FreeBSD/Linux Kernel Cross Reference
sys/vm/swap_pager.c
1 /*-
2 * Copyright (c) 1998 Matthew Dillon,
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1990 University of Utah.
5 * Copyright (c) 1982, 1986, 1989, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * New Swap System
41 * Matthew Dillon
42 *
43 * Radix Bitmap 'blists'.
44 *
45 * - The new swapper uses the new radix bitmap code. This should scale
46 * to arbitrarily small or arbitrarily large swap spaces and an almost
47 * arbitrary degree of fragmentation.
48 *
49 * Features:
50 *
51 * - on the fly reallocation of swap during putpages. The new system
52 * does not try to keep previously allocated swap blocks for dirty
53 * pages.
54 *
55 * - on the fly deallocation of swap
56 *
57 * - No more garbage collection required. Unnecessarily allocated swap
58 * blocks only exist for dirty vm_page_t's now and these are already
59 * cycled (in a high-load system) by the pager. We also do on-the-fly
60 * removal of invalidated swap blocks when a page is destroyed
61 * or renamed.
62 *
63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64 *
65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94
66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94
67 */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71
72 #include "opt_mac.h"
73 #include "opt_swap.h"
74 #include "opt_vm.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/conf.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/mac.h>
89 #include <sys/malloc.h>
90 #include <sys/sysctl.h>
91 #include <sys/sysproto.h>
92 #include <sys/blist.h>
93 #include <sys/lock.h>
94 #include <sys/sx.h>
95 #include <sys/vmmeter.h>
96
97 #include <vm/vm.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_object.h>
102 #include <vm/vm_page.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_param.h>
106 #include <vm/swap_pager.h>
107 #include <vm/vm_extern.h>
108 #include <vm/uma.h>
109
110 #include <geom/geom.h>
111
112 /*
113 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, or 16
114 * pages per allocation. We recommend you stick with the default of 8.
115 * The 16-page limit is due to the radix code (kern/subr_blist.c).
116 */
117 #ifndef MAX_PAGEOUT_CLUSTER
118 #define MAX_PAGEOUT_CLUSTER 16
119 #endif
120
121 #if !defined(SWB_NPAGES)
122 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER
123 #endif
124
125 /*
126 * Piecemeal swap metadata structure. Swap is stored in a radix tree.
127 *
128 * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix
129 * is basically 8. Assuming PAGE_SIZE == 4096, one tree level represents
130 * 32K worth of data, two levels represent 256K, three levels represent
131 * 2 MBytes. This is acceptable.
132 *
133 * Overall memory utilization is about the same as the old swap structure.
134 */
135 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
136 #define SWAP_META_PAGES (SWB_NPAGES * 2)
137 #define SWAP_META_MASK (SWAP_META_PAGES - 1)
138
139 struct swblock {
140 struct swblock *swb_hnext;
141 vm_object_t swb_object;
142 vm_pindex_t swb_index;
143 int swb_count;
144 daddr_t swb_pages[SWAP_META_PAGES];
145 };
146
147 static struct mtx sw_dev_mtx;
148 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
149 static struct swdevt *swdevhd; /* Allocate from here next */
150 static int nswapdev; /* Number of swap devices */
151 int swap_pager_avail;
152 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
153
154 static void swapdev_strategy(struct buf *, struct swdevt *sw);
155
156 #define SWM_FREE 0x02 /* free, period */
157 #define SWM_POP 0x04 /* pop out */
158
159 int swap_pager_full = 2; /* swap space exhaustion (task killing) */
160 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
161 static int nsw_rcount; /* free read buffers */
162 static int nsw_wcount_sync; /* limit write buffers / synchronous */
163 static int nsw_wcount_async; /* limit write buffers / asynchronous */
164 static int nsw_wcount_async_max;/* assigned maximum */
165 static int nsw_cluster_max; /* maximum VOP I/O allowed */
166
167 static struct swblock **swhash;
168 static int swhash_mask;
169 static struct mtx swhash_mtx;
170
171 static int swap_async_max = 4; /* maximum in-progress async I/O's */
172 static struct sx sw_alloc_sx;
173
174
175 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
176 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
177
178 /*
179 * "named" and "unnamed" anon region objects. Try to reduce the overhead
180 * of searching a named list by hashing it just a little.
181 */
182
183 #define NOBJLISTS 8
184
185 #define NOBJLIST(handle) \
186 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
187
188 static struct mtx sw_alloc_mtx; /* protect list manipulation */
189 static struct pagerlst swap_pager_object_list[NOBJLISTS];
190 static uma_zone_t swap_zone;
191 static struct vm_object swap_zone_obj;
192
193 /*
194 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure
195 * calls hooked from other parts of the VM system and do not appear here.
196 * (see vm/swap_pager.h).
197 */
198 static vm_object_t
199 swap_pager_alloc(void *handle, vm_ooffset_t size,
200 vm_prot_t prot, vm_ooffset_t offset);
201 static void swap_pager_dealloc(vm_object_t object);
202 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
203 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
204 static boolean_t
205 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
206 static void swap_pager_init(void);
207 static void swap_pager_unswapped(vm_page_t);
208 static void swap_pager_swapoff(struct swdevt *sp);
209
210 struct pagerops swappagerops = {
211 .pgo_init = swap_pager_init, /* early system initialization of pager */
212 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */
213 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */
214 .pgo_getpages = swap_pager_getpages, /* pagein */
215 .pgo_putpages = swap_pager_putpages, /* pageout */
216 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */
217 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */
218 };
219
220 /*
221 * dmmax is in page-sized chunks with the new swap system. It was
222 * dev-bsized chunks in the old. dmmax is always a power of 2.
223 *
224 * swap_*() routines are externally accessible. swp_*() routines are
225 * internal.
226 */
227 static int dmmax;
228 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */
229 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */
230
231 SYSCTL_INT(_vm, OID_AUTO, dmmax,
232 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
233
234 static void swp_sizecheck(void);
235 static void swp_pager_async_iodone(struct buf *bp);
236 static int swapongeom(struct thread *, struct vnode *);
237 static int swaponvp(struct thread *, struct vnode *, u_long);
238 static int swapoff_one(struct swdevt *sp, struct thread *td);
239
240 /*
241 * Swap bitmap functions
242 */
243 static void swp_pager_freeswapspace(daddr_t blk, int npages);
244 static daddr_t swp_pager_getswapspace(int npages);
245
246 /*
247 * Metadata functions
248 */
249 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
250 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
251 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
252 static void swp_pager_meta_free_all(vm_object_t);
253 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
254
255 /*
256 * SWP_SIZECHECK() - update swap_pager_full indication
257 *
258 * update the swap_pager_almost_full indication and warn when we are
259 * about to run out of swap space, using lowat/hiwat hysteresis.
260 *
261 * Clear swap_pager_full ( task killing ) indication when lowat is met.
262 *
263 * No restrictions on call
264 * This routine may not block.
265 * This routine must be called at splvm()
266 */
267 static void
268 swp_sizecheck(void)
269 {
270
271 if (swap_pager_avail < nswap_lowat) {
272 if (swap_pager_almost_full == 0) {
273 printf("swap_pager: out of swap space\n");
274 swap_pager_almost_full = 1;
275 }
276 } else {
277 swap_pager_full = 0;
278 if (swap_pager_avail > nswap_hiwat)
279 swap_pager_almost_full = 0;
280 }
281 }
282
283 /*
284 * SWP_PAGER_HASH() - hash swap meta data
285 *
286 * This is an helper function which hashes the swapblk given
287 * the object and page index. It returns a pointer to a pointer
288 * to the object, or a pointer to a NULL pointer if it could not
289 * find a swapblk.
290 *
291 * This routine must be called at splvm().
292 */
293 static struct swblock **
294 swp_pager_hash(vm_object_t object, vm_pindex_t index)
295 {
296 struct swblock **pswap;
297 struct swblock *swap;
298
299 index &= ~(vm_pindex_t)SWAP_META_MASK;
300 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
301 while ((swap = *pswap) != NULL) {
302 if (swap->swb_object == object &&
303 swap->swb_index == index
304 ) {
305 break;
306 }
307 pswap = &swap->swb_hnext;
308 }
309 return (pswap);
310 }
311
312 /*
313 * SWAP_PAGER_INIT() - initialize the swap pager!
314 *
315 * Expected to be started from system init. NOTE: This code is run
316 * before much else so be careful what you depend on. Most of the VM
317 * system has yet to be initialized at this point.
318 */
319 static void
320 swap_pager_init(void)
321 {
322 /*
323 * Initialize object lists
324 */
325 int i;
326
327 for (i = 0; i < NOBJLISTS; ++i)
328 TAILQ_INIT(&swap_pager_object_list[i]);
329 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
330 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
331
332 /*
333 * Device Stripe, in PAGE_SIZE'd blocks
334 */
335 dmmax = SWB_NPAGES * 2;
336 }
337
338 /*
339 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
340 *
341 * Expected to be started from pageout process once, prior to entering
342 * its main loop.
343 */
344 void
345 swap_pager_swap_init(void)
346 {
347 int n, n2;
348
349 /*
350 * Number of in-transit swap bp operations. Don't
351 * exhaust the pbufs completely. Make sure we
352 * initialize workable values (0 will work for hysteresis
353 * but it isn't very efficient).
354 *
355 * The nsw_cluster_max is constrained by the bp->b_pages[]
356 * array (MAXPHYS/PAGE_SIZE) and our locally defined
357 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are
358 * constrained by the swap device interleave stripe size.
359 *
360 * Currently we hardwire nsw_wcount_async to 4. This limit is
361 * designed to prevent other I/O from having high latencies due to
362 * our pageout I/O. The value 4 works well for one or two active swap
363 * devices but is probably a little low if you have more. Even so,
364 * a higher value would probably generate only a limited improvement
365 * with three or four active swap devices since the system does not
366 * typically have to pageout at extreme bandwidths. We will want
367 * at least 2 per swap devices, and 4 is a pretty good value if you
368 * have one NFS swap device due to the command/ack latency over NFS.
369 * So it all works out pretty well.
370 */
371 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
372
373 mtx_lock(&pbuf_mtx);
374 nsw_rcount = (nswbuf + 1) / 2;
375 nsw_wcount_sync = (nswbuf + 3) / 4;
376 nsw_wcount_async = 4;
377 nsw_wcount_async_max = nsw_wcount_async;
378 mtx_unlock(&pbuf_mtx);
379
380 /*
381 * Initialize our zone. Right now I'm just guessing on the number
382 * we need based on the number of pages in the system. Each swblock
383 * can hold 16 pages, so this is probably overkill. This reservation
384 * is typically limited to around 32MB by default.
385 */
386 n = cnt.v_page_count / 2;
387 if (maxswzone && n > maxswzone / sizeof(struct swblock))
388 n = maxswzone / sizeof(struct swblock);
389 n2 = n;
390 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
391 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
392 if (swap_zone == NULL)
393 panic("failed to create swap_zone.");
394 do {
395 if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n))
396 break;
397 /*
398 * if the allocation failed, try a zone two thirds the
399 * size of the previous attempt.
400 */
401 n -= ((n + 2) / 3);
402 } while (n > 0);
403 if (n2 != n)
404 printf("Swap zone entries reduced from %d to %d.\n", n2, n);
405 n2 = n;
406
407 /*
408 * Initialize our meta-data hash table. The swapper does not need to
409 * be quite as efficient as the VM system, so we do not use an
410 * oversized hash table.
411 *
412 * n: size of hash table, must be power of 2
413 * swhash_mask: hash table index mask
414 */
415 for (n = 1; n < n2 / 8; n *= 2)
416 ;
417 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
418 swhash_mask = n - 1;
419 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
420 }
421
422 /*
423 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
424 * its metadata structures.
425 *
426 * This routine is called from the mmap and fork code to create a new
427 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object
428 * and then converting it with swp_pager_meta_build().
429 *
430 * This routine may block in vm_object_allocate() and create a named
431 * object lookup race, so we must interlock. We must also run at
432 * splvm() for the object lookup to handle races with interrupts, but
433 * we do not have to maintain splvm() in between the lookup and the
434 * add because (I believe) it is not possible to attempt to create
435 * a new swap object w/handle when a default object with that handle
436 * already exists.
437 *
438 * MPSAFE
439 */
440 static vm_object_t
441 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
442 vm_ooffset_t offset)
443 {
444 vm_object_t object;
445 vm_pindex_t pindex;
446
447 pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
448
449 if (handle) {
450 mtx_lock(&Giant);
451 /*
452 * Reference existing named region or allocate new one. There
453 * should not be a race here against swp_pager_meta_build()
454 * as called from vm_page_remove() in regards to the lookup
455 * of the handle.
456 */
457 sx_xlock(&sw_alloc_sx);
458 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
459
460 if (object != NULL) {
461 vm_object_reference(object);
462 } else {
463 object = vm_object_allocate(OBJT_DEFAULT, pindex);
464 object->handle = handle;
465
466 VM_OBJECT_LOCK(object);
467 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
468 VM_OBJECT_UNLOCK(object);
469 }
470 sx_xunlock(&sw_alloc_sx);
471 mtx_unlock(&Giant);
472 } else {
473 object = vm_object_allocate(OBJT_DEFAULT, pindex);
474
475 VM_OBJECT_LOCK(object);
476 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
477 VM_OBJECT_UNLOCK(object);
478 }
479 return (object);
480 }
481
482 /*
483 * SWAP_PAGER_DEALLOC() - remove swap metadata from object
484 *
485 * The swap backing for the object is destroyed. The code is
486 * designed such that we can reinstantiate it later, but this
487 * routine is typically called only when the entire object is
488 * about to be destroyed.
489 *
490 * This routine may block, but no longer does.
491 *
492 * The object must be locked or unreferenceable.
493 */
494 static void
495 swap_pager_dealloc(vm_object_t object)
496 {
497
498 /*
499 * Remove from list right away so lookups will fail if we block for
500 * pageout completion.
501 */
502 if (object->handle != NULL) {
503 mtx_lock(&sw_alloc_mtx);
504 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
505 mtx_unlock(&sw_alloc_mtx);
506 }
507
508 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
509 vm_object_pip_wait(object, "swpdea");
510
511 /*
512 * Free all remaining metadata. We only bother to free it from
513 * the swap meta data. We do not attempt to free swapblk's still
514 * associated with vm_page_t's for this object. We do not care
515 * if paging is still in progress on some objects.
516 */
517 swp_pager_meta_free_all(object);
518 }
519
520 /************************************************************************
521 * SWAP PAGER BITMAP ROUTINES *
522 ************************************************************************/
523
524 /*
525 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space
526 *
527 * Allocate swap for the requested number of pages. The starting
528 * swap block number (a page index) is returned or SWAPBLK_NONE
529 * if the allocation failed.
530 *
531 * Also has the side effect of advising that somebody made a mistake
532 * when they configured swap and didn't configure enough.
533 *
534 * Must be called at splvm() to avoid races with bitmap frees from
535 * vm_page_remove() aka swap_pager_page_removed().
536 *
537 * This routine may not block
538 * This routine must be called at splvm().
539 *
540 * We allocate in round-robin fashion from the configured devices.
541 */
542 static daddr_t
543 swp_pager_getswapspace(int npages)
544 {
545 daddr_t blk;
546 struct swdevt *sp;
547 int i;
548
549 blk = SWAPBLK_NONE;
550 mtx_lock(&sw_dev_mtx);
551 sp = swdevhd;
552 for (i = 0; i < nswapdev; i++) {
553 if (sp == NULL)
554 sp = TAILQ_FIRST(&swtailq);
555 if (!(sp->sw_flags & SW_CLOSING)) {
556 blk = blist_alloc(sp->sw_blist, npages);
557 if (blk != SWAPBLK_NONE) {
558 blk += sp->sw_first;
559 sp->sw_used += npages;
560 swap_pager_avail -= npages;
561 swp_sizecheck();
562 swdevhd = TAILQ_NEXT(sp, sw_list);
563 goto done;
564 }
565 }
566 sp = TAILQ_NEXT(sp, sw_list);
567 }
568 if (swap_pager_full != 2) {
569 printf("swap_pager_getswapspace(%d): failed\n", npages);
570 swap_pager_full = 2;
571 swap_pager_almost_full = 1;
572 }
573 swdevhd = NULL;
574 done:
575 mtx_unlock(&sw_dev_mtx);
576 return (blk);
577 }
578
579 static int
580 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
581 {
582
583 return (blk >= sp->sw_first && blk < sp->sw_end);
584 }
585
586 static void
587 swp_pager_strategy(struct buf *bp)
588 {
589 struct swdevt *sp;
590
591 mtx_lock(&sw_dev_mtx);
592 TAILQ_FOREACH(sp, &swtailq, sw_list) {
593 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
594 mtx_unlock(&sw_dev_mtx);
595 sp->sw_strategy(bp, sp);
596 return;
597 }
598 }
599 panic("Swapdev not found");
600 }
601
602
603 /*
604 * SWP_PAGER_FREESWAPSPACE() - free raw swap space
605 *
606 * This routine returns the specified swap blocks back to the bitmap.
607 *
608 * Note: This routine may not block (it could in the old swap code),
609 * and through the use of the new blist routines it does not block.
610 *
611 * We must be called at splvm() to avoid races with bitmap frees from
612 * vm_page_remove() aka swap_pager_page_removed().
613 *
614 * This routine may not block
615 * This routine must be called at splvm().
616 */
617 static void
618 swp_pager_freeswapspace(daddr_t blk, int npages)
619 {
620 struct swdevt *sp;
621
622 mtx_lock(&sw_dev_mtx);
623 TAILQ_FOREACH(sp, &swtailq, sw_list) {
624 if (blk >= sp->sw_first && blk < sp->sw_end) {
625 sp->sw_used -= npages;
626 /*
627 * If we are attempting to stop swapping on
628 * this device, we don't want to mark any
629 * blocks free lest they be reused.
630 */
631 if ((sp->sw_flags & SW_CLOSING) == 0) {
632 blist_free(sp->sw_blist, blk - sp->sw_first,
633 npages);
634 swap_pager_avail += npages;
635 swp_sizecheck();
636 }
637 mtx_unlock(&sw_dev_mtx);
638 return;
639 }
640 }
641 panic("Swapdev not found");
642 }
643
644 /*
645 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page
646 * range within an object.
647 *
648 * This is a globally accessible routine.
649 *
650 * This routine removes swapblk assignments from swap metadata.
651 *
652 * The external callers of this routine typically have already destroyed
653 * or renamed vm_page_t's associated with this range in the object so
654 * we should be ok.
655 *
656 * This routine may be called at any spl. We up our spl to splvm temporarily
657 * in order to perform the metadata removal.
658 */
659 void
660 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
661 {
662
663 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
664 swp_pager_meta_free(object, start, size);
665 }
666
667 /*
668 * SWAP_PAGER_RESERVE() - reserve swap blocks in object
669 *
670 * Assigns swap blocks to the specified range within the object. The
671 * swap blocks are not zerod. Any previous swap assignment is destroyed.
672 *
673 * Returns 0 on success, -1 on failure.
674 */
675 int
676 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
677 {
678 int n = 0;
679 daddr_t blk = SWAPBLK_NONE;
680 vm_pindex_t beg = start; /* save start index */
681
682 VM_OBJECT_LOCK(object);
683 while (size) {
684 if (n == 0) {
685 n = BLIST_MAX_ALLOC;
686 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
687 n >>= 1;
688 if (n == 0) {
689 swp_pager_meta_free(object, beg, start - beg);
690 VM_OBJECT_UNLOCK(object);
691 return (-1);
692 }
693 }
694 }
695 swp_pager_meta_build(object, start, blk);
696 --size;
697 ++start;
698 ++blk;
699 --n;
700 }
701 swp_pager_meta_free(object, start, n);
702 VM_OBJECT_UNLOCK(object);
703 return (0);
704 }
705
706 /*
707 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager
708 * and destroy the source.
709 *
710 * Copy any valid swapblks from the source to the destination. In
711 * cases where both the source and destination have a valid swapblk,
712 * we keep the destination's.
713 *
714 * This routine is allowed to block. It may block allocating metadata
715 * indirectly through swp_pager_meta_build() or if paging is still in
716 * progress on the source.
717 *
718 * This routine can be called at any spl
719 *
720 * XXX vm_page_collapse() kinda expects us not to block because we
721 * supposedly do not need to allocate memory, but for the moment we
722 * *may* have to get a little memory from the zone allocator, but
723 * it is taken from the interrupt memory. We should be ok.
724 *
725 * The source object contains no vm_page_t's (which is just as well)
726 *
727 * The source object is of type OBJT_SWAP.
728 *
729 * The source and destination objects must be locked or
730 * inaccessible (XXX are they ?)
731 */
732 void
733 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
734 vm_pindex_t offset, int destroysource)
735 {
736 vm_pindex_t i;
737
738 VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
739 VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
740
741 /*
742 * If destroysource is set, we remove the source object from the
743 * swap_pager internal queue now.
744 */
745 if (destroysource) {
746 if (srcobject->handle != NULL) {
747 mtx_lock(&sw_alloc_mtx);
748 TAILQ_REMOVE(
749 NOBJLIST(srcobject->handle),
750 srcobject,
751 pager_object_list
752 );
753 mtx_unlock(&sw_alloc_mtx);
754 }
755 }
756
757 /*
758 * transfer source to destination.
759 */
760 for (i = 0; i < dstobject->size; ++i) {
761 daddr_t dstaddr;
762
763 /*
764 * Locate (without changing) the swapblk on the destination,
765 * unless it is invalid in which case free it silently, or
766 * if the destination is a resident page, in which case the
767 * source is thrown away.
768 */
769 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
770
771 if (dstaddr == SWAPBLK_NONE) {
772 /*
773 * Destination has no swapblk and is not resident,
774 * copy source.
775 */
776 daddr_t srcaddr;
777
778 srcaddr = swp_pager_meta_ctl(
779 srcobject,
780 i + offset,
781 SWM_POP
782 );
783
784 if (srcaddr != SWAPBLK_NONE) {
785 /*
786 * swp_pager_meta_build() can sleep.
787 */
788 vm_object_pip_add(srcobject, 1);
789 VM_OBJECT_UNLOCK(srcobject);
790 vm_object_pip_add(dstobject, 1);
791 swp_pager_meta_build(dstobject, i, srcaddr);
792 vm_object_pip_wakeup(dstobject);
793 VM_OBJECT_LOCK(srcobject);
794 vm_object_pip_wakeup(srcobject);
795 }
796 } else {
797 /*
798 * Destination has valid swapblk or it is represented
799 * by a resident page. We destroy the sourceblock.
800 */
801
802 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
803 }
804 }
805
806 /*
807 * Free left over swap blocks in source.
808 *
809 * We have to revert the type to OBJT_DEFAULT so we do not accidently
810 * double-remove the object from the swap queues.
811 */
812 if (destroysource) {
813 swp_pager_meta_free_all(srcobject);
814 /*
815 * Reverting the type is not necessary, the caller is going
816 * to destroy srcobject directly, but I'm doing it here
817 * for consistency since we've removed the object from its
818 * queues.
819 */
820 srcobject->type = OBJT_DEFAULT;
821 }
822 }
823
824 /*
825 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for
826 * the requested page.
827 *
828 * We determine whether good backing store exists for the requested
829 * page and return TRUE if it does, FALSE if it doesn't.
830 *
831 * If TRUE, we also try to determine how much valid, contiguous backing
832 * store exists before and after the requested page within a reasonable
833 * distance. We do not try to restrict it to the swap device stripe
834 * (that is handled in getpages/putpages). It probably isn't worth
835 * doing here.
836 */
837 static boolean_t
838 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
839 {
840 daddr_t blk0;
841
842 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
843 /*
844 * do we have good backing store at the requested index ?
845 */
846 blk0 = swp_pager_meta_ctl(object, pindex, 0);
847
848 if (blk0 == SWAPBLK_NONE) {
849 if (before)
850 *before = 0;
851 if (after)
852 *after = 0;
853 return (FALSE);
854 }
855
856 /*
857 * find backwards-looking contiguous good backing store
858 */
859 if (before != NULL) {
860 int i;
861
862 for (i = 1; i < (SWB_NPAGES/2); ++i) {
863 daddr_t blk;
864
865 if (i > pindex)
866 break;
867 blk = swp_pager_meta_ctl(object, pindex - i, 0);
868 if (blk != blk0 - i)
869 break;
870 }
871 *before = (i - 1);
872 }
873
874 /*
875 * find forward-looking contiguous good backing store
876 */
877 if (after != NULL) {
878 int i;
879
880 for (i = 1; i < (SWB_NPAGES/2); ++i) {
881 daddr_t blk;
882
883 blk = swp_pager_meta_ctl(object, pindex + i, 0);
884 if (blk != blk0 + i)
885 break;
886 }
887 *after = (i - 1);
888 }
889 return (TRUE);
890 }
891
892 /*
893 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
894 *
895 * This removes any associated swap backing store, whether valid or
896 * not, from the page.
897 *
898 * This routine is typically called when a page is made dirty, at
899 * which point any associated swap can be freed. MADV_FREE also
900 * calls us in a special-case situation
901 *
902 * NOTE!!! If the page is clean and the swap was valid, the caller
903 * should make the page dirty before calling this routine. This routine
904 * does NOT change the m->dirty status of the page. Also: MADV_FREE
905 * depends on it.
906 *
907 * This routine may not block
908 * This routine must be called at splvm()
909 */
910 static void
911 swap_pager_unswapped(vm_page_t m)
912 {
913
914 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
915 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
916 }
917
918 /*
919 * SWAP_PAGER_GETPAGES() - bring pages in from swap
920 *
921 * Attempt to retrieve (m, count) pages from backing store, but make
922 * sure we retrieve at least m[reqpage]. We try to load in as large
923 * a chunk surrounding m[reqpage] as is contiguous in swap and which
924 * belongs to the same object.
925 *
926 * The code is designed for asynchronous operation and
927 * immediate-notification of 'reqpage' but tends not to be
928 * used that way. Please do not optimize-out this algorithmic
929 * feature, I intend to improve on it in the future.
930 *
931 * The parent has a single vm_object_pip_add() reference prior to
932 * calling us and we should return with the same.
933 *
934 * The parent has BUSY'd the pages. We should return with 'm'
935 * left busy, but the others adjusted.
936 */
937 static int
938 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
939 {
940 struct buf *bp;
941 vm_page_t mreq;
942 int i;
943 int j;
944 daddr_t blk;
945
946 mreq = m[reqpage];
947
948 KASSERT(mreq->object == object,
949 ("swap_pager_getpages: object mismatch %p/%p",
950 object, mreq->object));
951
952 /*
953 * Calculate range to retrieve. The pages have already been assigned
954 * their swapblks. We require a *contiguous* range but we know it to
955 * not span devices. If we do not supply it, bad things
956 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
957 * loops are set up such that the case(s) are handled implicitly.
958 *
959 * The swp_*() calls must be made at splvm(). vm_page_free() does
960 * not need to be, but it will go a little faster if it is.
961 */
962 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
963
964 for (i = reqpage - 1; i >= 0; --i) {
965 daddr_t iblk;
966
967 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
968 if (blk != iblk + (reqpage - i))
969 break;
970 }
971 ++i;
972
973 for (j = reqpage + 1; j < count; ++j) {
974 daddr_t jblk;
975
976 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
977 if (blk != jblk - (j - reqpage))
978 break;
979 }
980
981 /*
982 * free pages outside our collection range. Note: we never free
983 * mreq, it must remain busy throughout.
984 */
985 if (0 < i || j < count) {
986 int k;
987
988 vm_page_lock_queues();
989 for (k = 0; k < i; ++k)
990 vm_page_free(m[k]);
991 for (k = j; k < count; ++k)
992 vm_page_free(m[k]);
993 vm_page_unlock_queues();
994 }
995
996 /*
997 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq
998 * still busy, but the others unbusied.
999 */
1000 if (blk == SWAPBLK_NONE)
1001 return (VM_PAGER_FAIL);
1002
1003 /*
1004 * Getpbuf() can sleep.
1005 */
1006 VM_OBJECT_UNLOCK(object);
1007 /*
1008 * Get a swap buffer header to perform the IO
1009 */
1010 bp = getpbuf(&nsw_rcount);
1011 bp->b_flags |= B_PAGING;
1012
1013 /*
1014 * map our page(s) into kva for input
1015 */
1016 pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1017
1018 bp->b_iocmd = BIO_READ;
1019 bp->b_iodone = swp_pager_async_iodone;
1020 bp->b_rcred = crhold(thread0.td_ucred);
1021 bp->b_wcred = crhold(thread0.td_ucred);
1022 bp->b_blkno = blk - (reqpage - i);
1023 bp->b_bcount = PAGE_SIZE * (j - i);
1024 bp->b_bufsize = PAGE_SIZE * (j - i);
1025 bp->b_pager.pg_reqpage = reqpage - i;
1026
1027 VM_OBJECT_LOCK(object);
1028 vm_page_lock_queues();
1029 {
1030 int k;
1031
1032 for (k = i; k < j; ++k) {
1033 bp->b_pages[k - i] = m[k];
1034 vm_page_flag_set(m[k], PG_SWAPINPROG);
1035 }
1036 }
1037 vm_page_unlock_queues();
1038 bp->b_npages = j - i;
1039
1040 cnt.v_swapin++;
1041 cnt.v_swappgsin += bp->b_npages;
1042
1043 /*
1044 * We still hold the lock on mreq, and our automatic completion routine
1045 * does not remove it.
1046 */
1047 vm_object_pip_add(object, bp->b_npages);
1048 VM_OBJECT_UNLOCK(object);
1049
1050 /*
1051 * perform the I/O. NOTE!!! bp cannot be considered valid after
1052 * this point because we automatically release it on completion.
1053 * Instead, we look at the one page we are interested in which we
1054 * still hold a lock on even through the I/O completion.
1055 *
1056 * The other pages in our m[] array are also released on completion,
1057 * so we cannot assume they are valid anymore either.
1058 *
1059 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1060 */
1061 BUF_KERNPROC(bp);
1062 swp_pager_strategy(bp);
1063
1064 /*
1065 * wait for the page we want to complete. PG_SWAPINPROG is always
1066 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE
1067 * is set in the meta-data.
1068 */
1069 vm_page_lock_queues();
1070 while ((mreq->flags & PG_SWAPINPROG) != 0) {
1071 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1072 cnt.v_intrans++;
1073 if (msleep(mreq, &vm_page_queue_mtx, PSWP, "swread", hz*20)) {
1074 printf(
1075 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1076 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1077 }
1078 }
1079 vm_page_unlock_queues();
1080
1081 VM_OBJECT_LOCK(object);
1082 /*
1083 * mreq is left busied after completion, but all the other pages
1084 * are freed. If we had an unrecoverable read error the page will
1085 * not be valid.
1086 */
1087 if (mreq->valid != VM_PAGE_BITS_ALL) {
1088 return (VM_PAGER_ERROR);
1089 } else {
1090 return (VM_PAGER_OK);
1091 }
1092
1093 /*
1094 * A final note: in a low swap situation, we cannot deallocate swap
1095 * and mark a page dirty here because the caller is likely to mark
1096 * the page clean when we return, causing the page to possibly revert
1097 * to all-zero's later.
1098 */
1099 }
1100
1101 /*
1102 * swap_pager_putpages:
1103 *
1104 * Assign swap (if necessary) and initiate I/O on the specified pages.
1105 *
1106 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects
1107 * are automatically converted to SWAP objects.
1108 *
1109 * In a low memory situation we may block in VOP_STRATEGY(), but the new
1110 * vm_page reservation system coupled with properly written VFS devices
1111 * should ensure that no low-memory deadlock occurs. This is an area
1112 * which needs work.
1113 *
1114 * The parent has N vm_object_pip_add() references prior to
1115 * calling us and will remove references for rtvals[] that are
1116 * not set to VM_PAGER_PEND. We need to remove the rest on I/O
1117 * completion.
1118 *
1119 * The parent has soft-busy'd the pages it passes us and will unbusy
1120 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1121 * We need to unbusy the rest on I/O completion.
1122 */
1123 void
1124 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1125 boolean_t sync, int *rtvals)
1126 {
1127 int i;
1128 int n = 0;
1129
1130 if (count && m[0]->object != object) {
1131 panic("swap_pager_getpages: object mismatch %p/%p",
1132 object,
1133 m[0]->object
1134 );
1135 }
1136
1137 /*
1138 * Step 1
1139 *
1140 * Turn object into OBJT_SWAP
1141 * check for bogus sysops
1142 * force sync if not pageout process
1143 */
1144 if (object->type != OBJT_SWAP)
1145 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1146 VM_OBJECT_UNLOCK(object);
1147
1148 if (curproc != pageproc)
1149 sync = TRUE;
1150
1151 /*
1152 * Step 2
1153 *
1154 * Update nsw parameters from swap_async_max sysctl values.
1155 * Do not let the sysop crash the machine with bogus numbers.
1156 */
1157 mtx_lock(&pbuf_mtx);
1158 if (swap_async_max != nsw_wcount_async_max) {
1159 int n;
1160
1161 /*
1162 * limit range
1163 */
1164 if ((n = swap_async_max) > nswbuf / 2)
1165 n = nswbuf / 2;
1166 if (n < 1)
1167 n = 1;
1168 swap_async_max = n;
1169
1170 /*
1171 * Adjust difference ( if possible ). If the current async
1172 * count is too low, we may not be able to make the adjustment
1173 * at this time.
1174 */
1175 n -= nsw_wcount_async_max;
1176 if (nsw_wcount_async + n >= 0) {
1177 nsw_wcount_async += n;
1178 nsw_wcount_async_max += n;
1179 wakeup(&nsw_wcount_async);
1180 }
1181 }
1182 mtx_unlock(&pbuf_mtx);
1183
1184 /*
1185 * Step 3
1186 *
1187 * Assign swap blocks and issue I/O. We reallocate swap on the fly.
1188 * The page is left dirty until the pageout operation completes
1189 * successfully.
1190 */
1191 for (i = 0; i < count; i += n) {
1192 int j;
1193 struct buf *bp;
1194 daddr_t blk;
1195
1196 /*
1197 * Maximum I/O size is limited by a number of factors.
1198 */
1199 n = min(BLIST_MAX_ALLOC, count - i);
1200 n = min(n, nsw_cluster_max);
1201
1202 /*
1203 * Get biggest block of swap we can. If we fail, fall
1204 * back and try to allocate a smaller block. Don't go
1205 * overboard trying to allocate space if it would overly
1206 * fragment swap.
1207 */
1208 while (
1209 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1210 n > 4
1211 ) {
1212 n >>= 1;
1213 }
1214 if (blk == SWAPBLK_NONE) {
1215 for (j = 0; j < n; ++j)
1216 rtvals[i+j] = VM_PAGER_FAIL;
1217 continue;
1218 }
1219
1220 /*
1221 * All I/O parameters have been satisfied, build the I/O
1222 * request and assign the swap space.
1223 */
1224 if (sync == TRUE) {
1225 bp = getpbuf(&nsw_wcount_sync);
1226 } else {
1227 bp = getpbuf(&nsw_wcount_async);
1228 bp->b_flags = B_ASYNC;
1229 }
1230 bp->b_flags |= B_PAGING;
1231 bp->b_iocmd = BIO_WRITE;
1232
1233 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1234
1235 bp->b_rcred = crhold(thread0.td_ucred);
1236 bp->b_wcred = crhold(thread0.td_ucred);
1237 bp->b_bcount = PAGE_SIZE * n;
1238 bp->b_bufsize = PAGE_SIZE * n;
1239 bp->b_blkno = blk;
1240
1241 VM_OBJECT_LOCK(object);
1242 for (j = 0; j < n; ++j) {
1243 vm_page_t mreq = m[i+j];
1244
1245 swp_pager_meta_build(
1246 mreq->object,
1247 mreq->pindex,
1248 blk + j
1249 );
1250 vm_page_dirty(mreq);
1251 rtvals[i+j] = VM_PAGER_OK;
1252
1253 vm_page_lock_queues();
1254 vm_page_flag_set(mreq, PG_SWAPINPROG);
1255 vm_page_unlock_queues();
1256 bp->b_pages[j] = mreq;
1257 }
1258 VM_OBJECT_UNLOCK(object);
1259 bp->b_npages = n;
1260 /*
1261 * Must set dirty range for NFS to work.
1262 */
1263 bp->b_dirtyoff = 0;
1264 bp->b_dirtyend = bp->b_bcount;
1265
1266 cnt.v_swapout++;
1267 cnt.v_swappgsout += bp->b_npages;
1268
1269 /*
1270 * asynchronous
1271 *
1272 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1273 */
1274 if (sync == FALSE) {
1275 bp->b_iodone = swp_pager_async_iodone;
1276 BUF_KERNPROC(bp);
1277 swp_pager_strategy(bp);
1278
1279 for (j = 0; j < n; ++j)
1280 rtvals[i+j] = VM_PAGER_PEND;
1281 /* restart outter loop */
1282 continue;
1283 }
1284
1285 /*
1286 * synchronous
1287 *
1288 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1289 */
1290 bp->b_iodone = bdone;
1291 swp_pager_strategy(bp);
1292
1293 /*
1294 * Wait for the sync I/O to complete, then update rtvals.
1295 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1296 * our async completion routine at the end, thus avoiding a
1297 * double-free.
1298 */
1299 bwait(bp, PVM, "swwrt");
1300 for (j = 0; j < n; ++j)
1301 rtvals[i+j] = VM_PAGER_PEND;
1302 /*
1303 * Now that we are through with the bp, we can call the
1304 * normal async completion, which frees everything up.
1305 */
1306 swp_pager_async_iodone(bp);
1307 }
1308 VM_OBJECT_LOCK(object);
1309 }
1310
1311 /*
1312 * swp_pager_async_iodone:
1313 *
1314 * Completion routine for asynchronous reads and writes from/to swap.
1315 * Also called manually by synchronous code to finish up a bp.
1316 *
1317 * For READ operations, the pages are PG_BUSY'd. For WRITE operations,
1318 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY
1319 * unbusy all pages except the 'main' request page. For WRITE
1320 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1321 * because we marked them all VM_PAGER_PEND on return from putpages ).
1322 *
1323 * This routine may not block.
1324 * This routine is called at splbio() or better
1325 *
1326 * We up ourselves to splvm() as required for various vm_page related
1327 * calls.
1328 */
1329 static void
1330 swp_pager_async_iodone(struct buf *bp)
1331 {
1332 int i;
1333 vm_object_t object = NULL;
1334
1335 /*
1336 * report error
1337 */
1338 if (bp->b_ioflags & BIO_ERROR) {
1339 printf(
1340 "swap_pager: I/O error - %s failed; blkno %ld,"
1341 "size %ld, error %d\n",
1342 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1343 (long)bp->b_blkno,
1344 (long)bp->b_bcount,
1345 bp->b_error
1346 );
1347 }
1348
1349 /*
1350 * remove the mapping for kernel virtual
1351 */
1352 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1353
1354 if (bp->b_npages) {
1355 object = bp->b_pages[0]->object;
1356 VM_OBJECT_LOCK(object);
1357 }
1358 vm_page_lock_queues();
1359 /*
1360 * cleanup pages. If an error occurs writing to swap, we are in
1361 * very serious trouble. If it happens to be a disk error, though,
1362 * we may be able to recover by reassigning the swap later on. So
1363 * in this case we remove the m->swapblk assignment for the page
1364 * but do not free it in the rlist. The errornous block(s) are thus
1365 * never reallocated as swap. Redirty the page and continue.
1366 */
1367 for (i = 0; i < bp->b_npages; ++i) {
1368 vm_page_t m = bp->b_pages[i];
1369
1370 vm_page_flag_clear(m, PG_SWAPINPROG);
1371
1372 if (bp->b_ioflags & BIO_ERROR) {
1373 /*
1374 * If an error occurs I'd love to throw the swapblk
1375 * away without freeing it back to swapspace, so it
1376 * can never be used again. But I can't from an
1377 * interrupt.
1378 */
1379 if (bp->b_iocmd == BIO_READ) {
1380 /*
1381 * When reading, reqpage needs to stay
1382 * locked for the parent, but all other
1383 * pages can be freed. We still want to
1384 * wakeup the parent waiting on the page,
1385 * though. ( also: pg_reqpage can be -1 and
1386 * not match anything ).
1387 *
1388 * We have to wake specifically requested pages
1389 * up too because we cleared PG_SWAPINPROG and
1390 * someone may be waiting for that.
1391 *
1392 * NOTE: for reads, m->dirty will probably
1393 * be overridden by the original caller of
1394 * getpages so don't play cute tricks here.
1395 *
1396 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1397 * AS THIS MESSES WITH object->memq, and it is
1398 * not legal to mess with object->memq from an
1399 * interrupt.
1400 */
1401 m->valid = 0;
1402 if (i != bp->b_pager.pg_reqpage)
1403 vm_page_free(m);
1404 else
1405 vm_page_flash(m);
1406 /*
1407 * If i == bp->b_pager.pg_reqpage, do not wake
1408 * the page up. The caller needs to.
1409 */
1410 } else {
1411 /*
1412 * If a write error occurs, reactivate page
1413 * so it doesn't clog the inactive list,
1414 * then finish the I/O.
1415 */
1416 vm_page_dirty(m);
1417 vm_page_activate(m);
1418 vm_page_io_finish(m);
1419 }
1420 } else if (bp->b_iocmd == BIO_READ) {
1421 /*
1422 * For read success, clear dirty bits. Nobody should
1423 * have this page mapped but don't take any chances,
1424 * make sure the pmap modify bits are also cleared.
1425 *
1426 * NOTE: for reads, m->dirty will probably be
1427 * overridden by the original caller of getpages so
1428 * we cannot set them in order to free the underlying
1429 * swap in a low-swap situation. I don't think we'd
1430 * want to do that anyway, but it was an optimization
1431 * that existed in the old swapper for a time before
1432 * it got ripped out due to precisely this problem.
1433 *
1434 * If not the requested page then deactivate it.
1435 *
1436 * Note that the requested page, reqpage, is left
1437 * busied, but we still have to wake it up. The
1438 * other pages are released (unbusied) by
1439 * vm_page_wakeup(). We do not set reqpage's
1440 * valid bits here, it is up to the caller.
1441 */
1442 pmap_clear_modify(m);
1443 m->valid = VM_PAGE_BITS_ALL;
1444 vm_page_undirty(m);
1445
1446 /*
1447 * We have to wake specifically requested pages
1448 * up too because we cleared PG_SWAPINPROG and
1449 * could be waiting for it in getpages. However,
1450 * be sure to not unbusy getpages specifically
1451 * requested page - getpages expects it to be
1452 * left busy.
1453 */
1454 if (i != bp->b_pager.pg_reqpage) {
1455 vm_page_deactivate(m);
1456 vm_page_wakeup(m);
1457 } else {
1458 vm_page_flash(m);
1459 }
1460 } else {
1461 /*
1462 * For write success, clear the modify and dirty
1463 * status, then finish the I/O ( which decrements the
1464 * busy count and possibly wakes waiter's up ).
1465 */
1466 pmap_clear_modify(m);
1467 vm_page_undirty(m);
1468 vm_page_io_finish(m);
1469 if (vm_page_count_severe())
1470 vm_page_try_to_cache(m);
1471 }
1472 }
1473 vm_page_unlock_queues();
1474
1475 /*
1476 * adjust pip. NOTE: the original parent may still have its own
1477 * pip refs on the object.
1478 */
1479 if (object != NULL) {
1480 vm_object_pip_wakeupn(object, bp->b_npages);
1481 VM_OBJECT_UNLOCK(object);
1482 }
1483 /*
1484 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1485 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1486 * trigger a KASSERT in relpbuf().
1487 */
1488 if (bp->b_vp) {
1489 bp->b_vp = NULL;
1490 bp->b_bufobj = NULL;
1491 }
1492
1493 /*
1494 * release the physical I/O buffer
1495 */
1496 relpbuf(
1497 bp,
1498 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1499 ((bp->b_flags & B_ASYNC) ?
1500 &nsw_wcount_async :
1501 &nsw_wcount_sync
1502 )
1503 )
1504 );
1505 }
1506
1507 /*
1508 * swap_pager_isswapped:
1509 *
1510 * Return 1 if at least one page in the given object is paged
1511 * out to the given swap device.
1512 *
1513 * This routine may not block.
1514 */
1515 int
1516 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1517 {
1518 daddr_t index = 0;
1519 int bcount;
1520 int i;
1521
1522 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1523 if (object->type != OBJT_SWAP)
1524 return (0);
1525
1526 mtx_lock(&swhash_mtx);
1527 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1528 struct swblock *swap;
1529
1530 if ((swap = *swp_pager_hash(object, index)) != NULL) {
1531 for (i = 0; i < SWAP_META_PAGES; ++i) {
1532 if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1533 mtx_unlock(&swhash_mtx);
1534 return (1);
1535 }
1536 }
1537 }
1538 index += SWAP_META_PAGES;
1539 if (index > 0x20000000)
1540 panic("swap_pager_isswapped: failed to locate all swap meta blocks");
1541 }
1542 mtx_unlock(&swhash_mtx);
1543 return (0);
1544 }
1545
1546 /*
1547 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1548 *
1549 * This routine dissociates the page at the given index within a
1550 * swap block from its backing store, paging it in if necessary.
1551 * If the page is paged in, it is placed in the inactive queue,
1552 * since it had its backing store ripped out from under it.
1553 * We also attempt to swap in all other pages in the swap block,
1554 * we only guarantee that the one at the specified index is
1555 * paged in.
1556 *
1557 * XXX - The code to page the whole block in doesn't work, so we
1558 * revert to the one-by-one behavior for now. Sigh.
1559 */
1560 static __inline void
1561 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1562 {
1563 vm_page_t m;
1564
1565 vm_object_pip_add(object, 1);
1566 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1567 if (m->valid == VM_PAGE_BITS_ALL) {
1568 vm_object_pip_subtract(object, 1);
1569 vm_page_lock_queues();
1570 vm_page_activate(m);
1571 vm_page_dirty(m);
1572 vm_page_wakeup(m);
1573 vm_page_unlock_queues();
1574 vm_pager_page_unswapped(m);
1575 return;
1576 }
1577
1578 if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1579 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1580 vm_object_pip_subtract(object, 1);
1581 vm_page_lock_queues();
1582 vm_page_dirty(m);
1583 vm_page_dontneed(m);
1584 vm_page_wakeup(m);
1585 vm_page_unlock_queues();
1586 vm_pager_page_unswapped(m);
1587 }
1588
1589 /*
1590 * swap_pager_swapoff:
1591 *
1592 * Page in all of the pages that have been paged out to the
1593 * given device. The corresponding blocks in the bitmap must be
1594 * marked as allocated and the device must be flagged SW_CLOSING.
1595 * There may be no processes swapped out to the device.
1596 *
1597 * This routine may block.
1598 */
1599 static void
1600 swap_pager_swapoff(struct swdevt *sp)
1601 {
1602 struct swblock *swap;
1603 int i, j, retries;
1604
1605 GIANT_REQUIRED;
1606
1607 retries = 0;
1608 full_rescan:
1609 mtx_lock(&swhash_mtx);
1610 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1611 restart:
1612 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1613 vm_object_t object = swap->swb_object;
1614 vm_pindex_t pindex = swap->swb_index;
1615 for (j = 0; j < SWAP_META_PAGES; ++j) {
1616 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1617 /* avoid deadlock */
1618 if (!VM_OBJECT_TRYLOCK(object)) {
1619 break;
1620 } else {
1621 mtx_unlock(&swhash_mtx);
1622 swp_pager_force_pagein(object,
1623 pindex + j);
1624 VM_OBJECT_UNLOCK(object);
1625 mtx_lock(&swhash_mtx);
1626 goto restart;
1627 }
1628 }
1629 }
1630 }
1631 }
1632 mtx_unlock(&swhash_mtx);
1633 if (sp->sw_used) {
1634 int dummy;
1635 /*
1636 * Objects may be locked or paging to the device being
1637 * removed, so we will miss their pages and need to
1638 * make another pass. We have marked this device as
1639 * SW_CLOSING, so the activity should finish soon.
1640 */
1641 retries++;
1642 if (retries > 100) {
1643 panic("swapoff: failed to locate %d swap blocks",
1644 sp->sw_used);
1645 }
1646 tsleep(&dummy, PVM, "swpoff", hz / 20);
1647 goto full_rescan;
1648 }
1649 }
1650
1651 /************************************************************************
1652 * SWAP META DATA *
1653 ************************************************************************
1654 *
1655 * These routines manipulate the swap metadata stored in the
1656 * OBJT_SWAP object. All swp_*() routines must be called at
1657 * splvm() because swap can be freed up by the low level vm_page
1658 * code which might be called from interrupts beyond what splbio() covers.
1659 *
1660 * Swap metadata is implemented with a global hash and not directly
1661 * linked into the object. Instead the object simply contains
1662 * appropriate tracking counters.
1663 */
1664
1665 /*
1666 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object
1667 *
1668 * We first convert the object to a swap object if it is a default
1669 * object.
1670 *
1671 * The specified swapblk is added to the object's swap metadata. If
1672 * the swapblk is not valid, it is freed instead. Any previously
1673 * assigned swapblk is freed.
1674 *
1675 * This routine must be called at splvm(), except when used to convert
1676 * an OBJT_DEFAULT object into an OBJT_SWAP object.
1677 */
1678 static void
1679 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1680 {
1681 struct swblock *swap;
1682 struct swblock **pswap;
1683 int dummy, idx;
1684
1685 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1686 /*
1687 * Convert default object to swap object if necessary
1688 */
1689 if (object->type != OBJT_SWAP) {
1690 object->type = OBJT_SWAP;
1691 object->un_pager.swp.swp_bcount = 0;
1692
1693 if (object->handle != NULL) {
1694 mtx_lock(&sw_alloc_mtx);
1695 TAILQ_INSERT_TAIL(
1696 NOBJLIST(object->handle),
1697 object,
1698 pager_object_list
1699 );
1700 mtx_unlock(&sw_alloc_mtx);
1701 }
1702 }
1703
1704 /*
1705 * Locate hash entry. If not found create, but if we aren't adding
1706 * anything just return. If we run out of space in the map we wait
1707 * and, since the hash table may have changed, retry.
1708 */
1709 retry:
1710 mtx_lock(&swhash_mtx);
1711 pswap = swp_pager_hash(object, pindex);
1712
1713 if ((swap = *pswap) == NULL) {
1714 int i;
1715
1716 if (swapblk == SWAPBLK_NONE)
1717 goto done;
1718
1719 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1720 if (swap == NULL) {
1721 mtx_unlock(&swhash_mtx);
1722 VM_OBJECT_UNLOCK(object);
1723 if (uma_zone_exhausted(swap_zone)) {
1724 printf("swap zone exhausted, increase kern.maxswzone\n");
1725 vm_pageout_oom(VM_OOM_SWAPZ);
1726 tsleep(&dummy, PVM, "swzonex", 10);
1727 } else
1728 VM_WAIT;
1729 VM_OBJECT_LOCK(object);
1730 goto retry;
1731 }
1732
1733 swap->swb_hnext = NULL;
1734 swap->swb_object = object;
1735 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1736 swap->swb_count = 0;
1737
1738 ++object->un_pager.swp.swp_bcount;
1739
1740 for (i = 0; i < SWAP_META_PAGES; ++i)
1741 swap->swb_pages[i] = SWAPBLK_NONE;
1742 }
1743
1744 /*
1745 * Delete prior contents of metadata
1746 */
1747 idx = pindex & SWAP_META_MASK;
1748
1749 if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1750 swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1751 --swap->swb_count;
1752 }
1753
1754 /*
1755 * Enter block into metadata
1756 */
1757 swap->swb_pages[idx] = swapblk;
1758 if (swapblk != SWAPBLK_NONE)
1759 ++swap->swb_count;
1760 done:
1761 mtx_unlock(&swhash_mtx);
1762 }
1763
1764 /*
1765 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1766 *
1767 * The requested range of blocks is freed, with any associated swap
1768 * returned to the swap bitmap.
1769 *
1770 * This routine will free swap metadata structures as they are cleaned
1771 * out. This routine does *NOT* operate on swap metadata associated
1772 * with resident pages.
1773 *
1774 * This routine must be called at splvm()
1775 */
1776 static void
1777 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1778 {
1779
1780 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1781 if (object->type != OBJT_SWAP)
1782 return;
1783
1784 while (count > 0) {
1785 struct swblock **pswap;
1786 struct swblock *swap;
1787
1788 mtx_lock(&swhash_mtx);
1789 pswap = swp_pager_hash(object, index);
1790
1791 if ((swap = *pswap) != NULL) {
1792 daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1793
1794 if (v != SWAPBLK_NONE) {
1795 swp_pager_freeswapspace(v, 1);
1796 swap->swb_pages[index & SWAP_META_MASK] =
1797 SWAPBLK_NONE;
1798 if (--swap->swb_count == 0) {
1799 *pswap = swap->swb_hnext;
1800 uma_zfree(swap_zone, swap);
1801 --object->un_pager.swp.swp_bcount;
1802 }
1803 }
1804 --count;
1805 ++index;
1806 } else {
1807 int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1808 count -= n;
1809 index += n;
1810 }
1811 mtx_unlock(&swhash_mtx);
1812 }
1813 }
1814
1815 /*
1816 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1817 *
1818 * This routine locates and destroys all swap metadata associated with
1819 * an object.
1820 *
1821 * This routine must be called at splvm()
1822 */
1823 static void
1824 swp_pager_meta_free_all(vm_object_t object)
1825 {
1826 daddr_t index = 0;
1827
1828 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1829 if (object->type != OBJT_SWAP)
1830 return;
1831
1832 while (object->un_pager.swp.swp_bcount) {
1833 struct swblock **pswap;
1834 struct swblock *swap;
1835
1836 mtx_lock(&swhash_mtx);
1837 pswap = swp_pager_hash(object, index);
1838 if ((swap = *pswap) != NULL) {
1839 int i;
1840
1841 for (i = 0; i < SWAP_META_PAGES; ++i) {
1842 daddr_t v = swap->swb_pages[i];
1843 if (v != SWAPBLK_NONE) {
1844 --swap->swb_count;
1845 swp_pager_freeswapspace(v, 1);
1846 }
1847 }
1848 if (swap->swb_count != 0)
1849 panic("swap_pager_meta_free_all: swb_count != 0");
1850 *pswap = swap->swb_hnext;
1851 uma_zfree(swap_zone, swap);
1852 --object->un_pager.swp.swp_bcount;
1853 }
1854 mtx_unlock(&swhash_mtx);
1855 index += SWAP_META_PAGES;
1856 if (index > 0x20000000)
1857 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1858 }
1859 }
1860
1861 /*
1862 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data.
1863 *
1864 * This routine is capable of looking up, popping, or freeing
1865 * swapblk assignments in the swap meta data or in the vm_page_t.
1866 * The routine typically returns the swapblk being looked-up, or popped,
1867 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1868 * was invalid. This routine will automatically free any invalid
1869 * meta-data swapblks.
1870 *
1871 * It is not possible to store invalid swapblks in the swap meta data
1872 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1873 *
1874 * When acting on a busy resident page and paging is in progress, we
1875 * have to wait until paging is complete but otherwise can act on the
1876 * busy page.
1877 *
1878 * This routine must be called at splvm().
1879 *
1880 * SWM_FREE remove and free swap block from metadata
1881 * SWM_POP remove from meta data but do not free.. pop it out
1882 */
1883 static daddr_t
1884 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
1885 {
1886 struct swblock **pswap;
1887 struct swblock *swap;
1888 daddr_t r1;
1889 int idx;
1890
1891 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1892 /*
1893 * The meta data only exists of the object is OBJT_SWAP
1894 * and even then might not be allocated yet.
1895 */
1896 if (object->type != OBJT_SWAP)
1897 return (SWAPBLK_NONE);
1898
1899 r1 = SWAPBLK_NONE;
1900 mtx_lock(&swhash_mtx);
1901 pswap = swp_pager_hash(object, pindex);
1902
1903 if ((swap = *pswap) != NULL) {
1904 idx = pindex & SWAP_META_MASK;
1905 r1 = swap->swb_pages[idx];
1906
1907 if (r1 != SWAPBLK_NONE) {
1908 if (flags & SWM_FREE) {
1909 swp_pager_freeswapspace(r1, 1);
1910 r1 = SWAPBLK_NONE;
1911 }
1912 if (flags & (SWM_FREE|SWM_POP)) {
1913 swap->swb_pages[idx] = SWAPBLK_NONE;
1914 if (--swap->swb_count == 0) {
1915 *pswap = swap->swb_hnext;
1916 uma_zfree(swap_zone, swap);
1917 --object->un_pager.swp.swp_bcount;
1918 }
1919 }
1920 }
1921 }
1922 mtx_unlock(&swhash_mtx);
1923 return (r1);
1924 }
1925
1926 /*
1927 * System call swapon(name) enables swapping on device name,
1928 * which must be in the swdevsw. Return EBUSY
1929 * if already swapping on this device.
1930 */
1931 #ifndef _SYS_SYSPROTO_H_
1932 struct swapon_args {
1933 char *name;
1934 };
1935 #endif
1936
1937 /*
1938 * MPSAFE
1939 */
1940 /* ARGSUSED */
1941 int
1942 swapon(struct thread *td, struct swapon_args *uap)
1943 {
1944 struct vattr attr;
1945 struct vnode *vp;
1946 struct nameidata nd;
1947 int error;
1948
1949 mtx_lock(&Giant);
1950 error = suser(td);
1951 if (error)
1952 goto done2;
1953
1954 while (swdev_syscall_active)
1955 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
1956 swdev_syscall_active = 1;
1957
1958 /*
1959 * Swap metadata may not fit in the KVM if we have physical
1960 * memory of >1GB.
1961 */
1962 if (swap_zone == NULL) {
1963 error = ENOMEM;
1964 goto done;
1965 }
1966
1967 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW, UIO_USERSPACE, uap->name, td);
1968 error = namei(&nd);
1969 if (error)
1970 goto done;
1971
1972 NDFREE(&nd, NDF_ONLY_PNBUF);
1973 vp = nd.ni_vp;
1974
1975 if (vn_isdisk(vp, &error)) {
1976 error = swapongeom(td, vp);
1977 } else if (vp->v_type == VREG &&
1978 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1979 (error = VOP_GETATTR(vp, &attr, td->td_ucred, td)) == 0) {
1980 /*
1981 * Allow direct swapping to NFS regular files in the same
1982 * way that nfs_mountroot() sets up diskless swapping.
1983 */
1984 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
1985 }
1986
1987 if (error)
1988 vrele(vp);
1989 done:
1990 swdev_syscall_active = 0;
1991 wakeup_one(&swdev_syscall_active);
1992 done2:
1993 mtx_unlock(&Giant);
1994 return (error);
1995 }
1996
1997 static void
1998 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev)
1999 {
2000 struct swdevt *sp, *tsp;
2001 swblk_t dvbase;
2002 u_long mblocks;
2003
2004 /*
2005 * If we go beyond this, we get overflows in the radix
2006 * tree bitmap code.
2007 */
2008 mblocks = 0x40000000 / BLIST_META_RADIX;
2009 if (nblks > mblocks) {
2010 printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n",
2011 mblocks);
2012 nblks = mblocks;
2013 }
2014 /*
2015 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2016 * First chop nblks off to page-align it, then convert.
2017 *
2018 * sw->sw_nblks is in page-sized chunks now too.
2019 */
2020 nblks &= ~(ctodb(1) - 1);
2021 nblks = dbtoc(nblks);
2022
2023 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2024 sp->sw_vp = vp;
2025 sp->sw_id = id;
2026 sp->sw_dev = dev;
2027 sp->sw_flags = 0;
2028 sp->sw_nblks = nblks;
2029 sp->sw_used = 0;
2030 sp->sw_strategy = strategy;
2031 sp->sw_close = close;
2032
2033 sp->sw_blist = blist_create(nblks);
2034 /*
2035 * Do not free the first two block in order to avoid overwriting
2036 * any bsd label at the front of the partition
2037 */
2038 blist_free(sp->sw_blist, 2, nblks - 2);
2039
2040 dvbase = 0;
2041 mtx_lock(&sw_dev_mtx);
2042 TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2043 if (tsp->sw_end >= dvbase) {
2044 /*
2045 * We put one uncovered page between the devices
2046 * in order to definitively prevent any cross-device
2047 * I/O requests
2048 */
2049 dvbase = tsp->sw_end + 1;
2050 }
2051 }
2052 sp->sw_first = dvbase;
2053 sp->sw_end = dvbase + nblks;
2054 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2055 nswapdev++;
2056 swap_pager_avail += nblks;
2057 swp_sizecheck();
2058 mtx_unlock(&sw_dev_mtx);
2059 }
2060
2061 /*
2062 * SYSCALL: swapoff(devname)
2063 *
2064 * Disable swapping on the given device.
2065 *
2066 * XXX: Badly designed system call: it should use a device index
2067 * rather than filename as specification. We keep sw_vp around
2068 * only to make this work.
2069 */
2070 #ifndef _SYS_SYSPROTO_H_
2071 struct swapoff_args {
2072 char *name;
2073 };
2074 #endif
2075
2076 /*
2077 * MPSAFE
2078 */
2079 /* ARGSUSED */
2080 int
2081 swapoff(struct thread *td, struct swapoff_args *uap)
2082 {
2083 struct vnode *vp;
2084 struct nameidata nd;
2085 struct swdevt *sp;
2086 int error;
2087
2088 error = suser(td);
2089 if (error)
2090 return (error);
2091
2092 mtx_lock(&Giant);
2093 while (swdev_syscall_active)
2094 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2095 swdev_syscall_active = 1;
2096
2097 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->name, td);
2098 error = namei(&nd);
2099 if (error)
2100 goto done;
2101 NDFREE(&nd, NDF_ONLY_PNBUF);
2102 vp = nd.ni_vp;
2103
2104 mtx_lock(&sw_dev_mtx);
2105 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2106 if (sp->sw_vp == vp)
2107 break;
2108 }
2109 mtx_unlock(&sw_dev_mtx);
2110 if (sp == NULL) {
2111 error = EINVAL;
2112 goto done;
2113 }
2114 error = swapoff_one(sp, td);
2115 done:
2116 swdev_syscall_active = 0;
2117 wakeup_one(&swdev_syscall_active);
2118 mtx_unlock(&Giant);
2119 return (error);
2120 }
2121
2122 static int
2123 swapoff_one(struct swdevt *sp, struct thread *td)
2124 {
2125 u_long nblks, dvbase;
2126 #ifdef MAC
2127 int error;
2128 #endif
2129
2130 mtx_assert(&Giant, MA_OWNED);
2131 #ifdef MAC
2132 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY, td);
2133 error = mac_check_system_swapoff(td->td_ucred, sp->sw_vp);
2134 (void) VOP_UNLOCK(sp->sw_vp, 0, td);
2135 if (error != 0)
2136 return (error);
2137 #endif
2138 nblks = sp->sw_nblks;
2139
2140 /*
2141 * We can turn off this swap device safely only if the
2142 * available virtual memory in the system will fit the amount
2143 * of data we will have to page back in, plus an epsilon so
2144 * the system doesn't become critically low on swap space.
2145 */
2146 if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2147 nblks + nswap_lowat) {
2148 return (ENOMEM);
2149 }
2150
2151 /*
2152 * Prevent further allocations on this device.
2153 */
2154 mtx_lock(&sw_dev_mtx);
2155 sp->sw_flags |= SW_CLOSING;
2156 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2157 swap_pager_avail -= blist_fill(sp->sw_blist,
2158 dvbase, dmmax);
2159 }
2160 mtx_unlock(&sw_dev_mtx);
2161
2162 /*
2163 * Page in the contents of the device and close it.
2164 */
2165 swap_pager_swapoff(sp);
2166
2167 sp->sw_close(td, sp);
2168 sp->sw_id = NULL;
2169 mtx_lock(&sw_dev_mtx);
2170 TAILQ_REMOVE(&swtailq, sp, sw_list);
2171 nswapdev--;
2172 if (nswapdev == 0) {
2173 swap_pager_full = 2;
2174 swap_pager_almost_full = 1;
2175 }
2176 if (swdevhd == sp)
2177 swdevhd = NULL;
2178 mtx_unlock(&sw_dev_mtx);
2179 blist_destroy(sp->sw_blist);
2180 free(sp, M_VMPGDATA);
2181 return (0);
2182 }
2183
2184 void
2185 swapoff_all(void)
2186 {
2187 struct swdevt *sp, *spt;
2188 const char *devname;
2189 int error;
2190
2191 mtx_lock(&Giant);
2192 while (swdev_syscall_active)
2193 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2194 swdev_syscall_active = 1;
2195
2196 mtx_lock(&sw_dev_mtx);
2197 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2198 mtx_unlock(&sw_dev_mtx);
2199 if (vn_isdisk(sp->sw_vp, NULL))
2200 devname = sp->sw_vp->v_rdev->si_name;
2201 else
2202 devname = "[file]";
2203 error = swapoff_one(sp, &thread0);
2204 if (error != 0) {
2205 printf("Cannot remove swap device %s (error=%d), "
2206 "skipping.\n", devname, error);
2207 } else if (bootverbose) {
2208 printf("Swap device %s removed.\n", devname);
2209 }
2210 mtx_lock(&sw_dev_mtx);
2211 }
2212 mtx_unlock(&sw_dev_mtx);
2213
2214 swdev_syscall_active = 0;
2215 wakeup_one(&swdev_syscall_active);
2216 mtx_unlock(&Giant);
2217 }
2218
2219 void
2220 swap_pager_status(int *total, int *used)
2221 {
2222 struct swdevt *sp;
2223
2224 *total = 0;
2225 *used = 0;
2226 mtx_lock(&sw_dev_mtx);
2227 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2228 *total += sp->sw_nblks;
2229 *used += sp->sw_used;
2230 }
2231 mtx_unlock(&sw_dev_mtx);
2232 }
2233
2234 static int
2235 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2236 {
2237 int *name = (int *)arg1;
2238 int error, n;
2239 struct xswdev xs;
2240 struct swdevt *sp;
2241
2242 if (arg2 != 1) /* name length */
2243 return (EINVAL);
2244
2245 n = 0;
2246 mtx_lock(&sw_dev_mtx);
2247 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2248 if (n == *name) {
2249 mtx_unlock(&sw_dev_mtx);
2250 xs.xsw_version = XSWDEV_VERSION;
2251 xs.xsw_dev = sp->sw_dev;
2252 xs.xsw_flags = sp->sw_flags;
2253 xs.xsw_nblks = sp->sw_nblks;
2254 xs.xsw_used = sp->sw_used;
2255
2256 error = SYSCTL_OUT(req, &xs, sizeof(xs));
2257 return (error);
2258 }
2259 n++;
2260 }
2261 mtx_unlock(&sw_dev_mtx);
2262 return (ENOENT);
2263 }
2264
2265 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2266 "Number of swap devices");
2267 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2268 "Swap statistics by device");
2269
2270 /*
2271 * vmspace_swap_count() - count the approximate swap useage in pages for a
2272 * vmspace.
2273 *
2274 * The map must be locked.
2275 *
2276 * Swap useage is determined by taking the proportional swap used by
2277 * VM objects backing the VM map. To make up for fractional losses,
2278 * if the VM object has any swap use at all the associated map entries
2279 * count for at least 1 swap page.
2280 */
2281 int
2282 vmspace_swap_count(struct vmspace *vmspace)
2283 {
2284 vm_map_t map = &vmspace->vm_map;
2285 vm_map_entry_t cur;
2286 int count = 0;
2287
2288 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2289 vm_object_t object;
2290
2291 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2292 (object = cur->object.vm_object) != NULL) {
2293 VM_OBJECT_LOCK(object);
2294 if (object->type == OBJT_SWAP &&
2295 object->un_pager.swp.swp_bcount != 0) {
2296 int n = (cur->end - cur->start) / PAGE_SIZE;
2297
2298 count += object->un_pager.swp.swp_bcount *
2299 SWAP_META_PAGES * n / object->size + 1;
2300 }
2301 VM_OBJECT_UNLOCK(object);
2302 }
2303 }
2304 return (count);
2305 }
2306
2307 /*
2308 * GEOM backend
2309 *
2310 * Swapping onto disk devices.
2311 *
2312 */
2313
2314 static g_orphan_t swapgeom_orphan;
2315
2316 static struct g_class g_swap_class = {
2317 .name = "SWAP",
2318 .version = G_VERSION,
2319 .orphan = swapgeom_orphan,
2320 };
2321
2322 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2323
2324
2325 static void
2326 swapgeom_done(struct bio *bp2)
2327 {
2328 struct buf *bp;
2329
2330 bp = bp2->bio_caller2;
2331 bp->b_ioflags = bp2->bio_flags;
2332 if (bp2->bio_error)
2333 bp->b_ioflags |= BIO_ERROR;
2334 bp->b_resid = bp->b_bcount - bp2->bio_completed;
2335 bp->b_error = bp2->bio_error;
2336 bufdone(bp);
2337 g_destroy_bio(bp2);
2338 }
2339
2340 static void
2341 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2342 {
2343 struct bio *bio;
2344 struct g_consumer *cp;
2345
2346 cp = sp->sw_id;
2347 if (cp == NULL) {
2348 bp->b_error = ENXIO;
2349 bp->b_ioflags |= BIO_ERROR;
2350 bufdone(bp);
2351 return;
2352 }
2353 bio = g_alloc_bio();
2354 #if 0
2355 /*
2356 * XXX: We shouldn't really sleep here when we run out of buffers
2357 * XXX: but the alternative is worse right now.
2358 */
2359 if (bio == NULL) {
2360 bp->b_error = ENOMEM;
2361 bp->b_ioflags |= BIO_ERROR;
2362 bufdone(bp);
2363 return;
2364 }
2365 #endif
2366 bio->bio_caller2 = bp;
2367 bio->bio_cmd = bp->b_iocmd;
2368 bio->bio_data = bp->b_data;
2369 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2370 bio->bio_length = bp->b_bcount;
2371 bio->bio_done = swapgeom_done;
2372 g_io_request(bio, cp);
2373 return;
2374 }
2375
2376 static void
2377 swapgeom_orphan(struct g_consumer *cp)
2378 {
2379 struct swdevt *sp;
2380
2381 mtx_lock(&sw_dev_mtx);
2382 TAILQ_FOREACH(sp, &swtailq, sw_list)
2383 if (sp->sw_id == cp)
2384 sp->sw_id = NULL;
2385 mtx_unlock(&sw_dev_mtx);
2386 }
2387
2388 static void
2389 swapgeom_close_ev(void *arg, int flags)
2390 {
2391 struct g_consumer *cp;
2392
2393 cp = arg;
2394 g_access(cp, -1, -1, 0);
2395 g_detach(cp);
2396 g_destroy_consumer(cp);
2397 }
2398
2399 static void
2400 swapgeom_close(struct thread *td, struct swdevt *sw)
2401 {
2402
2403 /* XXX: direct call when Giant untangled */
2404 g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2405 }
2406
2407
2408 struct swh0h0 {
2409 struct cdev *dev;
2410 struct vnode *vp;
2411 int error;
2412 };
2413
2414 static void
2415 swapongeom_ev(void *arg, int flags)
2416 {
2417 struct swh0h0 *swh;
2418 struct g_provider *pp;
2419 struct g_consumer *cp;
2420 static struct g_geom *gp;
2421 struct swdevt *sp;
2422 u_long nblks;
2423 int error;
2424
2425 swh = arg;
2426 swh->error = 0;
2427 pp = g_dev_getprovider(swh->dev);
2428 if (pp == NULL) {
2429 swh->error = ENODEV;
2430 return;
2431 }
2432 mtx_lock(&sw_dev_mtx);
2433 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2434 cp = sp->sw_id;
2435 if (cp != NULL && cp->provider == pp) {
2436 mtx_unlock(&sw_dev_mtx);
2437 swh->error = EBUSY;
2438 return;
2439 }
2440 }
2441 mtx_unlock(&sw_dev_mtx);
2442 if (gp == NULL)
2443 gp = g_new_geomf(&g_swap_class, "swap", NULL);
2444 cp = g_new_consumer(gp);
2445 g_attach(cp, pp);
2446 /*
2447 * XXX: Everytime you think you can improve the margin for
2448 * footshooting, somebody depends on the ability to do so:
2449 * savecore(8) wants to write to our swapdev so we cannot
2450 * set an exclusive count :-(
2451 */
2452 error = g_access(cp, 1, 1, 0);
2453 if (error) {
2454 g_detach(cp);
2455 g_destroy_consumer(cp);
2456 swh->error = error;
2457 return;
2458 }
2459 nblks = pp->mediasize / DEV_BSIZE;
2460 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2461 swapgeom_close, dev2udev(swh->dev));
2462 swh->error = 0;
2463 return;
2464 }
2465
2466 static int
2467 swapongeom(struct thread *td, struct vnode *vp)
2468 {
2469 int error;
2470 struct swh0h0 swh;
2471
2472 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2473
2474 swh.dev = vp->v_rdev;
2475 swh.vp = vp;
2476 swh.error = 0;
2477 /* XXX: direct call when Giant untangled */
2478 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2479 if (!error)
2480 error = swh.error;
2481 VOP_UNLOCK(vp, 0, td);
2482 return (error);
2483 }
2484
2485 /*
2486 * VNODE backend
2487 *
2488 * This is used mainly for network filesystem (read: probably only tested
2489 * with NFS) swapfiles.
2490 *
2491 */
2492
2493 static void
2494 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2495 {
2496 struct vnode *vp2;
2497
2498 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2499
2500 vp2 = sp->sw_id;
2501 vhold(vp2);
2502 if (bp->b_iocmd == BIO_WRITE) {
2503 if (bp->b_bufobj) /* XXX: should always be true /phk */
2504 bufobj_wdrop(bp->b_bufobj);
2505 bufobj_wref(&vp2->v_bufobj);
2506 }
2507 if (bp->b_bufobj != &vp2->v_bufobj)
2508 bp->b_bufobj = &vp2->v_bufobj;
2509 bp->b_vp = vp2;
2510 bp->b_iooffset = dbtob(bp->b_blkno);
2511 bstrategy(bp);
2512 return;
2513 }
2514
2515 static void
2516 swapdev_close(struct thread *td, struct swdevt *sp)
2517 {
2518
2519 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2520 vrele(sp->sw_vp);
2521 }
2522
2523
2524 static int
2525 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2526 {
2527 struct swdevt *sp;
2528 int error;
2529
2530 if (nblks == 0)
2531 return (ENXIO);
2532 mtx_lock(&sw_dev_mtx);
2533 TAILQ_FOREACH(sp, &swtailq, sw_list) {
2534 if (sp->sw_id == vp) {
2535 mtx_unlock(&sw_dev_mtx);
2536 return (EBUSY);
2537 }
2538 }
2539 mtx_unlock(&sw_dev_mtx);
2540
2541 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2542 #ifdef MAC
2543 error = mac_check_system_swapon(td->td_ucred, vp);
2544 if (error == 0)
2545 #endif
2546 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, -1);
2547 (void) VOP_UNLOCK(vp, 0, td);
2548 if (error)
2549 return (error);
2550
2551 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2552 NODEV);
2553 return (0);
2554 }
Cache object: bb51bb27333b06f75253a5eb6d53e826
|