bio(bp2);
2636 }
2637
2638 static void
2639 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2640 {
2641 struct bio *bio;
2642 struct g_consumer *cp;
2643
2644 mtx_lock(&sw_dev_mtx);
2645 cp = sp->sw_id;
2646 if (cp == NULL) {
2647 mtx_unlock(&sw_dev_mtx);
2648 bp->b_error = ENXIO;
2649 bp->b_ioflags |= BIO_ERROR;
2650 bufdone(bp);
2651 return;
2652 }
2653 swapgeom_acquire(cp);
2654 mtx_unlock(&sw_dev_mtx);
2655 if (bp->b_iocmd == BIO_WRITE)
2656 bio = g_new_bio();
2657 else
2658 bio = g_alloc_bio();
2659 if (bio == NULL) {
2660 mtx_lock(&sw_dev_mtx);
2661 swapgeom_release(cp, sp);
2662 mtx_unlock(&sw_dev_mtx);
2663 bp->b_error = ENOMEM;
2664 bp->b_ioflags |= BIO_ERROR;
2665 bufdone(bp);
2666 return;
2667 }
2668
2669 bio->bio_caller1 = sp;
2670 bio->bio_caller2 = bp;
2671 bio->bio_cmd = bp->b_iocmd;
2672 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2673 bio->bio_length = bp->b_bcount;
2674 bio->bio_done = swapgeom_done;
2675 if (!buf_mapped(bp)) {
2676 bio->bio_ma = bp->b_pages;
2677 bio->bio_data = unmapped_buf;
2678 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2679 bio->bio_ma_n = bp->b_npages;
2680 bio->bio_flags |= BIO_UNMAPPED;
2681 } else {
2682 bio->bio_data = bp->b_data;
2683 bio->bio_ma = NULL;
2684 }
2685 g_io_request(bio, cp);
2686 return;
2687 }
2688
2689 static void
2690 swapgeom_orphan(struct g_consumer *cp)
2691 {
2692 struct swdevt *sp;
2693 int destroy;
2694
2695 mtx_lock(&sw_dev_mtx);
2696 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2697 if (sp->sw_id == cp) {
2698 sp->sw_flags |= SW_CLOSING;
2699 break;
2700 }
2701 }
2702 /*
2703 * Drop reference we were created with. Do directly since we're in a
2704 * special context where we don't have to queue the call to
2705 * swapgeom_close_ev().
2706 */
2707 cp->index--;
2708 destroy = ((sp != NULL) && (cp->index == 0));
2709 if (destroy)
2710 sp->sw_id = NULL;
2711 mtx_unlock(&sw_dev_mtx);
2712 if (destroy)
2713 swapgeom_close_ev(cp, 0);
2714 }
2715
2716 static void
2717 swapgeom_close(struct thread *td, struct swdevt *sw)
2718 {
2719 struct g_consumer *cp;
2720
2721 mtx_lock(&sw_dev_mtx);
2722 cp = sw->sw_id;
2723 sw->sw_id = NULL;
2724 mtx_unlock(&sw_dev_mtx);
2725
2726 /*
2727 * swapgeom_close() may be called from the biodone context,
2728 * where we cannot perform topology changes. Delegate the
2729 * work to the events thread.
2730 */
2731 if (cp != NULL)
2732 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2733 }
2734
2735 static int
2736 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2737 {
2738 struct g_provider *pp;
2739 struct g_consumer *cp;
2740 static struct g_geom *gp;
2741 struct swdevt *sp;
2742 u_long nblks;
2743 int error;
2744
2745 pp = g_dev_getprovider(dev);
2746 if (pp == NULL)
2747 return (ENODEV);
2748 mtx_lock(&sw_dev_mtx);
2749 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2750 cp = sp->sw_id;
2751 if (cp != NULL && cp->provider == pp) {
2752 mtx_unlock(&sw_dev_mtx);
2753 return (EBUSY);
2754 }
2755 }
2756 mtx_unlock(&sw_dev_mtx);
2757 if (gp == NULL)
2758 gp = g_new_geomf(&g_swap_class, "swap");
2759 cp = g_new_consumer(gp);
2760 cp->index = 1; /* Number of active I/Os, plus one for being active. */
2761 cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2762 g_attach(cp, pp);
2763 /*
2764 * XXX: Every time you think you can improve the margin for
2765 * footshooting, somebody depends on the ability to do so:
2766 * savecore(8) wants to write to our swapdev so we cannot
2767 * set an exclusive count :-(
2768 */
2769 error = g_access(cp, 1, 1, 0);
2770 if (error != 0) {
2771 g_detach(cp);
2772 g_destroy_consumer(cp);
2773 return (error);
2774 }
2775 nblks = pp->mediasize / DEV_BSIZE;
2776 swaponsomething(vp, cp, nblks, swapgeom_strategy,
2777 swapgeom_close, dev2udev(dev),
2778 (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2779 return (0);
2780 }
2781
2782 static int
2783 swapongeom(struct vnode *vp)
2784 {
2785 int error;
2786
2787 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2788 if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2789 error = ENOENT;
2790 } else {
2791 g_topology_lock();
2792 error = swapongeom_locked(vp->v_rdev, vp);
2793 g_topology_unlock();
2794 }
2795 VOP_UNLOCK(vp, 0);
2796 return (error);
2797 }
2798
2799 /*
2800 * VNODE backend
2801 *
2802 * This is used mainly for network filesystem (read: probably only tested
2803 * with NFS) swapfiles.
2804 *
2805 */
2806
2807 static void
2808 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2809 {
2810 struct vnode *vp2;
2811
2812 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2813
2814 vp2 = sp->sw_id;
2815 vhold(vp2);
2816 if (bp->b_iocmd == BIO_WRITE) {
2817 if (bp->b_bufobj)
2818 bufobj_wdrop(bp->b_bufobj);
2819 bufobj_wref(&vp2->v_bufobj);
2820 }
2821 if (bp->b_bufobj != &vp2->v_bufobj)
2822 bp->b_bufobj = &vp2->v_bufobj;
2823 bp->b_vp = vp2;
2824 bp->b_iooffset = dbtob(bp->b_blkno);
2825 bstrategy(bp);
2826 return;
2827 }
2828
2829 static void
2830 swapdev_close(struct thread *td, struct swdevt *sp)
2831 {
2832
2833 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2834 vrele(sp->sw_vp);
2835 }
2836
2837
2838 static int
2839 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2840 {
2841 struct swdevt *sp;
2842 int error;
2843
2844 if (nblks == 0)
2845 return (ENXIO);
2846 mtx_lock(&sw_dev_mtx);
2847 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2848 if (sp->sw_id == vp) {
2849 mtx_unlock(&sw_dev_mtx);
2850 return (EBUSY);
2851 }
2852 }
2853 mtx_unlock(&sw_dev_mtx);
2854
2855 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2856 #ifdef MAC
2857 error = mac_system_check_swapon(td->td_ucred, vp);
2858 if (error == 0)
2859 #endif
2860 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2861 (void) VOP_UNLOCK(vp, 0);
2862 if (error)
2863 return (error);
2864
2865 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2866 NODEV, 0);
2867 return (0);
2868 }
2869
2870 static int
2871 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2872 {
2873 int error, new, n;
2874
2875 new = nsw_wcount_async_max;
2876 error = sysctl_handle_int(oidp, &new, 0, req);
2877 if (error != 0 || req->newptr == NULL)
2878 return (error);
2879
2880 if (new > nswbuf / 2 || new < 1)
2881 return (EINVAL);
2882
2883 mtx_lock(&pbuf_mtx);
2884 while (nsw_wcount_async_max != new) {
2885 /*
2886 * Adjust difference. If the current async count is too low,
2887 * we will need to sqeeze our update slowly in. Sleep with a
2888 * higher priority than getpbuf() to finish faster.
2889 */
2890 n = new - nsw_wcount_async_max;
2891 if (nsw_wcount_async + n >= 0) {
2892 nsw_wcount_async += n;
2893 nsw_wcount_async_max += n;
2894 wakeup(&nsw_wcount_async);
2895 } else {
2896 nsw_wcount_async_max -= nsw_wcount_async;
2897 nsw_wcount_async = 0;
2898 msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
2899 "swpsysctl", 0);
2900 }
2901 }
2902 mtx_unlock(&pbuf_mtx);
2903
2904 return (0);
2905 }
Cache object: da5de3b2af2d2b63e6fda0dbe1616f40
|