The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/swap_pager.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-4-Clause
    3  *
    4  * Copyright (c) 1998 Matthew Dillon,
    5  * Copyright (c) 1994 John S. Dyson
    6  * Copyright (c) 1990 University of Utah.
    7  * Copyright (c) 1982, 1986, 1989, 1993
    8  *      The Regents of the University of California.  All rights reserved.
    9  *
   10  * This code is derived from software contributed to Berkeley by
   11  * the Systems Programming Group of the University of Utah Computer
   12  * Science Department.
   13  *
   14  * Redistribution and use in source and binary forms, with or without
   15  * modification, are permitted provided that the following conditions
   16  * are met:
   17  * 1. Redistributions of source code must retain the above copyright
   18  *    notice, this list of conditions and the following disclaimer.
   19  * 2. Redistributions in binary form must reproduce the above copyright
   20  *    notice, this list of conditions and the following disclaimer in the
   21  *    documentation and/or other materials provided with the distribution.
   22  * 3. All advertising materials mentioning features or use of this software
   23  *    must display the following acknowledgement:
   24  *      This product includes software developed by the University of
   25  *      California, Berkeley and its contributors.
   26  * 4. Neither the name of the University nor the names of its contributors
   27  *    may be used to endorse or promote products derived from this software
   28  *    without specific prior written permission.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   40  * SUCH DAMAGE.
   41  *
   42  *                              New Swap System
   43  *                              Matthew Dillon
   44  *
   45  * Radix Bitmap 'blists'.
   46  *
   47  *      - The new swapper uses the new radix bitmap code.  This should scale
   48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
   49  *        arbitrary degree of fragmentation.
   50  *
   51  * Features:
   52  *
   53  *      - on the fly reallocation of swap during putpages.  The new system
   54  *        does not try to keep previously allocated swap blocks for dirty
   55  *        pages.
   56  *
   57  *      - on the fly deallocation of swap
   58  *
   59  *      - No more garbage collection required.  Unnecessarily allocated swap
   60  *        blocks only exist for dirty vm_page_t's now and these are already
   61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
   62  *        removal of invalidated swap blocks when a page is destroyed
   63  *        or renamed.
   64  *
   65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
   66  *
   67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
   68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
   69  */
   70 
   71 #include <sys/cdefs.h>
   72 __FBSDID("$FreeBSD$");
   73 
   74 #include "opt_swap.h"
   75 #include "opt_vm.h"
   76 
   77 #include <sys/param.h>
   78 #include <sys/systm.h>
   79 #include <sys/conf.h>
   80 #include <sys/kernel.h>
   81 #include <sys/priv.h>
   82 #include <sys/proc.h>
   83 #include <sys/bio.h>
   84 #include <sys/buf.h>
   85 #include <sys/disk.h>
   86 #include <sys/disklabel.h>
   87 #include <sys/fcntl.h>
   88 #include <sys/mount.h>
   89 #include <sys/namei.h>
   90 #include <sys/vnode.h>
   91 #include <sys/malloc.h>
   92 #include <sys/pctrie.h>
   93 #include <sys/racct.h>
   94 #include <sys/resource.h>
   95 #include <sys/resourcevar.h>
   96 #include <sys/rwlock.h>
   97 #include <sys/sbuf.h>
   98 #include <sys/sysctl.h>
   99 #include <sys/sysproto.h>
  100 #include <sys/blist.h>
  101 #include <sys/lock.h>
  102 #include <sys/sx.h>
  103 #include <sys/vmmeter.h>
  104 
  105 #include <security/mac/mac_framework.h>
  106 
  107 #include <vm/vm.h>
  108 #include <vm/pmap.h>
  109 #include <vm/vm_map.h>
  110 #include <vm/vm_kern.h>
  111 #include <vm/vm_object.h>
  112 #include <vm/vm_page.h>
  113 #include <vm/vm_pager.h>
  114 #include <vm/vm_pageout.h>
  115 #include <vm/vm_param.h>
  116 #include <vm/swap_pager.h>
  117 #include <vm/vm_extern.h>
  118 #include <vm/uma.h>
  119 
  120 #include <geom/geom.h>
  121 
  122 /*
  123  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
  124  * The 64-page limit is due to the radix code (kern/subr_blist.c).
  125  */
  126 #ifndef MAX_PAGEOUT_CLUSTER
  127 #define MAX_PAGEOUT_CLUSTER     32
  128 #endif
  129 
  130 #if !defined(SWB_NPAGES)
  131 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
  132 #endif
  133 
  134 #define SWAP_META_PAGES         PCTRIE_COUNT
  135 
  136 /*
  137  * A swblk structure maps each page index within a
  138  * SWAP_META_PAGES-aligned and sized range to the address of an
  139  * on-disk swap block (or SWAPBLK_NONE). The collection of these
  140  * mappings for an entire vm object is implemented as a pc-trie.
  141  */
  142 struct swblk {
  143         vm_pindex_t     p;
  144         daddr_t         d[SWAP_META_PAGES];
  145 };
  146 
  147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
  148 static struct mtx sw_dev_mtx;
  149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
  150 static struct swdevt *swdevhd;  /* Allocate from here next */
  151 static int nswapdev;            /* Number of swap devices */
  152 int swap_pager_avail;
  153 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
  154 
  155 static __exclusive_cache_line u_long swap_reserved;
  156 static u_long swap_total;
  157 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
  158 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
  159     &swap_reserved, 0, sysctl_page_shift, "A", 
  160     "Amount of swap storage needed to back all allocated anonymous memory.");
  161 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
  162     &swap_total, 0, sysctl_page_shift, "A", 
  163     "Total amount of available swap storage.");
  164 
  165 static int overcommit = 0;
  166 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
  167     "Configure virtual memory overcommit behavior. See tuning(7) "
  168     "for details.");
  169 static unsigned long swzone;
  170 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
  171     "Actual size of swap metadata zone");
  172 static unsigned long swap_maxpages;
  173 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
  174     "Maximum amount of swap supported");
  175 
  176 /* bits from overcommit */
  177 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
  178 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
  179 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
  180 
  181 static int
  182 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
  183 {
  184         uint64_t newval;
  185         u_long value = *(u_long *)arg1;
  186 
  187         newval = ((uint64_t)value) << PAGE_SHIFT;
  188         return (sysctl_handle_64(oidp, &newval, 0, req));
  189 }
  190 
  191 int
  192 swap_reserve(vm_ooffset_t incr)
  193 {
  194 
  195         return (swap_reserve_by_cred(incr, curthread->td_ucred));
  196 }
  197 
  198 int
  199 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
  200 {
  201         u_long r, s, prev, pincr;
  202         int res, error;
  203         static int curfail;
  204         static struct timeval lastfail;
  205         struct uidinfo *uip;
  206 
  207         uip = cred->cr_ruidinfo;
  208 
  209         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
  210             (uintmax_t)incr));
  211 
  212 #ifdef RACCT
  213         if (racct_enable) {
  214                 PROC_LOCK(curproc);
  215                 error = racct_add(curproc, RACCT_SWAP, incr);
  216                 PROC_UNLOCK(curproc);
  217                 if (error != 0)
  218                         return (0);
  219         }
  220 #endif
  221 
  222         pincr = atop(incr);
  223         res = 0;
  224         prev = atomic_fetchadd_long(&swap_reserved, pincr);
  225         r = prev + pincr;
  226         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
  227                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
  228                     vm_wire_count();
  229         } else
  230                 s = 0;
  231         s += swap_total;
  232         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
  233             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
  234                 res = 1;
  235         } else {
  236                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
  237                 if (prev < pincr)
  238                         panic("swap_reserved < incr on overcommit fail");
  239         }
  240         if (res) {
  241                 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
  242                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
  243                     prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
  244                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) {
  245                         res = 0;
  246                         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
  247                         if (prev < pincr)
  248                                 panic("uip->ui_vmsize < incr on overcommit fail");
  249                 }
  250         }
  251         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
  252                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
  253                     uip->ui_uid, curproc->p_pid, incr);
  254         }
  255 
  256 #ifdef RACCT
  257         if (racct_enable && !res) {
  258                 PROC_LOCK(curproc);
  259                 racct_sub(curproc, RACCT_SWAP, incr);
  260                 PROC_UNLOCK(curproc);
  261         }
  262 #endif
  263 
  264         return (res);
  265 }
  266 
  267 void
  268 swap_reserve_force(vm_ooffset_t incr)
  269 {
  270         struct uidinfo *uip;
  271         u_long pincr;
  272 
  273         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
  274             (uintmax_t)incr));
  275 
  276         PROC_LOCK(curproc);
  277 #ifdef RACCT
  278         if (racct_enable)
  279                 racct_add_force(curproc, RACCT_SWAP, incr);
  280 #endif
  281         pincr = atop(incr);
  282         atomic_add_long(&swap_reserved, pincr);
  283         uip = curproc->p_ucred->cr_ruidinfo;
  284         atomic_add_long(&uip->ui_vmsize, pincr);
  285         PROC_UNLOCK(curproc);
  286 }
  287 
  288 void
  289 swap_release(vm_ooffset_t decr)
  290 {
  291         struct ucred *cred;
  292 
  293         PROC_LOCK(curproc);
  294         cred = curproc->p_ucred;
  295         swap_release_by_cred(decr, cred);
  296         PROC_UNLOCK(curproc);
  297 }
  298 
  299 void
  300 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
  301 {
  302         u_long prev, pdecr;
  303         struct uidinfo *uip;
  304 
  305         uip = cred->cr_ruidinfo;
  306 
  307         KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
  308             (uintmax_t)decr));
  309 
  310         pdecr = atop(decr);
  311         prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
  312         if (prev < pdecr)
  313                 panic("swap_reserved < decr");
  314 
  315         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
  316         if (prev < pdecr)
  317                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
  318 #ifdef RACCT
  319         if (racct_enable)
  320                 racct_sub_cred(cred, RACCT_SWAP, decr);
  321 #endif
  322 }
  323 
  324 #define SWM_POP         0x01    /* pop out                      */
  325 
  326 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
  327 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
  328 static int nsw_rcount;          /* free read buffers                    */
  329 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
  330 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
  331 static int nsw_wcount_async_max;/* assigned maximum                     */
  332 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
  333 
  334 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
  335 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
  336     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
  337     "Maximum running async swap ops");
  338 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
  339 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
  340     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
  341     "Swap Fragmentation Info");
  342 
  343 static struct sx sw_alloc_sx;
  344 
  345 /*
  346  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
  347  * of searching a named list by hashing it just a little.
  348  */
  349 
  350 #define NOBJLISTS               8
  351 
  352 #define NOBJLIST(handle)        \
  353         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
  354 
  355 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
  356 static uma_zone_t swblk_zone;
  357 static uma_zone_t swpctrie_zone;
  358 
  359 /*
  360  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
  361  * calls hooked from other parts of the VM system and do not appear here.
  362  * (see vm/swap_pager.h).
  363  */
  364 static vm_object_t
  365                 swap_pager_alloc(void *handle, vm_ooffset_t size,
  366                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
  367 static void     swap_pager_dealloc(vm_object_t object);
  368 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
  369     int *);
  370 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
  371     int *, pgo_getpages_iodone_t, void *);
  372 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
  373 static boolean_t
  374                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
  375 static void     swap_pager_init(void);
  376 static void     swap_pager_unswapped(vm_page_t);
  377 static void     swap_pager_swapoff(struct swdevt *sp);
  378 static void     swap_pager_update_writecount(vm_object_t object,
  379     vm_offset_t start, vm_offset_t end);
  380 static void     swap_pager_release_writecount(vm_object_t object,
  381     vm_offset_t start, vm_offset_t end);
  382 
  383 struct pagerops swappagerops = {
  384         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
  385         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
  386         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
  387         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
  388         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
  389         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
  390         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
  391         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
  392         .pgo_update_writecount = swap_pager_update_writecount,
  393         .pgo_release_writecount = swap_pager_release_writecount,
  394 };
  395 
  396 /*
  397  * swap_*() routines are externally accessible.  swp_*() routines are
  398  * internal.
  399  */
  400 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
  401 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
  402 
  403 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
  404     "Maximum size of a swap block in pages");
  405 
  406 static void     swp_sizecheck(void);
  407 static void     swp_pager_async_iodone(struct buf *bp);
  408 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
  409 static int      swapongeom(struct vnode *);
  410 static int      swaponvp(struct thread *, struct vnode *, u_long);
  411 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
  412 
  413 /*
  414  * Swap bitmap functions
  415  */
  416 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
  417 static daddr_t  swp_pager_getswapspace(int npages);
  418 
  419 /*
  420  * Metadata functions
  421  */
  422 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
  423 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
  424 static void swp_pager_meta_free_all(vm_object_t);
  425 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
  426 
  427 static void
  428 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
  429 {
  430 
  431         *start = SWAPBLK_NONE;
  432         *num = 0;
  433 }
  434 
  435 static void
  436 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
  437 {
  438 
  439         if (*start + *num == addr) {
  440                 (*num)++;
  441         } else {
  442                 swp_pager_freeswapspace(*start, *num);
  443                 *start = addr;
  444                 *num = 1;
  445         }
  446 }
  447 
  448 static void *
  449 swblk_trie_alloc(struct pctrie *ptree)
  450 {
  451 
  452         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
  453             M_USE_RESERVE : 0)));
  454 }
  455 
  456 static void
  457 swblk_trie_free(struct pctrie *ptree, void *node)
  458 {
  459 
  460         uma_zfree(swpctrie_zone, node);
  461 }
  462 
  463 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
  464 
  465 /*
  466  * SWP_SIZECHECK() -    update swap_pager_full indication
  467  *
  468  *      update the swap_pager_almost_full indication and warn when we are
  469  *      about to run out of swap space, using lowat/hiwat hysteresis.
  470  *
  471  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
  472  *
  473  *      No restrictions on call
  474  *      This routine may not block.
  475  */
  476 static void
  477 swp_sizecheck(void)
  478 {
  479 
  480         if (swap_pager_avail < nswap_lowat) {
  481                 if (swap_pager_almost_full == 0) {
  482                         printf("swap_pager: out of swap space\n");
  483                         swap_pager_almost_full = 1;
  484                 }
  485         } else {
  486                 swap_pager_full = 0;
  487                 if (swap_pager_avail > nswap_hiwat)
  488                         swap_pager_almost_full = 0;
  489         }
  490 }
  491 
  492 /*
  493  * SWAP_PAGER_INIT() -  initialize the swap pager!
  494  *
  495  *      Expected to be started from system init.  NOTE:  This code is run
  496  *      before much else so be careful what you depend on.  Most of the VM
  497  *      system has yet to be initialized at this point.
  498  */
  499 static void
  500 swap_pager_init(void)
  501 {
  502         /*
  503          * Initialize object lists
  504          */
  505         int i;
  506 
  507         for (i = 0; i < NOBJLISTS; ++i)
  508                 TAILQ_INIT(&swap_pager_object_list[i]);
  509         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
  510         sx_init(&sw_alloc_sx, "swspsx");
  511         sx_init(&swdev_syscall_lock, "swsysc");
  512 }
  513 
  514 /*
  515  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
  516  *
  517  *      Expected to be started from pageout process once, prior to entering
  518  *      its main loop.
  519  */
  520 void
  521 swap_pager_swap_init(void)
  522 {
  523         unsigned long n, n2;
  524 
  525         /*
  526          * Number of in-transit swap bp operations.  Don't
  527          * exhaust the pbufs completely.  Make sure we
  528          * initialize workable values (0 will work for hysteresis
  529          * but it isn't very efficient).
  530          *
  531          * The nsw_cluster_max is constrained by the bp->b_pages[]
  532          * array (MAXPHYS/PAGE_SIZE) and our locally defined
  533          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
  534          * constrained by the swap device interleave stripe size.
  535          *
  536          * Currently we hardwire nsw_wcount_async to 4.  This limit is
  537          * designed to prevent other I/O from having high latencies due to
  538          * our pageout I/O.  The value 4 works well for one or two active swap
  539          * devices but is probably a little low if you have more.  Even so,
  540          * a higher value would probably generate only a limited improvement
  541          * with three or four active swap devices since the system does not
  542          * typically have to pageout at extreme bandwidths.   We will want
  543          * at least 2 per swap devices, and 4 is a pretty good value if you
  544          * have one NFS swap device due to the command/ack latency over NFS.
  545          * So it all works out pretty well.
  546          */
  547         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
  548 
  549         mtx_lock(&pbuf_mtx);
  550         nsw_rcount = (nswbuf + 1) / 2;
  551         nsw_wcount_sync = (nswbuf + 3) / 4;
  552         nsw_wcount_async = 4;
  553         nsw_wcount_async_max = nsw_wcount_async;
  554         mtx_unlock(&pbuf_mtx);
  555 
  556         /*
  557          * Initialize our zone, taking the user's requested size or
  558          * estimating the number we need based on the number of pages
  559          * in the system.
  560          */
  561         n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
  562             vm_cnt.v_page_count / 2;
  563         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
  564             pctrie_zone_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
  565         if (swpctrie_zone == NULL)
  566                 panic("failed to create swap pctrie zone.");
  567         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
  568             NULL, NULL, _Alignof(struct swblk) - 1, UMA_ZONE_VM);
  569         if (swblk_zone == NULL)
  570                 panic("failed to create swap blk zone.");
  571         n2 = n;
  572         do {
  573                 if (uma_zone_reserve_kva(swblk_zone, n))
  574                         break;
  575                 /*
  576                  * if the allocation failed, try a zone two thirds the
  577                  * size of the previous attempt.
  578                  */
  579                 n -= ((n + 2) / 3);
  580         } while (n > 0);
  581 
  582         /*
  583          * Often uma_zone_reserve_kva() cannot reserve exactly the
  584          * requested size.  Account for the difference when
  585          * calculating swap_maxpages.
  586          */
  587         n = uma_zone_get_max(swblk_zone);
  588 
  589         if (n < n2)
  590                 printf("Swap blk zone entries changed from %lu to %lu.\n",
  591                     n2, n);
  592         /* absolute maximum we can handle assuming 100% efficiency */
  593         swap_maxpages = n * SWAP_META_PAGES;
  594         swzone = n * sizeof(struct swblk);
  595         if (!uma_zone_reserve_kva(swpctrie_zone, n))
  596                 printf("Cannot reserve swap pctrie zone, "
  597                     "reduce kern.maxswzone.\n");
  598 }
  599 
  600 static vm_object_t
  601 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
  602     vm_ooffset_t offset)
  603 {
  604         vm_object_t object;
  605 
  606         if (cred != NULL) {
  607                 if (!swap_reserve_by_cred(size, cred))
  608                         return (NULL);
  609                 crhold(cred);
  610         }
  611 
  612         /*
  613          * The un_pager.swp.swp_blks trie is initialized by
  614          * vm_object_allocate() to ensure the correct order of
  615          * visibility to other threads.
  616          */
  617         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
  618             PAGE_MASK + size));
  619 
  620         object->un_pager.swp.writemappings = 0;
  621         object->handle = handle;
  622         if (cred != NULL) {
  623                 object->cred = cred;
  624                 object->charge = size;
  625         }
  626         return (object);
  627 }
  628 
  629 /*
  630  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
  631  *                      its metadata structures.
  632  *
  633  *      This routine is called from the mmap and fork code to create a new
  634  *      OBJT_SWAP object.
  635  *
  636  *      This routine must ensure that no live duplicate is created for
  637  *      the named object request, which is protected against by
  638  *      holding the sw_alloc_sx lock in case handle != NULL.
  639  */
  640 static vm_object_t
  641 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
  642     vm_ooffset_t offset, struct ucred *cred)
  643 {
  644         vm_object_t object;
  645 
  646         if (handle != NULL) {
  647                 /*
  648                  * Reference existing named region or allocate new one.  There
  649                  * should not be a race here against swp_pager_meta_build()
  650                  * as called from vm_page_remove() in regards to the lookup
  651                  * of the handle.
  652                  */
  653                 sx_xlock(&sw_alloc_sx);
  654                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
  655                 if (object == NULL) {
  656                         object = swap_pager_alloc_init(handle, cred, size,
  657                             offset);
  658                         if (object != NULL) {
  659                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
  660                                     object, pager_object_list);
  661                         }
  662                 }
  663                 sx_xunlock(&sw_alloc_sx);
  664         } else {
  665                 object = swap_pager_alloc_init(handle, cred, size, offset);
  666         }
  667         return (object);
  668 }
  669 
  670 /*
  671  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
  672  *
  673  *      The swap backing for the object is destroyed.  The code is
  674  *      designed such that we can reinstantiate it later, but this
  675  *      routine is typically called only when the entire object is
  676  *      about to be destroyed.
  677  *
  678  *      The object must be locked.
  679  */
  680 static void
  681 swap_pager_dealloc(vm_object_t object)
  682 {
  683 
  684         VM_OBJECT_ASSERT_WLOCKED(object);
  685         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
  686 
  687         /*
  688          * Remove from list right away so lookups will fail if we block for
  689          * pageout completion.
  690          */
  691         if (object->handle != NULL) {
  692                 VM_OBJECT_WUNLOCK(object);
  693                 sx_xlock(&sw_alloc_sx);
  694                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
  695                     pager_object_list);
  696                 sx_xunlock(&sw_alloc_sx);
  697                 VM_OBJECT_WLOCK(object);
  698         }
  699 
  700         vm_object_pip_wait(object, "swpdea");
  701 
  702         /*
  703          * Free all remaining metadata.  We only bother to free it from
  704          * the swap meta data.  We do not attempt to free swapblk's still
  705          * associated with vm_page_t's for this object.  We do not care
  706          * if paging is still in progress on some objects.
  707          */
  708         swp_pager_meta_free_all(object);
  709         object->handle = NULL;
  710         object->type = OBJT_DEAD;
  711 }
  712 
  713 /************************************************************************
  714  *                      SWAP PAGER BITMAP ROUTINES                      *
  715  ************************************************************************/
  716 
  717 /*
  718  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
  719  *
  720  *      Allocate swap for the requested number of pages.  The starting
  721  *      swap block number (a page index) is returned or SWAPBLK_NONE
  722  *      if the allocation failed.
  723  *
  724  *      Also has the side effect of advising that somebody made a mistake
  725  *      when they configured swap and didn't configure enough.
  726  *
  727  *      This routine may not sleep.
  728  *
  729  *      We allocate in round-robin fashion from the configured devices.
  730  */
  731 static daddr_t
  732 swp_pager_getswapspace(int npages)
  733 {
  734         daddr_t blk;
  735         struct swdevt *sp;
  736         int i;
  737 
  738         blk = SWAPBLK_NONE;
  739         mtx_lock(&sw_dev_mtx);
  740         sp = swdevhd;
  741         for (i = 0; i < nswapdev; i++) {
  742                 if (sp == NULL)
  743                         sp = TAILQ_FIRST(&swtailq);
  744                 if (!(sp->sw_flags & SW_CLOSING)) {
  745                         blk = blist_alloc(sp->sw_blist, npages);
  746                         if (blk != SWAPBLK_NONE) {
  747                                 blk += sp->sw_first;
  748                                 sp->sw_used += npages;
  749                                 swap_pager_avail -= npages;
  750                                 swp_sizecheck();
  751                                 swdevhd = TAILQ_NEXT(sp, sw_list);
  752                                 goto done;
  753                         }
  754                 }
  755                 sp = TAILQ_NEXT(sp, sw_list);
  756         }
  757         if (swap_pager_full != 2) {
  758                 printf("swap_pager_getswapspace(%d): failed\n", npages);
  759                 swap_pager_full = 2;
  760                 swap_pager_almost_full = 1;
  761         }
  762         swdevhd = NULL;
  763 done:
  764         mtx_unlock(&sw_dev_mtx);
  765         return (blk);
  766 }
  767 
  768 static int
  769 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
  770 {
  771 
  772         return (blk >= sp->sw_first && blk < sp->sw_end);
  773 }
  774 
  775 static void
  776 swp_pager_strategy(struct buf *bp)
  777 {
  778         struct swdevt *sp;
  779 
  780         mtx_lock(&sw_dev_mtx);
  781         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  782                 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
  783                         mtx_unlock(&sw_dev_mtx);
  784                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
  785                             unmapped_buf_allowed) {
  786                                 bp->b_data = unmapped_buf;
  787                                 bp->b_offset = 0;
  788                         } else {
  789                                 pmap_qenter((vm_offset_t)bp->b_data,
  790                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
  791                         }
  792                         sp->sw_strategy(bp, sp);
  793                         return;
  794                 }
  795         }
  796         panic("Swapdev not found");
  797 }
  798 
  799 
  800 /*
  801  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
  802  *
  803  *      This routine returns the specified swap blocks back to the bitmap.
  804  *
  805  *      This routine may not sleep.
  806  */
  807 static void
  808 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
  809 {
  810         struct swdevt *sp;
  811 
  812         if (npages == 0)
  813                 return;
  814         mtx_lock(&sw_dev_mtx);
  815         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  816                 if (blk >= sp->sw_first && blk < sp->sw_end) {
  817                         sp->sw_used -= npages;
  818                         /*
  819                          * If we are attempting to stop swapping on
  820                          * this device, we don't want to mark any
  821                          * blocks free lest they be reused.
  822                          */
  823                         if ((sp->sw_flags & SW_CLOSING) == 0) {
  824                                 blist_free(sp->sw_blist, blk - sp->sw_first,
  825                                     npages);
  826                                 swap_pager_avail += npages;
  827                                 swp_sizecheck();
  828                         }
  829                         mtx_unlock(&sw_dev_mtx);
  830                         return;
  831                 }
  832         }
  833         panic("Swapdev not found");
  834 }
  835 
  836 /*
  837  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
  838  */
  839 static int
  840 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
  841 {
  842         struct sbuf sbuf;
  843         struct swdevt *sp;
  844         const char *devname;
  845         int error;
  846 
  847         error = sysctl_wire_old_buffer(req, 0);
  848         if (error != 0)
  849                 return (error);
  850         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
  851         mtx_lock(&sw_dev_mtx);
  852         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  853                 if (vn_isdisk(sp->sw_vp, NULL))
  854                         devname = devtoname(sp->sw_vp->v_rdev);
  855                 else
  856                         devname = "[file]";
  857                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
  858                 blist_stats(sp->sw_blist, &sbuf);
  859         }
  860         mtx_unlock(&sw_dev_mtx);
  861         error = sbuf_finish(&sbuf);
  862         sbuf_delete(&sbuf);
  863         return (error);
  864 }
  865 
  866 /*
  867  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
  868  *                              range within an object.
  869  *
  870  *      This is a globally accessible routine.
  871  *
  872  *      This routine removes swapblk assignments from swap metadata.
  873  *
  874  *      The external callers of this routine typically have already destroyed
  875  *      or renamed vm_page_t's associated with this range in the object so
  876  *      we should be ok.
  877  *
  878  *      The object must be locked.
  879  */
  880 void
  881 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
  882 {
  883 
  884         swp_pager_meta_free(object, start, size);
  885 }
  886 
  887 /*
  888  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
  889  *
  890  *      Assigns swap blocks to the specified range within the object.  The
  891  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
  892  *
  893  *      Returns 0 on success, -1 on failure.
  894  */
  895 int
  896 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
  897 {
  898         int n = 0;
  899         daddr_t blk = SWAPBLK_NONE;
  900         vm_pindex_t beg = start;        /* save start index */
  901         daddr_t addr, n_free, s_free;
  902 
  903         swp_pager_init_freerange(&s_free, &n_free);
  904         VM_OBJECT_WLOCK(object);
  905         while (size) {
  906                 if (n == 0) {
  907                         n = BLIST_MAX_ALLOC;
  908                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
  909                                 n >>= 1;
  910                                 if (n == 0) {
  911                                         swp_pager_meta_free(object, beg, start - beg);
  912                                         VM_OBJECT_WUNLOCK(object);
  913                                         return (-1);
  914                                 }
  915                         }
  916                 }
  917                 addr = swp_pager_meta_build(object, start, blk);
  918                 if (addr != SWAPBLK_NONE)
  919                         swp_pager_update_freerange(&s_free, &n_free, addr);
  920                 --size;
  921                 ++start;
  922                 ++blk;
  923                 --n;
  924         }
  925         swp_pager_freeswapspace(s_free, n_free);
  926         swp_pager_meta_free(object, start, n);
  927         VM_OBJECT_WUNLOCK(object);
  928         return (0);
  929 }
  930 
  931 /*
  932  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
  933  *                      and destroy the source.
  934  *
  935  *      Copy any valid swapblks from the source to the destination.  In
  936  *      cases where both the source and destination have a valid swapblk,
  937  *      we keep the destination's.
  938  *
  939  *      This routine is allowed to sleep.  It may sleep allocating metadata
  940  *      indirectly through swp_pager_meta_build() or if paging is still in
  941  *      progress on the source.
  942  *
  943  *      The source object contains no vm_page_t's (which is just as well)
  944  *
  945  *      The source object is of type OBJT_SWAP.
  946  *
  947  *      The source and destination objects must be locked.
  948  *      Both object locks may temporarily be released.
  949  */
  950 void
  951 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
  952     vm_pindex_t offset, int destroysource)
  953 {
  954         vm_pindex_t i;
  955         daddr_t dstaddr, n_free, s_free, srcaddr;
  956 
  957         VM_OBJECT_ASSERT_WLOCKED(srcobject);
  958         VM_OBJECT_ASSERT_WLOCKED(dstobject);
  959 
  960         /*
  961          * If destroysource is set, we remove the source object from the
  962          * swap_pager internal queue now.
  963          */
  964         if (destroysource && srcobject->handle != NULL) {
  965                 vm_object_pip_add(srcobject, 1);
  966                 VM_OBJECT_WUNLOCK(srcobject);
  967                 vm_object_pip_add(dstobject, 1);
  968                 VM_OBJECT_WUNLOCK(dstobject);
  969                 sx_xlock(&sw_alloc_sx);
  970                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
  971                     pager_object_list);
  972                 sx_xunlock(&sw_alloc_sx);
  973                 VM_OBJECT_WLOCK(dstobject);
  974                 vm_object_pip_wakeup(dstobject);
  975                 VM_OBJECT_WLOCK(srcobject);
  976                 vm_object_pip_wakeup(srcobject);
  977         }
  978 
  979         /*
  980          * Transfer source to destination.
  981          */
  982         swp_pager_init_freerange(&s_free, &n_free);
  983         for (i = 0; i < dstobject->size; ++i) {
  984                 srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP);
  985                 if (srcaddr == SWAPBLK_NONE)
  986                         continue;
  987                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
  988                 if (dstaddr != SWAPBLK_NONE) {
  989                         /*
  990                          * Destination has valid swapblk or it is represented
  991                          * by a resident page.  We destroy the source block.
  992                          */
  993                         swp_pager_update_freerange(&s_free, &n_free, srcaddr);
  994                         continue;
  995                 }
  996 
  997                 /*
  998                  * Destination has no swapblk and is not resident,
  999                  * copy source.
 1000                  *
 1001                  * swp_pager_meta_build() can sleep.
 1002                  */
 1003                 vm_object_pip_add(srcobject, 1);
 1004                 VM_OBJECT_WUNLOCK(srcobject);
 1005                 vm_object_pip_add(dstobject, 1);
 1006                 dstaddr = swp_pager_meta_build(dstobject, i, srcaddr);
 1007                 KASSERT(dstaddr == SWAPBLK_NONE,
 1008                     ("Unexpected destination swapblk"));
 1009                 vm_object_pip_wakeup(dstobject);
 1010                 VM_OBJECT_WLOCK(srcobject);
 1011                 vm_object_pip_wakeup(srcobject);
 1012         }
 1013         swp_pager_freeswapspace(s_free, n_free);
 1014 
 1015         /*
 1016          * Free left over swap blocks in source.
 1017          *
 1018          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
 1019          * double-remove the object from the swap queues.
 1020          */
 1021         if (destroysource) {
 1022                 swp_pager_meta_free_all(srcobject);
 1023                 /*
 1024                  * Reverting the type is not necessary, the caller is going
 1025                  * to destroy srcobject directly, but I'm doing it here
 1026                  * for consistency since we've removed the object from its
 1027                  * queues.
 1028                  */
 1029                 srcobject->type = OBJT_DEFAULT;
 1030         }
 1031 }
 1032 
 1033 /*
 1034  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
 1035  *                              the requested page.
 1036  *
 1037  *      We determine whether good backing store exists for the requested
 1038  *      page and return TRUE if it does, FALSE if it doesn't.
 1039  *
 1040  *      If TRUE, we also try to determine how much valid, contiguous backing
 1041  *      store exists before and after the requested page.
 1042  */
 1043 static boolean_t
 1044 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
 1045     int *after)
 1046 {
 1047         daddr_t blk, blk0;
 1048         int i;
 1049 
 1050         VM_OBJECT_ASSERT_LOCKED(object);
 1051 
 1052         /*
 1053          * do we have good backing store at the requested index ?
 1054          */
 1055         blk0 = swp_pager_meta_ctl(object, pindex, 0);
 1056         if (blk0 == SWAPBLK_NONE) {
 1057                 if (before)
 1058                         *before = 0;
 1059                 if (after)
 1060                         *after = 0;
 1061                 return (FALSE);
 1062         }
 1063 
 1064         /*
 1065          * find backwards-looking contiguous good backing store
 1066          */
 1067         if (before != NULL) {
 1068                 for (i = 1; i < SWB_NPAGES; i++) {
 1069                         if (i > pindex)
 1070                                 break;
 1071                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
 1072                         if (blk != blk0 - i)
 1073                                 break;
 1074                 }
 1075                 *before = i - 1;
 1076         }
 1077 
 1078         /*
 1079          * find forward-looking contiguous good backing store
 1080          */
 1081         if (after != NULL) {
 1082                 for (i = 1; i < SWB_NPAGES; i++) {
 1083                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
 1084                         if (blk != blk0 + i)
 1085                                 break;
 1086                 }
 1087                 *after = i - 1;
 1088         }
 1089         return (TRUE);
 1090 }
 1091 
 1092 /*
 1093  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
 1094  *
 1095  *      This removes any associated swap backing store, whether valid or
 1096  *      not, from the page.
 1097  *
 1098  *      This routine is typically called when a page is made dirty, at
 1099  *      which point any associated swap can be freed.  MADV_FREE also
 1100  *      calls us in a special-case situation
 1101  *
 1102  *      NOTE!!!  If the page is clean and the swap was valid, the caller
 1103  *      should make the page dirty before calling this routine.  This routine
 1104  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
 1105  *      depends on it.
 1106  *
 1107  *      This routine may not sleep.
 1108  *
 1109  *      The object containing the page must be locked.
 1110  */
 1111 static void
 1112 swap_pager_unswapped(vm_page_t m)
 1113 {
 1114         daddr_t srcaddr;
 1115 
 1116         srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP);
 1117         if (srcaddr != SWAPBLK_NONE)
 1118                 swp_pager_freeswapspace(srcaddr, 1);
 1119 }
 1120 
 1121 /*
 1122  * swap_pager_getpages() - bring pages in from swap
 1123  *
 1124  *      Attempt to page in the pages in array "ma" of length "count".  The
 1125  *      caller may optionally specify that additional pages preceding and
 1126  *      succeeding the specified range be paged in.  The number of such pages
 1127  *      is returned in the "rbehind" and "rahead" parameters, and they will
 1128  *      be in the inactive queue upon return.
 1129  *
 1130  *      The pages in "ma" must be busied and will remain busied upon return.
 1131  */
 1132 static int
 1133 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
 1134     int *rahead)
 1135 {
 1136         struct buf *bp;
 1137         vm_page_t bm, mpred, msucc, p;
 1138         vm_pindex_t pindex;
 1139         daddr_t blk;
 1140         int i, maxahead, maxbehind, reqcount;
 1141 
 1142         reqcount = count;
 1143 
 1144         /*
 1145          * Determine the final number of read-behind pages and
 1146          * allocate them BEFORE releasing the object lock.  Otherwise,
 1147          * there can be a problematic race with vm_object_split().
 1148          * Specifically, vm_object_split() might first transfer pages
 1149          * that precede ma[0] in the current object to a new object,
 1150          * and then this function incorrectly recreates those pages as
 1151          * read-behind pages in the current object.
 1152          */
 1153         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead))
 1154                 return (VM_PAGER_FAIL);
 1155 
 1156         /*
 1157          * Clip the readahead and readbehind ranges to exclude resident pages.
 1158          */
 1159         if (rahead != NULL) {
 1160                 KASSERT(reqcount - 1 <= maxahead,
 1161                     ("page count %d extends beyond swap block", reqcount));
 1162                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
 1163                 pindex = ma[reqcount - 1]->pindex;
 1164                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
 1165                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
 1166                         *rahead = msucc->pindex - pindex - 1;
 1167         }
 1168         if (rbehind != NULL) {
 1169                 *rbehind = imin(*rbehind, maxbehind);
 1170                 pindex = ma[0]->pindex;
 1171                 mpred = TAILQ_PREV(ma[0], pglist, listq);
 1172                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
 1173                         *rbehind = pindex - mpred->pindex - 1;
 1174         }
 1175 
 1176         bm = ma[0];
 1177         for (i = 0; i < count; i++)
 1178                 ma[i]->oflags |= VPO_SWAPINPROG;
 1179 
 1180         /*
 1181          * Allocate readahead and readbehind pages.
 1182          */
 1183         if (rbehind != NULL) {
 1184                 for (i = 1; i <= *rbehind; i++) {
 1185                         p = vm_page_alloc(object, ma[0]->pindex - i,
 1186                             VM_ALLOC_NORMAL);
 1187                         if (p == NULL)
 1188                                 break;
 1189                         p->oflags |= VPO_SWAPINPROG;
 1190                         bm = p;
 1191                 }
 1192                 *rbehind = i - 1;
 1193         }
 1194         if (rahead != NULL) {
 1195                 for (i = 0; i < *rahead; i++) {
 1196                         p = vm_page_alloc(object,
 1197                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
 1198                         if (p == NULL)
 1199                                 break;
 1200                         p->oflags |= VPO_SWAPINPROG;
 1201                 }
 1202                 *rahead = i;
 1203         }
 1204         if (rbehind != NULL)
 1205                 count += *rbehind;
 1206         if (rahead != NULL)
 1207                 count += *rahead;
 1208 
 1209         vm_object_pip_add(object, count);
 1210 
 1211         pindex = bm->pindex;
 1212         blk = swp_pager_meta_ctl(object, pindex, 0);
 1213         KASSERT(blk != SWAPBLK_NONE,
 1214             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
 1215 
 1216         VM_OBJECT_WUNLOCK(object);
 1217         bp = getpbuf(&nsw_rcount);
 1218         /* Pages cannot leave the object while busy. */
 1219         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
 1220                 MPASS(p->pindex == bm->pindex + i);
 1221                 bp->b_pages[i] = p;
 1222         }
 1223 
 1224         bp->b_flags |= B_PAGING;
 1225         bp->b_iocmd = BIO_READ;
 1226         bp->b_iodone = swp_pager_async_iodone;
 1227         bp->b_rcred = crhold(thread0.td_ucred);
 1228         bp->b_wcred = crhold(thread0.td_ucred);
 1229         bp->b_blkno = blk;
 1230         bp->b_bcount = PAGE_SIZE * count;
 1231         bp->b_bufsize = PAGE_SIZE * count;
 1232         bp->b_npages = count;
 1233         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
 1234         bp->b_pgafter = rahead != NULL ? *rahead : 0;
 1235 
 1236         VM_CNT_INC(v_swapin);
 1237         VM_CNT_ADD(v_swappgsin, count);
 1238 
 1239         /*
 1240          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
 1241          * this point because we automatically release it on completion.
 1242          * Instead, we look at the one page we are interested in which we
 1243          * still hold a lock on even through the I/O completion.
 1244          *
 1245          * The other pages in our ma[] array are also released on completion,
 1246          * so we cannot assume they are valid anymore either.
 1247          *
 1248          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1249          */
 1250         BUF_KERNPROC(bp);
 1251         swp_pager_strategy(bp);
 1252 
 1253         /*
 1254          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
 1255          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
 1256          * is set in the metadata for each page in the request.
 1257          */
 1258         VM_OBJECT_WLOCK(object);
 1259         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
 1260                 ma[0]->oflags |= VPO_SWAPSLEEP;
 1261                 VM_CNT_INC(v_intrans);
 1262                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
 1263                     "swread", hz * 20)) {
 1264                         printf(
 1265 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
 1266                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
 1267                 }
 1268         }
 1269 
 1270         /*
 1271          * If we had an unrecoverable read error pages will not be valid.
 1272          */
 1273         for (i = 0; i < reqcount; i++)
 1274                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
 1275                         return (VM_PAGER_ERROR);
 1276 
 1277         return (VM_PAGER_OK);
 1278 
 1279         /*
 1280          * A final note: in a low swap situation, we cannot deallocate swap
 1281          * and mark a page dirty here because the caller is likely to mark
 1282          * the page clean when we return, causing the page to possibly revert
 1283          * to all-zero's later.
 1284          */
 1285 }
 1286 
 1287 /*
 1288  *      swap_pager_getpages_async():
 1289  *
 1290  *      Right now this is emulation of asynchronous operation on top of
 1291  *      swap_pager_getpages().
 1292  */
 1293 static int
 1294 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
 1295     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
 1296 {
 1297         int r, error;
 1298 
 1299         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
 1300         VM_OBJECT_WUNLOCK(object);
 1301         switch (r) {
 1302         case VM_PAGER_OK:
 1303                 error = 0;
 1304                 break;
 1305         case VM_PAGER_ERROR:
 1306                 error = EIO;
 1307                 break;
 1308         case VM_PAGER_FAIL:
 1309                 error = EINVAL;
 1310                 break;
 1311         default:
 1312                 panic("unhandled swap_pager_getpages() error %d", r);
 1313         }
 1314         (iodone)(arg, ma, count, error);
 1315         VM_OBJECT_WLOCK(object);
 1316 
 1317         return (r);
 1318 }
 1319 
 1320 /*
 1321  *      swap_pager_putpages:
 1322  *
 1323  *      Assign swap (if necessary) and initiate I/O on the specified pages.
 1324  *
 1325  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
 1326  *      are automatically converted to SWAP objects.
 1327  *
 1328  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
 1329  *      vm_page reservation system coupled with properly written VFS devices
 1330  *      should ensure that no low-memory deadlock occurs.  This is an area
 1331  *      which needs work.
 1332  *
 1333  *      The parent has N vm_object_pip_add() references prior to
 1334  *      calling us and will remove references for rtvals[] that are
 1335  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
 1336  *      completion.
 1337  *
 1338  *      The parent has soft-busy'd the pages it passes us and will unbusy
 1339  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
 1340  *      We need to unbusy the rest on I/O completion.
 1341  */
 1342 static void
 1343 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
 1344     int flags, int *rtvals)
 1345 {
 1346         int i, n;
 1347         boolean_t sync;
 1348         daddr_t addr, n_free, s_free;
 1349 
 1350         swp_pager_init_freerange(&s_free, &n_free);
 1351         if (count && ma[0]->object != object) {
 1352                 panic("swap_pager_putpages: object mismatch %p/%p",
 1353                     object,
 1354                     ma[0]->object
 1355                 );
 1356         }
 1357 
 1358         /*
 1359          * Step 1
 1360          *
 1361          * Turn object into OBJT_SWAP
 1362          * check for bogus sysops
 1363          * force sync if not pageout process
 1364          */
 1365         if (object->type != OBJT_SWAP) {
 1366                 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
 1367                 KASSERT(addr == SWAPBLK_NONE,
 1368                     ("unexpected object swap block"));
 1369         }
 1370         VM_OBJECT_WUNLOCK(object);
 1371 
 1372         n = 0;
 1373         if (curproc != pageproc)
 1374                 sync = TRUE;
 1375         else
 1376                 sync = (flags & VM_PAGER_PUT_SYNC) != 0;
 1377 
 1378         /*
 1379          * Step 2
 1380          *
 1381          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
 1382          * The page is left dirty until the pageout operation completes
 1383          * successfully.
 1384          */
 1385         for (i = 0; i < count; i += n) {
 1386                 int j;
 1387                 struct buf *bp;
 1388                 daddr_t blk;
 1389 
 1390                 /*
 1391                  * Maximum I/O size is limited by a number of factors.
 1392                  */
 1393                 n = min(BLIST_MAX_ALLOC, count - i);
 1394                 n = min(n, nsw_cluster_max);
 1395 
 1396                 /*
 1397                  * Get biggest block of swap we can.  If we fail, fall
 1398                  * back and try to allocate a smaller block.  Don't go
 1399                  * overboard trying to allocate space if it would overly
 1400                  * fragment swap.
 1401                  */
 1402                 while (
 1403                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
 1404                     n > 4
 1405                 ) {
 1406                         n >>= 1;
 1407                 }
 1408                 if (blk == SWAPBLK_NONE) {
 1409                         for (j = 0; j < n; ++j)
 1410                                 rtvals[i+j] = VM_PAGER_FAIL;
 1411                         continue;
 1412                 }
 1413 
 1414                 /*
 1415                  * All I/O parameters have been satisfied, build the I/O
 1416                  * request and assign the swap space.
 1417                  */
 1418                 if (sync == TRUE) {
 1419                         bp = getpbuf(&nsw_wcount_sync);
 1420                 } else {
 1421                         bp = getpbuf(&nsw_wcount_async);
 1422                         bp->b_flags = B_ASYNC;
 1423                 }
 1424                 bp->b_flags |= B_PAGING;
 1425                 bp->b_iocmd = BIO_WRITE;
 1426 
 1427                 bp->b_rcred = crhold(thread0.td_ucred);
 1428                 bp->b_wcred = crhold(thread0.td_ucred);
 1429                 bp->b_bcount = PAGE_SIZE * n;
 1430                 bp->b_bufsize = PAGE_SIZE * n;
 1431                 bp->b_blkno = blk;
 1432 
 1433                 VM_OBJECT_WLOCK(object);
 1434                 for (j = 0; j < n; ++j) {
 1435                         vm_page_t mreq = ma[i+j];
 1436 
 1437                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
 1438                             blk + j);
 1439                         if (addr != SWAPBLK_NONE)
 1440                                 swp_pager_update_freerange(&s_free, &n_free,
 1441                                     addr);
 1442                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
 1443                         mreq->oflags |= VPO_SWAPINPROG;
 1444                         bp->b_pages[j] = mreq;
 1445                 }
 1446                 VM_OBJECT_WUNLOCK(object);
 1447                 bp->b_npages = n;
 1448                 /*
 1449                  * Must set dirty range for NFS to work.
 1450                  */
 1451                 bp->b_dirtyoff = 0;
 1452                 bp->b_dirtyend = bp->b_bcount;
 1453 
 1454                 VM_CNT_INC(v_swapout);
 1455                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
 1456 
 1457                 /*
 1458                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
 1459                  * can call the async completion routine at the end of a
 1460                  * synchronous I/O operation.  Otherwise, our caller would
 1461                  * perform duplicate unbusy and wakeup operations on the page
 1462                  * and object, respectively.
 1463                  */
 1464                 for (j = 0; j < n; j++)
 1465                         rtvals[i + j] = VM_PAGER_PEND;
 1466 
 1467                 /*
 1468                  * asynchronous
 1469                  *
 1470                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1471                  */
 1472                 if (sync == FALSE) {
 1473                         bp->b_iodone = swp_pager_async_iodone;
 1474                         BUF_KERNPROC(bp);
 1475                         swp_pager_strategy(bp);
 1476                         continue;
 1477                 }
 1478 
 1479                 /*
 1480                  * synchronous
 1481                  *
 1482                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1483                  */
 1484                 bp->b_iodone = bdone;
 1485                 swp_pager_strategy(bp);
 1486 
 1487                 /*
 1488                  * Wait for the sync I/O to complete.
 1489                  */
 1490                 bwait(bp, PVM, "swwrt");
 1491 
 1492                 /*
 1493                  * Now that we are through with the bp, we can call the
 1494                  * normal async completion, which frees everything up.
 1495                  */
 1496                 swp_pager_async_iodone(bp);
 1497         }
 1498         VM_OBJECT_WLOCK(object);
 1499         swp_pager_freeswapspace(s_free, n_free);
 1500 }
 1501 
 1502 /*
 1503  *      swp_pager_async_iodone:
 1504  *
 1505  *      Completion routine for asynchronous reads and writes from/to swap.
 1506  *      Also called manually by synchronous code to finish up a bp.
 1507  *
 1508  *      This routine may not sleep.
 1509  */
 1510 static void
 1511 swp_pager_async_iodone(struct buf *bp)
 1512 {
 1513         int i;
 1514         vm_object_t object = NULL;
 1515 
 1516         /*
 1517          * report error
 1518          */
 1519         if (bp->b_ioflags & BIO_ERROR) {
 1520                 printf(
 1521                     "swap_pager: I/O error - %s failed; blkno %ld,"
 1522                         "size %ld, error %d\n",
 1523                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
 1524                     (long)bp->b_blkno,
 1525                     (long)bp->b_bcount,
 1526                     bp->b_error
 1527                 );
 1528         }
 1529 
 1530         /*
 1531          * remove the mapping for kernel virtual
 1532          */
 1533         if (buf_mapped(bp))
 1534                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
 1535         else
 1536                 bp->b_data = bp->b_kvabase;
 1537 
 1538         if (bp->b_npages) {
 1539                 object = bp->b_pages[0]->object;
 1540                 VM_OBJECT_WLOCK(object);
 1541         }
 1542 
 1543         /*
 1544          * cleanup pages.  If an error occurs writing to swap, we are in
 1545          * very serious trouble.  If it happens to be a disk error, though,
 1546          * we may be able to recover by reassigning the swap later on.  So
 1547          * in this case we remove the m->swapblk assignment for the page
 1548          * but do not free it in the rlist.  The errornous block(s) are thus
 1549          * never reallocated as swap.  Redirty the page and continue.
 1550          */
 1551         for (i = 0; i < bp->b_npages; ++i) {
 1552                 vm_page_t m = bp->b_pages[i];
 1553 
 1554                 m->oflags &= ~VPO_SWAPINPROG;
 1555                 if (m->oflags & VPO_SWAPSLEEP) {
 1556                         m->oflags &= ~VPO_SWAPSLEEP;
 1557                         wakeup(&object->paging_in_progress);
 1558                 }
 1559 
 1560                 if (bp->b_ioflags & BIO_ERROR) {
 1561                         /*
 1562                          * If an error occurs I'd love to throw the swapblk
 1563                          * away without freeing it back to swapspace, so it
 1564                          * can never be used again.  But I can't from an
 1565                          * interrupt.
 1566                          */
 1567                         if (bp->b_iocmd == BIO_READ) {
 1568                                 /*
 1569                                  * NOTE: for reads, m->dirty will probably
 1570                                  * be overridden by the original caller of
 1571                                  * getpages so don't play cute tricks here.
 1572                                  */
 1573                                 m->valid = 0;
 1574                         } else {
 1575                                 /*
 1576                                  * If a write error occurs, reactivate page
 1577                                  * so it doesn't clog the inactive list,
 1578                                  * then finish the I/O.
 1579                                  */
 1580                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
 1581                                 vm_page_lock(m);
 1582                                 vm_page_activate(m);
 1583                                 vm_page_unlock(m);
 1584                                 vm_page_sunbusy(m);
 1585                         }
 1586                 } else if (bp->b_iocmd == BIO_READ) {
 1587                         /*
 1588                          * NOTE: for reads, m->dirty will probably be
 1589                          * overridden by the original caller of getpages so
 1590                          * we cannot set them in order to free the underlying
 1591                          * swap in a low-swap situation.  I don't think we'd
 1592                          * want to do that anyway, but it was an optimization
 1593                          * that existed in the old swapper for a time before
 1594                          * it got ripped out due to precisely this problem.
 1595                          */
 1596                         KASSERT(!pmap_page_is_mapped(m),
 1597                             ("swp_pager_async_iodone: page %p is mapped", m));
 1598                         KASSERT(m->dirty == 0,
 1599                             ("swp_pager_async_iodone: page %p is dirty", m));
 1600 
 1601                         m->valid = VM_PAGE_BITS_ALL;
 1602                         if (i < bp->b_pgbefore ||
 1603                             i >= bp->b_npages - bp->b_pgafter)
 1604                                 vm_page_readahead_finish(m);
 1605                 } else {
 1606                         /*
 1607                          * For write success, clear the dirty
 1608                          * status, then finish the I/O ( which decrements the
 1609                          * busy count and possibly wakes waiter's up ).
 1610                          * A page is only written to swap after a period of
 1611                          * inactivity.  Therefore, we do not expect it to be
 1612                          * reused.
 1613                          */
 1614                         KASSERT(!pmap_page_is_write_mapped(m),
 1615                             ("swp_pager_async_iodone: page %p is not write"
 1616                             " protected", m));
 1617                         vm_page_undirty(m);
 1618                         vm_page_lock(m);
 1619                         vm_page_deactivate_noreuse(m);
 1620                         vm_page_unlock(m);
 1621                         vm_page_sunbusy(m);
 1622                 }
 1623         }
 1624 
 1625         /*
 1626          * adjust pip.  NOTE: the original parent may still have its own
 1627          * pip refs on the object.
 1628          */
 1629         if (object != NULL) {
 1630                 vm_object_pip_wakeupn(object, bp->b_npages);
 1631                 VM_OBJECT_WUNLOCK(object);
 1632         }
 1633 
 1634         /*
 1635          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
 1636          * bstrategy(). Set them back to NULL now we're done with it, or we'll
 1637          * trigger a KASSERT in relpbuf().
 1638          */
 1639         if (bp->b_vp) {
 1640                     bp->b_vp = NULL;
 1641                     bp->b_bufobj = NULL;
 1642         }
 1643         /*
 1644          * release the physical I/O buffer
 1645          */
 1646         relpbuf(
 1647             bp,
 1648             ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
 1649                 ((bp->b_flags & B_ASYNC) ?
 1650                     &nsw_wcount_async :
 1651                     &nsw_wcount_sync
 1652                 )
 1653             )
 1654         );
 1655 }
 1656 
 1657 int
 1658 swap_pager_nswapdev(void)
 1659 {
 1660 
 1661         return (nswapdev);
 1662 }
 1663 
 1664 static void
 1665 swp_pager_force_dirty(vm_page_t m)
 1666 {
 1667 
 1668         vm_page_dirty(m);
 1669 #ifdef INVARIANTS
 1670         vm_page_lock(m);
 1671         if (!vm_page_wired(m) && m->queue == PQ_NONE)
 1672                 panic("page %p is neither wired nor queued", m);
 1673         vm_page_unlock(m);
 1674 #endif
 1675         vm_page_xunbusy(m);
 1676         swap_pager_unswapped(m);
 1677 }
 1678 
 1679 static void
 1680 swp_pager_force_launder(vm_page_t m)
 1681 {
 1682 
 1683         vm_page_dirty(m);
 1684         vm_page_lock(m);
 1685         vm_page_launder(m);
 1686         vm_page_unlock(m);
 1687         vm_page_xunbusy(m);
 1688         swap_pager_unswapped(m);
 1689 }
 1690 
 1691 /*
 1692  * SWP_PAGER_FORCE_PAGEIN() - force swap blocks to be paged in
 1693  *
 1694  *      This routine dissociates pages starting at the given index within an
 1695  *      object from their backing store, paging them in if they do not reside
 1696  *      in memory.  Pages that are paged in are marked dirty and placed in the
 1697  *      laundry queue.  Pages are marked dirty because they no longer have
 1698  *      backing store.  They are placed in the laundry queue because they have
 1699  *      not been accessed recently.  Otherwise, they would already reside in
 1700  *      memory.
 1701  */
 1702 static void
 1703 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex, int npages)
 1704 {
 1705         vm_page_t ma[npages];
 1706         int i, j;
 1707 
 1708         KASSERT(npages > 0, ("%s: No pages", __func__));
 1709         KASSERT(npages <= MAXPHYS / PAGE_SIZE,
 1710             ("%s: Too many pages: %d", __func__, npages));
 1711         vm_object_pip_add(object, npages);
 1712         vm_page_grab_pages(object, pindex, VM_ALLOC_NORMAL, ma, npages);
 1713         for (i = j = 0;; i++) {
 1714                 /* Count nonresident pages, to page-in all at once. */
 1715                 if (i < npages && ma[i]->valid != VM_PAGE_BITS_ALL)
 1716                         continue;
 1717                 if (j < i) {
 1718                         /* Page-in nonresident pages. Mark for laundering. */
 1719                         if (swap_pager_getpages(object, &ma[j], i - j, NULL,
 1720                             NULL) != VM_PAGER_OK)
 1721                                 panic("%s: read from swap failed", __func__);
 1722                         do {
 1723                                 swp_pager_force_launder(ma[j]);
 1724                         } while (++j < i);
 1725                 }
 1726                 if (i == npages)
 1727                         break;
 1728                 /* Mark dirty a resident page. */
 1729                 swp_pager_force_dirty(ma[j++]);
 1730         }
 1731         vm_object_pip_wakeupn(object, npages);
 1732 }
 1733 
 1734 /*
 1735  *      swap_pager_swapoff_object:
 1736  *
 1737  *      Page in all of the pages that have been paged out for an object
 1738  *      to a swap device.
 1739  */
 1740 static void
 1741 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
 1742 {
 1743         struct swblk *sb;
 1744         vm_pindex_t pi, s_pindex;
 1745         daddr_t blk, n_blks, s_blk;
 1746         int i;
 1747 
 1748         n_blks = 0;
 1749         for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
 1750             &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
 1751                 for (i = 0; i < SWAP_META_PAGES; i++) {
 1752                         blk = sb->d[i];
 1753                         if (!swp_pager_isondev(blk, sp))
 1754                                 blk = SWAPBLK_NONE;
 1755 
 1756                         /*
 1757                          * If there are no blocks/pages accumulated, start a new
 1758                          * accumulation here.
 1759                          */
 1760                         if (n_blks == 0) {
 1761                                 if (blk != SWAPBLK_NONE) {
 1762                                         s_blk = blk;
 1763                                         s_pindex = sb->p + i;
 1764                                         n_blks = 1;
 1765                                 }
 1766                                 continue;
 1767                         }
 1768 
 1769                         /*
 1770                          * If the accumulation can be extended without breaking
 1771                          * the sequence of consecutive blocks and pages that
 1772                          * swp_pager_force_pagein() depends on, do so.
 1773                          */
 1774                         if (n_blks < MAXPHYS / PAGE_SIZE &&
 1775                             s_blk + n_blks == blk &&
 1776                             s_pindex + n_blks == sb->p + i) {
 1777                                 ++n_blks;
 1778                                 continue;
 1779                         }
 1780 
 1781                         /*
 1782                          * The sequence of consecutive blocks and pages cannot
 1783                          * be extended, so page them all in here.  Then,
 1784                          * because doing so involves releasing and reacquiring
 1785                          * a lock that protects the swap block pctrie, do not
 1786                          * rely on the current swap block.  Break this loop and
 1787                          * re-fetch the same pindex from the pctrie again.
 1788                          */
 1789                         swp_pager_force_pagein(object, s_pindex, n_blks);
 1790                         n_blks = 0;
 1791                         break;
 1792                 }
 1793                 if (i == SWAP_META_PAGES)
 1794                         pi = sb->p + SWAP_META_PAGES;
 1795         }
 1796         if (n_blks > 0)
 1797                 swp_pager_force_pagein(object, s_pindex, n_blks);
 1798 }
 1799 
 1800 /*
 1801  *      swap_pager_swapoff:
 1802  *
 1803  *      Page in all of the pages that have been paged out to the
 1804  *      given device.  The corresponding blocks in the bitmap must be
 1805  *      marked as allocated and the device must be flagged SW_CLOSING.
 1806  *      There may be no processes swapped out to the device.
 1807  *
 1808  *      This routine may block.
 1809  */
 1810 static void
 1811 swap_pager_swapoff(struct swdevt *sp)
 1812 {
 1813         vm_object_t object;
 1814         int retries;
 1815 
 1816         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
 1817 
 1818         retries = 0;
 1819 full_rescan:
 1820         mtx_lock(&vm_object_list_mtx);
 1821         TAILQ_FOREACH(object, &vm_object_list, object_list) {
 1822                 if (object->type != OBJT_SWAP)
 1823                         continue;
 1824                 mtx_unlock(&vm_object_list_mtx);
 1825                 /* Depends on type-stability. */
 1826                 VM_OBJECT_WLOCK(object);
 1827 
 1828                 /*
 1829                  * Dead objects are eventually terminated on their own.
 1830                  */
 1831                 if ((object->flags & OBJ_DEAD) != 0)
 1832                         goto next_obj;
 1833 
 1834                 /*
 1835                  * Sync with fences placed after pctrie
 1836                  * initialization.  We must not access pctrie below
 1837                  * unless we checked that our object is swap and not
 1838                  * dead.
 1839                  */
 1840                 atomic_thread_fence_acq();
 1841                 if (object->type != OBJT_SWAP)
 1842                         goto next_obj;
 1843 
 1844                 swap_pager_swapoff_object(sp, object);
 1845 next_obj:
 1846                 VM_OBJECT_WUNLOCK(object);
 1847                 mtx_lock(&vm_object_list_mtx);
 1848         }
 1849         mtx_unlock(&vm_object_list_mtx);
 1850 
 1851         if (sp->sw_used) {
 1852                 /*
 1853                  * Objects may be locked or paging to the device being
 1854                  * removed, so we will miss their pages and need to
 1855                  * make another pass.  We have marked this device as
 1856                  * SW_CLOSING, so the activity should finish soon.
 1857                  */
 1858                 retries++;
 1859                 if (retries > 100) {
 1860                         panic("swapoff: failed to locate %d swap blocks",
 1861                             sp->sw_used);
 1862                 }
 1863                 pause("swpoff", hz / 20);
 1864                 goto full_rescan;
 1865         }
 1866         EVENTHANDLER_INVOKE(swapoff, sp);
 1867 }
 1868 
 1869 /************************************************************************
 1870  *                              SWAP META DATA                          *
 1871  ************************************************************************
 1872  *
 1873  *      These routines manipulate the swap metadata stored in the
 1874  *      OBJT_SWAP object.
 1875  *
 1876  *      Swap metadata is implemented with a global hash and not directly
 1877  *      linked into the object.  Instead the object simply contains
 1878  *      appropriate tracking counters.
 1879  */
 1880 
 1881 /*
 1882  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
 1883  */
 1884 static bool
 1885 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
 1886 {
 1887         int i;
 1888 
 1889         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
 1890         for (i = start; i < limit; i++) {
 1891                 if (sb->d[i] != SWAPBLK_NONE)
 1892                         return (false);
 1893         }
 1894         return (true);
 1895 }
 1896    
 1897 /*
 1898  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
 1899  *
 1900  *      We first convert the object to a swap object if it is a default
 1901  *      object.
 1902  *
 1903  *      The specified swapblk is added to the object's swap metadata.  If
 1904  *      the swapblk is not valid, it is freed instead.  Any previously
 1905  *      assigned swapblk is returned.
 1906  */
 1907 static daddr_t
 1908 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
 1909 {
 1910         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
 1911         struct swblk *sb, *sb1;
 1912         vm_pindex_t modpi, rdpi;
 1913         daddr_t prev_swapblk;
 1914         int error, i;
 1915 
 1916         VM_OBJECT_ASSERT_WLOCKED(object);
 1917 
 1918         /*
 1919          * Convert default object to swap object if necessary
 1920          */
 1921         if (object->type != OBJT_SWAP) {
 1922                 pctrie_init(&object->un_pager.swp.swp_blks);
 1923 
 1924                 /*
 1925                  * Ensure that swap_pager_swapoff()'s iteration over
 1926                  * object_list does not see a garbage pctrie.
 1927                  */
 1928                 atomic_thread_fence_rel();
 1929 
 1930                 object->type = OBJT_SWAP;
 1931                 object->un_pager.swp.writemappings = 0;
 1932                 KASSERT(object->handle == NULL, ("default pager with handle"));
 1933         }
 1934 
 1935         rdpi = rounddown(pindex, SWAP_META_PAGES);
 1936         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
 1937         if (sb == NULL) {
 1938                 if (swapblk == SWAPBLK_NONE)
 1939                         return (SWAPBLK_NONE);
 1940                 for (;;) {
 1941                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
 1942                             pageproc ? M_USE_RESERVE : 0));
 1943                         if (sb != NULL) {
 1944                                 sb->p = rdpi;
 1945                                 for (i = 0; i < SWAP_META_PAGES; i++)
 1946                                         sb->d[i] = SWAPBLK_NONE;
 1947                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
 1948                                     1, 0))
 1949                                         printf("swblk zone ok\n");
 1950                                 break;
 1951                         }
 1952                         VM_OBJECT_WUNLOCK(object);
 1953                         if (uma_zone_exhausted(swblk_zone)) {
 1954                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
 1955                                     0, 1))
 1956                                         printf("swap blk zone exhausted, "
 1957                                             "increase kern.maxswzone\n");
 1958                                 vm_pageout_oom(VM_OOM_SWAPZ);
 1959                                 pause("swzonxb", 10);
 1960                         } else
 1961                                 uma_zwait(swblk_zone);
 1962                         VM_OBJECT_WLOCK(object);
 1963                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
 1964                             rdpi);
 1965                         if (sb != NULL)
 1966                                 /*
 1967                                  * Somebody swapped out a nearby page,
 1968                                  * allocating swblk at the rdpi index,
 1969                                  * while we dropped the object lock.
 1970                                  */
 1971                                 goto allocated;
 1972                 }
 1973                 for (;;) {
 1974                         error = SWAP_PCTRIE_INSERT(
 1975                             &object->un_pager.swp.swp_blks, sb);
 1976                         if (error == 0) {
 1977                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
 1978                                     1, 0))
 1979                                         printf("swpctrie zone ok\n");
 1980                                 break;
 1981                         }
 1982                         VM_OBJECT_WUNLOCK(object);
 1983                         if (uma_zone_exhausted(swpctrie_zone)) {
 1984                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
 1985                                     0, 1))
 1986                                         printf("swap pctrie zone exhausted, "
 1987                                             "increase kern.maxswzone\n");
 1988                                 vm_pageout_oom(VM_OOM_SWAPZ);
 1989                                 pause("swzonxp", 10);
 1990                         } else
 1991                                 uma_zwait(swpctrie_zone);
 1992                         VM_OBJECT_WLOCK(object);
 1993                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
 1994                             rdpi);
 1995                         if (sb1 != NULL) {
 1996                                 uma_zfree(swblk_zone, sb);
 1997                                 sb = sb1;
 1998                                 goto allocated;
 1999                         }
 2000                 }
 2001         }
 2002 allocated:
 2003         MPASS(sb->p == rdpi);
 2004 
 2005         modpi = pindex % SWAP_META_PAGES;
 2006         /* Return prior contents of metadata. */
 2007         prev_swapblk = sb->d[modpi];
 2008         /* Enter block into metadata. */
 2009         sb->d[modpi] = swapblk;
 2010 
 2011         /*
 2012          * Free the swblk if we end up with the empty page run.
 2013          */
 2014         if (swapblk == SWAPBLK_NONE &&
 2015             swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
 2016                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi);
 2017                 uma_zfree(swblk_zone, sb);
 2018         }
 2019         return (prev_swapblk);
 2020 }
 2021 
 2022 /*
 2023  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
 2024  *
 2025  *      The requested range of blocks is freed, with any associated swap
 2026  *      returned to the swap bitmap.
 2027  *
 2028  *      This routine will free swap metadata structures as they are cleaned
 2029  *      out.  This routine does *NOT* operate on swap metadata associated
 2030  *      with resident pages.
 2031  */
 2032 static void
 2033 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
 2034 {
 2035         struct swblk *sb;
 2036         daddr_t n_free, s_free;
 2037         vm_pindex_t last;
 2038         int i, limit, start;
 2039 
 2040         VM_OBJECT_ASSERT_WLOCKED(object);
 2041         if (object->type != OBJT_SWAP || count == 0)
 2042                 return;
 2043 
 2044         swp_pager_init_freerange(&s_free, &n_free);
 2045         last = pindex + count;
 2046         for (;;) {
 2047                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
 2048                     rounddown(pindex, SWAP_META_PAGES));
 2049                 if (sb == NULL || sb->p >= last)
 2050                         break;
 2051                 start = pindex > sb->p ? pindex - sb->p : 0;
 2052                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
 2053                     SWAP_META_PAGES;
 2054                 for (i = start; i < limit; i++) {
 2055                         if (sb->d[i] == SWAPBLK_NONE)
 2056                                 continue;
 2057                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
 2058                         sb->d[i] = SWAPBLK_NONE;
 2059                 }
 2060                 pindex = sb->p + SWAP_META_PAGES;
 2061                 if (swp_pager_swblk_empty(sb, 0, start) &&
 2062                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
 2063                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
 2064                             sb->p);
 2065                         uma_zfree(swblk_zone, sb);
 2066                 }
 2067         }
 2068         swp_pager_freeswapspace(s_free, n_free);
 2069 }
 2070 
 2071 /*
 2072  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
 2073  *
 2074  *      This routine locates and destroys all swap metadata associated with
 2075  *      an object.
 2076  */
 2077 static void
 2078 swp_pager_meta_free_all(vm_object_t object)
 2079 {
 2080         struct swblk *sb;
 2081         daddr_t n_free, s_free;
 2082         vm_pindex_t pindex;
 2083         int i;
 2084 
 2085         VM_OBJECT_ASSERT_WLOCKED(object);
 2086         if (object->type != OBJT_SWAP)
 2087                 return;
 2088 
 2089         swp_pager_init_freerange(&s_free, &n_free);
 2090         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
 2091             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
 2092                 pindex = sb->p + SWAP_META_PAGES;
 2093                 for (i = 0; i < SWAP_META_PAGES; i++) {
 2094                         if (sb->d[i] == SWAPBLK_NONE)
 2095                                 continue;
 2096                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
 2097                 }
 2098                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
 2099                 uma_zfree(swblk_zone, sb);
 2100         }
 2101         swp_pager_freeswapspace(s_free, n_free);
 2102 }
 2103 
 2104 /*
 2105  * SWP_PAGER_METACTL() -  misc control of swap meta data.
 2106  *
 2107  *      This routine is capable of looking up, or removing swapblk
 2108  *      assignments in the swap meta data.  It returns the swapblk being
 2109  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
 2110  *
 2111  *      When acting on a busy resident page and paging is in progress, we
 2112  *      have to wait until paging is complete but otherwise can act on the
 2113  *      busy page.
 2114  *
 2115  *      SWM_POP         remove from meta data but do not free it
 2116  */
 2117 static daddr_t
 2118 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
 2119 {
 2120         struct swblk *sb;
 2121         daddr_t r1;
 2122 
 2123         if ((flags & SWM_POP) != 0)
 2124                 VM_OBJECT_ASSERT_WLOCKED(object);
 2125         else
 2126                 VM_OBJECT_ASSERT_LOCKED(object);
 2127 
 2128         /*
 2129          * The meta data only exists if the object is OBJT_SWAP
 2130          * and even then might not be allocated yet.
 2131          */
 2132         if (object->type != OBJT_SWAP)
 2133                 return (SWAPBLK_NONE);
 2134 
 2135         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
 2136             rounddown(pindex, SWAP_META_PAGES));
 2137         if (sb == NULL)
 2138                 return (SWAPBLK_NONE);
 2139         r1 = sb->d[pindex % SWAP_META_PAGES];
 2140         if (r1 == SWAPBLK_NONE)
 2141                 return (SWAPBLK_NONE);
 2142         if ((flags & SWM_POP) != 0) {
 2143                 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
 2144                 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
 2145                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
 2146                             rounddown(pindex, SWAP_META_PAGES));
 2147                         uma_zfree(swblk_zone, sb);
 2148                 }
 2149         }
 2150         return (r1);
 2151 }
 2152 
 2153 /*
 2154  * Returns the least page index which is greater than or equal to the
 2155  * parameter pindex and for which there is a swap block allocated.
 2156  * Returns object's size if the object's type is not swap or if there
 2157  * are no allocated swap blocks for the object after the requested
 2158  * pindex.
 2159  */
 2160 vm_pindex_t
 2161 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
 2162 {
 2163         struct swblk *sb;
 2164         int i;
 2165 
 2166         VM_OBJECT_ASSERT_LOCKED(object);
 2167         if (object->type != OBJT_SWAP)
 2168                 return (object->size);
 2169 
 2170         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
 2171             rounddown(pindex, SWAP_META_PAGES));
 2172         if (sb == NULL)
 2173                 return (object->size);
 2174         if (sb->p < pindex) {
 2175                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
 2176                         if (sb->d[i] != SWAPBLK_NONE)
 2177                                 return (sb->p + i);
 2178                 }
 2179                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
 2180                     roundup(pindex, SWAP_META_PAGES));
 2181                 if (sb == NULL)
 2182                         return (object->size);
 2183         }
 2184         for (i = 0; i < SWAP_META_PAGES; i++) {
 2185                 if (sb->d[i] != SWAPBLK_NONE)
 2186                         return (sb->p + i);
 2187         }
 2188 
 2189         /*
 2190          * We get here if a swblk is present in the trie but it
 2191          * doesn't map any blocks.
 2192          */
 2193         MPASS(0);
 2194         return (object->size);
 2195 }
 2196 
 2197 /*
 2198  * System call swapon(name) enables swapping on device name,
 2199  * which must be in the swdevsw.  Return EBUSY
 2200  * if already swapping on this device.
 2201  */
 2202 #ifndef _SYS_SYSPROTO_H_
 2203 struct swapon_args {
 2204         char *name;
 2205 };
 2206 #endif
 2207 
 2208 /*
 2209  * MPSAFE
 2210  */
 2211 /* ARGSUSED */
 2212 int
 2213 sys_swapon(struct thread *td, struct swapon_args *uap)
 2214 {
 2215         struct vattr attr;
 2216         struct vnode *vp;
 2217         struct nameidata nd;
 2218         int error;
 2219 
 2220         error = priv_check(td, PRIV_SWAPON);
 2221         if (error)
 2222                 return (error);
 2223 
 2224         sx_xlock(&swdev_syscall_lock);
 2225 
 2226         /*
 2227          * Swap metadata may not fit in the KVM if we have physical
 2228          * memory of >1GB.
 2229          */
 2230         if (swblk_zone == NULL) {
 2231                 error = ENOMEM;
 2232                 goto done;
 2233         }
 2234 
 2235         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
 2236             uap->name, td);
 2237         error = namei(&nd);
 2238         if (error)
 2239                 goto done;
 2240 
 2241         NDFREE(&nd, NDF_ONLY_PNBUF);
 2242         vp = nd.ni_vp;
 2243 
 2244         if (vn_isdisk(vp, &error)) {
 2245                 error = swapongeom(vp);
 2246         } else if (vp->v_type == VREG &&
 2247             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 2248             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
 2249                 /*
 2250                  * Allow direct swapping to NFS regular files in the same
 2251                  * way that nfs_mountroot() sets up diskless swapping.
 2252                  */
 2253                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
 2254         }
 2255 
 2256         if (error)
 2257                 vrele(vp);
 2258 done:
 2259         sx_xunlock(&swdev_syscall_lock);
 2260         return (error);
 2261 }
 2262 
 2263 /*
 2264  * Check that the total amount of swap currently configured does not
 2265  * exceed half the theoretical maximum.  If it does, print a warning
 2266  * message.
 2267  */
 2268 static void
 2269 swapon_check_swzone(void)
 2270 {
 2271 
 2272         /* recommend using no more than half that amount */
 2273         if (swap_total > swap_maxpages / 2) {
 2274                 printf("warning: total configured swap (%lu pages) "
 2275                     "exceeds maximum recommended amount (%lu pages).\n",
 2276                     swap_total, swap_maxpages / 2);
 2277                 printf("warning: increase kern.maxswzone "
 2278                     "or reduce amount of swap.\n");
 2279         }
 2280 }
 2281 
 2282 static void
 2283 swaponsomething(struct vnode *vp, void *id, u_long nblks,
 2284     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
 2285 {
 2286         struct swdevt *sp, *tsp;
 2287         daddr_t dvbase;
 2288         u_long mblocks;
 2289 
 2290         /*
 2291          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
 2292          * First chop nblks off to page-align it, then convert.
 2293          *
 2294          * sw->sw_nblks is in page-sized chunks now too.
 2295          */
 2296         nblks &= ~(ctodb(1) - 1);
 2297         nblks = dbtoc(nblks);
 2298 
 2299         /*
 2300          * If we go beyond this, we get overflows in the radix
 2301          * tree bitmap code.
 2302          */
 2303         mblocks = 0x40000000 / BLIST_META_RADIX;
 2304         if (nblks > mblocks) {
 2305                 printf(
 2306     "WARNING: reducing swap size to maximum of %luMB per unit\n",
 2307                     mblocks / 1024 / 1024 * PAGE_SIZE);
 2308                 nblks = mblocks;
 2309         }
 2310 
 2311         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
 2312         sp->sw_vp = vp;
 2313         sp->sw_id = id;
 2314         sp->sw_dev = dev;
 2315         sp->sw_nblks = nblks;
 2316         sp->sw_used = 0;
 2317         sp->sw_strategy = strategy;
 2318         sp->sw_close = close;
 2319         sp->sw_flags = flags;
 2320 
 2321         sp->sw_blist = blist_create(nblks, M_WAITOK);
 2322         /*
 2323          * Do not free the first blocks in order to avoid overwriting
 2324          * any bsd label at the front of the partition
 2325          */
 2326         blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
 2327             nblks - howmany(BBSIZE, PAGE_SIZE));
 2328 
 2329         dvbase = 0;
 2330         mtx_lock(&sw_dev_mtx);
 2331         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
 2332                 if (tsp->sw_end >= dvbase) {
 2333                         /*
 2334                          * We put one uncovered page between the devices
 2335                          * in order to definitively prevent any cross-device
 2336                          * I/O requests
 2337                          */
 2338                         dvbase = tsp->sw_end + 1;
 2339                 }
 2340         }
 2341         sp->sw_first = dvbase;
 2342         sp->sw_end = dvbase + nblks;
 2343         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
 2344         nswapdev++;
 2345         swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
 2346         swap_total += nblks;
 2347         swapon_check_swzone();
 2348         swp_sizecheck();
 2349         mtx_unlock(&sw_dev_mtx);
 2350         EVENTHANDLER_INVOKE(swapon, sp);
 2351 }
 2352 
 2353 /*
 2354  * SYSCALL: swapoff(devname)
 2355  *
 2356  * Disable swapping on the given device.
 2357  *
 2358  * XXX: Badly designed system call: it should use a device index
 2359  * rather than filename as specification.  We keep sw_vp around
 2360  * only to make this work.
 2361  */
 2362 #ifndef _SYS_SYSPROTO_H_
 2363 struct swapoff_args {
 2364         char *name;
 2365 };
 2366 #endif
 2367 
 2368 /*
 2369  * MPSAFE
 2370  */
 2371 /* ARGSUSED */
 2372 int
 2373 sys_swapoff(struct thread *td, struct swapoff_args *uap)
 2374 {
 2375         struct vnode *vp;
 2376         struct nameidata nd;
 2377         struct swdevt *sp;
 2378         int error;
 2379 
 2380         error = priv_check(td, PRIV_SWAPOFF);
 2381         if (error)
 2382                 return (error);
 2383 
 2384         sx_xlock(&swdev_syscall_lock);
 2385 
 2386         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
 2387             td);
 2388         error = namei(&nd);
 2389         if (error)
 2390                 goto done;
 2391         NDFREE(&nd, NDF_ONLY_PNBUF);
 2392         vp = nd.ni_vp;
 2393 
 2394         mtx_lock(&sw_dev_mtx);
 2395         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2396                 if (sp->sw_vp == vp)
 2397                         break;
 2398         }
 2399         mtx_unlock(&sw_dev_mtx);
 2400         if (sp == NULL) {
 2401                 error = EINVAL;
 2402                 goto done;
 2403         }
 2404         error = swapoff_one(sp, td->td_ucred);
 2405 done:
 2406         sx_xunlock(&swdev_syscall_lock);
 2407         return (error);
 2408 }
 2409 
 2410 static int
 2411 swapoff_one(struct swdevt *sp, struct ucred *cred)
 2412 {
 2413         u_long nblks;
 2414 #ifdef MAC
 2415         int error;
 2416 #endif
 2417 
 2418         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
 2419 #ifdef MAC
 2420         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
 2421         error = mac_system_check_swapoff(cred, sp->sw_vp);
 2422         (void) VOP_UNLOCK(sp->sw_vp, 0);
 2423         if (error != 0)
 2424                 return (error);
 2425 #endif
 2426         nblks = sp->sw_nblks;
 2427 
 2428         /*
 2429          * We can turn off this swap device safely only if the
 2430          * available virtual memory in the system will fit the amount
 2431          * of data we will have to page back in, plus an epsilon so
 2432          * the system doesn't become critically low on swap space.
 2433          */
 2434         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
 2435                 return (ENOMEM);
 2436 
 2437         /*
 2438          * Prevent further allocations on this device.
 2439          */
 2440         mtx_lock(&sw_dev_mtx);
 2441         sp->sw_flags |= SW_CLOSING;
 2442         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
 2443         swap_total -= nblks;
 2444         mtx_unlock(&sw_dev_mtx);
 2445 
 2446         /*
 2447          * Page in the contents of the device and close it.
 2448          */
 2449         swap_pager_swapoff(sp);
 2450 
 2451         sp->sw_close(curthread, sp);
 2452         mtx_lock(&sw_dev_mtx);
 2453         sp->sw_id = NULL;
 2454         TAILQ_REMOVE(&swtailq, sp, sw_list);
 2455         nswapdev--;
 2456         if (nswapdev == 0) {
 2457                 swap_pager_full = 2;
 2458                 swap_pager_almost_full = 1;
 2459         }
 2460         if (swdevhd == sp)
 2461                 swdevhd = NULL;
 2462         mtx_unlock(&sw_dev_mtx);
 2463         blist_destroy(sp->sw_blist);
 2464         free(sp, M_VMPGDATA);
 2465         return (0);
 2466 }
 2467 
 2468 void
 2469 swapoff_all(void)
 2470 {
 2471         struct swdevt *sp, *spt;
 2472         const char *devname;
 2473         int error;
 2474 
 2475         sx_xlock(&swdev_syscall_lock);
 2476 
 2477         mtx_lock(&sw_dev_mtx);
 2478         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
 2479                 mtx_unlock(&sw_dev_mtx);
 2480                 if (vn_isdisk(sp->sw_vp, NULL))
 2481                         devname = devtoname(sp->sw_vp->v_rdev);
 2482                 else
 2483                         devname = "[file]";
 2484                 error = swapoff_one(sp, thread0.td_ucred);
 2485                 if (error != 0) {
 2486                         printf("Cannot remove swap device %s (error=%d), "
 2487                             "skipping.\n", devname, error);
 2488                 } else if (bootverbose) {
 2489                         printf("Swap device %s removed.\n", devname);
 2490                 }
 2491                 mtx_lock(&sw_dev_mtx);
 2492         }
 2493         mtx_unlock(&sw_dev_mtx);
 2494 
 2495         sx_xunlock(&swdev_syscall_lock);
 2496 }
 2497 
 2498 void
 2499 swap_pager_status(int *total, int *used)
 2500 {
 2501         struct swdevt *sp;
 2502 
 2503         *total = 0;
 2504         *used = 0;
 2505         mtx_lock(&sw_dev_mtx);
 2506         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2507                 *total += sp->sw_nblks;
 2508                 *used += sp->sw_used;
 2509         }
 2510         mtx_unlock(&sw_dev_mtx);
 2511 }
 2512 
 2513 int
 2514 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
 2515 {
 2516         struct swdevt *sp;
 2517         const char *tmp_devname;
 2518         int error, n;
 2519 
 2520         n = 0;
 2521         error = ENOENT;
 2522         mtx_lock(&sw_dev_mtx);
 2523         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2524                 if (n != name) {
 2525                         n++;
 2526                         continue;
 2527                 }
 2528                 xs->xsw_version = XSWDEV_VERSION;
 2529                 xs->xsw_dev = sp->sw_dev;
 2530                 xs->xsw_flags = sp->sw_flags;
 2531                 xs->xsw_nblks = sp->sw_nblks;
 2532                 xs->xsw_used = sp->sw_used;
 2533                 if (devname != NULL) {
 2534                         if (vn_isdisk(sp->sw_vp, NULL))
 2535                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
 2536                         else
 2537                                 tmp_devname = "[file]";
 2538                         strncpy(devname, tmp_devname, len);
 2539                 }
 2540                 error = 0;
 2541                 break;
 2542         }
 2543         mtx_unlock(&sw_dev_mtx);
 2544         return (error);
 2545 }
 2546 
 2547 #if defined(COMPAT_FREEBSD11)
 2548 #define XSWDEV_VERSION_11       1
 2549 struct xswdev11 {
 2550         u_int   xsw_version;
 2551         uint32_t xsw_dev;
 2552         int     xsw_flags;
 2553         int     xsw_nblks;
 2554         int     xsw_used;
 2555 };
 2556 #endif
 2557 
 2558 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
 2559 struct xswdev32 {
 2560         u_int   xsw_version;
 2561         u_int   xsw_dev1, xsw_dev2;
 2562         int     xsw_flags;
 2563         int     xsw_nblks;
 2564         int     xsw_used;
 2565 };
 2566 #endif
 2567 
 2568 static int
 2569 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
 2570 {
 2571         struct xswdev xs;
 2572 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
 2573         struct xswdev32 xs32;
 2574 #endif
 2575 #if defined(COMPAT_FREEBSD11)
 2576         struct xswdev11 xs11;
 2577 #endif
 2578         int error;
 2579 
 2580         if (arg2 != 1)                  /* name length */
 2581                 return (EINVAL);
 2582         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
 2583         if (error != 0)
 2584                 return (error);
 2585 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
 2586         if (req->oldlen == sizeof(xs32)) {
 2587                 xs32.xsw_version = XSWDEV_VERSION;
 2588                 xs32.xsw_dev1 = xs.xsw_dev;
 2589                 xs32.xsw_dev2 = xs.xsw_dev >> 32;
 2590                 xs32.xsw_flags = xs.xsw_flags;
 2591                 xs32.xsw_nblks = xs.xsw_nblks;
 2592                 xs32.xsw_used = xs.xsw_used;
 2593                 error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
 2594                 return (error);
 2595         }
 2596 #endif
 2597 #if defined(COMPAT_FREEBSD11)
 2598         if (req->oldlen == sizeof(xs11)) {
 2599                 xs11.xsw_version = XSWDEV_VERSION_11;
 2600                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
 2601                 xs11.xsw_flags = xs.xsw_flags;
 2602                 xs11.xsw_nblks = xs.xsw_nblks;
 2603                 xs11.xsw_used = xs.xsw_used;
 2604                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
 2605                 return (error);
 2606         }
 2607 #endif
 2608         error = SYSCTL_OUT(req, &xs, sizeof(xs));
 2609         return (error);
 2610 }
 2611 
 2612 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
 2613     "Number of swap devices");
 2614 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2615     sysctl_vm_swap_info,
 2616     "Swap statistics by device");
 2617 
 2618 /*
 2619  * Count the approximate swap usage in pages for a vmspace.  The
 2620  * shadowed or not yet copied on write swap blocks are not accounted.
 2621  * The map must be locked.
 2622  */
 2623 long
 2624 vmspace_swap_count(struct vmspace *vmspace)
 2625 {
 2626         vm_map_t map;
 2627         vm_map_entry_t cur;
 2628         vm_object_t object;
 2629         struct swblk *sb;
 2630         vm_pindex_t e, pi;
 2631         long count;
 2632         int i;
 2633 
 2634         map = &vmspace->vm_map;
 2635         count = 0;
 2636 
 2637         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
 2638                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
 2639                         continue;
 2640                 object = cur->object.vm_object;
 2641                 if (object == NULL || object->type != OBJT_SWAP)
 2642                         continue;
 2643                 VM_OBJECT_RLOCK(object);
 2644                 if (object->type != OBJT_SWAP)
 2645                         goto unlock;
 2646                 pi = OFF_TO_IDX(cur->offset);
 2647                 e = pi + OFF_TO_IDX(cur->end - cur->start);
 2648                 for (;; pi = sb->p + SWAP_META_PAGES) {
 2649                         sb = SWAP_PCTRIE_LOOKUP_GE(
 2650                             &object->un_pager.swp.swp_blks, pi);
 2651                         if (sb == NULL || sb->p >= e)
 2652                                 break;
 2653                         for (i = 0; i < SWAP_META_PAGES; i++) {
 2654                                 if (sb->p + i < e &&
 2655                                     sb->d[i] != SWAPBLK_NONE)
 2656                                         count++;
 2657                         }
 2658                 }
 2659 unlock:
 2660                 VM_OBJECT_RUNLOCK(object);
 2661         }
 2662         return (count);
 2663 }
 2664 
 2665 /*
 2666  * GEOM backend
 2667  *
 2668  * Swapping onto disk devices.
 2669  *
 2670  */
 2671 
 2672 static g_orphan_t swapgeom_orphan;
 2673 
 2674 static struct g_class g_swap_class = {
 2675         .name = "SWAP",
 2676         .version = G_VERSION,
 2677         .orphan = swapgeom_orphan,
 2678 };
 2679 
 2680 DECLARE_GEOM_CLASS(g_swap_class, g_class);
 2681 
 2682 
 2683 static void
 2684 swapgeom_close_ev(void *arg, int flags)
 2685 {
 2686         struct g_consumer *cp;
 2687 
 2688         cp = arg;
 2689         g_access(cp, -1, -1, 0);
 2690         g_detach(cp);
 2691         g_destroy_consumer(cp);
 2692 }
 2693 
 2694 /*
 2695  * Add a reference to the g_consumer for an inflight transaction.
 2696  */
 2697 static void
 2698 swapgeom_acquire(struct g_consumer *cp)
 2699 {
 2700 
 2701         mtx_assert(&sw_dev_mtx, MA_OWNED);
 2702         cp->index++;
 2703 }
 2704 
 2705 /*
 2706  * Remove a reference from the g_consumer.  Post a close event if all
 2707  * references go away, since the function might be called from the
 2708  * biodone context.
 2709  */
 2710 static void
 2711 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
 2712 {
 2713 
 2714         mtx_assert(&sw_dev_mtx, MA_OWNED);
 2715         cp->index--;
 2716         if (cp->index == 0) {
 2717                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
 2718                         sp->sw_id = NULL;
 2719         }
 2720 }
 2721 
 2722 static void
 2723 swapgeom_done(struct bio *bp2)
 2724 {
 2725         struct swdevt *sp;
 2726         struct buf *bp;
 2727         struct g_consumer *cp;
 2728 
 2729         bp = bp2->bio_caller2;
 2730         cp = bp2->bio_from;
 2731         bp->b_ioflags = bp2->bio_flags;
 2732         if (bp2->bio_error)
 2733                 bp->b_ioflags |= BIO_ERROR;
 2734         bp->b_resid = bp->b_bcount - bp2->bio_completed;
 2735         bp->b_error = bp2->bio_error;
 2736         bufdone(bp);
 2737         sp = bp2->bio_caller1;
 2738         mtx_lock(&sw_dev_mtx);
 2739         swapgeom_release(cp, sp);
 2740         mtx_unlock(&sw_dev_mtx);
 2741         g_destroy_bio(bp2);
 2742 }
 2743 
 2744 static void
 2745 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
 2746 {
 2747         struct bio *bio;
 2748         struct g_consumer *cp;
 2749 
 2750         mtx_lock(&sw_dev_mtx);
 2751         cp = sp->sw_id;
 2752         if (cp == NULL) {
 2753                 mtx_unlock(&sw_dev_mtx);
 2754                 bp->b_error = ENXIO;
 2755                 bp->b_ioflags |= BIO_ERROR;
 2756                 bufdone(bp);
 2757                 return;
 2758         }
 2759         swapgeom_acquire(cp);
 2760         mtx_unlock(&sw_dev_mtx);
 2761         if (bp->b_iocmd == BIO_WRITE)
 2762                 bio = g_new_bio();
 2763         else
 2764                 bio = g_alloc_bio();
 2765         if (bio == NULL) {
 2766                 mtx_lock(&sw_dev_mtx);
 2767                 swapgeom_release(cp, sp);
 2768                 mtx_unlock(&sw_dev_mtx);
 2769                 bp->b_error = ENOMEM;
 2770                 bp->b_ioflags |= BIO_ERROR;
 2771                 bufdone(bp);
 2772                 return;
 2773         }
 2774 
 2775         bio->bio_caller1 = sp;
 2776         bio->bio_caller2 = bp;
 2777         bio->bio_cmd = bp->b_iocmd;
 2778         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
 2779         bio->bio_length = bp->b_bcount;
 2780         bio->bio_done = swapgeom_done;
 2781         if (!buf_mapped(bp)) {
 2782                 bio->bio_ma = bp->b_pages;
 2783                 bio->bio_data = unmapped_buf;
 2784                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
 2785                 bio->bio_ma_n = bp->b_npages;
 2786                 bio->bio_flags |= BIO_UNMAPPED;
 2787         } else {
 2788                 bio->bio_data = bp->b_data;
 2789                 bio->bio_ma = NULL;
 2790         }
 2791         g_io_request(bio, cp);
 2792         return;
 2793 }
 2794 
 2795 static void
 2796 swapgeom_orphan(struct g_consumer *cp)
 2797 {
 2798         struct swdevt *sp;
 2799         int destroy;
 2800 
 2801         mtx_lock(&sw_dev_mtx);
 2802         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2803                 if (sp->sw_id == cp) {
 2804                         sp->sw_flags |= SW_CLOSING;
 2805                         break;
 2806                 }
 2807         }
 2808         /*
 2809          * Drop reference we were created with. Do directly since we're in a
 2810          * special context where we don't have to queue the call to
 2811          * swapgeom_close_ev().
 2812          */
 2813         cp->index--;
 2814         destroy = ((sp != NULL) && (cp->index == 0));
 2815         if (destroy)
 2816                 sp->sw_id = NULL;
 2817         mtx_unlock(&sw_dev_mtx);
 2818         if (destroy)
 2819                 swapgeom_close_ev(cp, 0);
 2820 }
 2821 
 2822 static void
 2823 swapgeom_close(struct thread *td, struct swdevt *sw)
 2824 {
 2825         struct g_consumer *cp;
 2826 
 2827         mtx_lock(&sw_dev_mtx);
 2828         cp = sw->sw_id;
 2829         sw->sw_id = NULL;
 2830         mtx_unlock(&sw_dev_mtx);
 2831 
 2832         /*
 2833          * swapgeom_close() may be called from the biodone context,
 2834          * where we cannot perform topology changes.  Delegate the
 2835          * work to the events thread.
 2836          */
 2837         if (cp != NULL)
 2838                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
 2839 }
 2840 
 2841 static int
 2842 swapongeom_locked(struct cdev *dev, struct vnode *vp)
 2843 {
 2844         struct g_provider *pp;
 2845         struct g_consumer *cp;
 2846         static struct g_geom *gp;
 2847         struct swdevt *sp;
 2848         u_long nblks;
 2849         int error;
 2850 
 2851         pp = g_dev_getprovider(dev);
 2852         if (pp == NULL)
 2853                 return (ENODEV);
 2854         mtx_lock(&sw_dev_mtx);
 2855         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2856                 cp = sp->sw_id;
 2857                 if (cp != NULL && cp->provider == pp) {
 2858                         mtx_unlock(&sw_dev_mtx);
 2859                         return (EBUSY);
 2860                 }
 2861         }
 2862         mtx_unlock(&sw_dev_mtx);
 2863         if (gp == NULL)
 2864                 gp = g_new_geomf(&g_swap_class, "swap");
 2865         cp = g_new_consumer(gp);
 2866         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
 2867         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
 2868         g_attach(cp, pp);
 2869         /*
 2870          * XXX: Every time you think you can improve the margin for
 2871          * footshooting, somebody depends on the ability to do so:
 2872          * savecore(8) wants to write to our swapdev so we cannot
 2873          * set an exclusive count :-(
 2874          */
 2875         error = g_access(cp, 1, 1, 0);
 2876         if (error != 0) {
 2877                 g_detach(cp);
 2878                 g_destroy_consumer(cp);
 2879                 return (error);
 2880         }
 2881         nblks = pp->mediasize / DEV_BSIZE;
 2882         swaponsomething(vp, cp, nblks, swapgeom_strategy,
 2883             swapgeom_close, dev2udev(dev),
 2884             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
 2885         return (0);
 2886 }
 2887 
 2888 static int
 2889 swapongeom(struct vnode *vp)
 2890 {
 2891         int error;
 2892 
 2893         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2894         if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
 2895                 error = ENOENT;
 2896         } else {
 2897                 g_topology_lock();
 2898                 error = swapongeom_locked(vp->v_rdev, vp);
 2899                 g_topology_unlock();
 2900         }
 2901         VOP_UNLOCK(vp, 0);
 2902         return (error);
 2903 }
 2904 
 2905 /*
 2906  * VNODE backend
 2907  *
 2908  * This is used mainly for network filesystem (read: probably only tested
 2909  * with NFS) swapfiles.
 2910  *
 2911  */
 2912 
 2913 static void
 2914 swapdev_strategy(struct buf *bp, struct swdevt *sp)
 2915 {
 2916         struct vnode *vp2;
 2917 
 2918         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
 2919 
 2920         vp2 = sp->sw_id;
 2921         vhold(vp2);
 2922         if (bp->b_iocmd == BIO_WRITE) {
 2923                 if (bp->b_bufobj)
 2924                         bufobj_wdrop(bp->b_bufobj);
 2925                 bufobj_wref(&vp2->v_bufobj);
 2926         }
 2927         if (bp->b_bufobj != &vp2->v_bufobj)
 2928                 bp->b_bufobj = &vp2->v_bufobj;
 2929         bp->b_vp = vp2;
 2930         bp->b_iooffset = dbtob(bp->b_blkno);
 2931         bstrategy(bp);
 2932         return;
 2933 }
 2934 
 2935 static void
 2936 swapdev_close(struct thread *td, struct swdevt *sp)
 2937 {
 2938 
 2939         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
 2940         vrele(sp->sw_vp);
 2941 }
 2942 
 2943 
 2944 static int
 2945 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
 2946 {
 2947         struct swdevt *sp;
 2948         int error;
 2949 
 2950         if (nblks == 0)
 2951                 return (ENXIO);
 2952         mtx_lock(&sw_dev_mtx);
 2953         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2954                 if (sp->sw_id == vp) {
 2955                         mtx_unlock(&sw_dev_mtx);
 2956                         return (EBUSY);
 2957                 }
 2958         }
 2959         mtx_unlock(&sw_dev_mtx);
 2960 
 2961         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2962 #ifdef MAC
 2963         error = mac_system_check_swapon(td->td_ucred, vp);
 2964         if (error == 0)
 2965 #endif
 2966                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
 2967         (void) VOP_UNLOCK(vp, 0);
 2968         if (error)
 2969                 return (error);
 2970 
 2971         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
 2972             NODEV, 0);
 2973         return (0);
 2974 }
 2975 
 2976 static int
 2977 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
 2978 {
 2979         int error, new, n;
 2980 
 2981         new = nsw_wcount_async_max;
 2982         error = sysctl_handle_int(oidp, &new, 0, req);
 2983         if (error != 0 || req->newptr == NULL)
 2984                 return (error);
 2985 
 2986         if (new > nswbuf / 2 || new < 1)
 2987                 return (EINVAL);
 2988 
 2989         mtx_lock(&pbuf_mtx);
 2990         while (nsw_wcount_async_max != new) {
 2991                 /*
 2992                  * Adjust difference.  If the current async count is too low,
 2993                  * we will need to sqeeze our update slowly in.  Sleep with a
 2994                  * higher priority than getpbuf() to finish faster.
 2995                  */
 2996                 n = new - nsw_wcount_async_max;
 2997                 if (nsw_wcount_async + n >= 0) {
 2998                         nsw_wcount_async += n;
 2999                         nsw_wcount_async_max += n;
 3000                         wakeup(&nsw_wcount_async);
 3001                 } else {
 3002                         nsw_wcount_async_max -= nsw_wcount_async;
 3003                         nsw_wcount_async = 0;
 3004                         msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
 3005                             "swpsysctl", 0);
 3006                 }
 3007         }
 3008         mtx_unlock(&pbuf_mtx);
 3009 
 3010         return (0);
 3011 }
 3012 
 3013 static void
 3014 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
 3015     vm_offset_t end)
 3016 {
 3017 
 3018         VM_OBJECT_WLOCK(object);
 3019         KASSERT((object->flags & OBJ_NOSPLIT) != 0,
 3020             ("Splittable object with writecount"));
 3021         object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
 3022         VM_OBJECT_WUNLOCK(object);
 3023 }
 3024 
 3025 static void
 3026 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
 3027     vm_offset_t end)
 3028 {
 3029 
 3030         VM_OBJECT_WLOCK(object);
 3031         KASSERT((object->flags & OBJ_NOSPLIT) != 0,
 3032             ("Splittable object with writecount"));
 3033         object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
 3034         VM_OBJECT_WUNLOCK(object);
 3035 }

Cache object: 41e6c5df2e73186f416678a79d86d95e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.