FreeBSD/Linux Kernel Cross Reference
sys/vm/swap_pager.c
1 /*-
2 * Copyright (c) 1998 Matthew Dillon,
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1990 University of Utah.
5 * Copyright (c) 1982, 1986, 1989, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * New Swap System
41 * Matthew Dillon
42 *
43 * Radix Bitmap 'blists'.
44 *
45 * - The new swapper uses the new radix bitmap code. This should scale
46 * to arbitrarily small or arbitrarily large swap spaces and an almost
47 * arbitrary degree of fragmentation.
48 *
49 * Features:
50 *
51 * - on the fly reallocation of swap during putpages. The new system
52 * does not try to keep previously allocated swap blocks for dirty
53 * pages.
54 *
55 * - on the fly deallocation of swap
56 *
57 * - No more garbage collection required. Unnecessarily allocated swap
58 * blocks only exist for dirty vm_page_t's now and these are already
59 * cycled (in a high-load system) by the pager. We also do on-the-fly
60 * removal of invalidated swap blocks when a page is destroyed
61 * or renamed.
62 *
63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64 *
65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94
66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94
67 */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD: releng/6.0/sys/vm/swap_pager.c 149312 2005-08-20 06:07:55Z alc $");
71
72 #include "opt_mac.h"
73 #include "opt_swap.h"
74 #include "opt_vm.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/conf.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/mac.h>
89 #include <sys/malloc.h>
90 #include <sys/sysctl.h>
91 #include <sys/sysproto.h>
92 #include <sys/blist.h>
93 #include <sys/lock.h>
94 #include <sys/sx.h>
95 #include <sys/vmmeter.h>
96
97 #include <vm/vm.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_object.h>
102 #include <vm/vm_page.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_param.h>
106 #include <vm/swap_pager.h>
107 #include <vm/vm_extern.h>
108 #include <vm/uma.h>
109
110 #include <geom/geom.h>
111
112 /*
113 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, or 16
114 * pages per allocation. We recommend you stick with the default of 8.
115 * The 16-page limit is due to the radix code (kern/subr_blist.c).
116 */
117 #ifndef MAX_PAGEOUT_CLUSTER
118 #define MAX_PAGEOUT_CLUSTER 16
119 #endif
120
121 #if !defined(SWB_NPAGES)
122 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER
123 #endif
124
125 /*
126 * Piecemeal swap metadata structure. Swap is stored in a radix tree.
127 *
128 * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix
129 * is basically 8. Assuming PAGE_SIZE == 4096, one tree level represents
130 * 32K worth of data, two levels represent 256K, three levels represent
131 * 2 MBytes. This is acceptable.
132 *
133 * Overall memory utilization is about the same as the old swap structure.
134 */
135 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
136 #define SWAP_META_PAGES (SWB_NPAGES * 2)
137 #define SWAP_META_MASK (SWAP_META_PAGES - 1)
138
139 typedef int32_t swblk_t; /*
140 * swap offset. This is the type used to
141 * address the "virtual swap device" and
142 * therefore the maximum swap space is
143 * 2^32 pages.
144 */
145
146 struct swdevt;
147 typedef void sw_strategy_t(struct buf *bp, struct swdevt *sw);
148 typedef void sw_close_t(struct thread *td, struct swdevt *sw);
149
150 /*
151 * Swap device table
152 */
153 struct swdevt {
154 int sw_flags;
155 int sw_nblks;
156 int sw_used;
157 dev_t sw_dev;
158 struct vnode *sw_vp;
159 void *sw_id;
160 swblk_t sw_first;
161 swblk_t sw_end;
162 struct blist *sw_blist;
163 TAILQ_ENTRY(swdevt) sw_list;
164 sw_strategy_t *sw_strategy;
165 sw_close_t *sw_close;
166 };
167
168 #define SW_CLOSING 0x04
169
170 struct swblock {
171 struct swblock *swb_hnext;
172 vm_object_t swb_object;
173 vm_pindex_t swb_index;
174 int swb_count;
175 daddr_t swb_pages[SWAP_META_PAGES];
176 };
177
178 static struct mtx sw_dev_mtx;
179 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
180 static struct swdevt *swdevhd; /* Allocate from here next */
181 static int nswapdev; /* Number of swap devices */
182 int swap_pager_avail;
183 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
184
185 static void swapdev_strategy(struct buf *, struct swdevt *sw);
186
187 #define SWM_FREE 0x02 /* free, period */
188 #define SWM_POP 0x04 /* pop out */
189
190 int swap_pager_full = 2; /* swap space exhaustion (task killing) */
191 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
192 static int nsw_rcount; /* free read buffers */
193 static int nsw_wcount_sync; /* limit write buffers / synchronous */
194 static int nsw_wcount_async; /* limit write buffers / asynchronous */
195 static int nsw_wcount_async_max;/* assigned maximum */
196 static int nsw_cluster_max; /* maximum VOP I/O allowed */
197
198 static struct swblock **swhash;
199 static int swhash_mask;
200 static struct mtx swhash_mtx;
201
202 static int swap_async_max = 4; /* maximum in-progress async I/O's */
203 static struct sx sw_alloc_sx;
204
205
206 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
207 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
208
209 /*
210 * "named" and "unnamed" anon region objects. Try to reduce the overhead
211 * of searching a named list by hashing it just a little.
212 */
213
214 #define NOBJLISTS 8
215
216 #define NOBJLIST(handle) \
217 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
218
219 static struct mtx sw_alloc_mtx; /* protect list manipulation */
220 static struct pagerlst swap_pager_object_list[NOBJLISTS];
221 static uma_zone_t swap_zone;
222 static struct vm_object swap_zone_obj;
223
224 /*
225 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure
226 * calls hooked from other parts of the VM system and do not appear here.
227 * (see vm/swap_pager.h).
228 */
229 static vm_object_t
230 swap_pager_alloc(void *handle, vm_ooffset_t size,
231 vm_prot_t prot, vm_ooffset_t offset);
232 static void swap_pager_dealloc(vm_object_t object);
233 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
234 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
235 static boolean_t
236 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
237 static void swap_pager_init(void);
238 static void swap_pager_unswapped(vm_page_t);
239 static void swap_pager_swapoff(struct swdevt *sp);
240
241 struct pagerops swappagerops = {
242 .pgo_init = swap_pager_init, /* early system initialization of pager */
243 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */
244 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */
245 .pgo_getpages = swap_pager_getpages, /* pagein */
246 .pgo_putpages = swap_pager_putpages, /* pageout */
247 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */
248 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */
249 };
250
251 /*
252 * dmmax is in page-sized chunks with the new swap system. It was
253 * dev-bsized chunks in the old. dmmax is always a power of 2.
254 *
255 * swap_*() routines are externally accessible. swp_*() routines are
256 * internal.
257 */
258 static int dmmax;
259 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */
260 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */
261
262 SYSCTL_INT(_vm, OID_AUTO, dmmax,
263 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
264
265 static void swp_sizecheck(void);
266 static void swp_pager_async_iodone(struct buf *bp);
267 static int swapongeom(struct thread *, struct vnode *);
268 static int swaponvp(struct thread *, struct vnode *, u_long);
269
270 /*
271 * Swap bitmap functions
272 */
273 static void swp_pager_freeswapspace(daddr_t blk, int npages);
274 static daddr_t swp_pager_getswapspace(int npages);
275
276 /*
277 * Metadata functions
278 */
279 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
280 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
281 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
282 static void swp_pager_meta_free_all(vm_object_t);
283 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
284
285 /*
286 * SWP_SIZECHECK() - update swap_pager_full indication
287 *
288 * update the swap_pager_almost_full indication and warn when we are
289 * about to run out of swap space, using lowat/hiwat hysteresis.
290 *
291 * Clear swap_pager_full ( task killing ) indication when lowat is met.
292 *
293 * No restrictions on call
294 * This routine may not block.
295 * This routine must be called at splvm()
296 */
297 static void
298 swp_sizecheck(void)
299 {
300
301 if (swap_pager_avail < nswap_lowat) {
302 if (swap_pager_almost_full == 0) {
303 printf("swap_pager: out of swap space\n");
304 swap_pager_almost_full = 1;
305 }
306 } else {
307 swap_pager_full = 0;
308 if (swap_pager_avail > nswap_hiwat)
309 swap_pager_almost_full = 0;
310 }
311 }
312
313 /*
314 * SWP_PAGER_HASH() - hash swap meta data
315 *
316 * This is an helper function which hashes the swapblk given
317 * the object and page index. It returns a pointer to a pointer
318 * to the object, or a pointer to a NULL pointer if it could not
319 * find a swapblk.
320 *
321 * This routine must be called at splvm().
322 */
323 static struct swblock **
324 swp_pager_hash(vm_object_t object, vm_pindex_t index)
325 {
326 struct swblock **pswap;
327 struct swblock *swap;
328
329 index &= ~(vm_pindex_t)SWAP_META_MASK;
330 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
331 while ((swap = *pswap) != NULL) {
332 if (swap->swb_object == object &&
333 swap->swb_index == index
334 ) {
335 break;
336 }
337 pswap = &swap->swb_hnext;
338 }
339 return (pswap);
340 }
341
342 /*
343 * SWAP_PAGER_INIT() - initialize the swap pager!
344 *
345 * Expected to be started from system init. NOTE: This code is run
346 * before much else so be careful what you depend on. Most of the VM
347 * system has yet to be initialized at this point.
348 */
349 static void
350 swap_pager_init(void)
351 {
352 /*
353 * Initialize object lists
354 */
355 int i;
356
357 for (i = 0; i < NOBJLISTS; ++i)
358 TAILQ_INIT(&swap_pager_object_list[i]);
359 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
360 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
361
362 /*
363 * Device Stripe, in PAGE_SIZE'd blocks
364 */
365 dmmax = SWB_NPAGES * 2;
366 }
367
368 /*
369 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
370 *
371 * Expected to be started from pageout process once, prior to entering
372 * its main loop.
373 */
374 void
375 swap_pager_swap_init(void)
376 {
377 int n, n2;
378
379 /*
380 * Number of in-transit swap bp operations. Don't
381 * exhaust the pbufs completely. Make sure we
382 * initialize workable values (0 will work for hysteresis
383 * but it isn't very efficient).
384 *
385 * The nsw_cluster_max is constrained by the bp->b_pages[]
386 * array (MAXPHYS/PAGE_SIZE) and our locally defined
387 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are
388 * constrained by the swap device interleave stripe size.
389 *
390 * Currently we hardwire nsw_wcount_async to 4. This limit is
391 * designed to prevent other I/O from having high latencies due to
392 * our pageout I/O. The value 4 works well for one or two active swap
393 * devices but is probably a little low if you have more. Even so,
394 * a higher value would probably generate only a limited improvement
395 * with three or four active swap devices since the system does not
396 * typically have to pageout at extreme bandwidths. We will want
397 * at least 2 per swap devices, and 4 is a pretty good value if you
398 * have one NFS swap device due to the command/ack latency over NFS.
399 * So it all works out pretty well.
400 */
401 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
402
403 mtx_lock(&pbuf_mtx);
404 nsw_rcount = (nswbuf + 1) / 2;
405 nsw_wcount_sync = (nswbuf + 3) / 4;
406 nsw_wcount_async = 4;
407 nsw_wcount_async_max = nsw_wcount_async;
408 mtx_unlock(&pbuf_mtx);
409
410 /*
411 * Initialize our zone. Right now I'm just guessing on the number
412 * we need based on the number of pages in the system. Each swblock
413 * can hold 16 pages, so this is probably overkill. This reservation
414 * is typically limited to around 32MB by default.
415 */
416 n = cnt.v_page_count / 2;
417 if (maxswzone && n > maxswzone / sizeof(struct swblock))
418 n = maxswzone / sizeof(struct swblock);
419 n2 = n;
420 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
421 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
422 if (swap_zone == NULL)
423 panic("failed to create swap_zone.");
424 do {
425 if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n))
426 break;
427 /*
428 * if the allocation failed, try a zone two thirds the
429 * size of the previous attempt.
430 */
431 n -= ((n + 2) / 3);
432 } while (n > 0);
433 if (n2 != n)
434 printf("Swap zone entries reduced from %d to %d.\n", n2, n);
435 n2 = n;
436
437 /*
438 * Initialize our meta-data hash table. The swapper does not need to
439 * be quite as efficient as the VM system, so we do not use an
440 * oversized hash table.
441 *
442 * n: size of hash table, must be power of 2
443 * swhash_mask: hash table index mask
444 */
445 for (n = 1; n < n2 / 8; n *= 2)
446 ;
447 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
448 swhash_mask = n - 1;
449 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
450 }
451
452 /*
453 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
454 * its metadata structures.
455 *
456 * This routine is called from the mmap and fork code to create a new
457 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object
458 * and then converting it with swp_pager_meta_build().
459 *
460 * This routine may block in vm_object_allocate() and create a named
461 * object lookup race, so we must interlock. We must also run at
462 * splvm() for the object lookup to handle races with interrupts, but
463 * we do not have to maintain splvm() in between the lookup and the
464 * add because (I believe) it is not possible to attempt to create
465 * a new swap object w/handle when a default object with that handle
466 * already exists.
467 *
468 * MPSAFE
469 */
470 static vm_object_t
471 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
472 vm_ooffset_t offset)
473 {
474 vm_object_t object;
475 vm_pindex_t pindex;
476
477 pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
478
479 if (handle) {
480 mtx_lock(&Giant);
481 /*
482 * Reference existing named region or allocate new one. There
483 * should not be a race here against swp_pager_meta_build()
484 * as called from vm_page_remove() in regards to the lookup
485 * of the handle.
486 */
487 sx_xlock(&sw_alloc_sx);
488 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
489
490 if (object != NULL) {
491 vm_object_reference(object);
492 } else {
493 object = vm_object_allocate(OBJT_DEFAULT, pindex);
494 object->handle = handle;
495
496 VM_OBJECT_LOCK(object);
497 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
498 VM_OBJECT_UNLOCK(object);
499 }
500 sx_xunlock(&sw_alloc_sx);
501 mtx_unlock(&Giant);
502 } else {
503 object = vm_object_allocate(OBJT_DEFAULT, pindex);
504
505 VM_OBJECT_LOCK(object);
506 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
507 VM_OBJECT_UNLOCK(object);
508 }
509 return (object);
510 }
511
512 /*
513 * SWAP_PAGER_DEALLOC() - remove swap metadata from object
514 *
515 * The swap backing for the object is destroyed. The code is
516 * designed such that we can reinstantiate it later, but this
517 * routine is typically called only when the entire object is
518 * about to be destroyed.
519 *
520 * This routine may block, but no longer does.
521 *
522 * The object must be locked or unreferenceable.
523 */
524 static void
525 swap_pager_dealloc(vm_object_t object)
526 {
527
528 /*
529 * Remove from list right away so lookups will fail if we block for
530 * pageout completion.
531 */
532 if (object->handle != NULL) {
533 mtx_lock(&sw_alloc_mtx);
534 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
535 mtx_unlock(&sw_alloc_mtx);
536 }
537
538 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
539 vm_object_pip_wait(object, "swpdea");
540
541 /*
542 * Free all remaining metadata. We only bother to free it from
543 * the swap meta data. We do not attempt to free swapblk's still
544 * associated with vm_page_t's for this object. We do not care
545 * if paging is still in progress on some objects.
546 */
547 swp_pager_meta_free_all(object);
548 }
549
550 /************************************************************************
551 * SWAP PAGER BITMAP ROUTINES *
552 ************************************************************************/
553
554 /*
555 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space
556 *
557 * Allocate swap for the requested number of pages. The starting
558 * swap block number (a page index) is returned or SWAPBLK_NONE
559 * if the allocation failed.
560 *
561 * Also has the side effect of advising that somebody made a mistake
562 * when they configured swap and didn't configure enough.
563 *
564 * Must be called at splvm() to avoid races with bitmap frees from
565 * vm_page_remove() aka swap_pager_page_removed().
566 *
567 * This routine may not block
568 * This routine must be called at splvm().
569 *
570 * We allocate in round-robin fashion from the configured devices.
571 */
572 static daddr_t
573 swp_pager_getswapspace(int npages)
574 {
575 daddr_t blk;
576 struct swdevt *sp;
577 int i;
578
579 blk = SWAPBLK_NONE;
580 mtx_lock(&sw_dev_mtx);
581 sp = swdevhd;
582 for (i = 0; i < nswapdev; i++) {
583 if (sp == NULL)
584 sp = TAILQ_FIRST(&swtailq);
585 if (!(sp->sw_flags & SW_CLOSING)) {
586 blk = blist_alloc(sp->sw_blist, npages);
587 if (blk != SWAPBLK_NONE) {
588 blk += sp->sw_first;
589 sp->sw_used += npages;
590 swap_pager_avail -= npages;
591 swp_sizecheck();
592 swdevhd = TAILQ_NEXT(sp, sw_list);
593 goto done;
594 }
595 }
596 sp = TAILQ_NEXT(sp, sw_list);
597 }
598 if (swap_pager_full != 2) {
599 printf("swap_pager_getswapspace(%d): failed\n", npages);
600 swap_pager_full = 2;
601 swap_pager_almost_full = 1;
602 }
603 swdevhd = NULL;
604 done:
605 mtx_unlock(&sw_dev_mtx);
606 return (blk);
607 }
608
609 static int
610 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
611 {
612
613 return (blk >= sp->sw_first && blk < sp->sw_end);
614 }
615
616 static void
617 swp_pager_strategy(struct buf *bp)
618 {
619 struct swdevt *sp;
620
621 mtx_lock(&sw_dev_mtx);
622 TAILQ_FOREACH(sp, &swtailq, sw_list) {
623 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
624 mtx_unlock(&sw_dev_mtx);
625 sp->sw_strategy(bp, sp);
626 return;
627 }
628 }
629 panic("Swapdev not found");
630 }
631
632
633 /*
634 * SWP_PAGER_FREESWAPSPACE() - free raw swap space
635 *
636 * This routine returns the specified swap blocks back to the bitmap.
637 *
638 * Note: This routine may not block (it could in the old swap code),
639 * and through the use of the new blist routines it does not block.
640 *
641 * We must be called at splvm() to avoid races with bitmap frees from
642 * vm_page_remove() aka swap_pager_page_removed().
643 *
644 * This routine may not block
645 * This routine must be called at splvm().
646 */
647 static void
648 swp_pager_freeswapspace(daddr_t blk, int npages)
649 {
650 struct swdevt *sp;
651
652 mtx_lock(&sw_dev_mtx);
653 TAILQ_FOREACH(sp, &swtailq, sw_list) {
654 if (blk >= sp->sw_first && blk < sp->sw_end) {
655 sp->sw_used -= npages;
656 /*
657 * If we are attempting to stop swapping on
658 * this device, we don't want to mark any
659 * blocks free lest they be reused.
660 */
661 if ((sp->sw_flags & SW_CLOSING) == 0) {
662 blist_free(sp->sw_blist, blk - sp->sw_first,
663 npages);
664 swap_pager_avail += npages;
665 swp_sizecheck();
666 }
667 mtx_unlock(&sw_dev_mtx);
668 return;
669 }
670 }
671 panic("Swapdev not found");
672 }
673
674 /*
675 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page
676 * range within an object.
677 *
678 * This is a globally accessible routine.
679 *
680 * This routine removes swapblk assignments from swap metadata.
681 *
682 * The external callers of this routine typically have already destroyed
683 * or renamed vm_page_t's associated with this range in the object so
684 * we should be ok.
685 *
686 * This routine may be called at any spl. We up our spl to splvm temporarily
687 * in order to perform the metadata removal.
688 */
689 void
690 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
691 {
692
693 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
694 swp_pager_meta_free(object, start, size);
695 }
696
697 /*
698 * SWAP_PAGER_RESERVE() - reserve swap blocks in object
699 *
700 * Assigns swap blocks to the specified range within the object. The
701 * swap blocks are not zerod. Any previous swap assignment is destroyed.
702 *
703 * Returns 0 on success, -1 on failure.
704 */
705 int
706 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
707 {
708 int n = 0;
709 daddr_t blk = SWAPBLK_NONE;
710 vm_pindex_t beg = start; /* save start index */
711
712 VM_OBJECT_LOCK(object);
713 while (size) {
714 if (n == 0) {
715 n = BLIST_MAX_ALLOC;
716 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
717 n >>= 1;
718 if (n == 0) {
719 swp_pager_meta_free(object, beg, start - beg);
720 VM_OBJECT_UNLOCK(object);
721 return (-1);
722 }
723 }
724 }
725 swp_pager_meta_build(object, start, blk);
726 --size;
727 ++start;
728 ++blk;
729 --n;
730 }
731 swp_pager_meta_free(object, start, n);
732 VM_OBJECT_UNLOCK(object);
733 return (0);
734 }
735
736 /*
737 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager
738 * and destroy the source.
739 *
740 * Copy any valid swapblks from the source to the destination. In
741 * cases where both the source and destination have a valid swapblk,
742 * we keep the destination's.
743 *
744 * This routine is allowed to block. It may block allocating metadata
745 * indirectly through swp_pager_meta_build() or if paging is still in
746 * progress on the source.
747 *
748 * This routine can be called at any spl
749 *
750 * XXX vm_page_collapse() kinda expects us not to block because we
751 * supposedly do not need to allocate memory, but for the moment we
752 * *may* have to get a little memory from the zone allocator, but
753 * it is taken from the interrupt memory. We should be ok.
754 *
755 * The source object contains no vm_page_t's (which is just as well)
756 *
757 * The source object is of type OBJT_SWAP.
758 *
759 * The source and destination objects must be locked or
760 * inaccessible (XXX are they ?)
761 */
762 void
763 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
764 vm_pindex_t offset, int destroysource)
765 {
766 vm_pindex_t i;
767
768 VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
769 VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
770
771 /*
772 * If destroysource is set, we remove the source object from the
773 * swap_pager internal queue now.
774 */
775 if (destroysource) {
776 if (srcobject->handle != NULL) {
777 mtx_lock(&sw_alloc_mtx);
778 TAILQ_REMOVE(
779 NOBJLIST(srcobject->handle),
780 srcobject,
781 pager_object_list
782 );
783 mtx_unlock(&sw_alloc_mtx);
784 }
785 }
786
787 /*
788 * transfer source to destination.
789 */
790 for (i = 0; i < dstobject->size; ++i) {
791 daddr_t dstaddr;
792
793 /*
794 * Locate (without changing) the swapblk on the destination,
795 * unless it is invalid in which case free it silently, or
796 * if the destination is a resident page, in which case the
797 * source is thrown away.
798 */
799 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
800
801 if (dstaddr == SWAPBLK_NONE) {
802 /*
803 * Destination has no swapblk and is not resident,
804 * copy source.
805 */
806 daddr_t srcaddr;
807
808 srcaddr = swp_pager_meta_ctl(
809 srcobject,
810 i + offset,
811 SWM_POP
812 );
813
814 if (srcaddr != SWAPBLK_NONE) {
815 /*
816 * swp_pager_meta_build() can sleep.
817 */
818 vm_object_pip_add(srcobject, 1);
819 VM_OBJECT_UNLOCK(srcobject);
820 vm_object_pip_add(dstobject, 1);
821 swp_pager_meta_build(dstobject, i, srcaddr);
822 vm_object_pip_wakeup(dstobject);
823 VM_OBJECT_LOCK(srcobject);
824 vm_object_pip_wakeup(srcobject);
825 }
826 } else {
827 /*
828 * Destination has valid swapblk or it is represented
829 * by a resident page. We destroy the sourceblock.
830 */
831
832 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
833 }
834 }
835
836 /*
837 * Free left over swap blocks in source.
838 *
839 * We have to revert the type to OBJT_DEFAULT so we do not accidently
840 * double-remove the object from the swap queues.
841 */
842 if (destroysource) {
843 swp_pager_meta_free_all(srcobject);
844 /*
845 * Reverting the type is not necessary, the caller is going
846 * to destroy srcobject directly, but I'm doing it here
847 * for consistency since we've removed the object from its
848 * queues.
849 */
850 srcobject->type = OBJT_DEFAULT;
851 }
852 }
853
854 /*
855 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for
856 * the requested page.
857 *
858 * We determine whether good backing store exists for the requested
859 * page and return TRUE if it does, FALSE if it doesn't.
860 *
861 * If TRUE, we also try to determine how much valid, contiguous backing
862 * store exists before and after the requested page within a reasonable
863 * distance. We do not try to restrict it to the swap device stripe
864 * (that is handled in getpages/putpages). It probably isn't worth
865 * doing here.
866 */
867 static boolean_t
868 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
869 {
870 daddr_t blk0;
871
872 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
873 /*
874 * do we have good backing store at the requested index ?
875 */
876 blk0 = swp_pager_meta_ctl(object, pindex, 0);
877
878 if (blk0 == SWAPBLK_NONE) {
879 if (before)
880 *before = 0;
881 if (after)
882 *after = 0;
883 return (FALSE);
884 }
885
886 /*
887 * find backwards-looking contiguous good backing store
888 */
889 if (before != NULL) {
890 int i;
891
892 for (i = 1; i < (SWB_NPAGES/2); ++i) {
893 daddr_t blk;
894
895 if (i > pindex)
896 break;
897 blk = swp_pager_meta_ctl(object, pindex - i, 0);
898 if (blk != blk0 - i)
899 break;
900 }
901 *before = (i - 1);
902 }
903
904 /*
905 * find forward-looking contiguous good backing store
906 */
907 if (after != NULL) {
908 int i;
909
910 for (i = 1; i < (SWB_NPAGES/2); ++i) {
911 daddr_t blk;
912
913 blk = swp_pager_meta_ctl(object, pindex + i, 0);
914 if (blk != blk0 + i)
915 break;
916 }
917 *after = (i - 1);
918 }
919 return (TRUE);
920 }
921
922 /*
923 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
924 *
925 * This removes any associated swap backing store, whether valid or
926 * not, from the page.
927 *
928 * This routine is typically called when a page is made dirty, at
929 * which point any associated swap can be freed. MADV_FREE also
930 * calls us in a special-case situation
931 *
932 * NOTE!!! If the page is clean and the swap was valid, the caller
933 * should make the page dirty before calling this routine. This routine
934 * does NOT change the m->dirty status of the page. Also: MADV_FREE
935 * depends on it.
936 *
937 * This routine may not block
938 * This routine must be called at splvm()
939 */
940 static void
941 swap_pager_unswapped(vm_page_t m)
942 {
943
944 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
945 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
946 }
947
948 /*
949 * SWAP_PAGER_GETPAGES() - bring pages in from swap
950 *
951 * Attempt to retrieve (m, count) pages from backing store, but make
952 * sure we retrieve at least m[reqpage]. We try to load in as large
953 * a chunk surrounding m[reqpage] as is contiguous in swap and which
954 * belongs to the same object.
955 *
956 * The code is designed for asynchronous operation and
957 * immediate-notification of 'reqpage' but tends not to be
958 * used that way. Please do not optimize-out this algorithmic
959 * feature, I intend to improve on it in the future.
960 *
961 * The parent has a single vm_object_pip_add() reference prior to
962 * calling us and we should return with the same.
963 *
964 * The parent has BUSY'd the pages. We should return with 'm'
965 * left busy, but the others adjusted.
966 */
967 static int
968 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
969 {
970 struct buf *bp;
971 vm_page_t mreq;
972 int i;
973 int j;
974 daddr_t blk;
975
976 mreq = m[reqpage];
977
978 KASSERT(mreq->object == object,
979 ("swap_pager_getpages: object mismatch %p/%p",
980 object, mreq->object));
981
982 /*
983 * Calculate range to retrieve. The pages have already been assigned
984 * their swapblks. We require a *contiguous* range but we know it to
985 * not span devices. If we do not supply it, bad things
986 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
987 * loops are set up such that the case(s) are handled implicitly.
988 *
989 * The swp_*() calls must be made at splvm(). vm_page_free() does
990 * not need to be, but it will go a little faster if it is.
991 */
992 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
993
994 for (i = reqpage - 1; i >= 0; --i) {
995 daddr_t iblk;
996
997 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
998 if (blk != iblk + (reqpage - i))
999 break;
1000 }
1001 ++i;
1002
1003 for (j = reqpage + 1; j < count; ++j) {
1004 daddr_t jblk;
1005
1006 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1007 if (blk != jblk - (j - reqpage))
1008 break;
1009 }
1010
1011 /*
1012 * free pages outside our collection range. Note: we never free
1013 * mreq, it must remain busy throughout.
1014 */
1015 if (0 < i || j < count) {
1016 int k;
1017
1018 vm_page_lock_queues();
1019 for (k = 0; k < i; ++k)
1020 vm_page_free(m[k]);
1021 for (k = j; k < count; ++k)
1022 vm_page_free(m[k]);
1023 vm_page_unlock_queues();
1024 }
1025
1026 /*
1027 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq
1028 * still busy, but the others unbusied.
1029 */
1030 if (blk == SWAPBLK_NONE)
1031 return (VM_PAGER_FAIL);
1032
1033 /*
1034 * Getpbuf() can sleep.
1035 */
1036 VM_OBJECT_UNLOCK(object);
1037 /*
1038 * Get a swap buffer header to perform the IO
1039 */
1040 bp = getpbuf(&nsw_rcount);
1041 bp->b_flags |= B_PAGING;
1042
1043 /*
1044 * map our page(s) into kva for input
1045 */
1046 pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1047
1048 bp->b_iocmd = BIO_READ;
1049 bp->b_iodone = swp_pager_async_iodone;
1050 bp->b_rcred = crhold(thread0.td_ucred);
1051 bp->b_wcred = crhold(thread0.td_ucred);
1052 bp->b_blkno = blk - (reqpage - i);
1053 bp->b_bcount = PAGE_SIZE * (j - i);
1054 bp->b_bufsize = PAGE_SIZE * (j - i);
1055 bp->b_pager.pg_reqpage = reqpage - i;
1056
1057 VM_OBJECT_LOCK(object);
1058 vm_page_lock_queues();
1059 {
1060 int k;
1061
1062 for (k = i; k < j; ++k) {
1063 bp->b_pages[k - i] = m[k];
1064 vm_page_flag_set(m[k], PG_SWAPINPROG);
1065 }
1066 }
1067 vm_page_unlock_queues();
1068 bp->b_npages = j - i;
1069
1070 cnt.v_swapin++;
1071 cnt.v_swappgsin += bp->b_npages;
1072
1073 /*
1074 * We still hold the lock on mreq, and our automatic completion routine
1075 * does not remove it.
1076 */
1077 vm_object_pip_add(object, bp->b_npages);
1078 VM_OBJECT_UNLOCK(object);
1079
1080 /*
1081 * perform the I/O. NOTE!!! bp cannot be considered valid after
1082 * this point because we automatically release it on completion.
1083 * Instead, we look at the one page we are interested in which we
1084 * still hold a lock on even through the I/O completion.
1085 *
1086 * The other pages in our m[] array are also released on completion,
1087 * so we cannot assume they are valid anymore either.
1088 *
1089 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1090 */
1091 BUF_KERNPROC(bp);
1092 swp_pager_strategy(bp);
1093
1094 /*
1095 * wait for the page we want to complete. PG_SWAPINPROG is always
1096 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE
1097 * is set in the meta-data.
1098 */
1099 vm_page_lock_queues();
1100 while ((mreq->flags & PG_SWAPINPROG) != 0) {
1101 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1102 cnt.v_intrans++;
1103 if (msleep(mreq, &vm_page_queue_mtx, PSWP, "swread", hz*20)) {
1104 printf(
1105 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1106 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1107 }
1108 }
1109 vm_page_unlock_queues();
1110
1111 VM_OBJECT_LOCK(object);
1112 /*
1113 * mreq is left busied after completion, but all the other pages
1114 * are freed. If we had an unrecoverable read error the page will
1115 * not be valid.
1116 */
1117 if (mreq->valid != VM_PAGE_BITS_ALL) {
1118 return (VM_PAGER_ERROR);
1119 } else {
1120 return (VM_PAGER_OK);
1121 }
1122
1123 /*
1124 * A final note: in a low swap situation, we cannot deallocate swap
1125 * and mark a page dirty here because the caller is likely to mark
1126 * the page clean when we return, causing the page to possibly revert
1127 * to all-zero's later.
1128 */
1129 }
1130
1131 /*
1132 * swap_pager_putpages:
1133 *
1134 * Assign swap (if necessary) and initiate I/O on the specified pages.
1135 *
1136 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects
1137 * are automatically converted to SWAP objects.
1138 *
1139 * In a low memory situation we may block in VOP_STRATEGY(), but the new
1140 * vm_page reservation system coupled with properly written VFS devices
1141 * should ensure that no low-memory deadlock occurs. This is an area
1142 * which needs work.
1143 *
1144 * The parent has N vm_object_pip_add() references prior to
1145 * calling us and will remove references for rtvals[] that are
1146 * not set to VM_PAGER_PEND. We need to remove the rest on I/O
1147 * completion.
1148 *
1149 * The parent has soft-busy'd the pages it passes us and will unbusy
1150 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1151 * We need to unbusy the rest on I/O completion.
1152 */
1153 void
1154 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1155 boolean_t sync, int *rtvals)
1156 {
1157 int i;
1158 int n = 0;
1159
1160 GIANT_REQUIRED;
1161 if (count && m[0]->object != object) {
1162 panic("swap_pager_getpages: object mismatch %p/%p",
1163 object,
1164 m[0]->object
1165 );
1166 }
1167
1168 /*
1169 * Step 1
1170 *
1171 * Turn object into OBJT_SWAP
1172 * check for bogus sysops
1173 * force sync if not pageout process
1174 */
1175 if (object->type != OBJT_SWAP)
1176 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1177 VM_OBJECT_UNLOCK(object);
1178
1179 if (curproc != pageproc)
1180 sync = TRUE;
1181
1182 /*
1183 * Step 2
1184 *
1185 * Update nsw parameters from swap_async_max sysctl values.
1186 * Do not let the sysop crash the machine with bogus numbers.
1187 */
1188 mtx_lock(&pbuf_mtx);
1189 if (swap_async_max != nsw_wcount_async_max) {
1190 int n;
1191
1192 /*
1193 * limit range
1194 */
1195 if ((n = swap_async_max) > nswbuf / 2)
1196 n = nswbuf / 2;
1197 if (n < 1)
1198 n = 1;
1199 swap_async_max = n;
1200
1201 /*
1202 * Adjust difference ( if possible ). If the current async
1203 * count is too low, we may not be able to make the adjustment
1204 * at this time.
1205 */
1206 n -= nsw_wcount_async_max;
1207 if (nsw_wcount_async + n >= 0) {
1208 nsw_wcount_async += n;
1209 nsw_wcount_async_max += n;
1210 wakeup(&nsw_wcount_async);
1211 }
1212 }
1213 mtx_unlock(&pbuf_mtx);
1214
1215 /*
1216 * Step 3
1217 *
1218 * Assign swap blocks and issue I/O. We reallocate swap on the fly.
1219 * The page is left dirty until the pageout operation completes
1220 * successfully.
1221 */
1222 for (i = 0; i < count; i += n) {
1223 int j;
1224 struct buf *bp;
1225 daddr_t blk;
1226
1227 /*
1228 * Maximum I/O size is limited by a number of factors.
1229 */
1230 n = min(BLIST_MAX_ALLOC, count - i);
1231 n = min(n, nsw_cluster_max);
1232
1233 /*
1234 * Get biggest block of swap we can. If we fail, fall
1235 * back and try to allocate a smaller block. Don't go
1236 * overboard trying to allocate space if it would overly
1237 * fragment swap.
1238 */
1239 while (
1240 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1241 n > 4
1242 ) {
1243 n >>= 1;
1244 }
1245 if (blk == SWAPBLK_NONE) {
1246 for (j = 0; j < n; ++j)
1247 rtvals[i+j] = VM_PAGER_FAIL;
1248 continue;
1249 }
1250
1251 /*
1252 * All I/O parameters have been satisfied, build the I/O
1253 * request and assign the swap space.
1254 */
1255 if (sync == TRUE) {
1256 bp = getpbuf(&nsw_wcount_sync);
1257 } else {
1258 bp = getpbuf(&nsw_wcount_async);
1259 bp->b_flags = B_ASYNC;
1260 }
1261 bp->b_flags |= B_PAGING;
1262 bp->b_iocmd = BIO_WRITE;
1263
1264 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1265
1266 bp->b_rcred = crhold(thread0.td_ucred);
1267 bp->b_wcred = crhold(thread0.td_ucred);
1268 bp->b_bcount = PAGE_SIZE * n;
1269 bp->b_bufsize = PAGE_SIZE * n;
1270 bp->b_blkno = blk;
1271
1272 VM_OBJECT_LOCK(object);
1273 for (j = 0; j < n; ++j) {
1274 vm_page_t mreq = m[i+j];
1275
1276 swp_pager_meta_build(
1277 mreq->object,
1278 mreq->pindex,
1279 blk + j
1280 );
1281 vm_page_dirty(mreq);
1282 rtvals[i+j] = VM_PAGER_OK;
1283
1284 vm_page_lock_queues();
1285 vm_page_flag_set(mreq, PG_SWAPINPROG);
1286 vm_page_unlock_queues();
1287 bp->b_pages[j] = mreq;
1288 }
1289 VM_OBJECT_UNLOCK(object);
1290 bp->b_npages = n;
1291 /*
1292 * Must set dirty range for NFS to work.
1293 */
1294 bp->b_dirtyoff = 0;
1295 bp->b_dirtyend = bp->b_bcount;
1296
1297 cnt.v_swapout++;
1298 cnt.v_swappgsout += bp->b_npages;
1299
1300 /*
1301 * asynchronous
1302 *
1303 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1304 */
1305 if (sync == FALSE) {
1306 bp->b_iodone = swp_pager_async_iodone;
1307 BUF_KERNPROC(bp);
1308 swp_pager_strategy(bp);
1309
1310 for (j = 0; j < n; ++j)
1311 rtvals[i+j] = VM_PAGER_PEND;
1312 /* restart outter loop */
1313 continue;
1314 }
1315
1316 /*
1317 * synchronous
1318 *
1319 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1320 */
1321 bp->b_iodone = bdone;
1322 swp_pager_strategy(bp);
1323
1324 /*
1325 * Wait for the sync I/O to complete, then update rtvals.
1326 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1327 * our async completion routine at the end, thus avoiding a
1328 * double-free.
1329 */
1330 bwait(bp, PVM, "swwrt");
1331 for (j = 0; j < n; ++j)
1332 rtvals[i+j] = VM_PAGER_PEND;
1333 /*
1334 * Now that we are through with the bp, we can call the
1335 * normal async completion, which frees everything up.
1336 */
1337 swp_pager_async_iodone(bp);
1338 }
1339 VM_OBJECT_LOCK(object);
1340 }
1341
1342 /*
1343 * swp_pager_async_iodone:
1344 *
1345 * Completion routine for asynchronous reads and writes from/to swap.
1346 * Also called manually by synchronous code to finish up a bp.
1347 *
1348 * For READ operations, the pages are PG_BUSY'd. For WRITE operations,
1349 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY
1350 * unbusy all pages except the 'main' request page. For WRITE
1351 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1352 * because we marked them all VM_PAGER_PEND on return from putpages ).
1353 *
1354 * This routine may not block.
1355 * This routine is called at splbio() or better
1356 *
1357 * We up ourselves to splvm() as required for various vm_page related
1358 * calls.
1359 */
1360 static void
1361 swp_pager_async_iodone(struct buf *bp)
1362 {
1363 int i;
1364 vm_object_t object = NULL;
1365
1366 /*
1367 * report error
1368 */
1369 if (bp->b_ioflags & BIO_ERROR) {
1370 printf(
1371 "swap_pager: I/O error - %s failed; blkno %ld,"
1372 "size %ld, error %d\n",
1373 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1374 (long)bp->b_blkno,
1375 (long)bp->b_bcount,
1376 bp->b_error
1377 );
1378 }
1379
1380 /*
1381 * remove the mapping for kernel virtual
1382 */
1383 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1384
1385 if (bp->b_npages) {
1386 object = bp->b_pages[0]->object;
1387 VM_OBJECT_LOCK(object);
1388 }
1389 vm_page_lock_queues();
1390 /*
1391 * cleanup pages. If an error occurs writing to swap, we are in
1392 * very serious trouble. If it happens to be a disk error, though,
1393 * we may be able to recover by reassigning the swap later on. So
1394 * in this case we remove the m->swapblk assignment for the page
1395 * but do not free it in the rlist. The errornous block(s) are thus
1396 * never reallocated as swap. Redirty the page and continue.
1397 */
1398 for (i = 0; i < bp->b_npages; ++i) {
1399 vm_page_t m = bp->b_pages[i];
1400
1401 vm_page_flag_clear(m, PG_SWAPINPROG);
1402
1403 if (bp->b_ioflags & BIO_ERROR) {
1404 /*
1405 * If an error occurs I'd love to throw the swapblk
1406 * away without freeing it back to swapspace, so it
1407 * can never be used again. But I can't from an
1408 * interrupt.
1409 */
1410 if (bp->b_iocmd == BIO_READ) {
1411 /*
1412 * When reading, reqpage needs to stay
1413 * locked for the parent, but all other
1414 * pages can be freed. We still want to
1415 * wakeup the parent waiting on the page,
1416 * though. ( also: pg_reqpage can be -1 and
1417 * not match anything ).
1418 *
1419 * We have to wake specifically requested pages
1420 * up too because we cleared PG_SWAPINPROG and
1421 * someone may be waiting for that.
1422 *
1423 * NOTE: for reads, m->dirty will probably
1424 * be overridden by the original caller of
1425 * getpages so don't play cute tricks here.
1426 *
1427 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1428 * AS THIS MESSES WITH object->memq, and it is
1429 * not legal to mess with object->memq from an
1430 * interrupt.
1431 */
1432 m->valid = 0;
1433 if (i != bp->b_pager.pg_reqpage)
1434 vm_page_free(m);
1435 else
1436 vm_page_flash(m);
1437 /*
1438 * If i == bp->b_pager.pg_reqpage, do not wake
1439 * the page up. The caller needs to.
1440 */
1441 } else {
1442 /*
1443 * If a write error occurs, reactivate page
1444 * so it doesn't clog the inactive list,
1445 * then finish the I/O.
1446 */
1447 vm_page_dirty(m);
1448 vm_page_activate(m);
1449 vm_page_io_finish(m);
1450 }
1451 } else if (bp->b_iocmd == BIO_READ) {
1452 /*
1453 * For read success, clear dirty bits. Nobody should
1454 * have this page mapped but don't take any chances,
1455 * make sure the pmap modify bits are also cleared.
1456 *
1457 * NOTE: for reads, m->dirty will probably be
1458 * overridden by the original caller of getpages so
1459 * we cannot set them in order to free the underlying
1460 * swap in a low-swap situation. I don't think we'd
1461 * want to do that anyway, but it was an optimization
1462 * that existed in the old swapper for a time before
1463 * it got ripped out due to precisely this problem.
1464 *
1465 * If not the requested page then deactivate it.
1466 *
1467 * Note that the requested page, reqpage, is left
1468 * busied, but we still have to wake it up. The
1469 * other pages are released (unbusied) by
1470 * vm_page_wakeup(). We do not set reqpage's
1471 * valid bits here, it is up to the caller.
1472 */
1473 pmap_clear_modify(m);
1474 m->valid = VM_PAGE_BITS_ALL;
1475 vm_page_undirty(m);
1476
1477 /*
1478 * We have to wake specifically requested pages
1479 * up too because we cleared PG_SWAPINPROG and
1480 * could be waiting for it in getpages. However,
1481 * be sure to not unbusy getpages specifically
1482 * requested page - getpages expects it to be
1483 * left busy.
1484 */
1485 if (i != bp->b_pager.pg_reqpage) {
1486 vm_page_deactivate(m);
1487 vm_page_wakeup(m);
1488 } else {
1489 vm_page_flash(m);
1490 }
1491 } else {
1492 /*
1493 * For write success, clear the modify and dirty
1494 * status, then finish the I/O ( which decrements the
1495 * busy count and possibly wakes waiter's up ).
1496 */
1497 pmap_clear_modify(m);
1498 vm_page_undirty(m);
1499 vm_page_io_finish(m);
1500 if (vm_page_count_severe())
1501 vm_page_try_to_cache(m);
1502 }
1503 }
1504 vm_page_unlock_queues();
1505
1506 /*
1507 * adjust pip. NOTE: the original parent may still have its own
1508 * pip refs on the object.
1509 */
1510 if (object != NULL) {
1511 vm_object_pip_wakeupn(object, bp->b_npages);
1512 VM_OBJECT_UNLOCK(object);
1513 }
1514
1515 /*
1516 * release the physical I/O buffer
1517 */
1518 relpbuf(
1519 bp,
1520 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1521 ((bp->b_flags & B_ASYNC) ?
1522 &nsw_wcount_async :
1523 &nsw_wcount_sync
1524 )
1525 )
1526 );
1527 }
1528
1529 /*
1530 * swap_pager_isswapped:
1531 *
1532 * Return 1 if at least one page in the given object is paged
1533 * out to the given swap device.
1534 *
1535 * This routine may not block.
1536 */
1537 int
1538 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1539 {
1540 daddr_t index = 0;
1541 int bcount;
1542 int i;
1543
1544 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1545 if (object->type != OBJT_SWAP)
1546 return (0);
1547
1548 mtx_lock(&swhash_mtx);
1549 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1550 struct swblock *swap;
1551
1552 if ((swap = *swp_pager_hash(object, index)) != NULL) {
1553 for (i = 0; i < SWAP_META_PAGES; ++i) {
1554 if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1555 mtx_unlock(&swhash_mtx);
1556 return (1);
1557 }
1558 }
1559 }
1560 index += SWAP_META_PAGES;
1561 if (index > 0x20000000)
1562 panic("swap_pager_isswapped: failed to locate all swap meta blocks");
1563 }
1564 mtx_unlock(&swhash_mtx);
1565 return (0);
1566 }
1567
1568 /*
1569 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1570 *
1571 * This routine dissociates the page at the given index within a
1572 * swap block from its backing store, paging it in if necessary.
1573 * If the page is paged in, it is placed in the inactive queue,
1574 * since it had its backing store ripped out from under it.
1575 * We also attempt to swap in all other pages in the swap block,
1576 * we only guarantee that the one at the specified index is
1577 * paged in.
1578 *
1579 * XXX - The code to page the whole block in doesn't work, so we
1580 * revert to the one-by-one behavior for now. Sigh.
1581 */
1582 static __inline void
1583 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1584 {
1585 vm_page_t m;
1586
1587 vm_object_pip_add(object, 1);
1588 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1589 if (m->valid == VM_PAGE_BITS_ALL) {
1590 vm_object_pip_subtract(object, 1);
1591 vm_page_lock_queues();
1592 vm_page_activate(m);
1593 vm_page_dirty(m);
1594 vm_page_wakeup(m);
1595 vm_page_unlock_queues();
1596 vm_pager_page_unswapped(m);
1597 return;
1598 }
1599
1600 if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1601 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1602 vm_object_pip_subtract(object, 1);
1603 vm_page_lock_queues();
1604 vm_page_dirty(m);
1605 vm_page_dontneed(m);
1606 vm_page_wakeup(m);
1607 vm_page_unlock_queues();
1608 vm_pager_page_unswapped(m);
1609 }
1610
1611 /*
1612 * swap_pager_swapoff:
1613 *
1614 * Page in all of the pages that have been paged out to the
1615 * given device. The corresponding blocks in the bitmap must be
1616 * marked as allocated and the device must be flagged SW_CLOSING.
1617 * There may be no processes swapped out to the device.
1618 *
1619 * This routine may block.
1620 */
1621 static void
1622 swap_pager_swapoff(struct swdevt *sp)
1623 {
1624 struct swblock *swap;
1625 int i, j, retries;
1626
1627 GIANT_REQUIRED;
1628
1629 retries = 0;
1630 full_rescan:
1631 mtx_lock(&swhash_mtx);
1632 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1633 restart:
1634 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1635 vm_object_t object = swap->swb_object;
1636 vm_pindex_t pindex = swap->swb_index;
1637 for (j = 0; j < SWAP_META_PAGES; ++j) {
1638 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1639 /* avoid deadlock */
1640 if (!VM_OBJECT_TRYLOCK(object)) {
1641 break;
1642 } else {
1643 mtx_unlock(&swhash_mtx);
1644 swp_pager_force_pagein(object,
1645 pindex + j);
1646 VM_OBJECT_UNLOCK(object);
1647 mtx_lock(&swhash_mtx);
1648 goto restart;
1649 }
1650 }
1651 }
1652 }
1653 }
1654 mtx_unlock(&swhash_mtx);
1655 if (sp->sw_used) {
1656 int dummy;
1657 /*
1658 * Objects may be locked or paging to the device being
1659 * removed, so we will miss their pages and need to
1660 * make another pass. We have marked this device as
1661 * SW_CLOSING, so the activity should finish soon.
1662 */
1663 retries++;
1664 if (retries > 100) {
1665 panic("swapoff: failed to locate %d swap blocks",
1666 sp->sw_used);
1667 }
1668 tsleep(&dummy, PVM, "swpoff", hz / 20);
1669 goto full_rescan;
1670 }
1671 }
1672
1673 /************************************************************************
1674 * SWAP META DATA *
1675 ************************************************************************
1676 *
1677 * These routines manipulate the swap metadata stored in the
1678 * OBJT_SWAP object. All swp_*() routines must be called at
1679 * splvm() because swap can be freed up by the low level vm_page
1680 * code which might be called from interrupts beyond what splbio() covers.
1681 *
1682 * Swap metadata is implemented with a global hash and not directly
1683 * linked into the object. Instead the object simply contains
1684 * appropriate tracking counters.
1685 */
1686
1687 /*
1688 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object
1689 *
1690 * We first convert the object to a swap object if it is a default
1691 * object.
1692 *
1693 * The specified swapblk is added to the object's swap metadata. If
1694 * the swapblk is not valid, it is freed instead. Any previously
1695 * assigned swapblk is freed.
1696 *
1697 * This routine must be called at splvm(), except when used to convert
1698 * an OBJT_DEFAULT object into an OBJT_SWAP object.
1699 */
1700 static void
1701 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1702 {
1703 struct swblock *swap;
1704 struct swblock **pswap;
1705 int idx;
1706
1707 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1708 /*
1709 * Convert default object to swap object if necessary
1710 */
1711 if (object->type != OBJT_SWAP) {
1712 object->type = OBJT_SWAP;
1713 object->un_pager.swp.swp_bcount = 0;
1714
1715 if (object->handle != NULL) {
1716 mtx_lock(&sw_alloc_mtx);
1717 TAILQ_INSERT_TAIL(
1718 NOBJLIST(object->handle),
1719 object,
1720 pager_object_list
1721 );
1722 mtx_unlock(&sw_alloc_mtx);
1723 }
1724 }
1725
1726 /*
1727 * Locate hash entry. If not found create, but if we aren't adding
1728 * anything just return. If we run out of space in the map we wait
1729 * and, since the hash table may have changed, retry.
1730 */
1731 retry:
1732 mtx_lock(&swhash_mtx);
1733 pswap = swp_pager_hash(object, pindex);
1734
1735 if ((swap = *pswap) == NULL) {
1736 int i;
1737
1738 if (swapblk == SWAPBLK_NONE)
1739 goto done;
1740
1741 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1742 if (swap == NULL) {
1743 mtx_unlock(&swhash_mtx);
1744 VM_OBJECT_UNLOCK(object);
1745 VM_WAIT;
1746 VM_OBJECT_LOCK(object);
1747 goto retry;
1748 }
1749
1750 swap->swb_hnext = NULL;
1751 swap->swb_object = object;
1752 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1753 swap->swb_count = 0;
1754
1755 ++object->un_pager.swp.swp_bcount;
1756
1757 for (i = 0; i < SWAP_META_PAGES; ++i)
1758 swap->swb_pages[i] = SWAPBLK_NONE;
1759 }
1760
1761 /*
1762 * Delete prior contents of metadata
1763 */
1764 idx = pindex & SWAP_META_MASK;
1765
1766 if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1767 swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1768 --swap->swb_count;
1769 }
1770
1771 /*
1772 * Enter block into metadata
1773 */
1774 swap->swb_pages[idx] = swapblk;
1775 if (swapblk != SWAPBLK_NONE)
1776 ++swap->swb_count;
1777 done:
1778 mtx_unlock(&swhash_mtx);
1779 }
1780
1781 /*
1782 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1783 *
1784 * The requested range of blocks is freed, with any associated swap
1785 * returned to the swap bitmap.
1786 *
1787 * This routine will free swap metadata structures as they are cleaned
1788 * out. This routine does *NOT* operate on swap metadata associated
1789 * with resident pages.
1790 *
1791 * This routine must be called at splvm()
1792 */
1793 static void
1794 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1795 {
1796
1797 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1798 if (object->type != OBJT_SWAP)
1799 return;
1800
1801 while (count > 0) {
1802 struct swblock **pswap;
1803 struct swblock *swap;
1804
1805 mtx_lock(&swhash_mtx);
1806 pswap = swp_pager_hash(object, index);
1807
1808 if ((swap = *pswap) != NULL) {
1809 daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1810
1811 if (v != SWAPBLK_NONE) {
1812 swp_pager_freeswapspace(v, 1);
1813 swap->swb_pages[index & SWAP_META_MASK] =
1814 SWAPBLK_NONE;
1815 if (--swap->swb_count == 0) {
1816 *pswap = swap->swb_hnext;
1817 uma_zfree(swap_zone, swap);
1818 --object->un_pager.swp.swp_bcount;
1819 }
1820 }
1821 --count;
1822 ++index;
1823 } else {
1824 int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1825 count -= n;
1826 index += n;
1827 }
1828 mtx_unlock(&swhash_mtx);
1829 }
1830 }
1831
1832 /*
1833 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1834 *
1835 * This routine locates and destroys all swap metadata associated with
1836 * an object.
1837 *
1838 * This routine must be called at splvm()
1839 */
1840 static void
1841 swp_pager_meta_free_all(vm_object_t object)
1842 {
1843 daddr_t index = 0;
1844
1845 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1846 if (object->type != OBJT_SWAP)
1847 return;
1848
1849 while (object->un_pager.swp.swp_bcount) {
1850 struct swblock **pswap;
1851 struct swblock *swap;
1852
1853 mtx_lock(&swhash_mtx);
1854 pswap = swp_pager_hash(object, index);
1855 if ((swap = *pswap) != NULL) {
1856 int i;
1857
1858 for (i = 0; i < SWAP_META_PAGES; ++i) {
1859 daddr_t v = swap->swb_pages[i];
1860 if (v != SWAPBLK_NONE) {
1861 --swap->swb_count;
1862 swp_pager_freeswapspace(v, 1);
1863 }
1864 }
1865 if (swap->swb_count != 0)
1866 panic("swap_pager_meta_free_all: swb_count != 0");
1867 *pswap = swap->swb_hnext;
1868 uma_zfree(swap_zone, swap);
1869 --object->un_pager.swp.swp_bcount;
1870 }
1871 mtx_unlock(&swhash_mtx);
1872 index += SWAP_META_PAGES;
1873 if (index > 0x20000000)
1874 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1875 }
1876 }
1877
1878 /*
1879 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data.
1880 *
1881 * This routine is capable of looking up, popping, or freeing
1882 * swapblk assignments in the swap meta data or in the vm_page_t.
1883 * The routine typically returns the swapblk being looked-up, or popped,
1884 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1885 * was invalid. This routine will automatically free any invalid
1886 * meta-data swapblks.
1887 *
1888 * It is not possible to store invalid swapblks in the swap meta data
1889 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1890 *
1891 * When acting on a busy resident page and paging is in progress, we
1892 * have to wait until paging is complete but otherwise can act on the
1893 * busy page.
1894 *
1895 * This routine must be called at splvm().
1896 *
1897 * SWM_FREE remove and free swap block from metadata
1898 * SWM_POP remove from meta data but do not free.. pop it out
1899 */
1900 static daddr_t
1901 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
1902 {
1903 struct swblock **pswap;
1904 struct swblock *swap;
1905 daddr_t r1;
1906 int idx;
1907
1908 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1909 /*
1910 * The meta data only exists of the object is OBJT_SWAP
1911 * and even then might not be allocated yet.
1912 */
1913 if (object->type != OBJT_SWAP)
1914 return (SWAPBLK_NONE);
1915
1916 r1 = SWAPBLK_NONE;
1917 mtx_lock(&swhash_mtx);
1918 pswap = swp_pager_hash(object, pindex);
1919
1920 if ((swap = *pswap) != NULL) {
1921 idx = pindex & SWAP_META_MASK;
1922 r1 = swap->swb_pages[idx];
1923
1924 if (r1 != SWAPBLK_NONE) {
1925 if (flags & SWM_FREE) {
1926 swp_pager_freeswapspace(r1, 1);
1927 r1 = SWAPBLK_NONE;
1928 }
1929 if (flags & (SWM_FREE|SWM_POP)) {
1930 swap->swb_pages[idx] = SWAPBLK_NONE;
1931 if (--swap->swb_count == 0) {
1932 *pswap = swap->swb_hnext;
1933 uma_zfree(swap_zone, swap);
1934 --object->un_pager.swp.swp_bcount;
1935 }
1936 }
1937 }
1938 }
1939 mtx_unlock(&swhash_mtx);
1940 return (r1);
1941 }
1942
1943 /*
1944 * System call swapon(name) enables swapping on device name,
1945 * which must be in the swdevsw. Return EBUSY
1946 * if already swapping on this device.
1947 */
1948 #ifndef _SYS_SYSPROTO_H_
1949 struct swapon_args {
1950 char *name;
1951 };
1952 #endif
1953
1954 /*
1955 * MPSAFE
1956 */
1957 /* ARGSUSED */
1958 int
1959 swapon(struct thread *td, struct swapon_args *uap)
1960 {
1961 struct vattr attr;
1962 struct vnode *vp;
1963 struct nameidata nd;
1964 int error;
1965
1966 mtx_lock(&Giant);
1967 error = suser(td);
1968 if (error)
1969 goto done2;
1970
1971 while (swdev_syscall_active)
1972 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
1973 swdev_syscall_active = 1;
1974
1975 /*
1976 * Swap metadata may not fit in the KVM if we have physical
1977 * memory of >1GB.
1978 */
1979 if (swap_zone == NULL) {
1980 error = ENOMEM;
1981 goto done;
1982 }
1983
1984 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW, UIO_USERSPACE, uap->name, td);
1985 error = namei(&nd);
1986 if (error)
1987 goto done;
1988
1989 NDFREE(&nd, NDF_ONLY_PNBUF);
1990 vp = nd.ni_vp;
1991
1992 if (vn_isdisk(vp, &error)) {
1993 error = swapongeom(td, vp);
1994 } else if (vp->v_type == VREG &&
1995 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1996 (error = VOP_GETATTR(vp, &attr, td->td_ucred, td)) == 0) {
1997 /*
1998 * Allow direct swapping to NFS regular files in the same
1999 * way that nfs_mountroot() sets up diskless swapping.
2000 */
2001 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2002 }
2003
2004 if (error)
2005 vrele(vp);
2006 done:
2007 swdev_syscall_active = 0;
2008 wakeup_one(&swdev_syscall_active);
2009 done2:
2010 mtx_unlock(&Giant);
2011 return (error);
2012 }
2013
2014 static void
2015 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev)
2016 {
2017 struct swdevt *sp, *tsp;
2018 swblk_t dvbase;
2019 u_long mblocks;
2020
2021 /*
2022 * If we go beyond this, we get overflows in the radix
2023 * tree bitmap code.
2024 */
2025 mblocks = 0x40000000 / BLIST_META_RADIX;
2026 if (nblks > mblocks) {
2027 printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n",
2028 mblocks);
2029 nblks = mblocks;
2030 }
2031 /*
2032 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2033 * First chop nblks off to page-align it, then convert.
2034 *
2035 * sw->sw_nblks is in page-sized chunks now too.
2036 */
2037 nblks &= ~(ctodb(1) - 1);
2038 nblks = dbtoc(nblks);
2039
2040 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2041 sp->sw_vp = vp;
2042 sp->sw_id = id;
2043 sp->sw_dev = dev;
2044 sp->sw_flags = 0;
2045 sp->sw_nblks = nblks;
2046 sp->sw_used = 0;
2047 sp->sw_strategy = strategy;
2048 sp->sw_close = close;
2049
2050 sp->sw_blist = blist_create(nblks);
2051 /*
2052 * Do not free the first two block in order to avoid overwriting
2053 * any bsd label at the front of the partition
2054 */
2055 blist_free(sp->sw_blist, 2, nblks - 2);
2056
2057 dvbase = 0;
2058 mtx_lock(&sw_dev_mtx);
2059 TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2060 if (tsp->sw_end >= dvbase) {
2061 /*
2062 * We put one uncovered page between the devices
2063 * in order to definitively prevent any cross-device
2064 * I/O requests
2065 */
2066 dvbase = tsp->sw_end + 1;
2067 }
2068 }
2069 sp->sw_first = dvbase;
2070 sp->sw_end = dvbase + nblks;
2071 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2072 nswapdev++;
2073 swap_pager_avail += nblks;
2074 swp_sizecheck();
2075 mtx_unlock(&sw_dev_mtx);
2076 }
2077
2078 /*
2079 * SYSCALL: swapoff(devname)
2080 *
2081 * Disable swapping on the given device.
2082 *
2083 * XXX: Badly designed system call: it should use a device index
2084 * rather than filename as specification. We keep sw_vp around
2085 * only to make this work.
2086 */
2087 #ifndef _SYS_SYSPROTO_H_
2088 struct swapoff_args {
2089 char *name;
2090 };
2091 #endif
2092
2093 /*
2094 * MPSAFE
2095 */
2096 /* ARGSUSED */
2097 int
2098 swapoff(struct thread *td, struct swapoff_args *uap)
2099 {
2100 struct vnode *vp;
2101 struct nameidata nd;
2102 struct swdevt *sp;
2103 u_long nblks, dvbase;
2104 int error;
2105
2106 mtx_lock(&Giant);
2107
2108 error = suser(td);
2109 if (error)
2110 goto done2;
2111
2112 while (swdev_syscall_active)
2113 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2114 swdev_syscall_active = 1;
2115
2116 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->name, td);
2117 error = namei(&nd);
2118 if (error)
2119 goto done;
2120 NDFREE(&nd, NDF_ONLY_PNBUF);
2121 vp = nd.ni_vp;
2122
2123 mtx_lock(&sw_dev_mtx);
2124 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2125 if (sp->sw_vp == vp)
2126 goto found;
2127 }
2128 mtx_unlock(&sw_dev_mtx);
2129 error = EINVAL;
2130 goto done;
2131 found:
2132 mtx_unlock(&sw_dev_mtx);
2133 #ifdef MAC
2134 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2135 error = mac_check_system_swapoff(td->td_ucred, vp);
2136 (void) VOP_UNLOCK(vp, 0, td);
2137 if (error != 0)
2138 goto done;
2139 #endif
2140
2141 nblks = sp->sw_nblks;
2142
2143 /*
2144 * We can turn off this swap device safely only if the
2145 * available virtual memory in the system will fit the amount
2146 * of data we will have to page back in, plus an epsilon so
2147 * the system doesn't become critically low on swap space.
2148 */
2149 if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2150 nblks + nswap_lowat) {
2151 error = ENOMEM;
2152 goto done;
2153 }
2154
2155 /*
2156 * Prevent further allocations on this device.
2157 */
2158 mtx_lock(&sw_dev_mtx);
2159 sp->sw_flags |= SW_CLOSING;
2160 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2161 swap_pager_avail -= blist_fill(sp->sw_blist,
2162 dvbase, dmmax);
2163 }
2164 mtx_unlock(&sw_dev_mtx);
2165
2166 /*
2167 * Page in the contents of the device and close it.
2168 */
2169 swap_pager_swapoff(sp);
2170
2171 sp->sw_close(td, sp);
2172 sp->sw_id = NULL;
2173 mtx_lock(&sw_dev_mtx);
2174 TAILQ_REMOVE(&swtailq, sp, sw_list);
2175 nswapdev--;
2176 if (nswapdev == 0) {
2177 swap_pager_full = 2;
2178 swap_pager_almost_full = 1;
2179 }
2180 if (swdevhd == sp)
2181 swdevhd = NULL;
2182 mtx_unlock(&sw_dev_mtx);
2183 blist_destroy(sp->sw_blist);
2184 free(sp, M_VMPGDATA);
2185
2186 done:
2187 swdev_syscall_active = 0;
2188 wakeup_one(&swdev_syscall_active);
2189 done2:
2190 mtx_unlock(&Giant);
2191 return (error);
2192 }
2193
2194 void
2195 swap_pager_status(int *total, int *used)
2196 {
2197 struct swdevt *sp;
2198
2199 *total = 0;
2200 *used = 0;
2201 mtx_lock(&sw_dev_mtx);
2202 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2203 *total += sp->sw_nblks;
2204 *used += sp->sw_used;
2205 }
2206 mtx_unlock(&sw_dev_mtx);
2207 }
2208
2209 static int
2210 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2211 {
2212 int *name = (int *)arg1;
2213 int error, n;
2214 struct xswdev xs;
2215 struct swdevt *sp;
2216
2217 if (arg2 != 1) /* name length */
2218 return (EINVAL);
2219
2220 n = 0;
2221 mtx_lock(&sw_dev_mtx);
2222 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2223 if (n == *name) {
2224 mtx_unlock(&sw_dev_mtx);
2225 xs.xsw_version = XSWDEV_VERSION;
2226 xs.xsw_dev = sp->sw_dev;
2227 xs.xsw_flags = sp->sw_flags;
2228 xs.xsw_nblks = sp->sw_nblks;
2229 xs.xsw_used = sp->sw_used;
2230
2231 error = SYSCTL_OUT(req, &xs, sizeof(xs));
2232 return (error);
2233 }
2234 n++;
2235 }
2236 mtx_unlock(&sw_dev_mtx);
2237 return (ENOENT);
2238 }
2239
2240 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2241 "Number of swap devices");
2242 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2243 "Swap statistics by device");
2244
2245 /*
2246 * vmspace_swap_count() - count the approximate swap useage in pages for a
2247 * vmspace.
2248 *
2249 * The map must be locked.
2250 *
2251 * Swap useage is determined by taking the proportional swap used by
2252 * VM objects backing the VM map. To make up for fractional losses,
2253 * if the VM object has any swap use at all the associated map entries
2254 * count for at least 1 swap page.
2255 */
2256 int
2257 vmspace_swap_count(struct vmspace *vmspace)
2258 {
2259 vm_map_t map = &vmspace->vm_map;
2260 vm_map_entry_t cur;
2261 int count = 0;
2262
2263 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2264 vm_object_t object;
2265
2266 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2267 (object = cur->object.vm_object) != NULL) {
2268 VM_OBJECT_LOCK(object);
2269 if (object->type == OBJT_SWAP &&
2270 object->un_pager.swp.swp_bcount != 0) {
2271 int n = (cur->end - cur->start) / PAGE_SIZE;
2272
2273 count += object->un_pager.swp.swp_bcount *
2274 SWAP_META_PAGES * n / object->size + 1;
2275 }
2276 VM_OBJECT_UNLOCK(object);
2277 }
2278 }
2279 return (count);
2280 }
2281
2282 /*
2283 * GEOM backend
2284 *
2285 * Swapping onto disk devices.
2286 *
2287 */
2288
2289 static g_orphan_t swapgeom_orphan;
2290
2291 static struct g_class g_swap_class = {
2292 .name = "SWAP",
2293 .version = G_VERSION,
2294 .orphan = swapgeom_orphan,
2295 };
2296
2297 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2298
2299
2300 static void
2301 swapgeom_done(struct bio *bp2)
2302 {
2303 struct buf *bp;
2304
2305 bp = bp2->bio_caller2;
2306 bp->b_ioflags = bp2->bio_flags;
2307 if (bp2->bio_error)
2308 bp->b_ioflags |= BIO_ERROR;
2309 bp->b_resid = bp->b_bcount - bp2->bio_completed;
2310 bp->b_error = bp2->bio_error;
2311 bufdone(bp);
2312 g_destroy_bio(bp2);
2313 }
2314
2315 static void
2316 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2317 {
2318 struct bio *bio;
2319 struct g_consumer *cp;
2320
2321 cp = sp->sw_id;
2322 if (cp == NULL) {
2323 bp->b_error = ENXIO;
2324 bp->b_ioflags |= BIO_ERROR;
2325 bufdone(bp);
2326 return;
2327 }
2328 bio = g_alloc_bio();
2329 #if 0
2330 /*
2331 * XXX: We shouldn't really sleep here when we run out of buffers
2332 * XXX: but the alternative is worse right now.
2333 */
2334 if (bio == NULL) {
2335 bp->b_error = ENOMEM;
2336 bp->b_ioflags |= BIO_ERROR;
2337 bufdone(bp);
2338 return;
2339 }
2340 #endif
2341 bio->bio_caller2 = bp;
2342 bio->bio_cmd = bp->b_iocmd;
2343 bio->bio_data = bp->b_data;
2344 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2345 bio->bio_length = bp->b_bcount;
2346 bio->bio_done = swapgeom_done;
2347 g_io_request(bio, cp);
2348 return;
2349 }
2350
2351 static void
2352 swapgeom_orphan(struct g_consumer *cp)
2353 {
2354 struct swdevt *sp;
2355
2356 mtx_lock(&sw_dev_mtx);
2357 TAILQ_FOREACH(sp, &swtailq, sw_list)
2358 if (sp->sw_id == cp)
2359 sp->sw_id = NULL;
2360 mtx_unlock(&sw_dev_mtx);
2361 }
2362
2363 static void
2364 swapgeom_close_ev(void *arg, int flags)
2365 {
2366 struct g_consumer *cp;
2367
2368 cp = arg;
2369 g_access(cp, -1, -1, 0);
2370 g_detach(cp);
2371 g_destroy_consumer(cp);
2372 }
2373
2374 static void
2375 swapgeom_close(struct thread *td, struct swdevt *sw)
2376 {
2377
2378 /* XXX: direct call when Giant untangled */
2379 g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2380 }
2381
2382
2383 struct swh0h0 {
2384 struct cdev *dev;
2385 struct vnode *vp;
2386 int error;
2387 };
2388
2389 static void
2390 swapongeom_ev(void *arg, int flags)
2391 {
2392 struct swh0h0 *swh;
2393 struct g_provider *pp;
2394 struct g_consumer *cp;
2395 static struct g_geom *gp;
2396 struct swdevt *sp;
2397 u_long nblks;
2398 int error;
2399
2400 swh = arg;
2401 swh->error = 0;
2402 pp = g_dev_getprovider(swh->dev);
2403 if (pp == NULL) {
2404 swh->error = ENODEV;
2405 return;
2406 }
2407 mtx_lock(&sw_dev_mtx);
2408 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2409 cp = sp->sw_id;
2410 if (cp != NULL && cp->provider == pp) {
2411 mtx_unlock(&sw_dev_mtx);
2412 swh->error = EBUSY;
2413 return;
2414 }
2415 }
2416 mtx_unlock(&sw_dev_mtx);
2417 if (gp == NULL)
2418 gp = g_new_geomf(&g_swap_class, "swap", NULL);
2419 cp = g_new_consumer(gp);
2420 g_attach(cp, pp);
2421 /*
2422 * XXX: Everytime you think you can improve the margin for
2423 * footshooting, somebody depends on the ability to do so:
2424 * savecore(8) wants to write to our swapdev so we cannot
2425 * set an exclusive count :-(
2426 */
2427 error = g_access(cp, 1, 1, 0);
2428 if (error) {
2429 g_detach(cp);
2430 g_destroy_consumer(cp);
2431 swh->error = error;
2432 return;
2433 }
2434 nblks = pp->mediasize / DEV_BSIZE;
2435 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2436 swapgeom_close, dev2udev(swh->dev));
2437 swh->error = 0;
2438 return;
2439 }
2440
2441 static int
2442 swapongeom(struct thread *td, struct vnode *vp)
2443 {
2444 int error;
2445 struct swh0h0 swh;
2446
2447 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2448
2449 swh.dev = vp->v_rdev;
2450 swh.vp = vp;
2451 swh.error = 0;
2452 /* XXX: direct call when Giant untangled */
2453 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2454 if (!error)
2455 error = swh.error;
2456 VOP_UNLOCK(vp, 0, td);
2457 return (error);
2458 }
2459
2460 /*
2461 * VNODE backend
2462 *
2463 * This is used mainly for network filesystem (read: probably only tested
2464 * with NFS) swapfiles.
2465 *
2466 */
2467
2468 static void
2469 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2470 {
2471 struct vnode *vp2;
2472
2473 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2474
2475 vp2 = sp->sw_id;
2476 vhold(vp2);
2477 if (bp->b_iocmd == BIO_WRITE) {
2478 if (bp->b_bufobj) /* XXX: should always be true /phk */
2479 bufobj_wdrop(bp->b_bufobj);
2480 bufobj_wref(&vp2->v_bufobj);
2481 }
2482 bp->b_vp = vp2;
2483 bp->b_iooffset = dbtob(bp->b_blkno);
2484 bstrategy(bp);
2485 return;
2486 }
2487
2488 static void
2489 swapdev_close(struct thread *td, struct swdevt *sp)
2490 {
2491
2492 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2493 vrele(sp->sw_vp);
2494 }
2495
2496
2497 static int
2498 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2499 {
2500 struct swdevt *sp;
2501 int error;
2502
2503 if (nblks == 0)
2504 return (ENXIO);
2505 mtx_lock(&sw_dev_mtx);
2506 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2507 if (sp->sw_id == vp) {
2508 mtx_unlock(&sw_dev_mtx);
2509 return (EBUSY);
2510 }
2511 }
2512 mtx_unlock(&sw_dev_mtx);
2513
2514 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2515 #ifdef MAC
2516 error = mac_check_system_swapon(td->td_ucred, vp);
2517 if (error == 0)
2518 #endif
2519 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, -1);
2520 (void) VOP_UNLOCK(vp, 0, td);
2521 if (error)
2522 return (error);
2523
2524 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2525 NODEV);
2526 return (0);
2527 }
Cache object: 53ab3269f213e2a21ce65b76b98255cd
|