The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/swap_pager.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1998 Matthew Dillon,
    3  * Copyright (c) 1994 John S. Dyson
    4  * Copyright (c) 1990 University of Utah.
    5  * Copyright (c) 1982, 1986, 1989, 1993
    6  *      The Regents of the University of California.  All rights reserved.
    7  *
    8  * This code is derived from software contributed to Berkeley by
    9  * the Systems Programming Group of the University of Utah Computer
   10  * Science Department.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. All advertising materials mentioning features or use of this software
   21  *    must display the following acknowledgement:
   22  *      This product includes software developed by the University of
   23  *      California, Berkeley and its contributors.
   24  * 4. Neither the name of the University nor the names of its contributors
   25  *    may be used to endorse or promote products derived from this software
   26  *    without specific prior written permission.
   27  *
   28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   38  * SUCH DAMAGE.
   39  *
   40  *                              New Swap System
   41  *                              Matthew Dillon
   42  *
   43  * Radix Bitmap 'blists'.
   44  *
   45  *      - The new swapper uses the new radix bitmap code.  This should scale
   46  *        to arbitrarily small or arbitrarily large swap spaces and an almost
   47  *        arbitrary degree of fragmentation.
   48  *
   49  * Features:
   50  *
   51  *      - on the fly reallocation of swap during putpages.  The new system
   52  *        does not try to keep previously allocated swap blocks for dirty
   53  *        pages.  
   54  *
   55  *      - on the fly deallocation of swap
   56  *
   57  *      - No more garbage collection required.  Unnecessarily allocated swap
   58  *        blocks only exist for dirty vm_page_t's now and these are already
   59  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
   60  *        removal of invalidated swap blocks when a page is destroyed
   61  *        or renamed.
   62  *
   63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
   64  *
   65  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
   66  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
   67  */
   68 
   69 #include <sys/cdefs.h>
   70 __FBSDID("$FreeBSD: releng/6.2/sys/vm/swap_pager.c 160454 2006-07-17 21:23:54Z cognet $");
   71 
   72 #include "opt_mac.h"
   73 #include "opt_swap.h"
   74 #include "opt_vm.h"
   75 
   76 #include <sys/param.h>
   77 #include <sys/systm.h>
   78 #include <sys/conf.h>
   79 #include <sys/kernel.h>
   80 #include <sys/proc.h>
   81 #include <sys/bio.h>
   82 #include <sys/buf.h>
   83 #include <sys/disk.h>
   84 #include <sys/fcntl.h>
   85 #include <sys/mount.h>
   86 #include <sys/namei.h>
   87 #include <sys/vnode.h>
   88 #include <sys/mac.h>
   89 #include <sys/malloc.h>
   90 #include <sys/sysctl.h>
   91 #include <sys/sysproto.h>
   92 #include <sys/blist.h>
   93 #include <sys/lock.h>
   94 #include <sys/sx.h>
   95 #include <sys/vmmeter.h>
   96 
   97 #include <vm/vm.h>
   98 #include <vm/pmap.h>
   99 #include <vm/vm_map.h>
  100 #include <vm/vm_kern.h>
  101 #include <vm/vm_object.h>
  102 #include <vm/vm_page.h>
  103 #include <vm/vm_pager.h>
  104 #include <vm/vm_pageout.h>
  105 #include <vm/vm_param.h>
  106 #include <vm/swap_pager.h>
  107 #include <vm/vm_extern.h>
  108 #include <vm/uma.h>
  109 
  110 #include <geom/geom.h>
  111 
  112 /*
  113  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, or 16
  114  * pages per allocation.  We recommend you stick with the default of 8.
  115  * The 16-page limit is due to the radix code (kern/subr_blist.c).
  116  */
  117 #ifndef MAX_PAGEOUT_CLUSTER
  118 #define MAX_PAGEOUT_CLUSTER 16
  119 #endif
  120 
  121 #if !defined(SWB_NPAGES)
  122 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
  123 #endif
  124 
  125 /*
  126  * Piecemeal swap metadata structure.  Swap is stored in a radix tree.
  127  *
  128  * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix
  129  * is basically 8.  Assuming PAGE_SIZE == 4096, one tree level represents
  130  * 32K worth of data, two levels represent 256K, three levels represent
  131  * 2 MBytes.   This is acceptable.
  132  *
  133  * Overall memory utilization is about the same as the old swap structure.
  134  */
  135 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
  136 #define SWAP_META_PAGES         (SWB_NPAGES * 2)
  137 #define SWAP_META_MASK          (SWAP_META_PAGES - 1)
  138 
  139 typedef int32_t swblk_t;        /*
  140                                  * swap offset.  This is the type used to
  141                                  * address the "virtual swap device" and
  142                                  * therefore the maximum swap space is
  143                                  * 2^32 pages.
  144                                  */
  145 
  146 struct swdevt;
  147 typedef void sw_strategy_t(struct buf *bp, struct swdevt *sw);
  148 typedef void sw_close_t(struct thread *td, struct swdevt *sw);
  149 
  150 /*
  151  * Swap device table
  152  */
  153 struct swdevt {
  154         int     sw_flags;
  155         int     sw_nblks;
  156         int     sw_used;
  157         dev_t   sw_dev;
  158         struct vnode *sw_vp;
  159         void    *sw_id;
  160         swblk_t sw_first;
  161         swblk_t sw_end;
  162         struct blist *sw_blist;
  163         TAILQ_ENTRY(swdevt)     sw_list;
  164         sw_strategy_t           *sw_strategy;
  165         sw_close_t              *sw_close;
  166 };
  167 
  168 #define SW_CLOSING      0x04
  169 
  170 struct swblock {
  171         struct swblock  *swb_hnext;
  172         vm_object_t     swb_object;
  173         vm_pindex_t     swb_index;
  174         int             swb_count;
  175         daddr_t         swb_pages[SWAP_META_PAGES];
  176 };
  177 
  178 static struct mtx sw_dev_mtx;
  179 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
  180 static struct swdevt *swdevhd;  /* Allocate from here next */
  181 static int nswapdev;            /* Number of swap devices */
  182 int swap_pager_avail;
  183 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
  184 
  185 static void swapdev_strategy(struct buf *, struct swdevt *sw);
  186 
  187 #define SWM_FREE        0x02    /* free, period                 */
  188 #define SWM_POP         0x04    /* pop out                      */
  189 
  190 int swap_pager_full = 2;        /* swap space exhaustion (task killing) */
  191 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
  192 static int nsw_rcount;          /* free read buffers                    */
  193 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
  194 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
  195 static int nsw_wcount_async_max;/* assigned maximum                     */
  196 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
  197 
  198 static struct swblock **swhash;
  199 static int swhash_mask;
  200 static struct mtx swhash_mtx;
  201 
  202 static int swap_async_max = 4;  /* maximum in-progress async I/O's      */
  203 static struct sx sw_alloc_sx;
  204 
  205 
  206 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
  207         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
  208 
  209 /*
  210  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
  211  * of searching a named list by hashing it just a little.
  212  */
  213 
  214 #define NOBJLISTS               8
  215 
  216 #define NOBJLIST(handle)        \
  217         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
  218 
  219 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 
  220 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
  221 static uma_zone_t       swap_zone;
  222 static struct vm_object swap_zone_obj;
  223 
  224 /*
  225  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
  226  * calls hooked from other parts of the VM system and do not appear here.
  227  * (see vm/swap_pager.h).
  228  */
  229 static vm_object_t
  230                 swap_pager_alloc(void *handle, vm_ooffset_t size,
  231                                       vm_prot_t prot, vm_ooffset_t offset);
  232 static void     swap_pager_dealloc(vm_object_t object);
  233 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
  234 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
  235 static boolean_t
  236                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
  237 static void     swap_pager_init(void);
  238 static void     swap_pager_unswapped(vm_page_t);
  239 static void     swap_pager_swapoff(struct swdevt *sp);
  240 
  241 struct pagerops swappagerops = {
  242         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
  243         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
  244         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
  245         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
  246         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
  247         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
  248         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
  249 };
  250 
  251 /*
  252  * dmmax is in page-sized chunks with the new swap system.  It was
  253  * dev-bsized chunks in the old.  dmmax is always a power of 2.
  254  *
  255  * swap_*() routines are externally accessible.  swp_*() routines are
  256  * internal.
  257  */
  258 static int dmmax;
  259 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
  260 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
  261 
  262 SYSCTL_INT(_vm, OID_AUTO, dmmax,
  263         CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
  264 
  265 static void     swp_sizecheck(void);
  266 static void     swp_pager_async_iodone(struct buf *bp);
  267 static int      swapongeom(struct thread *, struct vnode *);
  268 static int      swaponvp(struct thread *, struct vnode *, u_long);
  269 static int      swapoff_one(struct swdevt *sp, struct thread *td);
  270 
  271 /*
  272  * Swap bitmap functions
  273  */
  274 static void     swp_pager_freeswapspace(daddr_t blk, int npages);
  275 static daddr_t  swp_pager_getswapspace(int npages);
  276 
  277 /*
  278  * Metadata functions
  279  */
  280 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
  281 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
  282 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
  283 static void swp_pager_meta_free_all(vm_object_t);
  284 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
  285 
  286 /*
  287  * SWP_SIZECHECK() -    update swap_pager_full indication
  288  *      
  289  *      update the swap_pager_almost_full indication and warn when we are
  290  *      about to run out of swap space, using lowat/hiwat hysteresis.
  291  *
  292  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
  293  *
  294  *      No restrictions on call
  295  *      This routine may not block.
  296  *      This routine must be called at splvm()
  297  */
  298 static void
  299 swp_sizecheck(void)
  300 {
  301 
  302         if (swap_pager_avail < nswap_lowat) {
  303                 if (swap_pager_almost_full == 0) {
  304                         printf("swap_pager: out of swap space\n");
  305                         swap_pager_almost_full = 1;
  306                 }
  307         } else {
  308                 swap_pager_full = 0;
  309                 if (swap_pager_avail > nswap_hiwat)
  310                         swap_pager_almost_full = 0;
  311         }
  312 }
  313 
  314 /*
  315  * SWP_PAGER_HASH() -   hash swap meta data
  316  *
  317  *      This is an helper function which hashes the swapblk given
  318  *      the object and page index.  It returns a pointer to a pointer
  319  *      to the object, or a pointer to a NULL pointer if it could not
  320  *      find a swapblk.
  321  *
  322  *      This routine must be called at splvm().
  323  */
  324 static struct swblock **
  325 swp_pager_hash(vm_object_t object, vm_pindex_t index)
  326 {
  327         struct swblock **pswap;
  328         struct swblock *swap;
  329 
  330         index &= ~(vm_pindex_t)SWAP_META_MASK;
  331         pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
  332         while ((swap = *pswap) != NULL) {
  333                 if (swap->swb_object == object &&
  334                     swap->swb_index == index
  335                 ) {
  336                         break;
  337                 }
  338                 pswap = &swap->swb_hnext;
  339         }
  340         return (pswap);
  341 }
  342 
  343 /*
  344  * SWAP_PAGER_INIT() -  initialize the swap pager!
  345  *
  346  *      Expected to be started from system init.  NOTE:  This code is run 
  347  *      before much else so be careful what you depend on.  Most of the VM
  348  *      system has yet to be initialized at this point.
  349  */
  350 static void
  351 swap_pager_init(void)
  352 {
  353         /*
  354          * Initialize object lists
  355          */
  356         int i;
  357 
  358         for (i = 0; i < NOBJLISTS; ++i)
  359                 TAILQ_INIT(&swap_pager_object_list[i]);
  360         mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
  361         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
  362 
  363         /*
  364          * Device Stripe, in PAGE_SIZE'd blocks
  365          */
  366         dmmax = SWB_NPAGES * 2;
  367 }
  368 
  369 /*
  370  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
  371  *
  372  *      Expected to be started from pageout process once, prior to entering
  373  *      its main loop.
  374  */
  375 void
  376 swap_pager_swap_init(void)
  377 {
  378         int n, n2;
  379 
  380         /*
  381          * Number of in-transit swap bp operations.  Don't
  382          * exhaust the pbufs completely.  Make sure we
  383          * initialize workable values (0 will work for hysteresis
  384          * but it isn't very efficient).
  385          *
  386          * The nsw_cluster_max is constrained by the bp->b_pages[]
  387          * array (MAXPHYS/PAGE_SIZE) and our locally defined
  388          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
  389          * constrained by the swap device interleave stripe size.
  390          *
  391          * Currently we hardwire nsw_wcount_async to 4.  This limit is 
  392          * designed to prevent other I/O from having high latencies due to
  393          * our pageout I/O.  The value 4 works well for one or two active swap
  394          * devices but is probably a little low if you have more.  Even so,
  395          * a higher value would probably generate only a limited improvement
  396          * with three or four active swap devices since the system does not
  397          * typically have to pageout at extreme bandwidths.   We will want
  398          * at least 2 per swap devices, and 4 is a pretty good value if you
  399          * have one NFS swap device due to the command/ack latency over NFS.
  400          * So it all works out pretty well.
  401          */
  402         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
  403 
  404         mtx_lock(&pbuf_mtx);
  405         nsw_rcount = (nswbuf + 1) / 2;
  406         nsw_wcount_sync = (nswbuf + 3) / 4;
  407         nsw_wcount_async = 4;
  408         nsw_wcount_async_max = nsw_wcount_async;
  409         mtx_unlock(&pbuf_mtx);
  410 
  411         /*
  412          * Initialize our zone.  Right now I'm just guessing on the number
  413          * we need based on the number of pages in the system.  Each swblock
  414          * can hold 16 pages, so this is probably overkill.  This reservation
  415          * is typically limited to around 32MB by default.
  416          */
  417         n = cnt.v_page_count / 2;
  418         if (maxswzone && n > maxswzone / sizeof(struct swblock))
  419                 n = maxswzone / sizeof(struct swblock);
  420         n2 = n;
  421         swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
  422             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
  423         if (swap_zone == NULL)
  424                 panic("failed to create swap_zone.");
  425         do {
  426                 if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n))
  427                         break;
  428                 /*
  429                  * if the allocation failed, try a zone two thirds the
  430                  * size of the previous attempt.
  431                  */
  432                 n -= ((n + 2) / 3);
  433         } while (n > 0);
  434         if (n2 != n)
  435                 printf("Swap zone entries reduced from %d to %d.\n", n2, n);
  436         n2 = n;
  437 
  438         /*
  439          * Initialize our meta-data hash table.  The swapper does not need to
  440          * be quite as efficient as the VM system, so we do not use an 
  441          * oversized hash table.
  442          *
  443          *      n:              size of hash table, must be power of 2
  444          *      swhash_mask:    hash table index mask
  445          */
  446         for (n = 1; n < n2 / 8; n *= 2)
  447                 ;
  448         swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
  449         swhash_mask = n - 1;
  450         mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
  451 }
  452 
  453 /*
  454  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
  455  *                      its metadata structures.
  456  *
  457  *      This routine is called from the mmap and fork code to create a new
  458  *      OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
  459  *      and then converting it with swp_pager_meta_build().
  460  *
  461  *      This routine may block in vm_object_allocate() and create a named
  462  *      object lookup race, so we must interlock.   We must also run at
  463  *      splvm() for the object lookup to handle races with interrupts, but
  464  *      we do not have to maintain splvm() in between the lookup and the
  465  *      add because (I believe) it is not possible to attempt to create
  466  *      a new swap object w/handle when a default object with that handle
  467  *      already exists.
  468  *
  469  * MPSAFE
  470  */
  471 static vm_object_t
  472 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
  473                  vm_ooffset_t offset)
  474 {
  475         vm_object_t object;
  476         vm_pindex_t pindex;
  477 
  478         pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
  479 
  480         if (handle) {
  481                 mtx_lock(&Giant);
  482                 /*
  483                  * Reference existing named region or allocate new one.  There
  484                  * should not be a race here against swp_pager_meta_build()
  485                  * as called from vm_page_remove() in regards to the lookup
  486                  * of the handle.
  487                  */
  488                 sx_xlock(&sw_alloc_sx);
  489                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
  490 
  491                 if (object != NULL) {
  492                         vm_object_reference(object);
  493                 } else {
  494                         object = vm_object_allocate(OBJT_DEFAULT, pindex);
  495                         object->handle = handle;
  496 
  497                         VM_OBJECT_LOCK(object);
  498                         swp_pager_meta_build(object, 0, SWAPBLK_NONE);
  499                         VM_OBJECT_UNLOCK(object);
  500                 }
  501                 sx_xunlock(&sw_alloc_sx);
  502                 mtx_unlock(&Giant);
  503         } else {
  504                 object = vm_object_allocate(OBJT_DEFAULT, pindex);
  505 
  506                 VM_OBJECT_LOCK(object);
  507                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
  508                 VM_OBJECT_UNLOCK(object);
  509         }
  510         return (object);
  511 }
  512 
  513 /*
  514  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
  515  *
  516  *      The swap backing for the object is destroyed.  The code is 
  517  *      designed such that we can reinstantiate it later, but this
  518  *      routine is typically called only when the entire object is
  519  *      about to be destroyed.
  520  *
  521  *      This routine may block, but no longer does. 
  522  *
  523  *      The object must be locked or unreferenceable.
  524  */
  525 static void
  526 swap_pager_dealloc(vm_object_t object)
  527 {
  528 
  529         /*
  530          * Remove from list right away so lookups will fail if we block for
  531          * pageout completion.
  532          */
  533         if (object->handle != NULL) {
  534                 mtx_lock(&sw_alloc_mtx);
  535                 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
  536                 mtx_unlock(&sw_alloc_mtx);
  537         }
  538 
  539         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  540         vm_object_pip_wait(object, "swpdea");
  541 
  542         /*
  543          * Free all remaining metadata.  We only bother to free it from 
  544          * the swap meta data.  We do not attempt to free swapblk's still
  545          * associated with vm_page_t's for this object.  We do not care
  546          * if paging is still in progress on some objects.
  547          */
  548         swp_pager_meta_free_all(object);
  549 }
  550 
  551 /************************************************************************
  552  *                      SWAP PAGER BITMAP ROUTINES                      *
  553  ************************************************************************/
  554 
  555 /*
  556  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
  557  *
  558  *      Allocate swap for the requested number of pages.  The starting
  559  *      swap block number (a page index) is returned or SWAPBLK_NONE
  560  *      if the allocation failed.
  561  *
  562  *      Also has the side effect of advising that somebody made a mistake
  563  *      when they configured swap and didn't configure enough.
  564  *
  565  *      Must be called at splvm() to avoid races with bitmap frees from
  566  *      vm_page_remove() aka swap_pager_page_removed().
  567  *
  568  *      This routine may not block
  569  *      This routine must be called at splvm().
  570  *
  571  *      We allocate in round-robin fashion from the configured devices.
  572  */
  573 static daddr_t
  574 swp_pager_getswapspace(int npages)
  575 {
  576         daddr_t blk;
  577         struct swdevt *sp;
  578         int i;
  579 
  580         blk = SWAPBLK_NONE;
  581         mtx_lock(&sw_dev_mtx);
  582         sp = swdevhd;
  583         for (i = 0; i < nswapdev; i++) {
  584                 if (sp == NULL)
  585                         sp = TAILQ_FIRST(&swtailq);
  586                 if (!(sp->sw_flags & SW_CLOSING)) {
  587                         blk = blist_alloc(sp->sw_blist, npages);
  588                         if (blk != SWAPBLK_NONE) {
  589                                 blk += sp->sw_first;
  590                                 sp->sw_used += npages;
  591                                 swap_pager_avail -= npages;
  592                                 swp_sizecheck();
  593                                 swdevhd = TAILQ_NEXT(sp, sw_list);
  594                                 goto done;
  595                         }
  596                 }
  597                 sp = TAILQ_NEXT(sp, sw_list);
  598         }
  599         if (swap_pager_full != 2) {
  600                 printf("swap_pager_getswapspace(%d): failed\n", npages);
  601                 swap_pager_full = 2;
  602                 swap_pager_almost_full = 1;
  603         }
  604         swdevhd = NULL;
  605 done:
  606         mtx_unlock(&sw_dev_mtx);
  607         return (blk);
  608 }
  609 
  610 static int
  611 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
  612 {
  613 
  614         return (blk >= sp->sw_first && blk < sp->sw_end);
  615 }
  616         
  617 static void
  618 swp_pager_strategy(struct buf *bp)
  619 {
  620         struct swdevt *sp;
  621 
  622         mtx_lock(&sw_dev_mtx);
  623         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  624                 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
  625                         mtx_unlock(&sw_dev_mtx);
  626                         sp->sw_strategy(bp, sp);
  627                         return;
  628                 }
  629         }
  630         panic("Swapdev not found");
  631 }
  632         
  633 
  634 /*
  635  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space 
  636  *
  637  *      This routine returns the specified swap blocks back to the bitmap.
  638  *
  639  *      Note:  This routine may not block (it could in the old swap code),
  640  *      and through the use of the new blist routines it does not block.
  641  *
  642  *      We must be called at splvm() to avoid races with bitmap frees from
  643  *      vm_page_remove() aka swap_pager_page_removed().
  644  *
  645  *      This routine may not block
  646  *      This routine must be called at splvm().
  647  */
  648 static void
  649 swp_pager_freeswapspace(daddr_t blk, int npages)
  650 {
  651         struct swdevt *sp;
  652 
  653         mtx_lock(&sw_dev_mtx);
  654         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  655                 if (blk >= sp->sw_first && blk < sp->sw_end) {
  656                         sp->sw_used -= npages;
  657                         /*
  658                          * If we are attempting to stop swapping on
  659                          * this device, we don't want to mark any
  660                          * blocks free lest they be reused.  
  661                          */
  662                         if ((sp->sw_flags & SW_CLOSING) == 0) {
  663                                 blist_free(sp->sw_blist, blk - sp->sw_first,
  664                                     npages);
  665                                 swap_pager_avail += npages;
  666                                 swp_sizecheck();
  667                         }
  668                         mtx_unlock(&sw_dev_mtx);
  669                         return;
  670                 }
  671         }
  672         panic("Swapdev not found");
  673 }
  674 
  675 /*
  676  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
  677  *                              range within an object.
  678  *
  679  *      This is a globally accessible routine.
  680  *
  681  *      This routine removes swapblk assignments from swap metadata.
  682  *
  683  *      The external callers of this routine typically have already destroyed 
  684  *      or renamed vm_page_t's associated with this range in the object so 
  685  *      we should be ok.
  686  *
  687  *      This routine may be called at any spl.  We up our spl to splvm temporarily
  688  *      in order to perform the metadata removal.
  689  */
  690 void
  691 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
  692 {
  693 
  694         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  695         swp_pager_meta_free(object, start, size);
  696 }
  697 
  698 /*
  699  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
  700  *
  701  *      Assigns swap blocks to the specified range within the object.  The 
  702  *      swap blocks are not zerod.  Any previous swap assignment is destroyed.
  703  *
  704  *      Returns 0 on success, -1 on failure.
  705  */
  706 int
  707 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
  708 {
  709         int n = 0;
  710         daddr_t blk = SWAPBLK_NONE;
  711         vm_pindex_t beg = start;        /* save start index */
  712 
  713         VM_OBJECT_LOCK(object);
  714         while (size) {
  715                 if (n == 0) {
  716                         n = BLIST_MAX_ALLOC;
  717                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
  718                                 n >>= 1;
  719                                 if (n == 0) {
  720                                         swp_pager_meta_free(object, beg, start - beg);
  721                                         VM_OBJECT_UNLOCK(object);
  722                                         return (-1);
  723                                 }
  724                         }
  725                 }
  726                 swp_pager_meta_build(object, start, blk);
  727                 --size;
  728                 ++start;
  729                 ++blk;
  730                 --n;
  731         }
  732         swp_pager_meta_free(object, start, n);
  733         VM_OBJECT_UNLOCK(object);
  734         return (0);
  735 }
  736 
  737 /*
  738  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
  739  *                      and destroy the source.
  740  *
  741  *      Copy any valid swapblks from the source to the destination.  In
  742  *      cases where both the source and destination have a valid swapblk,
  743  *      we keep the destination's.
  744  *
  745  *      This routine is allowed to block.  It may block allocating metadata
  746  *      indirectly through swp_pager_meta_build() or if paging is still in
  747  *      progress on the source. 
  748  *
  749  *      This routine can be called at any spl
  750  *
  751  *      XXX vm_page_collapse() kinda expects us not to block because we 
  752  *      supposedly do not need to allocate memory, but for the moment we
  753  *      *may* have to get a little memory from the zone allocator, but
  754  *      it is taken from the interrupt memory.  We should be ok. 
  755  *
  756  *      The source object contains no vm_page_t's (which is just as well)
  757  *
  758  *      The source object is of type OBJT_SWAP.
  759  *
  760  *      The source and destination objects must be locked or 
  761  *      inaccessible (XXX are they ?)
  762  */
  763 void
  764 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
  765     vm_pindex_t offset, int destroysource)
  766 {
  767         vm_pindex_t i;
  768 
  769         VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
  770         VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
  771 
  772         /*
  773          * If destroysource is set, we remove the source object from the 
  774          * swap_pager internal queue now. 
  775          */
  776         if (destroysource) {
  777                 if (srcobject->handle != NULL) {
  778                         mtx_lock(&sw_alloc_mtx);
  779                         TAILQ_REMOVE(
  780                             NOBJLIST(srcobject->handle),
  781                             srcobject,
  782                             pager_object_list
  783                         );
  784                         mtx_unlock(&sw_alloc_mtx);
  785                 }
  786         }
  787 
  788         /*
  789          * transfer source to destination.
  790          */
  791         for (i = 0; i < dstobject->size; ++i) {
  792                 daddr_t dstaddr;
  793 
  794                 /*
  795                  * Locate (without changing) the swapblk on the destination,
  796                  * unless it is invalid in which case free it silently, or
  797                  * if the destination is a resident page, in which case the
  798                  * source is thrown away.
  799                  */
  800                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
  801 
  802                 if (dstaddr == SWAPBLK_NONE) {
  803                         /*
  804                          * Destination has no swapblk and is not resident,
  805                          * copy source.
  806                          */
  807                         daddr_t srcaddr;
  808 
  809                         srcaddr = swp_pager_meta_ctl(
  810                             srcobject, 
  811                             i + offset,
  812                             SWM_POP
  813                         );
  814 
  815                         if (srcaddr != SWAPBLK_NONE) {
  816                                 /*
  817                                  * swp_pager_meta_build() can sleep.
  818                                  */
  819                                 vm_object_pip_add(srcobject, 1);
  820                                 VM_OBJECT_UNLOCK(srcobject);
  821                                 vm_object_pip_add(dstobject, 1);
  822                                 swp_pager_meta_build(dstobject, i, srcaddr);
  823                                 vm_object_pip_wakeup(dstobject);
  824                                 VM_OBJECT_LOCK(srcobject);
  825                                 vm_object_pip_wakeup(srcobject);
  826                         }
  827                 } else {
  828                         /*
  829                          * Destination has valid swapblk or it is represented
  830                          * by a resident page.  We destroy the sourceblock.
  831                          */
  832                         
  833                         swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
  834                 }
  835         }
  836 
  837         /*
  838          * Free left over swap blocks in source.
  839          *
  840          * We have to revert the type to OBJT_DEFAULT so we do not accidently
  841          * double-remove the object from the swap queues.
  842          */
  843         if (destroysource) {
  844                 swp_pager_meta_free_all(srcobject);
  845                 /*
  846                  * Reverting the type is not necessary, the caller is going
  847                  * to destroy srcobject directly, but I'm doing it here
  848                  * for consistency since we've removed the object from its
  849                  * queues.
  850                  */
  851                 srcobject->type = OBJT_DEFAULT;
  852         }
  853 }
  854 
  855 /*
  856  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
  857  *                              the requested page.
  858  *
  859  *      We determine whether good backing store exists for the requested
  860  *      page and return TRUE if it does, FALSE if it doesn't.
  861  *
  862  *      If TRUE, we also try to determine how much valid, contiguous backing
  863  *      store exists before and after the requested page within a reasonable
  864  *      distance.  We do not try to restrict it to the swap device stripe
  865  *      (that is handled in getpages/putpages).  It probably isn't worth
  866  *      doing here.
  867  */
  868 static boolean_t
  869 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
  870 {
  871         daddr_t blk0;
  872 
  873         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  874         /*
  875          * do we have good backing store at the requested index ?
  876          */
  877         blk0 = swp_pager_meta_ctl(object, pindex, 0);
  878 
  879         if (blk0 == SWAPBLK_NONE) {
  880                 if (before)
  881                         *before = 0;
  882                 if (after)
  883                         *after = 0;
  884                 return (FALSE);
  885         }
  886 
  887         /*
  888          * find backwards-looking contiguous good backing store
  889          */
  890         if (before != NULL) {
  891                 int i;
  892 
  893                 for (i = 1; i < (SWB_NPAGES/2); ++i) {
  894                         daddr_t blk;
  895 
  896                         if (i > pindex)
  897                                 break;
  898                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
  899                         if (blk != blk0 - i)
  900                                 break;
  901                 }
  902                 *before = (i - 1);
  903         }
  904 
  905         /*
  906          * find forward-looking contiguous good backing store
  907          */
  908         if (after != NULL) {
  909                 int i;
  910 
  911                 for (i = 1; i < (SWB_NPAGES/2); ++i) {
  912                         daddr_t blk;
  913 
  914                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
  915                         if (blk != blk0 + i)
  916                                 break;
  917                 }
  918                 *after = (i - 1);
  919         }
  920         return (TRUE);
  921 }
  922 
  923 /*
  924  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
  925  *
  926  *      This removes any associated swap backing store, whether valid or
  927  *      not, from the page.  
  928  *
  929  *      This routine is typically called when a page is made dirty, at
  930  *      which point any associated swap can be freed.  MADV_FREE also
  931  *      calls us in a special-case situation
  932  *
  933  *      NOTE!!!  If the page is clean and the swap was valid, the caller
  934  *      should make the page dirty before calling this routine.  This routine
  935  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
  936  *      depends on it.
  937  *
  938  *      This routine may not block
  939  *      This routine must be called at splvm()
  940  */
  941 static void
  942 swap_pager_unswapped(vm_page_t m)
  943 {
  944 
  945         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  946         swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
  947 }
  948 
  949 /*
  950  * SWAP_PAGER_GETPAGES() - bring pages in from swap
  951  *
  952  *      Attempt to retrieve (m, count) pages from backing store, but make
  953  *      sure we retrieve at least m[reqpage].  We try to load in as large
  954  *      a chunk surrounding m[reqpage] as is contiguous in swap and which
  955  *      belongs to the same object.
  956  *
  957  *      The code is designed for asynchronous operation and 
  958  *      immediate-notification of 'reqpage' but tends not to be
  959  *      used that way.  Please do not optimize-out this algorithmic
  960  *      feature, I intend to improve on it in the future.
  961  *
  962  *      The parent has a single vm_object_pip_add() reference prior to
  963  *      calling us and we should return with the same.
  964  *
  965  *      The parent has BUSY'd the pages.  We should return with 'm'
  966  *      left busy, but the others adjusted.
  967  */
  968 static int
  969 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
  970 {
  971         struct buf *bp;
  972         vm_page_t mreq;
  973         int i;
  974         int j;
  975         daddr_t blk;
  976 
  977         mreq = m[reqpage];
  978 
  979         KASSERT(mreq->object == object,
  980             ("swap_pager_getpages: object mismatch %p/%p",
  981             object, mreq->object));
  982 
  983         /*
  984          * Calculate range to retrieve.  The pages have already been assigned
  985          * their swapblks.  We require a *contiguous* range but we know it to
  986          * not span devices.   If we do not supply it, bad things
  987          * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 
  988          * loops are set up such that the case(s) are handled implicitly.
  989          *
  990          * The swp_*() calls must be made at splvm().  vm_page_free() does
  991          * not need to be, but it will go a little faster if it is.
  992          */
  993         blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
  994 
  995         for (i = reqpage - 1; i >= 0; --i) {
  996                 daddr_t iblk;
  997 
  998                 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
  999                 if (blk != iblk + (reqpage - i))
 1000                         break;
 1001         }
 1002         ++i;
 1003 
 1004         for (j = reqpage + 1; j < count; ++j) {
 1005                 daddr_t jblk;
 1006 
 1007                 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
 1008                 if (blk != jblk - (j - reqpage))
 1009                         break;
 1010         }
 1011 
 1012         /*
 1013          * free pages outside our collection range.   Note: we never free
 1014          * mreq, it must remain busy throughout.
 1015          */
 1016         if (0 < i || j < count) {
 1017                 int k;
 1018 
 1019                 vm_page_lock_queues();
 1020                 for (k = 0; k < i; ++k)
 1021                         vm_page_free(m[k]);
 1022                 for (k = j; k < count; ++k)
 1023                         vm_page_free(m[k]);
 1024                 vm_page_unlock_queues();
 1025         }
 1026 
 1027         /*
 1028          * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq 
 1029          * still busy, but the others unbusied.
 1030          */
 1031         if (blk == SWAPBLK_NONE)
 1032                 return (VM_PAGER_FAIL);
 1033 
 1034         /*
 1035          * Getpbuf() can sleep.
 1036          */
 1037         VM_OBJECT_UNLOCK(object);
 1038         /*
 1039          * Get a swap buffer header to perform the IO
 1040          */
 1041         bp = getpbuf(&nsw_rcount);
 1042         bp->b_flags |= B_PAGING;
 1043 
 1044         /*
 1045          * map our page(s) into kva for input
 1046          */
 1047         pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
 1048 
 1049         bp->b_iocmd = BIO_READ;
 1050         bp->b_iodone = swp_pager_async_iodone;
 1051         bp->b_rcred = crhold(thread0.td_ucred);
 1052         bp->b_wcred = crhold(thread0.td_ucred);
 1053         bp->b_blkno = blk - (reqpage - i);
 1054         bp->b_bcount = PAGE_SIZE * (j - i);
 1055         bp->b_bufsize = PAGE_SIZE * (j - i);
 1056         bp->b_pager.pg_reqpage = reqpage - i;
 1057 
 1058         VM_OBJECT_LOCK(object);
 1059         vm_page_lock_queues();
 1060         {
 1061                 int k;
 1062 
 1063                 for (k = i; k < j; ++k) {
 1064                         bp->b_pages[k - i] = m[k];
 1065                         vm_page_flag_set(m[k], PG_SWAPINPROG);
 1066                 }
 1067         }
 1068         vm_page_unlock_queues();
 1069         bp->b_npages = j - i;
 1070 
 1071         cnt.v_swapin++;
 1072         cnt.v_swappgsin += bp->b_npages;
 1073 
 1074         /*
 1075          * We still hold the lock on mreq, and our automatic completion routine
 1076          * does not remove it.
 1077          */
 1078         vm_object_pip_add(object, bp->b_npages);
 1079         VM_OBJECT_UNLOCK(object);
 1080 
 1081         /*
 1082          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
 1083          * this point because we automatically release it on completion.
 1084          * Instead, we look at the one page we are interested in which we
 1085          * still hold a lock on even through the I/O completion.
 1086          *
 1087          * The other pages in our m[] array are also released on completion,
 1088          * so we cannot assume they are valid anymore either.
 1089          *
 1090          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1091          */
 1092         BUF_KERNPROC(bp);
 1093         swp_pager_strategy(bp);
 1094 
 1095         /*
 1096          * wait for the page we want to complete.  PG_SWAPINPROG is always
 1097          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
 1098          * is set in the meta-data.
 1099          */
 1100         vm_page_lock_queues();
 1101         while ((mreq->flags & PG_SWAPINPROG) != 0) {
 1102                 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
 1103                 cnt.v_intrans++;
 1104                 if (msleep(mreq, &vm_page_queue_mtx, PSWP, "swread", hz*20)) {
 1105                         printf(
 1106 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
 1107                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
 1108                 }
 1109         }
 1110         vm_page_unlock_queues();
 1111 
 1112         VM_OBJECT_LOCK(object);
 1113         /*
 1114          * mreq is left busied after completion, but all the other pages
 1115          * are freed.  If we had an unrecoverable read error the page will
 1116          * not be valid.
 1117          */
 1118         if (mreq->valid != VM_PAGE_BITS_ALL) {
 1119                 return (VM_PAGER_ERROR);
 1120         } else {
 1121                 return (VM_PAGER_OK);
 1122         }
 1123 
 1124         /*
 1125          * A final note: in a low swap situation, we cannot deallocate swap
 1126          * and mark a page dirty here because the caller is likely to mark
 1127          * the page clean when we return, causing the page to possibly revert 
 1128          * to all-zero's later.
 1129          */
 1130 }
 1131 
 1132 /*
 1133  *      swap_pager_putpages: 
 1134  *
 1135  *      Assign swap (if necessary) and initiate I/O on the specified pages.
 1136  *
 1137  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
 1138  *      are automatically converted to SWAP objects.
 1139  *
 1140  *      In a low memory situation we may block in VOP_STRATEGY(), but the new 
 1141  *      vm_page reservation system coupled with properly written VFS devices 
 1142  *      should ensure that no low-memory deadlock occurs.  This is an area
 1143  *      which needs work.
 1144  *
 1145  *      The parent has N vm_object_pip_add() references prior to
 1146  *      calling us and will remove references for rtvals[] that are
 1147  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
 1148  *      completion.
 1149  *
 1150  *      The parent has soft-busy'd the pages it passes us and will unbusy
 1151  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
 1152  *      We need to unbusy the rest on I/O completion.
 1153  */
 1154 void
 1155 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
 1156     boolean_t sync, int *rtvals)
 1157 {
 1158         int i;
 1159         int n = 0;
 1160 
 1161         GIANT_REQUIRED;
 1162         if (count && m[0]->object != object) {
 1163                 panic("swap_pager_getpages: object mismatch %p/%p", 
 1164                     object, 
 1165                     m[0]->object
 1166                 );
 1167         }
 1168 
 1169         /*
 1170          * Step 1
 1171          *
 1172          * Turn object into OBJT_SWAP
 1173          * check for bogus sysops
 1174          * force sync if not pageout process
 1175          */
 1176         if (object->type != OBJT_SWAP)
 1177                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
 1178         VM_OBJECT_UNLOCK(object);
 1179 
 1180         if (curproc != pageproc)
 1181                 sync = TRUE;
 1182 
 1183         /*
 1184          * Step 2
 1185          *
 1186          * Update nsw parameters from swap_async_max sysctl values.  
 1187          * Do not let the sysop crash the machine with bogus numbers.
 1188          */
 1189         mtx_lock(&pbuf_mtx);
 1190         if (swap_async_max != nsw_wcount_async_max) {
 1191                 int n;
 1192 
 1193                 /*
 1194                  * limit range
 1195                  */
 1196                 if ((n = swap_async_max) > nswbuf / 2)
 1197                         n = nswbuf / 2;
 1198                 if (n < 1)
 1199                         n = 1;
 1200                 swap_async_max = n;
 1201 
 1202                 /*
 1203                  * Adjust difference ( if possible ).  If the current async
 1204                  * count is too low, we may not be able to make the adjustment
 1205                  * at this time.
 1206                  */
 1207                 n -= nsw_wcount_async_max;
 1208                 if (nsw_wcount_async + n >= 0) {
 1209                         nsw_wcount_async += n;
 1210                         nsw_wcount_async_max += n;
 1211                         wakeup(&nsw_wcount_async);
 1212                 }
 1213         }
 1214         mtx_unlock(&pbuf_mtx);
 1215 
 1216         /*
 1217          * Step 3
 1218          *
 1219          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
 1220          * The page is left dirty until the pageout operation completes
 1221          * successfully.
 1222          */
 1223         for (i = 0; i < count; i += n) {
 1224                 int j;
 1225                 struct buf *bp;
 1226                 daddr_t blk;
 1227 
 1228                 /*
 1229                  * Maximum I/O size is limited by a number of factors.
 1230                  */
 1231                 n = min(BLIST_MAX_ALLOC, count - i);
 1232                 n = min(n, nsw_cluster_max);
 1233 
 1234                 /*
 1235                  * Get biggest block of swap we can.  If we fail, fall
 1236                  * back and try to allocate a smaller block.  Don't go
 1237                  * overboard trying to allocate space if it would overly
 1238                  * fragment swap.
 1239                  */
 1240                 while (
 1241                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
 1242                     n > 4
 1243                 ) {
 1244                         n >>= 1;
 1245                 }
 1246                 if (blk == SWAPBLK_NONE) {
 1247                         for (j = 0; j < n; ++j)
 1248                                 rtvals[i+j] = VM_PAGER_FAIL;
 1249                         continue;
 1250                 }
 1251 
 1252                 /*
 1253                  * All I/O parameters have been satisfied, build the I/O
 1254                  * request and assign the swap space.
 1255                  */
 1256                 if (sync == TRUE) {
 1257                         bp = getpbuf(&nsw_wcount_sync);
 1258                 } else {
 1259                         bp = getpbuf(&nsw_wcount_async);
 1260                         bp->b_flags = B_ASYNC;
 1261                 }
 1262                 bp->b_flags |= B_PAGING;
 1263                 bp->b_iocmd = BIO_WRITE;
 1264 
 1265                 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
 1266 
 1267                 bp->b_rcred = crhold(thread0.td_ucred);
 1268                 bp->b_wcred = crhold(thread0.td_ucred);
 1269                 bp->b_bcount = PAGE_SIZE * n;
 1270                 bp->b_bufsize = PAGE_SIZE * n;
 1271                 bp->b_blkno = blk;
 1272 
 1273                 VM_OBJECT_LOCK(object);
 1274                 for (j = 0; j < n; ++j) {
 1275                         vm_page_t mreq = m[i+j];
 1276 
 1277                         swp_pager_meta_build(
 1278                             mreq->object, 
 1279                             mreq->pindex,
 1280                             blk + j
 1281                         );
 1282                         vm_page_dirty(mreq);
 1283                         rtvals[i+j] = VM_PAGER_OK;
 1284 
 1285                         vm_page_lock_queues();
 1286                         vm_page_flag_set(mreq, PG_SWAPINPROG);
 1287                         vm_page_unlock_queues();
 1288                         bp->b_pages[j] = mreq;
 1289                 }
 1290                 VM_OBJECT_UNLOCK(object);
 1291                 bp->b_npages = n;
 1292                 /*
 1293                  * Must set dirty range for NFS to work.
 1294                  */
 1295                 bp->b_dirtyoff = 0;
 1296                 bp->b_dirtyend = bp->b_bcount;
 1297 
 1298                 cnt.v_swapout++;
 1299                 cnt.v_swappgsout += bp->b_npages;
 1300 
 1301                 /*
 1302                  * asynchronous
 1303                  *
 1304                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1305                  */
 1306                 if (sync == FALSE) {
 1307                         bp->b_iodone = swp_pager_async_iodone;
 1308                         BUF_KERNPROC(bp);
 1309                         swp_pager_strategy(bp);
 1310 
 1311                         for (j = 0; j < n; ++j)
 1312                                 rtvals[i+j] = VM_PAGER_PEND;
 1313                         /* restart outter loop */
 1314                         continue;
 1315                 }
 1316 
 1317                 /*
 1318                  * synchronous
 1319                  *
 1320                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1321                  */
 1322                 bp->b_iodone = bdone;
 1323                 swp_pager_strategy(bp);
 1324 
 1325                 /*
 1326                  * Wait for the sync I/O to complete, then update rtvals.
 1327                  * We just set the rtvals[] to VM_PAGER_PEND so we can call
 1328                  * our async completion routine at the end, thus avoiding a
 1329                  * double-free.
 1330                  */
 1331                 bwait(bp, PVM, "swwrt");
 1332                 for (j = 0; j < n; ++j)
 1333                         rtvals[i+j] = VM_PAGER_PEND;
 1334                 /*
 1335                  * Now that we are through with the bp, we can call the
 1336                  * normal async completion, which frees everything up.
 1337                  */
 1338                 swp_pager_async_iodone(bp);
 1339         }
 1340         VM_OBJECT_LOCK(object);
 1341 }
 1342 
 1343 /*
 1344  *      swp_pager_async_iodone:
 1345  *
 1346  *      Completion routine for asynchronous reads and writes from/to swap.
 1347  *      Also called manually by synchronous code to finish up a bp.
 1348  *
 1349  *      For READ operations, the pages are PG_BUSY'd.  For WRITE operations, 
 1350  *      the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY 
 1351  *      unbusy all pages except the 'main' request page.  For WRITE 
 1352  *      operations, we vm_page_t->busy'd unbusy all pages ( we can do this 
 1353  *      because we marked them all VM_PAGER_PEND on return from putpages ).
 1354  *
 1355  *      This routine may not block.
 1356  *      This routine is called at splbio() or better
 1357  *
 1358  *      We up ourselves to splvm() as required for various vm_page related
 1359  *      calls.
 1360  */
 1361 static void
 1362 swp_pager_async_iodone(struct buf *bp)
 1363 {
 1364         int i;
 1365         vm_object_t object = NULL;
 1366 
 1367         /*
 1368          * report error
 1369          */
 1370         if (bp->b_ioflags & BIO_ERROR) {
 1371                 printf(
 1372                     "swap_pager: I/O error - %s failed; blkno %ld,"
 1373                         "size %ld, error %d\n",
 1374                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
 1375                     (long)bp->b_blkno, 
 1376                     (long)bp->b_bcount,
 1377                     bp->b_error
 1378                 );
 1379         }
 1380 
 1381         /*
 1382          * remove the mapping for kernel virtual
 1383          */
 1384         pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
 1385 
 1386         if (bp->b_npages) {
 1387                 object = bp->b_pages[0]->object;
 1388                 VM_OBJECT_LOCK(object);
 1389         }
 1390         vm_page_lock_queues();
 1391         /*
 1392          * cleanup pages.  If an error occurs writing to swap, we are in
 1393          * very serious trouble.  If it happens to be a disk error, though,
 1394          * we may be able to recover by reassigning the swap later on.  So
 1395          * in this case we remove the m->swapblk assignment for the page 
 1396          * but do not free it in the rlist.  The errornous block(s) are thus
 1397          * never reallocated as swap.  Redirty the page and continue.
 1398          */
 1399         for (i = 0; i < bp->b_npages; ++i) {
 1400                 vm_page_t m = bp->b_pages[i];
 1401 
 1402                 vm_page_flag_clear(m, PG_SWAPINPROG);
 1403 
 1404                 if (bp->b_ioflags & BIO_ERROR) {
 1405                         /*
 1406                          * If an error occurs I'd love to throw the swapblk
 1407                          * away without freeing it back to swapspace, so it
 1408                          * can never be used again.  But I can't from an 
 1409                          * interrupt.
 1410                          */
 1411                         if (bp->b_iocmd == BIO_READ) {
 1412                                 /*
 1413                                  * When reading, reqpage needs to stay
 1414                                  * locked for the parent, but all other
 1415                                  * pages can be freed.  We still want to
 1416                                  * wakeup the parent waiting on the page,
 1417                                  * though.  ( also: pg_reqpage can be -1 and 
 1418                                  * not match anything ).
 1419                                  *
 1420                                  * We have to wake specifically requested pages
 1421                                  * up too because we cleared PG_SWAPINPROG and
 1422                                  * someone may be waiting for that.
 1423                                  *
 1424                                  * NOTE: for reads, m->dirty will probably
 1425                                  * be overridden by the original caller of
 1426                                  * getpages so don't play cute tricks here.
 1427                                  *
 1428                                  * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
 1429                                  * AS THIS MESSES WITH object->memq, and it is
 1430                                  * not legal to mess with object->memq from an
 1431                                  * interrupt.
 1432                                  */
 1433                                 m->valid = 0;
 1434                                 if (i != bp->b_pager.pg_reqpage)
 1435                                         vm_page_free(m);
 1436                                 else
 1437                                         vm_page_flash(m);
 1438                                 /*
 1439                                  * If i == bp->b_pager.pg_reqpage, do not wake 
 1440                                  * the page up.  The caller needs to.
 1441                                  */
 1442                         } else {
 1443                                 /*
 1444                                  * If a write error occurs, reactivate page
 1445                                  * so it doesn't clog the inactive list,
 1446                                  * then finish the I/O.
 1447                                  */
 1448                                 vm_page_dirty(m);
 1449                                 vm_page_activate(m);
 1450                                 vm_page_io_finish(m);
 1451                         }
 1452                 } else if (bp->b_iocmd == BIO_READ) {
 1453                         /*
 1454                          * For read success, clear dirty bits.  Nobody should
 1455                          * have this page mapped but don't take any chances,
 1456                          * make sure the pmap modify bits are also cleared.
 1457                          *
 1458                          * NOTE: for reads, m->dirty will probably be 
 1459                          * overridden by the original caller of getpages so
 1460                          * we cannot set them in order to free the underlying
 1461                          * swap in a low-swap situation.  I don't think we'd
 1462                          * want to do that anyway, but it was an optimization
 1463                          * that existed in the old swapper for a time before
 1464                          * it got ripped out due to precisely this problem.
 1465                          *
 1466                          * If not the requested page then deactivate it.
 1467                          *
 1468                          * Note that the requested page, reqpage, is left
 1469                          * busied, but we still have to wake it up.  The
 1470                          * other pages are released (unbusied) by 
 1471                          * vm_page_wakeup().  We do not set reqpage's
 1472                          * valid bits here, it is up to the caller.
 1473                          */
 1474                         pmap_clear_modify(m);
 1475                         m->valid = VM_PAGE_BITS_ALL;
 1476                         vm_page_undirty(m);
 1477 
 1478                         /*
 1479                          * We have to wake specifically requested pages
 1480                          * up too because we cleared PG_SWAPINPROG and
 1481                          * could be waiting for it in getpages.  However,
 1482                          * be sure to not unbusy getpages specifically
 1483                          * requested page - getpages expects it to be 
 1484                          * left busy.
 1485                          */
 1486                         if (i != bp->b_pager.pg_reqpage) {
 1487                                 vm_page_deactivate(m);
 1488                                 vm_page_wakeup(m);
 1489                         } else {
 1490                                 vm_page_flash(m);
 1491                         }
 1492                 } else {
 1493                         /*
 1494                          * For write success, clear the modify and dirty 
 1495                          * status, then finish the I/O ( which decrements the 
 1496                          * busy count and possibly wakes waiter's up ).
 1497                          */
 1498                         pmap_clear_modify(m);
 1499                         vm_page_undirty(m);
 1500                         vm_page_io_finish(m);
 1501                         if (vm_page_count_severe())
 1502                                 vm_page_try_to_cache(m);
 1503                 }
 1504         }
 1505         vm_page_unlock_queues();
 1506 
 1507         /*
 1508          * adjust pip.  NOTE: the original parent may still have its own
 1509          * pip refs on the object.
 1510          */
 1511         if (object != NULL) {
 1512                 vm_object_pip_wakeupn(object, bp->b_npages);
 1513                 VM_OBJECT_UNLOCK(object);
 1514         }
 1515         /* 
 1516          * swapdev_strategy() manually sets b_vp and b_bufobj before calling 
 1517          * bstrategy(). Set them back to NULL now we're done with it, or we'll
 1518          * trigger a KASSERT in relpbuf().
 1519          */
 1520         if (bp->b_vp) {
 1521                     bp->b_vp = NULL;
 1522                     bp->b_bufobj = NULL;
 1523         }
 1524 
 1525         /*
 1526          * release the physical I/O buffer
 1527          */
 1528         relpbuf(
 1529             bp, 
 1530             ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 
 1531                 ((bp->b_flags & B_ASYNC) ? 
 1532                     &nsw_wcount_async : 
 1533                     &nsw_wcount_sync
 1534                 )
 1535             )
 1536         );
 1537 }
 1538 
 1539 /*
 1540  *      swap_pager_isswapped:
 1541  *
 1542  *      Return 1 if at least one page in the given object is paged
 1543  *      out to the given swap device.
 1544  *
 1545  *      This routine may not block.
 1546  */
 1547 int
 1548 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
 1549 {
 1550         daddr_t index = 0;
 1551         int bcount;
 1552         int i;
 1553 
 1554         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1555         if (object->type != OBJT_SWAP)
 1556                 return (0);
 1557 
 1558         mtx_lock(&swhash_mtx);
 1559         for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
 1560                 struct swblock *swap;
 1561 
 1562                 if ((swap = *swp_pager_hash(object, index)) != NULL) {
 1563                         for (i = 0; i < SWAP_META_PAGES; ++i) {
 1564                                 if (swp_pager_isondev(swap->swb_pages[i], sp)) {
 1565                                         mtx_unlock(&swhash_mtx);
 1566                                         return (1);
 1567                                 }
 1568                         }
 1569                 }
 1570                 index += SWAP_META_PAGES;
 1571                 if (index > 0x20000000)
 1572                         panic("swap_pager_isswapped: failed to locate all swap meta blocks");
 1573         }
 1574         mtx_unlock(&swhash_mtx);
 1575         return (0);
 1576 }
 1577 
 1578 /*
 1579  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
 1580  *
 1581  *      This routine dissociates the page at the given index within a
 1582  *      swap block from its backing store, paging it in if necessary.
 1583  *      If the page is paged in, it is placed in the inactive queue,
 1584  *      since it had its backing store ripped out from under it.
 1585  *      We also attempt to swap in all other pages in the swap block,
 1586  *      we only guarantee that the one at the specified index is
 1587  *      paged in.
 1588  *
 1589  *      XXX - The code to page the whole block in doesn't work, so we
 1590  *            revert to the one-by-one behavior for now.  Sigh.
 1591  */
 1592 static __inline void
 1593 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
 1594 {
 1595         vm_page_t m;
 1596 
 1597         vm_object_pip_add(object, 1);
 1598         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
 1599         if (m->valid == VM_PAGE_BITS_ALL) {
 1600                 vm_object_pip_subtract(object, 1);
 1601                 vm_page_lock_queues();
 1602                 vm_page_activate(m);
 1603                 vm_page_dirty(m);
 1604                 vm_page_wakeup(m);
 1605                 vm_page_unlock_queues();
 1606                 vm_pager_page_unswapped(m);
 1607                 return;
 1608         }
 1609 
 1610         if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
 1611                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
 1612         vm_object_pip_subtract(object, 1);
 1613         vm_page_lock_queues();
 1614         vm_page_dirty(m);
 1615         vm_page_dontneed(m);
 1616         vm_page_wakeup(m);
 1617         vm_page_unlock_queues();
 1618         vm_pager_page_unswapped(m);
 1619 }
 1620 
 1621 /*
 1622  *      swap_pager_swapoff:
 1623  *
 1624  *      Page in all of the pages that have been paged out to the
 1625  *      given device.  The corresponding blocks in the bitmap must be
 1626  *      marked as allocated and the device must be flagged SW_CLOSING.
 1627  *      There may be no processes swapped out to the device.
 1628  *
 1629  *      This routine may block.
 1630  */
 1631 static void
 1632 swap_pager_swapoff(struct swdevt *sp)
 1633 {
 1634         struct swblock *swap;
 1635         int i, j, retries;
 1636 
 1637         GIANT_REQUIRED;
 1638 
 1639         retries = 0;
 1640 full_rescan:
 1641         mtx_lock(&swhash_mtx);
 1642         for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
 1643 restart:
 1644                 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
 1645                         vm_object_t object = swap->swb_object;
 1646                         vm_pindex_t pindex = swap->swb_index;
 1647                         for (j = 0; j < SWAP_META_PAGES; ++j) {
 1648                                 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
 1649                                         /* avoid deadlock */
 1650                                         if (!VM_OBJECT_TRYLOCK(object)) {
 1651                                                 break;
 1652                                         } else {
 1653                                                 mtx_unlock(&swhash_mtx);
 1654                                                 swp_pager_force_pagein(object,
 1655                                                     pindex + j);
 1656                                                 VM_OBJECT_UNLOCK(object);
 1657                                                 mtx_lock(&swhash_mtx);
 1658                                                 goto restart;
 1659                                         }
 1660                                 }
 1661                         }
 1662                 }
 1663         }
 1664         mtx_unlock(&swhash_mtx);
 1665         if (sp->sw_used) {
 1666                 int dummy;
 1667                 /*
 1668                  * Objects may be locked or paging to the device being
 1669                  * removed, so we will miss their pages and need to
 1670                  * make another pass.  We have marked this device as
 1671                  * SW_CLOSING, so the activity should finish soon.
 1672                  */
 1673                 retries++;
 1674                 if (retries > 100) {
 1675                         panic("swapoff: failed to locate %d swap blocks",
 1676                             sp->sw_used);
 1677                 }
 1678                 tsleep(&dummy, PVM, "swpoff", hz / 20);
 1679                 goto full_rescan;
 1680         }
 1681 }
 1682 
 1683 /************************************************************************
 1684  *                              SWAP META DATA                          *
 1685  ************************************************************************
 1686  *
 1687  *      These routines manipulate the swap metadata stored in the 
 1688  *      OBJT_SWAP object.  All swp_*() routines must be called at
 1689  *      splvm() because swap can be freed up by the low level vm_page
 1690  *      code which might be called from interrupts beyond what splbio() covers.
 1691  *
 1692  *      Swap metadata is implemented with a global hash and not directly
 1693  *      linked into the object.  Instead the object simply contains
 1694  *      appropriate tracking counters.
 1695  */
 1696 
 1697 /*
 1698  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
 1699  *
 1700  *      We first convert the object to a swap object if it is a default
 1701  *      object.
 1702  *
 1703  *      The specified swapblk is added to the object's swap metadata.  If
 1704  *      the swapblk is not valid, it is freed instead.  Any previously
 1705  *      assigned swapblk is freed.
 1706  *
 1707  *      This routine must be called at splvm(), except when used to convert
 1708  *      an OBJT_DEFAULT object into an OBJT_SWAP object.
 1709  */
 1710 static void
 1711 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
 1712 {
 1713         struct swblock *swap;
 1714         struct swblock **pswap;
 1715         int idx;
 1716 
 1717         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1718         /*
 1719          * Convert default object to swap object if necessary
 1720          */
 1721         if (object->type != OBJT_SWAP) {
 1722                 object->type = OBJT_SWAP;
 1723                 object->un_pager.swp.swp_bcount = 0;
 1724 
 1725                 if (object->handle != NULL) {
 1726                         mtx_lock(&sw_alloc_mtx);
 1727                         TAILQ_INSERT_TAIL(
 1728                             NOBJLIST(object->handle),
 1729                             object, 
 1730                             pager_object_list
 1731                         );
 1732                         mtx_unlock(&sw_alloc_mtx);
 1733                 }
 1734         }
 1735         
 1736         /*
 1737          * Locate hash entry.  If not found create, but if we aren't adding
 1738          * anything just return.  If we run out of space in the map we wait
 1739          * and, since the hash table may have changed, retry.
 1740          */
 1741 retry:
 1742         mtx_lock(&swhash_mtx);
 1743         pswap = swp_pager_hash(object, pindex);
 1744 
 1745         if ((swap = *pswap) == NULL) {
 1746                 int i;
 1747 
 1748                 if (swapblk == SWAPBLK_NONE)
 1749                         goto done;
 1750 
 1751                 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
 1752                 if (swap == NULL) {
 1753                         mtx_unlock(&swhash_mtx);
 1754                         VM_OBJECT_UNLOCK(object);
 1755                         VM_WAIT;
 1756                         VM_OBJECT_LOCK(object);
 1757                         goto retry;
 1758                 }
 1759 
 1760                 swap->swb_hnext = NULL;
 1761                 swap->swb_object = object;
 1762                 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
 1763                 swap->swb_count = 0;
 1764 
 1765                 ++object->un_pager.swp.swp_bcount;
 1766 
 1767                 for (i = 0; i < SWAP_META_PAGES; ++i)
 1768                         swap->swb_pages[i] = SWAPBLK_NONE;
 1769         }
 1770 
 1771         /*
 1772          * Delete prior contents of metadata
 1773          */
 1774         idx = pindex & SWAP_META_MASK;
 1775 
 1776         if (swap->swb_pages[idx] != SWAPBLK_NONE) {
 1777                 swp_pager_freeswapspace(swap->swb_pages[idx], 1);
 1778                 --swap->swb_count;
 1779         }
 1780 
 1781         /*
 1782          * Enter block into metadata
 1783          */
 1784         swap->swb_pages[idx] = swapblk;
 1785         if (swapblk != SWAPBLK_NONE)
 1786                 ++swap->swb_count;
 1787 done:
 1788         mtx_unlock(&swhash_mtx);
 1789 }
 1790 
 1791 /*
 1792  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
 1793  *
 1794  *      The requested range of blocks is freed, with any associated swap 
 1795  *      returned to the swap bitmap.
 1796  *
 1797  *      This routine will free swap metadata structures as they are cleaned 
 1798  *      out.  This routine does *NOT* operate on swap metadata associated
 1799  *      with resident pages.
 1800  *
 1801  *      This routine must be called at splvm()
 1802  */
 1803 static void
 1804 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
 1805 {
 1806 
 1807         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1808         if (object->type != OBJT_SWAP)
 1809                 return;
 1810 
 1811         while (count > 0) {
 1812                 struct swblock **pswap;
 1813                 struct swblock *swap;
 1814 
 1815                 mtx_lock(&swhash_mtx);
 1816                 pswap = swp_pager_hash(object, index);
 1817 
 1818                 if ((swap = *pswap) != NULL) {
 1819                         daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
 1820 
 1821                         if (v != SWAPBLK_NONE) {
 1822                                 swp_pager_freeswapspace(v, 1);
 1823                                 swap->swb_pages[index & SWAP_META_MASK] =
 1824                                         SWAPBLK_NONE;
 1825                                 if (--swap->swb_count == 0) {
 1826                                         *pswap = swap->swb_hnext;
 1827                                         uma_zfree(swap_zone, swap);
 1828                                         --object->un_pager.swp.swp_bcount;
 1829                                 }
 1830                         }
 1831                         --count;
 1832                         ++index;
 1833                 } else {
 1834                         int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
 1835                         count -= n;
 1836                         index += n;
 1837                 }
 1838                 mtx_unlock(&swhash_mtx);
 1839         }
 1840 }
 1841 
 1842 /*
 1843  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
 1844  *
 1845  *      This routine locates and destroys all swap metadata associated with
 1846  *      an object.
 1847  *
 1848  *      This routine must be called at splvm()
 1849  */
 1850 static void
 1851 swp_pager_meta_free_all(vm_object_t object)
 1852 {
 1853         daddr_t index = 0;
 1854 
 1855         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1856         if (object->type != OBJT_SWAP)
 1857                 return;
 1858 
 1859         while (object->un_pager.swp.swp_bcount) {
 1860                 struct swblock **pswap;
 1861                 struct swblock *swap;
 1862 
 1863                 mtx_lock(&swhash_mtx);
 1864                 pswap = swp_pager_hash(object, index);
 1865                 if ((swap = *pswap) != NULL) {
 1866                         int i;
 1867 
 1868                         for (i = 0; i < SWAP_META_PAGES; ++i) {
 1869                                 daddr_t v = swap->swb_pages[i];
 1870                                 if (v != SWAPBLK_NONE) {
 1871                                         --swap->swb_count;
 1872                                         swp_pager_freeswapspace(v, 1);
 1873                                 }
 1874                         }
 1875                         if (swap->swb_count != 0)
 1876                                 panic("swap_pager_meta_free_all: swb_count != 0");
 1877                         *pswap = swap->swb_hnext;
 1878                         uma_zfree(swap_zone, swap);
 1879                         --object->un_pager.swp.swp_bcount;
 1880                 }
 1881                 mtx_unlock(&swhash_mtx);
 1882                 index += SWAP_META_PAGES;
 1883                 if (index > 0x20000000)
 1884                         panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
 1885         }
 1886 }
 1887 
 1888 /*
 1889  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
 1890  *
 1891  *      This routine is capable of looking up, popping, or freeing
 1892  *      swapblk assignments in the swap meta data or in the vm_page_t.
 1893  *      The routine typically returns the swapblk being looked-up, or popped,
 1894  *      or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
 1895  *      was invalid.  This routine will automatically free any invalid 
 1896  *      meta-data swapblks.
 1897  *
 1898  *      It is not possible to store invalid swapblks in the swap meta data
 1899  *      (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
 1900  *
 1901  *      When acting on a busy resident page and paging is in progress, we 
 1902  *      have to wait until paging is complete but otherwise can act on the 
 1903  *      busy page.
 1904  *
 1905  *      This routine must be called at splvm().
 1906  *
 1907  *      SWM_FREE        remove and free swap block from metadata
 1908  *      SWM_POP         remove from meta data but do not free.. pop it out
 1909  */
 1910 static daddr_t
 1911 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
 1912 {
 1913         struct swblock **pswap;
 1914         struct swblock *swap;
 1915         daddr_t r1;
 1916         int idx;
 1917 
 1918         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1919         /*
 1920          * The meta data only exists of the object is OBJT_SWAP 
 1921          * and even then might not be allocated yet.
 1922          */
 1923         if (object->type != OBJT_SWAP)
 1924                 return (SWAPBLK_NONE);
 1925 
 1926         r1 = SWAPBLK_NONE;
 1927         mtx_lock(&swhash_mtx);
 1928         pswap = swp_pager_hash(object, pindex);
 1929 
 1930         if ((swap = *pswap) != NULL) {
 1931                 idx = pindex & SWAP_META_MASK;
 1932                 r1 = swap->swb_pages[idx];
 1933 
 1934                 if (r1 != SWAPBLK_NONE) {
 1935                         if (flags & SWM_FREE) {
 1936                                 swp_pager_freeswapspace(r1, 1);
 1937                                 r1 = SWAPBLK_NONE;
 1938                         }
 1939                         if (flags & (SWM_FREE|SWM_POP)) {
 1940                                 swap->swb_pages[idx] = SWAPBLK_NONE;
 1941                                 if (--swap->swb_count == 0) {
 1942                                         *pswap = swap->swb_hnext;
 1943                                         uma_zfree(swap_zone, swap);
 1944                                         --object->un_pager.swp.swp_bcount;
 1945                                 }
 1946                         } 
 1947                 }
 1948         }
 1949         mtx_unlock(&swhash_mtx);
 1950         return (r1);
 1951 }
 1952 
 1953 /*
 1954  * System call swapon(name) enables swapping on device name,
 1955  * which must be in the swdevsw.  Return EBUSY
 1956  * if already swapping on this device.
 1957  */
 1958 #ifndef _SYS_SYSPROTO_H_
 1959 struct swapon_args {
 1960         char *name;
 1961 };
 1962 #endif
 1963 
 1964 /* 
 1965  * MPSAFE
 1966  */
 1967 /* ARGSUSED */
 1968 int
 1969 swapon(struct thread *td, struct swapon_args *uap)
 1970 {
 1971         struct vattr attr;
 1972         struct vnode *vp;
 1973         struct nameidata nd;
 1974         int error;
 1975 
 1976         mtx_lock(&Giant);
 1977         error = suser(td);
 1978         if (error)
 1979                 goto done2;
 1980 
 1981         while (swdev_syscall_active)
 1982             tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
 1983         swdev_syscall_active = 1;
 1984 
 1985         /*
 1986          * Swap metadata may not fit in the KVM if we have physical
 1987          * memory of >1GB.
 1988          */
 1989         if (swap_zone == NULL) {
 1990                 error = ENOMEM;
 1991                 goto done;
 1992         }
 1993 
 1994         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW, UIO_USERSPACE, uap->name, td);
 1995         error = namei(&nd);
 1996         if (error)
 1997                 goto done;
 1998 
 1999         NDFREE(&nd, NDF_ONLY_PNBUF);
 2000         vp = nd.ni_vp;
 2001 
 2002         if (vn_isdisk(vp, &error)) {
 2003                 error = swapongeom(td, vp);
 2004         } else if (vp->v_type == VREG &&
 2005             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 2006             (error = VOP_GETATTR(vp, &attr, td->td_ucred, td)) == 0) {
 2007                 /*
 2008                  * Allow direct swapping to NFS regular files in the same
 2009                  * way that nfs_mountroot() sets up diskless swapping.
 2010                  */
 2011                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
 2012         }
 2013 
 2014         if (error)
 2015                 vrele(vp);
 2016 done:
 2017         swdev_syscall_active = 0;
 2018         wakeup_one(&swdev_syscall_active);
 2019 done2:
 2020         mtx_unlock(&Giant);
 2021         return (error);
 2022 }
 2023 
 2024 static void
 2025 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev)
 2026 {
 2027         struct swdevt *sp, *tsp;
 2028         swblk_t dvbase;
 2029         u_long mblocks;
 2030 
 2031         /*
 2032          * If we go beyond this, we get overflows in the radix
 2033          * tree bitmap code.
 2034          */
 2035         mblocks = 0x40000000 / BLIST_META_RADIX;
 2036         if (nblks > mblocks) {
 2037                 printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n",
 2038                         mblocks);
 2039                 nblks = mblocks;
 2040         }
 2041         /*
 2042          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
 2043          * First chop nblks off to page-align it, then convert.
 2044          * 
 2045          * sw->sw_nblks is in page-sized chunks now too.
 2046          */
 2047         nblks &= ~(ctodb(1) - 1);
 2048         nblks = dbtoc(nblks);
 2049 
 2050         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
 2051         sp->sw_vp = vp;
 2052         sp->sw_id = id;
 2053         sp->sw_dev = dev;
 2054         sp->sw_flags = 0;
 2055         sp->sw_nblks = nblks;
 2056         sp->sw_used = 0;
 2057         sp->sw_strategy = strategy;
 2058         sp->sw_close = close;
 2059 
 2060         sp->sw_blist = blist_create(nblks);
 2061         /*
 2062          * Do not free the first two block in order to avoid overwriting
 2063          * any bsd label at the front of the partition
 2064          */
 2065         blist_free(sp->sw_blist, 2, nblks - 2);
 2066 
 2067         dvbase = 0;
 2068         mtx_lock(&sw_dev_mtx);
 2069         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
 2070                 if (tsp->sw_end >= dvbase) {
 2071                         /*
 2072                          * We put one uncovered page between the devices
 2073                          * in order to definitively prevent any cross-device
 2074                          * I/O requests
 2075                          */
 2076                         dvbase = tsp->sw_end + 1;
 2077                 }
 2078         }
 2079         sp->sw_first = dvbase;
 2080         sp->sw_end = dvbase + nblks;
 2081         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
 2082         nswapdev++;
 2083         swap_pager_avail += nblks;
 2084         swp_sizecheck();
 2085         mtx_unlock(&sw_dev_mtx);
 2086 }
 2087 
 2088 /*
 2089  * SYSCALL: swapoff(devname)
 2090  *
 2091  * Disable swapping on the given device.
 2092  *
 2093  * XXX: Badly designed system call: it should use a device index
 2094  * rather than filename as specification.  We keep sw_vp around
 2095  * only to make this work.
 2096  */
 2097 #ifndef _SYS_SYSPROTO_H_
 2098 struct swapoff_args {
 2099         char *name;
 2100 };
 2101 #endif
 2102 
 2103 /*
 2104  * MPSAFE
 2105  */
 2106 /* ARGSUSED */
 2107 int
 2108 swapoff(struct thread *td, struct swapoff_args *uap)
 2109 {
 2110         struct vnode *vp;
 2111         struct nameidata nd;
 2112         struct swdevt *sp;
 2113         int error;
 2114 
 2115         error = suser(td);
 2116         if (error)
 2117                 return (error);
 2118 
 2119         mtx_lock(&Giant);
 2120         while (swdev_syscall_active)
 2121             tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
 2122         swdev_syscall_active = 1;
 2123 
 2124         NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->name, td);
 2125         error = namei(&nd);
 2126         if (error)
 2127                 goto done;
 2128         NDFREE(&nd, NDF_ONLY_PNBUF);
 2129         vp = nd.ni_vp;
 2130 
 2131         mtx_lock(&sw_dev_mtx);
 2132         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2133                 if (sp->sw_vp == vp)
 2134                         break;
 2135         }
 2136         mtx_unlock(&sw_dev_mtx);
 2137         if (sp == NULL) {
 2138                 error = EINVAL;
 2139                 goto done;
 2140         }
 2141         error = swapoff_one(sp, td);
 2142 done:
 2143         swdev_syscall_active = 0;
 2144         wakeup_one(&swdev_syscall_active);
 2145         mtx_unlock(&Giant);
 2146         return (error);
 2147 }
 2148 
 2149 static int
 2150 swapoff_one(struct swdevt *sp, struct thread *td)
 2151 {
 2152         u_long nblks, dvbase;
 2153 #ifdef MAC
 2154         int error;
 2155 #endif
 2156 
 2157         mtx_assert(&Giant, MA_OWNED);
 2158 #ifdef MAC
 2159         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY, td);
 2160         error = mac_check_system_swapoff(td->td_ucred, sp->sw_vp);
 2161         (void) VOP_UNLOCK(sp->sw_vp, 0, td);
 2162         if (error != 0)
 2163                 return (error);
 2164 #endif
 2165         nblks = sp->sw_nblks;
 2166 
 2167         /*
 2168          * We can turn off this swap device safely only if the
 2169          * available virtual memory in the system will fit the amount
 2170          * of data we will have to page back in, plus an epsilon so
 2171          * the system doesn't become critically low on swap space.
 2172          */
 2173         if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
 2174             nblks + nswap_lowat) {
 2175                 return (ENOMEM);
 2176         }
 2177 
 2178         /*
 2179          * Prevent further allocations on this device.
 2180          */
 2181         mtx_lock(&sw_dev_mtx);
 2182         sp->sw_flags |= SW_CLOSING;
 2183         for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
 2184                 swap_pager_avail -= blist_fill(sp->sw_blist,
 2185                      dvbase, dmmax);
 2186         }
 2187         mtx_unlock(&sw_dev_mtx);
 2188 
 2189         /*
 2190          * Page in the contents of the device and close it.
 2191          */
 2192         swap_pager_swapoff(sp);
 2193 
 2194         sp->sw_close(td, sp);
 2195         sp->sw_id = NULL;
 2196         mtx_lock(&sw_dev_mtx);
 2197         TAILQ_REMOVE(&swtailq, sp, sw_list);
 2198         nswapdev--;
 2199         if (nswapdev == 0) {
 2200                 swap_pager_full = 2;
 2201                 swap_pager_almost_full = 1;
 2202         }
 2203         if (swdevhd == sp)
 2204                 swdevhd = NULL;
 2205         mtx_unlock(&sw_dev_mtx);
 2206         blist_destroy(sp->sw_blist);
 2207         free(sp, M_VMPGDATA);
 2208         return (0);
 2209 }
 2210 
 2211 void
 2212 swapoff_all(void)
 2213 {
 2214         struct swdevt *sp, *spt;
 2215         const char *devname;
 2216         int error;
 2217  
 2218         mtx_lock(&Giant);
 2219         while (swdev_syscall_active)
 2220                 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
 2221         swdev_syscall_active = 1;
 2222  
 2223         mtx_lock(&sw_dev_mtx);
 2224         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
 2225                 mtx_unlock(&sw_dev_mtx);
 2226                 if (vn_isdisk(sp->sw_vp, NULL))
 2227                         devname = sp->sw_vp->v_rdev->si_name;
 2228                 else
 2229                         devname = "[file]";
 2230                 error = swapoff_one(sp, &thread0);
 2231                 if (error != 0) {
 2232                         printf("Cannot remove swap device %s (error=%d), "
 2233                             "skipping.\n", devname, error);
 2234                 } else if (bootverbose) {
 2235                         printf("Swap device %s removed.\n", devname);
 2236                 }
 2237                 mtx_lock(&sw_dev_mtx);
 2238         }
 2239         mtx_unlock(&sw_dev_mtx);
 2240  
 2241         swdev_syscall_active = 0;
 2242         wakeup_one(&swdev_syscall_active);
 2243         mtx_unlock(&Giant);
 2244 }
 2245 
 2246 void
 2247 swap_pager_status(int *total, int *used)
 2248 {
 2249         struct swdevt *sp;
 2250 
 2251         *total = 0;
 2252         *used = 0;
 2253         mtx_lock(&sw_dev_mtx);
 2254         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2255                 *total += sp->sw_nblks;
 2256                 *used += sp->sw_used;
 2257         }
 2258         mtx_unlock(&sw_dev_mtx);
 2259 }
 2260 
 2261 static int
 2262 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
 2263 {
 2264         int     *name = (int *)arg1;
 2265         int     error, n;
 2266         struct xswdev xs;
 2267         struct swdevt *sp;
 2268 
 2269         if (arg2 != 1) /* name length */
 2270                 return (EINVAL);
 2271 
 2272         n = 0;
 2273         mtx_lock(&sw_dev_mtx);
 2274         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2275                 if (n == *name) {
 2276                         mtx_unlock(&sw_dev_mtx);
 2277                         xs.xsw_version = XSWDEV_VERSION;
 2278                         xs.xsw_dev = sp->sw_dev;
 2279                         xs.xsw_flags = sp->sw_flags;
 2280                         xs.xsw_nblks = sp->sw_nblks;
 2281                         xs.xsw_used = sp->sw_used;
 2282 
 2283                         error = SYSCTL_OUT(req, &xs, sizeof(xs));
 2284                         return (error);
 2285                 }
 2286                 n++;
 2287         }
 2288         mtx_unlock(&sw_dev_mtx);
 2289         return (ENOENT);
 2290 }
 2291 
 2292 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
 2293     "Number of swap devices");
 2294 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
 2295     "Swap statistics by device");
 2296 
 2297 /*
 2298  * vmspace_swap_count() - count the approximate swap useage in pages for a
 2299  *                        vmspace.
 2300  *
 2301  *      The map must be locked.
 2302  *
 2303  *      Swap useage is determined by taking the proportional swap used by
 2304  *      VM objects backing the VM map.  To make up for fractional losses,
 2305  *      if the VM object has any swap use at all the associated map entries
 2306  *      count for at least 1 swap page.
 2307  */
 2308 int
 2309 vmspace_swap_count(struct vmspace *vmspace)
 2310 {
 2311         vm_map_t map = &vmspace->vm_map;
 2312         vm_map_entry_t cur;
 2313         int count = 0;
 2314 
 2315         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
 2316                 vm_object_t object;
 2317 
 2318                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
 2319                     (object = cur->object.vm_object) != NULL) {
 2320                         VM_OBJECT_LOCK(object);
 2321                         if (object->type == OBJT_SWAP &&
 2322                             object->un_pager.swp.swp_bcount != 0) {
 2323                                 int n = (cur->end - cur->start) / PAGE_SIZE;
 2324 
 2325                                 count += object->un_pager.swp.swp_bcount *
 2326                                     SWAP_META_PAGES * n / object->size + 1;
 2327                         }
 2328                         VM_OBJECT_UNLOCK(object);
 2329                 }
 2330         }
 2331         return (count);
 2332 }
 2333 
 2334 /*
 2335  * GEOM backend
 2336  *
 2337  * Swapping onto disk devices.
 2338  *
 2339  */
 2340 
 2341 static g_orphan_t swapgeom_orphan;
 2342 
 2343 static struct g_class g_swap_class = {
 2344         .name = "SWAP",
 2345         .version = G_VERSION,
 2346         .orphan = swapgeom_orphan,
 2347 };
 2348 
 2349 DECLARE_GEOM_CLASS(g_swap_class, g_class);
 2350 
 2351 
 2352 static void
 2353 swapgeom_done(struct bio *bp2)
 2354 {
 2355         struct buf *bp;
 2356 
 2357         bp = bp2->bio_caller2;
 2358         bp->b_ioflags = bp2->bio_flags;
 2359         if (bp2->bio_error)
 2360                 bp->b_ioflags |= BIO_ERROR;
 2361         bp->b_resid = bp->b_bcount - bp2->bio_completed;
 2362         bp->b_error = bp2->bio_error;
 2363         bufdone(bp);
 2364         g_destroy_bio(bp2);
 2365 }
 2366 
 2367 static void
 2368 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
 2369 {
 2370         struct bio *bio;
 2371         struct g_consumer *cp;
 2372 
 2373         cp = sp->sw_id;
 2374         if (cp == NULL) {
 2375                 bp->b_error = ENXIO;
 2376                 bp->b_ioflags |= BIO_ERROR;
 2377                 bufdone(bp);
 2378                 return;
 2379         }
 2380         bio = g_alloc_bio();
 2381 #if 0
 2382         /*
 2383          * XXX: We shouldn't really sleep here when we run out of buffers
 2384          * XXX: but the alternative is worse right now.
 2385          */
 2386         if (bio == NULL) {
 2387                 bp->b_error = ENOMEM;
 2388                 bp->b_ioflags |= BIO_ERROR;
 2389                 bufdone(bp);
 2390                 return;
 2391         }
 2392 #endif
 2393         bio->bio_caller2 = bp;
 2394         bio->bio_cmd = bp->b_iocmd;
 2395         bio->bio_data = bp->b_data;
 2396         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
 2397         bio->bio_length = bp->b_bcount;
 2398         bio->bio_done = swapgeom_done;
 2399         g_io_request(bio, cp);
 2400         return;
 2401 }
 2402 
 2403 static void
 2404 swapgeom_orphan(struct g_consumer *cp)
 2405 {
 2406         struct swdevt *sp;
 2407 
 2408         mtx_lock(&sw_dev_mtx);
 2409         TAILQ_FOREACH(sp, &swtailq, sw_list)
 2410                 if (sp->sw_id == cp)
 2411                         sp->sw_id = NULL;
 2412         mtx_unlock(&sw_dev_mtx);
 2413 }
 2414 
 2415 static void
 2416 swapgeom_close_ev(void *arg, int flags)
 2417 {
 2418         struct g_consumer *cp;
 2419 
 2420         cp = arg;
 2421         g_access(cp, -1, -1, 0);
 2422         g_detach(cp);
 2423         g_destroy_consumer(cp);
 2424 }
 2425 
 2426 static void
 2427 swapgeom_close(struct thread *td, struct swdevt *sw)
 2428 {
 2429 
 2430         /* XXX: direct call when Giant untangled */
 2431         g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
 2432 }
 2433 
 2434 
 2435 struct swh0h0 {
 2436         struct cdev *dev;
 2437         struct vnode *vp;
 2438         int     error;
 2439 };
 2440 
 2441 static void
 2442 swapongeom_ev(void *arg, int flags)
 2443 {
 2444         struct swh0h0 *swh;
 2445         struct g_provider *pp;
 2446         struct g_consumer *cp;
 2447         static struct g_geom *gp;
 2448         struct swdevt *sp;
 2449         u_long nblks;
 2450         int error;
 2451 
 2452         swh = arg;
 2453         swh->error = 0;
 2454         pp = g_dev_getprovider(swh->dev);
 2455         if (pp == NULL) {
 2456                 swh->error = ENODEV;
 2457                 return;
 2458         }
 2459         mtx_lock(&sw_dev_mtx);
 2460         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2461                 cp = sp->sw_id;
 2462                 if (cp != NULL && cp->provider == pp) {
 2463                         mtx_unlock(&sw_dev_mtx);
 2464                         swh->error = EBUSY;
 2465                         return;
 2466                 }
 2467         }
 2468         mtx_unlock(&sw_dev_mtx);
 2469         if (gp == NULL)
 2470                 gp = g_new_geomf(&g_swap_class, "swap", NULL);
 2471         cp = g_new_consumer(gp);
 2472         g_attach(cp, pp);
 2473         /*
 2474          * XXX: Everytime you think you can improve the margin for
 2475          * footshooting, somebody depends on the ability to do so:
 2476          * savecore(8) wants to write to our swapdev so we cannot
 2477          * set an exclusive count :-(
 2478          */
 2479         error = g_access(cp, 1, 1, 0);
 2480         if (error) {
 2481                 g_detach(cp);
 2482                 g_destroy_consumer(cp);
 2483                 swh->error = error;
 2484                 return;
 2485         }
 2486         nblks = pp->mediasize / DEV_BSIZE;
 2487         swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
 2488             swapgeom_close, dev2udev(swh->dev));
 2489         swh->error = 0;
 2490         return;
 2491 }
 2492 
 2493 static int
 2494 swapongeom(struct thread *td, struct vnode *vp)
 2495 {
 2496         int error;
 2497         struct swh0h0 swh;
 2498 
 2499         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
 2500 
 2501         swh.dev = vp->v_rdev;
 2502         swh.vp = vp;
 2503         swh.error = 0;
 2504         /* XXX: direct call when Giant untangled */
 2505         error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
 2506         if (!error)
 2507                 error = swh.error;
 2508         VOP_UNLOCK(vp, 0, td);
 2509         return (error);
 2510 }
 2511 
 2512 /*
 2513  * VNODE backend
 2514  *
 2515  * This is used mainly for network filesystem (read: probably only tested
 2516  * with NFS) swapfiles.
 2517  *
 2518  */
 2519 
 2520 static void
 2521 swapdev_strategy(struct buf *bp, struct swdevt *sp)
 2522 {
 2523         struct vnode *vp2;
 2524 
 2525         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
 2526 
 2527         vp2 = sp->sw_id;
 2528         vhold(vp2);
 2529         if (bp->b_iocmd == BIO_WRITE) {
 2530                 if (bp->b_bufobj) /* XXX: should always be true /phk */
 2531                         bufobj_wdrop(bp->b_bufobj);
 2532                 bufobj_wref(&vp2->v_bufobj);
 2533         }
 2534         if (bp->b_bufobj != &vp2->v_bufobj)
 2535                 bp->b_bufobj = &vp2->v_bufobj;
 2536         bp->b_vp = vp2;
 2537         bp->b_iooffset = dbtob(bp->b_blkno);
 2538         bstrategy(bp);
 2539         return;
 2540 }
 2541 
 2542 static void
 2543 swapdev_close(struct thread *td, struct swdevt *sp)
 2544 {
 2545 
 2546         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
 2547         vrele(sp->sw_vp);
 2548 }
 2549 
 2550 
 2551 static int
 2552 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
 2553 {
 2554         struct swdevt *sp;
 2555         int error;
 2556 
 2557         if (nblks == 0)
 2558                 return (ENXIO);
 2559         mtx_lock(&sw_dev_mtx);
 2560         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2561                 if (sp->sw_id == vp) {
 2562                         mtx_unlock(&sw_dev_mtx);
 2563                         return (EBUSY);
 2564                 }
 2565         }
 2566         mtx_unlock(&sw_dev_mtx);
 2567     
 2568         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
 2569 #ifdef MAC
 2570         error = mac_check_system_swapon(td->td_ucred, vp);
 2571         if (error == 0)
 2572 #endif
 2573                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, -1);
 2574         (void) VOP_UNLOCK(vp, 0, td);
 2575         if (error)
 2576                 return (error);
 2577 
 2578         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
 2579             NODEV);
 2580         return (0);
 2581 }

Cache object: 75522af69d42193a8e5116bf3ba876c1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.