The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/swap_pager.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1998 Matthew Dillon,
    3  * Copyright (c) 1994 John S. Dyson
    4  * Copyright (c) 1990 University of Utah.
    5  * Copyright (c) 1982, 1986, 1989, 1993
    6  *      The Regents of the University of California.  All rights reserved.
    7  *
    8  * This code is derived from software contributed to Berkeley by
    9  * the Systems Programming Group of the University of Utah Computer
   10  * Science Department.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. All advertising materials mentioning features or use of this software
   21  *    must display the following acknowledgement:
   22  *      This product includes software developed by the University of
   23  *      California, Berkeley and its contributors.
   24  * 4. Neither the name of the University nor the names of its contributors
   25  *    may be used to endorse or promote products derived from this software
   26  *    without specific prior written permission.
   27  *
   28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   38  * SUCH DAMAGE.
   39  *
   40  *                              New Swap System
   41  *                              Matthew Dillon
   42  *
   43  * Radix Bitmap 'blists'.
   44  *
   45  *      - The new swapper uses the new radix bitmap code.  This should scale
   46  *        to arbitrarily small or arbitrarily large swap spaces and an almost
   47  *        arbitrary degree of fragmentation.
   48  *
   49  * Features:
   50  *
   51  *      - on the fly reallocation of swap during putpages.  The new system
   52  *        does not try to keep previously allocated swap blocks for dirty
   53  *        pages.  
   54  *
   55  *      - on the fly deallocation of swap
   56  *
   57  *      - No more garbage collection required.  Unnecessarily allocated swap
   58  *        blocks only exist for dirty vm_page_t's now and these are already
   59  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
   60  *        removal of invalidated swap blocks when a page is destroyed
   61  *        or renamed.
   62  *
   63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
   64  *
   65  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
   66  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
   67  */
   68 
   69 #include <sys/cdefs.h>
   70 __FBSDID("$FreeBSD: releng/8.0/sys/vm/swap_pager.c 198330 2009-10-21 15:07:34Z kib $");
   71 
   72 #include "opt_swap.h"
   73 #include "opt_vm.h"
   74 
   75 #include <sys/param.h>
   76 #include <sys/systm.h>
   77 #include <sys/conf.h>
   78 #include <sys/kernel.h>
   79 #include <sys/priv.h>
   80 #include <sys/proc.h>
   81 #include <sys/bio.h>
   82 #include <sys/buf.h>
   83 #include <sys/disk.h>
   84 #include <sys/fcntl.h>
   85 #include <sys/mount.h>
   86 #include <sys/namei.h>
   87 #include <sys/vnode.h>
   88 #include <sys/malloc.h>
   89 #include <sys/resource.h>
   90 #include <sys/resourcevar.h>
   91 #include <sys/sysctl.h>
   92 #include <sys/sysproto.h>
   93 #include <sys/blist.h>
   94 #include <sys/lock.h>
   95 #include <sys/sx.h>
   96 #include <sys/vmmeter.h>
   97 
   98 #include <security/mac/mac_framework.h>
   99 
  100 #include <vm/vm.h>
  101 #include <vm/pmap.h>
  102 #include <vm/vm_map.h>
  103 #include <vm/vm_kern.h>
  104 #include <vm/vm_object.h>
  105 #include <vm/vm_page.h>
  106 #include <vm/vm_pager.h>
  107 #include <vm/vm_pageout.h>
  108 #include <vm/vm_param.h>
  109 #include <vm/swap_pager.h>
  110 #include <vm/vm_extern.h>
  111 #include <vm/uma.h>
  112 
  113 #include <geom/geom.h>
  114 
  115 /*
  116  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, or 16
  117  * pages per allocation.  We recommend you stick with the default of 8.
  118  * The 16-page limit is due to the radix code (kern/subr_blist.c).
  119  */
  120 #ifndef MAX_PAGEOUT_CLUSTER
  121 #define MAX_PAGEOUT_CLUSTER 16
  122 #endif
  123 
  124 #if !defined(SWB_NPAGES)
  125 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
  126 #endif
  127 
  128 /*
  129  * Piecemeal swap metadata structure.  Swap is stored in a radix tree.
  130  *
  131  * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix
  132  * is basically 8.  Assuming PAGE_SIZE == 4096, one tree level represents
  133  * 32K worth of data, two levels represent 256K, three levels represent
  134  * 2 MBytes.   This is acceptable.
  135  *
  136  * Overall memory utilization is about the same as the old swap structure.
  137  */
  138 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
  139 #define SWAP_META_PAGES         (SWB_NPAGES * 2)
  140 #define SWAP_META_MASK          (SWAP_META_PAGES - 1)
  141 
  142 struct swblock {
  143         struct swblock  *swb_hnext;
  144         vm_object_t     swb_object;
  145         vm_pindex_t     swb_index;
  146         int             swb_count;
  147         daddr_t         swb_pages[SWAP_META_PAGES];
  148 };
  149 
  150 static struct mtx sw_dev_mtx;
  151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
  152 static struct swdevt *swdevhd;  /* Allocate from here next */
  153 static int nswapdev;            /* Number of swap devices */
  154 int swap_pager_avail;
  155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
  156 
  157 static vm_ooffset_t swap_total;
  158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, "");
  159 static vm_ooffset_t swap_reserved;
  160 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, "");
  161 static int overcommit = 0;
  162 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, "");
  163 
  164 /* bits from overcommit */
  165 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
  166 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
  167 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
  168 
  169 int
  170 swap_reserve(vm_ooffset_t incr)
  171 {
  172 
  173         return (swap_reserve_by_uid(incr, curthread->td_ucred->cr_ruidinfo));
  174 }
  175 
  176 int
  177 swap_reserve_by_uid(vm_ooffset_t incr, struct uidinfo *uip)
  178 {
  179         vm_ooffset_t r, s;
  180         int res, error;
  181         static int curfail;
  182         static struct timeval lastfail;
  183 
  184         if (incr & PAGE_MASK)
  185                 panic("swap_reserve: & PAGE_MASK");
  186 
  187         res = 0;
  188         mtx_lock(&sw_dev_mtx);
  189         r = swap_reserved + incr;
  190         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
  191                 s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count;
  192                 s *= PAGE_SIZE;
  193         } else
  194                 s = 0;
  195         s += swap_total;
  196         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
  197             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
  198                 res = 1;
  199                 swap_reserved = r;
  200         }
  201         mtx_unlock(&sw_dev_mtx);
  202 
  203         if (res) {
  204                 PROC_LOCK(curproc);
  205                 UIDINFO_VMSIZE_LOCK(uip);
  206                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
  207                     uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) &&
  208                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
  209                         res = 0;
  210                 else
  211                         uip->ui_vmsize += incr;
  212                 UIDINFO_VMSIZE_UNLOCK(uip);
  213                 PROC_UNLOCK(curproc);
  214                 if (!res) {
  215                         mtx_lock(&sw_dev_mtx);
  216                         swap_reserved -= incr;
  217                         mtx_unlock(&sw_dev_mtx);
  218                 }
  219         }
  220         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
  221                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
  222                     curproc->p_pid, uip->ui_uid, incr);
  223         }
  224 
  225         return (res);
  226 }
  227 
  228 void
  229 swap_reserve_force(vm_ooffset_t incr)
  230 {
  231         struct uidinfo *uip;
  232 
  233         mtx_lock(&sw_dev_mtx);
  234         swap_reserved += incr;
  235         mtx_unlock(&sw_dev_mtx);
  236 
  237         uip = curthread->td_ucred->cr_ruidinfo;
  238         PROC_LOCK(curproc);
  239         UIDINFO_VMSIZE_LOCK(uip);
  240         uip->ui_vmsize += incr;
  241         UIDINFO_VMSIZE_UNLOCK(uip);
  242         PROC_UNLOCK(curproc);
  243 }
  244 
  245 void
  246 swap_release(vm_ooffset_t decr)
  247 {
  248         struct uidinfo *uip;
  249 
  250         PROC_LOCK(curproc);
  251         uip = curthread->td_ucred->cr_ruidinfo;
  252         swap_release_by_uid(decr, uip);
  253         PROC_UNLOCK(curproc);
  254 }
  255 
  256 void
  257 swap_release_by_uid(vm_ooffset_t decr, struct uidinfo *uip)
  258 {
  259 
  260         if (decr & PAGE_MASK)
  261                 panic("swap_release: & PAGE_MASK");
  262 
  263         mtx_lock(&sw_dev_mtx);
  264         if (swap_reserved < decr)
  265                 panic("swap_reserved < decr");
  266         swap_reserved -= decr;
  267         mtx_unlock(&sw_dev_mtx);
  268 
  269         UIDINFO_VMSIZE_LOCK(uip);
  270         if (uip->ui_vmsize < decr)
  271                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
  272         uip->ui_vmsize -= decr;
  273         UIDINFO_VMSIZE_UNLOCK(uip);
  274 }
  275 
  276 static void swapdev_strategy(struct buf *, struct swdevt *sw);
  277 
  278 #define SWM_FREE        0x02    /* free, period                 */
  279 #define SWM_POP         0x04    /* pop out                      */
  280 
  281 int swap_pager_full = 2;        /* swap space exhaustion (task killing) */
  282 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
  283 static int nsw_rcount;          /* free read buffers                    */
  284 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
  285 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
  286 static int nsw_wcount_async_max;/* assigned maximum                     */
  287 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
  288 
  289 static struct swblock **swhash;
  290 static int swhash_mask;
  291 static struct mtx swhash_mtx;
  292 
  293 static int swap_async_max = 4;  /* maximum in-progress async I/O's      */
  294 static struct sx sw_alloc_sx;
  295 
  296 
  297 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
  298         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
  299 
  300 /*
  301  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
  302  * of searching a named list by hashing it just a little.
  303  */
  304 
  305 #define NOBJLISTS               8
  306 
  307 #define NOBJLIST(handle)        \
  308         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
  309 
  310 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 
  311 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
  312 static uma_zone_t       swap_zone;
  313 static struct vm_object swap_zone_obj;
  314 
  315 /*
  316  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
  317  * calls hooked from other parts of the VM system and do not appear here.
  318  * (see vm/swap_pager.h).
  319  */
  320 static vm_object_t
  321                 swap_pager_alloc(void *handle, vm_ooffset_t size,
  322                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
  323 static void     swap_pager_dealloc(vm_object_t object);
  324 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
  325 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
  326 static boolean_t
  327                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
  328 static void     swap_pager_init(void);
  329 static void     swap_pager_unswapped(vm_page_t);
  330 static void     swap_pager_swapoff(struct swdevt *sp);
  331 
  332 struct pagerops swappagerops = {
  333         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
  334         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
  335         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
  336         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
  337         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
  338         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
  339         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
  340 };
  341 
  342 /*
  343  * dmmax is in page-sized chunks with the new swap system.  It was
  344  * dev-bsized chunks in the old.  dmmax is always a power of 2.
  345  *
  346  * swap_*() routines are externally accessible.  swp_*() routines are
  347  * internal.
  348  */
  349 static int dmmax;
  350 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
  351 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
  352 
  353 SYSCTL_INT(_vm, OID_AUTO, dmmax,
  354         CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
  355 
  356 static void     swp_sizecheck(void);
  357 static void     swp_pager_async_iodone(struct buf *bp);
  358 static int      swapongeom(struct thread *, struct vnode *);
  359 static int      swaponvp(struct thread *, struct vnode *, u_long);
  360 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
  361 
  362 /*
  363  * Swap bitmap functions
  364  */
  365 static void     swp_pager_freeswapspace(daddr_t blk, int npages);
  366 static daddr_t  swp_pager_getswapspace(int npages);
  367 
  368 /*
  369  * Metadata functions
  370  */
  371 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
  372 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
  373 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
  374 static void swp_pager_meta_free_all(vm_object_t);
  375 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
  376 
  377 /*
  378  * SWP_SIZECHECK() -    update swap_pager_full indication
  379  *      
  380  *      update the swap_pager_almost_full indication and warn when we are
  381  *      about to run out of swap space, using lowat/hiwat hysteresis.
  382  *
  383  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
  384  *
  385  *      No restrictions on call
  386  *      This routine may not block.
  387  *      This routine must be called at splvm()
  388  */
  389 static void
  390 swp_sizecheck(void)
  391 {
  392 
  393         if (swap_pager_avail < nswap_lowat) {
  394                 if (swap_pager_almost_full == 0) {
  395                         printf("swap_pager: out of swap space\n");
  396                         swap_pager_almost_full = 1;
  397                 }
  398         } else {
  399                 swap_pager_full = 0;
  400                 if (swap_pager_avail > nswap_hiwat)
  401                         swap_pager_almost_full = 0;
  402         }
  403 }
  404 
  405 /*
  406  * SWP_PAGER_HASH() -   hash swap meta data
  407  *
  408  *      This is an helper function which hashes the swapblk given
  409  *      the object and page index.  It returns a pointer to a pointer
  410  *      to the object, or a pointer to a NULL pointer if it could not
  411  *      find a swapblk.
  412  *
  413  *      This routine must be called at splvm().
  414  */
  415 static struct swblock **
  416 swp_pager_hash(vm_object_t object, vm_pindex_t index)
  417 {
  418         struct swblock **pswap;
  419         struct swblock *swap;
  420 
  421         index &= ~(vm_pindex_t)SWAP_META_MASK;
  422         pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
  423         while ((swap = *pswap) != NULL) {
  424                 if (swap->swb_object == object &&
  425                     swap->swb_index == index
  426                 ) {
  427                         break;
  428                 }
  429                 pswap = &swap->swb_hnext;
  430         }
  431         return (pswap);
  432 }
  433 
  434 /*
  435  * SWAP_PAGER_INIT() -  initialize the swap pager!
  436  *
  437  *      Expected to be started from system init.  NOTE:  This code is run 
  438  *      before much else so be careful what you depend on.  Most of the VM
  439  *      system has yet to be initialized at this point.
  440  */
  441 static void
  442 swap_pager_init(void)
  443 {
  444         /*
  445          * Initialize object lists
  446          */
  447         int i;
  448 
  449         for (i = 0; i < NOBJLISTS; ++i)
  450                 TAILQ_INIT(&swap_pager_object_list[i]);
  451         mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
  452         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
  453 
  454         /*
  455          * Device Stripe, in PAGE_SIZE'd blocks
  456          */
  457         dmmax = SWB_NPAGES * 2;
  458 }
  459 
  460 /*
  461  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
  462  *
  463  *      Expected to be started from pageout process once, prior to entering
  464  *      its main loop.
  465  */
  466 void
  467 swap_pager_swap_init(void)
  468 {
  469         int n, n2;
  470 
  471         /*
  472          * Number of in-transit swap bp operations.  Don't
  473          * exhaust the pbufs completely.  Make sure we
  474          * initialize workable values (0 will work for hysteresis
  475          * but it isn't very efficient).
  476          *
  477          * The nsw_cluster_max is constrained by the bp->b_pages[]
  478          * array (MAXPHYS/PAGE_SIZE) and our locally defined
  479          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
  480          * constrained by the swap device interleave stripe size.
  481          *
  482          * Currently we hardwire nsw_wcount_async to 4.  This limit is 
  483          * designed to prevent other I/O from having high latencies due to
  484          * our pageout I/O.  The value 4 works well for one or two active swap
  485          * devices but is probably a little low if you have more.  Even so,
  486          * a higher value would probably generate only a limited improvement
  487          * with three or four active swap devices since the system does not
  488          * typically have to pageout at extreme bandwidths.   We will want
  489          * at least 2 per swap devices, and 4 is a pretty good value if you
  490          * have one NFS swap device due to the command/ack latency over NFS.
  491          * So it all works out pretty well.
  492          */
  493         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
  494 
  495         mtx_lock(&pbuf_mtx);
  496         nsw_rcount = (nswbuf + 1) / 2;
  497         nsw_wcount_sync = (nswbuf + 3) / 4;
  498         nsw_wcount_async = 4;
  499         nsw_wcount_async_max = nsw_wcount_async;
  500         mtx_unlock(&pbuf_mtx);
  501 
  502         /*
  503          * Initialize our zone.  Right now I'm just guessing on the number
  504          * we need based on the number of pages in the system.  Each swblock
  505          * can hold 16 pages, so this is probably overkill.  This reservation
  506          * is typically limited to around 32MB by default.
  507          */
  508         n = cnt.v_page_count / 2;
  509         if (maxswzone && n > maxswzone / sizeof(struct swblock))
  510                 n = maxswzone / sizeof(struct swblock);
  511         n2 = n;
  512         swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
  513             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
  514         if (swap_zone == NULL)
  515                 panic("failed to create swap_zone.");
  516         do {
  517                 if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n))
  518                         break;
  519                 /*
  520                  * if the allocation failed, try a zone two thirds the
  521                  * size of the previous attempt.
  522                  */
  523                 n -= ((n + 2) / 3);
  524         } while (n > 0);
  525         if (n2 != n)
  526                 printf("Swap zone entries reduced from %d to %d.\n", n2, n);
  527         n2 = n;
  528 
  529         /*
  530          * Initialize our meta-data hash table.  The swapper does not need to
  531          * be quite as efficient as the VM system, so we do not use an 
  532          * oversized hash table.
  533          *
  534          *      n:              size of hash table, must be power of 2
  535          *      swhash_mask:    hash table index mask
  536          */
  537         for (n = 1; n < n2 / 8; n *= 2)
  538                 ;
  539         swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
  540         swhash_mask = n - 1;
  541         mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
  542 }
  543 
  544 /*
  545  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
  546  *                      its metadata structures.
  547  *
  548  *      This routine is called from the mmap and fork code to create a new
  549  *      OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
  550  *      and then converting it with swp_pager_meta_build().
  551  *
  552  *      This routine may block in vm_object_allocate() and create a named
  553  *      object lookup race, so we must interlock.   We must also run at
  554  *      splvm() for the object lookup to handle races with interrupts, but
  555  *      we do not have to maintain splvm() in between the lookup and the
  556  *      add because (I believe) it is not possible to attempt to create
  557  *      a new swap object w/handle when a default object with that handle
  558  *      already exists.
  559  *
  560  * MPSAFE
  561  */
  562 static vm_object_t
  563 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
  564     vm_ooffset_t offset, struct ucred *cred)
  565 {
  566         vm_object_t object;
  567         vm_pindex_t pindex;
  568         struct uidinfo *uip;
  569 
  570         uip = NULL;
  571         pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
  572         if (handle) {
  573                 mtx_lock(&Giant);
  574                 /*
  575                  * Reference existing named region or allocate new one.  There
  576                  * should not be a race here against swp_pager_meta_build()
  577                  * as called from vm_page_remove() in regards to the lookup
  578                  * of the handle.
  579                  */
  580                 sx_xlock(&sw_alloc_sx);
  581                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
  582                 if (object == NULL) {
  583                         if (cred != NULL) {
  584                                 uip = cred->cr_ruidinfo;
  585                                 if (!swap_reserve_by_uid(size, uip)) {
  586                                         sx_xunlock(&sw_alloc_sx);
  587                                         mtx_unlock(&Giant);
  588                                         return (NULL);
  589                                 }
  590                                 uihold(uip);
  591                         }
  592                         object = vm_object_allocate(OBJT_DEFAULT, pindex);
  593                         VM_OBJECT_LOCK(object);
  594                         object->handle = handle;
  595                         if (cred != NULL) {
  596                                 object->uip = uip;
  597                                 object->charge = size;
  598                         }
  599                         swp_pager_meta_build(object, 0, SWAPBLK_NONE);
  600                         VM_OBJECT_UNLOCK(object);
  601                 }
  602                 sx_xunlock(&sw_alloc_sx);
  603                 mtx_unlock(&Giant);
  604         } else {
  605                 if (cred != NULL) {
  606                         uip = cred->cr_ruidinfo;
  607                         if (!swap_reserve_by_uid(size, uip))
  608                                 return (NULL);
  609                         uihold(uip);
  610                 }
  611                 object = vm_object_allocate(OBJT_DEFAULT, pindex);
  612                 VM_OBJECT_LOCK(object);
  613                 if (cred != NULL) {
  614                         object->uip = uip;
  615                         object->charge = size;
  616                 }
  617                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
  618                 VM_OBJECT_UNLOCK(object);
  619         }
  620         return (object);
  621 }
  622 
  623 /*
  624  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
  625  *
  626  *      The swap backing for the object is destroyed.  The code is 
  627  *      designed such that we can reinstantiate it later, but this
  628  *      routine is typically called only when the entire object is
  629  *      about to be destroyed.
  630  *
  631  *      This routine may block, but no longer does. 
  632  *
  633  *      The object must be locked or unreferenceable.
  634  */
  635 static void
  636 swap_pager_dealloc(vm_object_t object)
  637 {
  638 
  639         /*
  640          * Remove from list right away so lookups will fail if we block for
  641          * pageout completion.
  642          */
  643         if (object->handle != NULL) {
  644                 mtx_lock(&sw_alloc_mtx);
  645                 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
  646                 mtx_unlock(&sw_alloc_mtx);
  647         }
  648 
  649         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  650         vm_object_pip_wait(object, "swpdea");
  651 
  652         /*
  653          * Free all remaining metadata.  We only bother to free it from 
  654          * the swap meta data.  We do not attempt to free swapblk's still
  655          * associated with vm_page_t's for this object.  We do not care
  656          * if paging is still in progress on some objects.
  657          */
  658         swp_pager_meta_free_all(object);
  659 }
  660 
  661 /************************************************************************
  662  *                      SWAP PAGER BITMAP ROUTINES                      *
  663  ************************************************************************/
  664 
  665 /*
  666  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
  667  *
  668  *      Allocate swap for the requested number of pages.  The starting
  669  *      swap block number (a page index) is returned or SWAPBLK_NONE
  670  *      if the allocation failed.
  671  *
  672  *      Also has the side effect of advising that somebody made a mistake
  673  *      when they configured swap and didn't configure enough.
  674  *
  675  *      Must be called at splvm() to avoid races with bitmap frees from
  676  *      vm_page_remove() aka swap_pager_page_removed().
  677  *
  678  *      This routine may not block
  679  *      This routine must be called at splvm().
  680  *
  681  *      We allocate in round-robin fashion from the configured devices.
  682  */
  683 static daddr_t
  684 swp_pager_getswapspace(int npages)
  685 {
  686         daddr_t blk;
  687         struct swdevt *sp;
  688         int i;
  689 
  690         blk = SWAPBLK_NONE;
  691         mtx_lock(&sw_dev_mtx);
  692         sp = swdevhd;
  693         for (i = 0; i < nswapdev; i++) {
  694                 if (sp == NULL)
  695                         sp = TAILQ_FIRST(&swtailq);
  696                 if (!(sp->sw_flags & SW_CLOSING)) {
  697                         blk = blist_alloc(sp->sw_blist, npages);
  698                         if (blk != SWAPBLK_NONE) {
  699                                 blk += sp->sw_first;
  700                                 sp->sw_used += npages;
  701                                 swap_pager_avail -= npages;
  702                                 swp_sizecheck();
  703                                 swdevhd = TAILQ_NEXT(sp, sw_list);
  704                                 goto done;
  705                         }
  706                 }
  707                 sp = TAILQ_NEXT(sp, sw_list);
  708         }
  709         if (swap_pager_full != 2) {
  710                 printf("swap_pager_getswapspace(%d): failed\n", npages);
  711                 swap_pager_full = 2;
  712                 swap_pager_almost_full = 1;
  713         }
  714         swdevhd = NULL;
  715 done:
  716         mtx_unlock(&sw_dev_mtx);
  717         return (blk);
  718 }
  719 
  720 static int
  721 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
  722 {
  723 
  724         return (blk >= sp->sw_first && blk < sp->sw_end);
  725 }
  726         
  727 static void
  728 swp_pager_strategy(struct buf *bp)
  729 {
  730         struct swdevt *sp;
  731 
  732         mtx_lock(&sw_dev_mtx);
  733         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  734                 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
  735                         mtx_unlock(&sw_dev_mtx);
  736                         sp->sw_strategy(bp, sp);
  737                         return;
  738                 }
  739         }
  740         panic("Swapdev not found");
  741 }
  742         
  743 
  744 /*
  745  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space 
  746  *
  747  *      This routine returns the specified swap blocks back to the bitmap.
  748  *
  749  *      Note:  This routine may not block (it could in the old swap code),
  750  *      and through the use of the new blist routines it does not block.
  751  *
  752  *      We must be called at splvm() to avoid races with bitmap frees from
  753  *      vm_page_remove() aka swap_pager_page_removed().
  754  *
  755  *      This routine may not block
  756  *      This routine must be called at splvm().
  757  */
  758 static void
  759 swp_pager_freeswapspace(daddr_t blk, int npages)
  760 {
  761         struct swdevt *sp;
  762 
  763         mtx_lock(&sw_dev_mtx);
  764         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  765                 if (blk >= sp->sw_first && blk < sp->sw_end) {
  766                         sp->sw_used -= npages;
  767                         /*
  768                          * If we are attempting to stop swapping on
  769                          * this device, we don't want to mark any
  770                          * blocks free lest they be reused.  
  771                          */
  772                         if ((sp->sw_flags & SW_CLOSING) == 0) {
  773                                 blist_free(sp->sw_blist, blk - sp->sw_first,
  774                                     npages);
  775                                 swap_pager_avail += npages;
  776                                 swp_sizecheck();
  777                         }
  778                         mtx_unlock(&sw_dev_mtx);
  779                         return;
  780                 }
  781         }
  782         panic("Swapdev not found");
  783 }
  784 
  785 /*
  786  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
  787  *                              range within an object.
  788  *
  789  *      This is a globally accessible routine.
  790  *
  791  *      This routine removes swapblk assignments from swap metadata.
  792  *
  793  *      The external callers of this routine typically have already destroyed 
  794  *      or renamed vm_page_t's associated with this range in the object so 
  795  *      we should be ok.
  796  *
  797  *      This routine may be called at any spl.  We up our spl to splvm temporarily
  798  *      in order to perform the metadata removal.
  799  */
  800 void
  801 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
  802 {
  803 
  804         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  805         swp_pager_meta_free(object, start, size);
  806 }
  807 
  808 /*
  809  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
  810  *
  811  *      Assigns swap blocks to the specified range within the object.  The 
  812  *      swap blocks are not zerod.  Any previous swap assignment is destroyed.
  813  *
  814  *      Returns 0 on success, -1 on failure.
  815  */
  816 int
  817 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
  818 {
  819         int n = 0;
  820         daddr_t blk = SWAPBLK_NONE;
  821         vm_pindex_t beg = start;        /* save start index */
  822 
  823         VM_OBJECT_LOCK(object);
  824         while (size) {
  825                 if (n == 0) {
  826                         n = BLIST_MAX_ALLOC;
  827                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
  828                                 n >>= 1;
  829                                 if (n == 0) {
  830                                         swp_pager_meta_free(object, beg, start - beg);
  831                                         VM_OBJECT_UNLOCK(object);
  832                                         return (-1);
  833                                 }
  834                         }
  835                 }
  836                 swp_pager_meta_build(object, start, blk);
  837                 --size;
  838                 ++start;
  839                 ++blk;
  840                 --n;
  841         }
  842         swp_pager_meta_free(object, start, n);
  843         VM_OBJECT_UNLOCK(object);
  844         return (0);
  845 }
  846 
  847 /*
  848  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
  849  *                      and destroy the source.
  850  *
  851  *      Copy any valid swapblks from the source to the destination.  In
  852  *      cases where both the source and destination have a valid swapblk,
  853  *      we keep the destination's.
  854  *
  855  *      This routine is allowed to block.  It may block allocating metadata
  856  *      indirectly through swp_pager_meta_build() or if paging is still in
  857  *      progress on the source. 
  858  *
  859  *      This routine can be called at any spl
  860  *
  861  *      XXX vm_page_collapse() kinda expects us not to block because we 
  862  *      supposedly do not need to allocate memory, but for the moment we
  863  *      *may* have to get a little memory from the zone allocator, but
  864  *      it is taken from the interrupt memory.  We should be ok. 
  865  *
  866  *      The source object contains no vm_page_t's (which is just as well)
  867  *
  868  *      The source object is of type OBJT_SWAP.
  869  *
  870  *      The source and destination objects must be locked or 
  871  *      inaccessible (XXX are they ?)
  872  */
  873 void
  874 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
  875     vm_pindex_t offset, int destroysource)
  876 {
  877         vm_pindex_t i;
  878 
  879         VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
  880         VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
  881 
  882         /*
  883          * If destroysource is set, we remove the source object from the 
  884          * swap_pager internal queue now. 
  885          */
  886         if (destroysource) {
  887                 if (srcobject->handle != NULL) {
  888                         mtx_lock(&sw_alloc_mtx);
  889                         TAILQ_REMOVE(
  890                             NOBJLIST(srcobject->handle),
  891                             srcobject,
  892                             pager_object_list
  893                         );
  894                         mtx_unlock(&sw_alloc_mtx);
  895                 }
  896         }
  897 
  898         /*
  899          * transfer source to destination.
  900          */
  901         for (i = 0; i < dstobject->size; ++i) {
  902                 daddr_t dstaddr;
  903 
  904                 /*
  905                  * Locate (without changing) the swapblk on the destination,
  906                  * unless it is invalid in which case free it silently, or
  907                  * if the destination is a resident page, in which case the
  908                  * source is thrown away.
  909                  */
  910                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
  911 
  912                 if (dstaddr == SWAPBLK_NONE) {
  913                         /*
  914                          * Destination has no swapblk and is not resident,
  915                          * copy source.
  916                          */
  917                         daddr_t srcaddr;
  918 
  919                         srcaddr = swp_pager_meta_ctl(
  920                             srcobject, 
  921                             i + offset,
  922                             SWM_POP
  923                         );
  924 
  925                         if (srcaddr != SWAPBLK_NONE) {
  926                                 /*
  927                                  * swp_pager_meta_build() can sleep.
  928                                  */
  929                                 vm_object_pip_add(srcobject, 1);
  930                                 VM_OBJECT_UNLOCK(srcobject);
  931                                 vm_object_pip_add(dstobject, 1);
  932                                 swp_pager_meta_build(dstobject, i, srcaddr);
  933                                 vm_object_pip_wakeup(dstobject);
  934                                 VM_OBJECT_LOCK(srcobject);
  935                                 vm_object_pip_wakeup(srcobject);
  936                         }
  937                 } else {
  938                         /*
  939                          * Destination has valid swapblk or it is represented
  940                          * by a resident page.  We destroy the sourceblock.
  941                          */
  942                         
  943                         swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
  944                 }
  945         }
  946 
  947         /*
  948          * Free left over swap blocks in source.
  949          *
  950          * We have to revert the type to OBJT_DEFAULT so we do not accidently
  951          * double-remove the object from the swap queues.
  952          */
  953         if (destroysource) {
  954                 swp_pager_meta_free_all(srcobject);
  955                 /*
  956                  * Reverting the type is not necessary, the caller is going
  957                  * to destroy srcobject directly, but I'm doing it here
  958                  * for consistency since we've removed the object from its
  959                  * queues.
  960                  */
  961                 srcobject->type = OBJT_DEFAULT;
  962         }
  963 }
  964 
  965 /*
  966  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
  967  *                              the requested page.
  968  *
  969  *      We determine whether good backing store exists for the requested
  970  *      page and return TRUE if it does, FALSE if it doesn't.
  971  *
  972  *      If TRUE, we also try to determine how much valid, contiguous backing
  973  *      store exists before and after the requested page within a reasonable
  974  *      distance.  We do not try to restrict it to the swap device stripe
  975  *      (that is handled in getpages/putpages).  It probably isn't worth
  976  *      doing here.
  977  */
  978 static boolean_t
  979 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
  980 {
  981         daddr_t blk0;
  982 
  983         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  984         /*
  985          * do we have good backing store at the requested index ?
  986          */
  987         blk0 = swp_pager_meta_ctl(object, pindex, 0);
  988 
  989         if (blk0 == SWAPBLK_NONE) {
  990                 if (before)
  991                         *before = 0;
  992                 if (after)
  993                         *after = 0;
  994                 return (FALSE);
  995         }
  996 
  997         /*
  998          * find backwards-looking contiguous good backing store
  999          */
 1000         if (before != NULL) {
 1001                 int i;
 1002 
 1003                 for (i = 1; i < (SWB_NPAGES/2); ++i) {
 1004                         daddr_t blk;
 1005 
 1006                         if (i > pindex)
 1007                                 break;
 1008                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
 1009                         if (blk != blk0 - i)
 1010                                 break;
 1011                 }
 1012                 *before = (i - 1);
 1013         }
 1014 
 1015         /*
 1016          * find forward-looking contiguous good backing store
 1017          */
 1018         if (after != NULL) {
 1019                 int i;
 1020 
 1021                 for (i = 1; i < (SWB_NPAGES/2); ++i) {
 1022                         daddr_t blk;
 1023 
 1024                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
 1025                         if (blk != blk0 + i)
 1026                                 break;
 1027                 }
 1028                 *after = (i - 1);
 1029         }
 1030         return (TRUE);
 1031 }
 1032 
 1033 /*
 1034  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
 1035  *
 1036  *      This removes any associated swap backing store, whether valid or
 1037  *      not, from the page.  
 1038  *
 1039  *      This routine is typically called when a page is made dirty, at
 1040  *      which point any associated swap can be freed.  MADV_FREE also
 1041  *      calls us in a special-case situation
 1042  *
 1043  *      NOTE!!!  If the page is clean and the swap was valid, the caller
 1044  *      should make the page dirty before calling this routine.  This routine
 1045  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
 1046  *      depends on it.
 1047  *
 1048  *      This routine may not block
 1049  *      This routine must be called at splvm()
 1050  */
 1051 static void
 1052 swap_pager_unswapped(vm_page_t m)
 1053 {
 1054 
 1055         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1056         swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
 1057 }
 1058 
 1059 /*
 1060  * SWAP_PAGER_GETPAGES() - bring pages in from swap
 1061  *
 1062  *      Attempt to retrieve (m, count) pages from backing store, but make
 1063  *      sure we retrieve at least m[reqpage].  We try to load in as large
 1064  *      a chunk surrounding m[reqpage] as is contiguous in swap and which
 1065  *      belongs to the same object.
 1066  *
 1067  *      The code is designed for asynchronous operation and 
 1068  *      immediate-notification of 'reqpage' but tends not to be
 1069  *      used that way.  Please do not optimize-out this algorithmic
 1070  *      feature, I intend to improve on it in the future.
 1071  *
 1072  *      The parent has a single vm_object_pip_add() reference prior to
 1073  *      calling us and we should return with the same.
 1074  *
 1075  *      The parent has BUSY'd the pages.  We should return with 'm'
 1076  *      left busy, but the others adjusted.
 1077  */
 1078 static int
 1079 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
 1080 {
 1081         struct buf *bp;
 1082         vm_page_t mreq;
 1083         int i;
 1084         int j;
 1085         daddr_t blk;
 1086 
 1087         mreq = m[reqpage];
 1088 
 1089         KASSERT(mreq->object == object,
 1090             ("swap_pager_getpages: object mismatch %p/%p",
 1091             object, mreq->object));
 1092 
 1093         /*
 1094          * Calculate range to retrieve.  The pages have already been assigned
 1095          * their swapblks.  We require a *contiguous* range but we know it to
 1096          * not span devices.   If we do not supply it, bad things
 1097          * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 
 1098          * loops are set up such that the case(s) are handled implicitly.
 1099          *
 1100          * The swp_*() calls must be made at splvm().  vm_page_free() does
 1101          * not need to be, but it will go a little faster if it is.
 1102          */
 1103         blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
 1104 
 1105         for (i = reqpage - 1; i >= 0; --i) {
 1106                 daddr_t iblk;
 1107 
 1108                 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
 1109                 if (blk != iblk + (reqpage - i))
 1110                         break;
 1111         }
 1112         ++i;
 1113 
 1114         for (j = reqpage + 1; j < count; ++j) {
 1115                 daddr_t jblk;
 1116 
 1117                 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
 1118                 if (blk != jblk - (j - reqpage))
 1119                         break;
 1120         }
 1121 
 1122         /*
 1123          * free pages outside our collection range.   Note: we never free
 1124          * mreq, it must remain busy throughout.
 1125          */
 1126         if (0 < i || j < count) {
 1127                 int k;
 1128 
 1129                 vm_page_lock_queues();
 1130                 for (k = 0; k < i; ++k)
 1131                         vm_page_free(m[k]);
 1132                 for (k = j; k < count; ++k)
 1133                         vm_page_free(m[k]);
 1134                 vm_page_unlock_queues();
 1135         }
 1136 
 1137         /*
 1138          * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq 
 1139          * still busy, but the others unbusied.
 1140          */
 1141         if (blk == SWAPBLK_NONE)
 1142                 return (VM_PAGER_FAIL);
 1143 
 1144         /*
 1145          * Getpbuf() can sleep.
 1146          */
 1147         VM_OBJECT_UNLOCK(object);
 1148         /*
 1149          * Get a swap buffer header to perform the IO
 1150          */
 1151         bp = getpbuf(&nsw_rcount);
 1152         bp->b_flags |= B_PAGING;
 1153 
 1154         /*
 1155          * map our page(s) into kva for input
 1156          */
 1157         pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
 1158 
 1159         bp->b_iocmd = BIO_READ;
 1160         bp->b_iodone = swp_pager_async_iodone;
 1161         bp->b_rcred = crhold(thread0.td_ucred);
 1162         bp->b_wcred = crhold(thread0.td_ucred);
 1163         bp->b_blkno = blk - (reqpage - i);
 1164         bp->b_bcount = PAGE_SIZE * (j - i);
 1165         bp->b_bufsize = PAGE_SIZE * (j - i);
 1166         bp->b_pager.pg_reqpage = reqpage - i;
 1167 
 1168         VM_OBJECT_LOCK(object);
 1169         {
 1170                 int k;
 1171 
 1172                 for (k = i; k < j; ++k) {
 1173                         bp->b_pages[k - i] = m[k];
 1174                         m[k]->oflags |= VPO_SWAPINPROG;
 1175                 }
 1176         }
 1177         bp->b_npages = j - i;
 1178 
 1179         PCPU_INC(cnt.v_swapin);
 1180         PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
 1181 
 1182         /*
 1183          * We still hold the lock on mreq, and our automatic completion routine
 1184          * does not remove it.
 1185          */
 1186         vm_object_pip_add(object, bp->b_npages);
 1187         VM_OBJECT_UNLOCK(object);
 1188 
 1189         /*
 1190          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
 1191          * this point because we automatically release it on completion.
 1192          * Instead, we look at the one page we are interested in which we
 1193          * still hold a lock on even through the I/O completion.
 1194          *
 1195          * The other pages in our m[] array are also released on completion,
 1196          * so we cannot assume they are valid anymore either.
 1197          *
 1198          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1199          */
 1200         BUF_KERNPROC(bp);
 1201         swp_pager_strategy(bp);
 1202 
 1203         /*
 1204          * wait for the page we want to complete.  VPO_SWAPINPROG is always
 1205          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
 1206          * is set in the meta-data.
 1207          */
 1208         VM_OBJECT_LOCK(object);
 1209         while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
 1210                 mreq->oflags |= VPO_WANTED;
 1211                 vm_page_lock_queues();
 1212                 vm_page_flag_set(mreq, PG_REFERENCED);
 1213                 vm_page_unlock_queues();
 1214                 PCPU_INC(cnt.v_intrans);
 1215                 if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) {
 1216                         printf(
 1217 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
 1218                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
 1219                 }
 1220         }
 1221 
 1222         /*
 1223          * mreq is left busied after completion, but all the other pages
 1224          * are freed.  If we had an unrecoverable read error the page will
 1225          * not be valid.
 1226          */
 1227         if (mreq->valid != VM_PAGE_BITS_ALL) {
 1228                 return (VM_PAGER_ERROR);
 1229         } else {
 1230                 return (VM_PAGER_OK);
 1231         }
 1232 
 1233         /*
 1234          * A final note: in a low swap situation, we cannot deallocate swap
 1235          * and mark a page dirty here because the caller is likely to mark
 1236          * the page clean when we return, causing the page to possibly revert 
 1237          * to all-zero's later.
 1238          */
 1239 }
 1240 
 1241 /*
 1242  *      swap_pager_putpages: 
 1243  *
 1244  *      Assign swap (if necessary) and initiate I/O on the specified pages.
 1245  *
 1246  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
 1247  *      are automatically converted to SWAP objects.
 1248  *
 1249  *      In a low memory situation we may block in VOP_STRATEGY(), but the new 
 1250  *      vm_page reservation system coupled with properly written VFS devices 
 1251  *      should ensure that no low-memory deadlock occurs.  This is an area
 1252  *      which needs work.
 1253  *
 1254  *      The parent has N vm_object_pip_add() references prior to
 1255  *      calling us and will remove references for rtvals[] that are
 1256  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
 1257  *      completion.
 1258  *
 1259  *      The parent has soft-busy'd the pages it passes us and will unbusy
 1260  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
 1261  *      We need to unbusy the rest on I/O completion.
 1262  */
 1263 void
 1264 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
 1265     boolean_t sync, int *rtvals)
 1266 {
 1267         int i;
 1268         int n = 0;
 1269 
 1270         if (count && m[0]->object != object) {
 1271                 panic("swap_pager_putpages: object mismatch %p/%p", 
 1272                     object, 
 1273                     m[0]->object
 1274                 );
 1275         }
 1276 
 1277         /*
 1278          * Step 1
 1279          *
 1280          * Turn object into OBJT_SWAP
 1281          * check for bogus sysops
 1282          * force sync if not pageout process
 1283          */
 1284         if (object->type != OBJT_SWAP)
 1285                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
 1286         VM_OBJECT_UNLOCK(object);
 1287 
 1288         if (curproc != pageproc)
 1289                 sync = TRUE;
 1290 
 1291         /*
 1292          * Step 2
 1293          *
 1294          * Update nsw parameters from swap_async_max sysctl values.  
 1295          * Do not let the sysop crash the machine with bogus numbers.
 1296          */
 1297         mtx_lock(&pbuf_mtx);
 1298         if (swap_async_max != nsw_wcount_async_max) {
 1299                 int n;
 1300 
 1301                 /*
 1302                  * limit range
 1303                  */
 1304                 if ((n = swap_async_max) > nswbuf / 2)
 1305                         n = nswbuf / 2;
 1306                 if (n < 1)
 1307                         n = 1;
 1308                 swap_async_max = n;
 1309 
 1310                 /*
 1311                  * Adjust difference ( if possible ).  If the current async
 1312                  * count is too low, we may not be able to make the adjustment
 1313                  * at this time.
 1314                  */
 1315                 n -= nsw_wcount_async_max;
 1316                 if (nsw_wcount_async + n >= 0) {
 1317                         nsw_wcount_async += n;
 1318                         nsw_wcount_async_max += n;
 1319                         wakeup(&nsw_wcount_async);
 1320                 }
 1321         }
 1322         mtx_unlock(&pbuf_mtx);
 1323 
 1324         /*
 1325          * Step 3
 1326          *
 1327          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
 1328          * The page is left dirty until the pageout operation completes
 1329          * successfully.
 1330          */
 1331         for (i = 0; i < count; i += n) {
 1332                 int j;
 1333                 struct buf *bp;
 1334                 daddr_t blk;
 1335 
 1336                 /*
 1337                  * Maximum I/O size is limited by a number of factors.
 1338                  */
 1339                 n = min(BLIST_MAX_ALLOC, count - i);
 1340                 n = min(n, nsw_cluster_max);
 1341 
 1342                 /*
 1343                  * Get biggest block of swap we can.  If we fail, fall
 1344                  * back and try to allocate a smaller block.  Don't go
 1345                  * overboard trying to allocate space if it would overly
 1346                  * fragment swap.
 1347                  */
 1348                 while (
 1349                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
 1350                     n > 4
 1351                 ) {
 1352                         n >>= 1;
 1353                 }
 1354                 if (blk == SWAPBLK_NONE) {
 1355                         for (j = 0; j < n; ++j)
 1356                                 rtvals[i+j] = VM_PAGER_FAIL;
 1357                         continue;
 1358                 }
 1359 
 1360                 /*
 1361                  * All I/O parameters have been satisfied, build the I/O
 1362                  * request and assign the swap space.
 1363                  */
 1364                 if (sync == TRUE) {
 1365                         bp = getpbuf(&nsw_wcount_sync);
 1366                 } else {
 1367                         bp = getpbuf(&nsw_wcount_async);
 1368                         bp->b_flags = B_ASYNC;
 1369                 }
 1370                 bp->b_flags |= B_PAGING;
 1371                 bp->b_iocmd = BIO_WRITE;
 1372 
 1373                 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
 1374 
 1375                 bp->b_rcred = crhold(thread0.td_ucred);
 1376                 bp->b_wcred = crhold(thread0.td_ucred);
 1377                 bp->b_bcount = PAGE_SIZE * n;
 1378                 bp->b_bufsize = PAGE_SIZE * n;
 1379                 bp->b_blkno = blk;
 1380 
 1381                 VM_OBJECT_LOCK(object);
 1382                 for (j = 0; j < n; ++j) {
 1383                         vm_page_t mreq = m[i+j];
 1384 
 1385                         swp_pager_meta_build(
 1386                             mreq->object, 
 1387                             mreq->pindex,
 1388                             blk + j
 1389                         );
 1390                         vm_page_dirty(mreq);
 1391                         rtvals[i+j] = VM_PAGER_OK;
 1392 
 1393                         mreq->oflags |= VPO_SWAPINPROG;
 1394                         bp->b_pages[j] = mreq;
 1395                 }
 1396                 VM_OBJECT_UNLOCK(object);
 1397                 bp->b_npages = n;
 1398                 /*
 1399                  * Must set dirty range for NFS to work.
 1400                  */
 1401                 bp->b_dirtyoff = 0;
 1402                 bp->b_dirtyend = bp->b_bcount;
 1403 
 1404                 PCPU_INC(cnt.v_swapout);
 1405                 PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
 1406 
 1407                 /*
 1408                  * asynchronous
 1409                  *
 1410                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1411                  */
 1412                 if (sync == FALSE) {
 1413                         bp->b_iodone = swp_pager_async_iodone;
 1414                         BUF_KERNPROC(bp);
 1415                         swp_pager_strategy(bp);
 1416 
 1417                         for (j = 0; j < n; ++j)
 1418                                 rtvals[i+j] = VM_PAGER_PEND;
 1419                         /* restart outter loop */
 1420                         continue;
 1421                 }
 1422 
 1423                 /*
 1424                  * synchronous
 1425                  *
 1426                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1427                  */
 1428                 bp->b_iodone = bdone;
 1429                 swp_pager_strategy(bp);
 1430 
 1431                 /*
 1432                  * Wait for the sync I/O to complete, then update rtvals.
 1433                  * We just set the rtvals[] to VM_PAGER_PEND so we can call
 1434                  * our async completion routine at the end, thus avoiding a
 1435                  * double-free.
 1436                  */
 1437                 bwait(bp, PVM, "swwrt");
 1438                 for (j = 0; j < n; ++j)
 1439                         rtvals[i+j] = VM_PAGER_PEND;
 1440                 /*
 1441                  * Now that we are through with the bp, we can call the
 1442                  * normal async completion, which frees everything up.
 1443                  */
 1444                 swp_pager_async_iodone(bp);
 1445         }
 1446         VM_OBJECT_LOCK(object);
 1447 }
 1448 
 1449 /*
 1450  *      swp_pager_async_iodone:
 1451  *
 1452  *      Completion routine for asynchronous reads and writes from/to swap.
 1453  *      Also called manually by synchronous code to finish up a bp.
 1454  *
 1455  *      For READ operations, the pages are PG_BUSY'd.  For WRITE operations, 
 1456  *      the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY 
 1457  *      unbusy all pages except the 'main' request page.  For WRITE 
 1458  *      operations, we vm_page_t->busy'd unbusy all pages ( we can do this 
 1459  *      because we marked them all VM_PAGER_PEND on return from putpages ).
 1460  *
 1461  *      This routine may not block.
 1462  */
 1463 static void
 1464 swp_pager_async_iodone(struct buf *bp)
 1465 {
 1466         int i;
 1467         vm_object_t object = NULL;
 1468 
 1469         /*
 1470          * report error
 1471          */
 1472         if (bp->b_ioflags & BIO_ERROR) {
 1473                 printf(
 1474                     "swap_pager: I/O error - %s failed; blkno %ld,"
 1475                         "size %ld, error %d\n",
 1476                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
 1477                     (long)bp->b_blkno, 
 1478                     (long)bp->b_bcount,
 1479                     bp->b_error
 1480                 );
 1481         }
 1482 
 1483         /*
 1484          * remove the mapping for kernel virtual
 1485          */
 1486         pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
 1487 
 1488         if (bp->b_npages) {
 1489                 object = bp->b_pages[0]->object;
 1490                 VM_OBJECT_LOCK(object);
 1491         }
 1492         vm_page_lock_queues();
 1493         /*
 1494          * cleanup pages.  If an error occurs writing to swap, we are in
 1495          * very serious trouble.  If it happens to be a disk error, though,
 1496          * we may be able to recover by reassigning the swap later on.  So
 1497          * in this case we remove the m->swapblk assignment for the page 
 1498          * but do not free it in the rlist.  The errornous block(s) are thus
 1499          * never reallocated as swap.  Redirty the page and continue.
 1500          */
 1501         for (i = 0; i < bp->b_npages; ++i) {
 1502                 vm_page_t m = bp->b_pages[i];
 1503 
 1504                 m->oflags &= ~VPO_SWAPINPROG;
 1505 
 1506                 if (bp->b_ioflags & BIO_ERROR) {
 1507                         /*
 1508                          * If an error occurs I'd love to throw the swapblk
 1509                          * away without freeing it back to swapspace, so it
 1510                          * can never be used again.  But I can't from an 
 1511                          * interrupt.
 1512                          */
 1513                         if (bp->b_iocmd == BIO_READ) {
 1514                                 /*
 1515                                  * When reading, reqpage needs to stay
 1516                                  * locked for the parent, but all other
 1517                                  * pages can be freed.  We still want to
 1518                                  * wakeup the parent waiting on the page,
 1519                                  * though.  ( also: pg_reqpage can be -1 and 
 1520                                  * not match anything ).
 1521                                  *
 1522                                  * We have to wake specifically requested pages
 1523                                  * up too because we cleared VPO_SWAPINPROG and
 1524                                  * someone may be waiting for that.
 1525                                  *
 1526                                  * NOTE: for reads, m->dirty will probably
 1527                                  * be overridden by the original caller of
 1528                                  * getpages so don't play cute tricks here.
 1529                                  */
 1530                                 m->valid = 0;
 1531                                 if (i != bp->b_pager.pg_reqpage)
 1532                                         vm_page_free(m);
 1533                                 else
 1534                                         vm_page_flash(m);
 1535                                 /*
 1536                                  * If i == bp->b_pager.pg_reqpage, do not wake 
 1537                                  * the page up.  The caller needs to.
 1538                                  */
 1539                         } else {
 1540                                 /*
 1541                                  * If a write error occurs, reactivate page
 1542                                  * so it doesn't clog the inactive list,
 1543                                  * then finish the I/O.
 1544                                  */
 1545                                 vm_page_dirty(m);
 1546                                 vm_page_activate(m);
 1547                                 vm_page_io_finish(m);
 1548                         }
 1549                 } else if (bp->b_iocmd == BIO_READ) {
 1550                         /*
 1551                          * NOTE: for reads, m->dirty will probably be 
 1552                          * overridden by the original caller of getpages so
 1553                          * we cannot set them in order to free the underlying
 1554                          * swap in a low-swap situation.  I don't think we'd
 1555                          * want to do that anyway, but it was an optimization
 1556                          * that existed in the old swapper for a time before
 1557                          * it got ripped out due to precisely this problem.
 1558                          *
 1559                          * If not the requested page then deactivate it.
 1560                          *
 1561                          * Note that the requested page, reqpage, is left
 1562                          * busied, but we still have to wake it up.  The
 1563                          * other pages are released (unbusied) by 
 1564                          * vm_page_wakeup().
 1565                          */
 1566                         KASSERT(!pmap_page_is_mapped(m),
 1567                             ("swp_pager_async_iodone: page %p is mapped", m));
 1568                         m->valid = VM_PAGE_BITS_ALL;
 1569                         KASSERT(m->dirty == 0,
 1570                             ("swp_pager_async_iodone: page %p is dirty", m));
 1571 
 1572                         /*
 1573                          * We have to wake specifically requested pages
 1574                          * up too because we cleared VPO_SWAPINPROG and
 1575                          * could be waiting for it in getpages.  However,
 1576                          * be sure to not unbusy getpages specifically
 1577                          * requested page - getpages expects it to be 
 1578                          * left busy.
 1579                          */
 1580                         if (i != bp->b_pager.pg_reqpage) {
 1581                                 vm_page_deactivate(m);
 1582                                 vm_page_wakeup(m);
 1583                         } else {
 1584                                 vm_page_flash(m);
 1585                         }
 1586                 } else {
 1587                         /*
 1588                          * For write success, clear the dirty
 1589                          * status, then finish the I/O ( which decrements the 
 1590                          * busy count and possibly wakes waiter's up ).
 1591                          */
 1592                         KASSERT((m->flags & PG_WRITEABLE) == 0,
 1593                             ("swp_pager_async_iodone: page %p is not write"
 1594                             " protected", m));
 1595                         vm_page_undirty(m);
 1596                         vm_page_io_finish(m);
 1597                         if (vm_page_count_severe())
 1598                                 vm_page_try_to_cache(m);
 1599                 }
 1600         }
 1601         vm_page_unlock_queues();
 1602 
 1603         /*
 1604          * adjust pip.  NOTE: the original parent may still have its own
 1605          * pip refs on the object.
 1606          */
 1607         if (object != NULL) {
 1608                 vm_object_pip_wakeupn(object, bp->b_npages);
 1609                 VM_OBJECT_UNLOCK(object);
 1610         }
 1611 
 1612         /* 
 1613          * swapdev_strategy() manually sets b_vp and b_bufobj before calling 
 1614          * bstrategy(). Set them back to NULL now we're done with it, or we'll
 1615          * trigger a KASSERT in relpbuf().
 1616          */
 1617         if (bp->b_vp) {
 1618                     bp->b_vp = NULL;
 1619                     bp->b_bufobj = NULL;
 1620         }
 1621         /*
 1622          * release the physical I/O buffer
 1623          */
 1624         relpbuf(
 1625             bp, 
 1626             ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 
 1627                 ((bp->b_flags & B_ASYNC) ? 
 1628                     &nsw_wcount_async : 
 1629                     &nsw_wcount_sync
 1630                 )
 1631             )
 1632         );
 1633 }
 1634 
 1635 /*
 1636  *      swap_pager_isswapped:
 1637  *
 1638  *      Return 1 if at least one page in the given object is paged
 1639  *      out to the given swap device.
 1640  *
 1641  *      This routine may not block.
 1642  */
 1643 int
 1644 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
 1645 {
 1646         daddr_t index = 0;
 1647         int bcount;
 1648         int i;
 1649 
 1650         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1651         if (object->type != OBJT_SWAP)
 1652                 return (0);
 1653 
 1654         mtx_lock(&swhash_mtx);
 1655         for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
 1656                 struct swblock *swap;
 1657 
 1658                 if ((swap = *swp_pager_hash(object, index)) != NULL) {
 1659                         for (i = 0; i < SWAP_META_PAGES; ++i) {
 1660                                 if (swp_pager_isondev(swap->swb_pages[i], sp)) {
 1661                                         mtx_unlock(&swhash_mtx);
 1662                                         return (1);
 1663                                 }
 1664                         }
 1665                 }
 1666                 index += SWAP_META_PAGES;
 1667                 if (index > 0x20000000)
 1668                         panic("swap_pager_isswapped: failed to locate all swap meta blocks");
 1669         }
 1670         mtx_unlock(&swhash_mtx);
 1671         return (0);
 1672 }
 1673 
 1674 /*
 1675  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
 1676  *
 1677  *      This routine dissociates the page at the given index within a
 1678  *      swap block from its backing store, paging it in if necessary.
 1679  *      If the page is paged in, it is placed in the inactive queue,
 1680  *      since it had its backing store ripped out from under it.
 1681  *      We also attempt to swap in all other pages in the swap block,
 1682  *      we only guarantee that the one at the specified index is
 1683  *      paged in.
 1684  *
 1685  *      XXX - The code to page the whole block in doesn't work, so we
 1686  *            revert to the one-by-one behavior for now.  Sigh.
 1687  */
 1688 static inline void
 1689 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
 1690 {
 1691         vm_page_t m;
 1692 
 1693         vm_object_pip_add(object, 1);
 1694         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
 1695         if (m->valid == VM_PAGE_BITS_ALL) {
 1696                 vm_object_pip_subtract(object, 1);
 1697                 vm_page_lock_queues();
 1698                 vm_page_activate(m);
 1699                 vm_page_dirty(m);
 1700                 vm_page_unlock_queues();
 1701                 vm_page_wakeup(m);
 1702                 vm_pager_page_unswapped(m);
 1703                 return;
 1704         }
 1705 
 1706         if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
 1707                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
 1708         vm_object_pip_subtract(object, 1);
 1709         vm_page_lock_queues();
 1710         vm_page_dirty(m);
 1711         vm_page_dontneed(m);
 1712         vm_page_unlock_queues();
 1713         vm_page_wakeup(m);
 1714         vm_pager_page_unswapped(m);
 1715 }
 1716 
 1717 /*
 1718  *      swap_pager_swapoff:
 1719  *
 1720  *      Page in all of the pages that have been paged out to the
 1721  *      given device.  The corresponding blocks in the bitmap must be
 1722  *      marked as allocated and the device must be flagged SW_CLOSING.
 1723  *      There may be no processes swapped out to the device.
 1724  *
 1725  *      This routine may block.
 1726  */
 1727 static void
 1728 swap_pager_swapoff(struct swdevt *sp)
 1729 {
 1730         struct swblock *swap;
 1731         int i, j, retries;
 1732 
 1733         GIANT_REQUIRED;
 1734 
 1735         retries = 0;
 1736 full_rescan:
 1737         mtx_lock(&swhash_mtx);
 1738         for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
 1739 restart:
 1740                 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
 1741                         vm_object_t object = swap->swb_object;
 1742                         vm_pindex_t pindex = swap->swb_index;
 1743                         for (j = 0; j < SWAP_META_PAGES; ++j) {
 1744                                 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
 1745                                         /* avoid deadlock */
 1746                                         if (!VM_OBJECT_TRYLOCK(object)) {
 1747                                                 break;
 1748                                         } else {
 1749                                                 mtx_unlock(&swhash_mtx);
 1750                                                 swp_pager_force_pagein(object,
 1751                                                     pindex + j);
 1752                                                 VM_OBJECT_UNLOCK(object);
 1753                                                 mtx_lock(&swhash_mtx);
 1754                                                 goto restart;
 1755                                         }
 1756                                 }
 1757                         }
 1758                 }
 1759         }
 1760         mtx_unlock(&swhash_mtx);
 1761         if (sp->sw_used) {
 1762                 /*
 1763                  * Objects may be locked or paging to the device being
 1764                  * removed, so we will miss their pages and need to
 1765                  * make another pass.  We have marked this device as
 1766                  * SW_CLOSING, so the activity should finish soon.
 1767                  */
 1768                 retries++;
 1769                 if (retries > 100) {
 1770                         panic("swapoff: failed to locate %d swap blocks",
 1771                             sp->sw_used);
 1772                 }
 1773                 pause("swpoff", hz / 20);
 1774                 goto full_rescan;
 1775         }
 1776 }
 1777 
 1778 /************************************************************************
 1779  *                              SWAP META DATA                          *
 1780  ************************************************************************
 1781  *
 1782  *      These routines manipulate the swap metadata stored in the 
 1783  *      OBJT_SWAP object.  All swp_*() routines must be called at
 1784  *      splvm() because swap can be freed up by the low level vm_page
 1785  *      code which might be called from interrupts beyond what splbio() covers.
 1786  *
 1787  *      Swap metadata is implemented with a global hash and not directly
 1788  *      linked into the object.  Instead the object simply contains
 1789  *      appropriate tracking counters.
 1790  */
 1791 
 1792 /*
 1793  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
 1794  *
 1795  *      We first convert the object to a swap object if it is a default
 1796  *      object.
 1797  *
 1798  *      The specified swapblk is added to the object's swap metadata.  If
 1799  *      the swapblk is not valid, it is freed instead.  Any previously
 1800  *      assigned swapblk is freed.
 1801  *
 1802  *      This routine must be called at splvm(), except when used to convert
 1803  *      an OBJT_DEFAULT object into an OBJT_SWAP object.
 1804  */
 1805 static void
 1806 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
 1807 {
 1808         struct swblock *swap;
 1809         struct swblock **pswap;
 1810         int idx;
 1811 
 1812         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1813         /*
 1814          * Convert default object to swap object if necessary
 1815          */
 1816         if (object->type != OBJT_SWAP) {
 1817                 object->type = OBJT_SWAP;
 1818                 object->un_pager.swp.swp_bcount = 0;
 1819 
 1820                 if (object->handle != NULL) {
 1821                         mtx_lock(&sw_alloc_mtx);
 1822                         TAILQ_INSERT_TAIL(
 1823                             NOBJLIST(object->handle),
 1824                             object, 
 1825                             pager_object_list
 1826                         );
 1827                         mtx_unlock(&sw_alloc_mtx);
 1828                 }
 1829         }
 1830         
 1831         /*
 1832          * Locate hash entry.  If not found create, but if we aren't adding
 1833          * anything just return.  If we run out of space in the map we wait
 1834          * and, since the hash table may have changed, retry.
 1835          */
 1836 retry:
 1837         mtx_lock(&swhash_mtx);
 1838         pswap = swp_pager_hash(object, pindex);
 1839 
 1840         if ((swap = *pswap) == NULL) {
 1841                 int i;
 1842 
 1843                 if (swapblk == SWAPBLK_NONE)
 1844                         goto done;
 1845 
 1846                 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
 1847                 if (swap == NULL) {
 1848                         mtx_unlock(&swhash_mtx);
 1849                         VM_OBJECT_UNLOCK(object);
 1850                         if (uma_zone_exhausted(swap_zone)) {
 1851                                 printf("swap zone exhausted, increase kern.maxswzone\n");
 1852                                 vm_pageout_oom(VM_OOM_SWAPZ);
 1853                                 pause("swzonex", 10);
 1854                         } else
 1855                                 VM_WAIT;
 1856                         VM_OBJECT_LOCK(object);
 1857                         goto retry;
 1858                 }
 1859 
 1860                 swap->swb_hnext = NULL;
 1861                 swap->swb_object = object;
 1862                 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
 1863                 swap->swb_count = 0;
 1864 
 1865                 ++object->un_pager.swp.swp_bcount;
 1866 
 1867                 for (i = 0; i < SWAP_META_PAGES; ++i)
 1868                         swap->swb_pages[i] = SWAPBLK_NONE;
 1869         }
 1870 
 1871         /*
 1872          * Delete prior contents of metadata
 1873          */
 1874         idx = pindex & SWAP_META_MASK;
 1875 
 1876         if (swap->swb_pages[idx] != SWAPBLK_NONE) {
 1877                 swp_pager_freeswapspace(swap->swb_pages[idx], 1);
 1878                 --swap->swb_count;
 1879         }
 1880 
 1881         /*
 1882          * Enter block into metadata
 1883          */
 1884         swap->swb_pages[idx] = swapblk;
 1885         if (swapblk != SWAPBLK_NONE)
 1886                 ++swap->swb_count;
 1887 done:
 1888         mtx_unlock(&swhash_mtx);
 1889 }
 1890 
 1891 /*
 1892  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
 1893  *
 1894  *      The requested range of blocks is freed, with any associated swap 
 1895  *      returned to the swap bitmap.
 1896  *
 1897  *      This routine will free swap metadata structures as they are cleaned 
 1898  *      out.  This routine does *NOT* operate on swap metadata associated
 1899  *      with resident pages.
 1900  *
 1901  *      This routine must be called at splvm()
 1902  */
 1903 static void
 1904 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
 1905 {
 1906 
 1907         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1908         if (object->type != OBJT_SWAP)
 1909                 return;
 1910 
 1911         while (count > 0) {
 1912                 struct swblock **pswap;
 1913                 struct swblock *swap;
 1914 
 1915                 mtx_lock(&swhash_mtx);
 1916                 pswap = swp_pager_hash(object, index);
 1917 
 1918                 if ((swap = *pswap) != NULL) {
 1919                         daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
 1920 
 1921                         if (v != SWAPBLK_NONE) {
 1922                                 swp_pager_freeswapspace(v, 1);
 1923                                 swap->swb_pages[index & SWAP_META_MASK] =
 1924                                         SWAPBLK_NONE;
 1925                                 if (--swap->swb_count == 0) {
 1926                                         *pswap = swap->swb_hnext;
 1927                                         uma_zfree(swap_zone, swap);
 1928                                         --object->un_pager.swp.swp_bcount;
 1929                                 }
 1930                         }
 1931                         --count;
 1932                         ++index;
 1933                 } else {
 1934                         int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
 1935                         count -= n;
 1936                         index += n;
 1937                 }
 1938                 mtx_unlock(&swhash_mtx);
 1939         }
 1940 }
 1941 
 1942 /*
 1943  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
 1944  *
 1945  *      This routine locates and destroys all swap metadata associated with
 1946  *      an object.
 1947  *
 1948  *      This routine must be called at splvm()
 1949  */
 1950 static void
 1951 swp_pager_meta_free_all(vm_object_t object)
 1952 {
 1953         daddr_t index = 0;
 1954 
 1955         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1956         if (object->type != OBJT_SWAP)
 1957                 return;
 1958 
 1959         while (object->un_pager.swp.swp_bcount) {
 1960                 struct swblock **pswap;
 1961                 struct swblock *swap;
 1962 
 1963                 mtx_lock(&swhash_mtx);
 1964                 pswap = swp_pager_hash(object, index);
 1965                 if ((swap = *pswap) != NULL) {
 1966                         int i;
 1967 
 1968                         for (i = 0; i < SWAP_META_PAGES; ++i) {
 1969                                 daddr_t v = swap->swb_pages[i];
 1970                                 if (v != SWAPBLK_NONE) {
 1971                                         --swap->swb_count;
 1972                                         swp_pager_freeswapspace(v, 1);
 1973                                 }
 1974                         }
 1975                         if (swap->swb_count != 0)
 1976                                 panic("swap_pager_meta_free_all: swb_count != 0");
 1977                         *pswap = swap->swb_hnext;
 1978                         uma_zfree(swap_zone, swap);
 1979                         --object->un_pager.swp.swp_bcount;
 1980                 }
 1981                 mtx_unlock(&swhash_mtx);
 1982                 index += SWAP_META_PAGES;
 1983                 if (index > 0x20000000)
 1984                         panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
 1985         }
 1986 }
 1987 
 1988 /*
 1989  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
 1990  *
 1991  *      This routine is capable of looking up, popping, or freeing
 1992  *      swapblk assignments in the swap meta data or in the vm_page_t.
 1993  *      The routine typically returns the swapblk being looked-up, or popped,
 1994  *      or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
 1995  *      was invalid.  This routine will automatically free any invalid 
 1996  *      meta-data swapblks.
 1997  *
 1998  *      It is not possible to store invalid swapblks in the swap meta data
 1999  *      (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
 2000  *
 2001  *      When acting on a busy resident page and paging is in progress, we 
 2002  *      have to wait until paging is complete but otherwise can act on the 
 2003  *      busy page.
 2004  *
 2005  *      This routine must be called at splvm().
 2006  *
 2007  *      SWM_FREE        remove and free swap block from metadata
 2008  *      SWM_POP         remove from meta data but do not free.. pop it out
 2009  */
 2010 static daddr_t
 2011 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
 2012 {
 2013         struct swblock **pswap;
 2014         struct swblock *swap;
 2015         daddr_t r1;
 2016         int idx;
 2017 
 2018         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2019         /*
 2020          * The meta data only exists of the object is OBJT_SWAP 
 2021          * and even then might not be allocated yet.
 2022          */
 2023         if (object->type != OBJT_SWAP)
 2024                 return (SWAPBLK_NONE);
 2025 
 2026         r1 = SWAPBLK_NONE;
 2027         mtx_lock(&swhash_mtx);
 2028         pswap = swp_pager_hash(object, pindex);
 2029 
 2030         if ((swap = *pswap) != NULL) {
 2031                 idx = pindex & SWAP_META_MASK;
 2032                 r1 = swap->swb_pages[idx];
 2033 
 2034                 if (r1 != SWAPBLK_NONE) {
 2035                         if (flags & SWM_FREE) {
 2036                                 swp_pager_freeswapspace(r1, 1);
 2037                                 r1 = SWAPBLK_NONE;
 2038                         }
 2039                         if (flags & (SWM_FREE|SWM_POP)) {
 2040                                 swap->swb_pages[idx] = SWAPBLK_NONE;
 2041                                 if (--swap->swb_count == 0) {
 2042                                         *pswap = swap->swb_hnext;
 2043                                         uma_zfree(swap_zone, swap);
 2044                                         --object->un_pager.swp.swp_bcount;
 2045                                 }
 2046                         } 
 2047                 }
 2048         }
 2049         mtx_unlock(&swhash_mtx);
 2050         return (r1);
 2051 }
 2052 
 2053 /*
 2054  * System call swapon(name) enables swapping on device name,
 2055  * which must be in the swdevsw.  Return EBUSY
 2056  * if already swapping on this device.
 2057  */
 2058 #ifndef _SYS_SYSPROTO_H_
 2059 struct swapon_args {
 2060         char *name;
 2061 };
 2062 #endif
 2063 
 2064 /* 
 2065  * MPSAFE
 2066  */
 2067 /* ARGSUSED */
 2068 int
 2069 swapon(struct thread *td, struct swapon_args *uap)
 2070 {
 2071         struct vattr attr;
 2072         struct vnode *vp;
 2073         struct nameidata nd;
 2074         int error;
 2075 
 2076         error = priv_check(td, PRIV_SWAPON);
 2077         if (error)
 2078                 return (error);
 2079 
 2080         mtx_lock(&Giant);
 2081         while (swdev_syscall_active)
 2082             tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
 2083         swdev_syscall_active = 1;
 2084 
 2085         /*
 2086          * Swap metadata may not fit in the KVM if we have physical
 2087          * memory of >1GB.
 2088          */
 2089         if (swap_zone == NULL) {
 2090                 error = ENOMEM;
 2091                 goto done;
 2092         }
 2093 
 2094         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
 2095             uap->name, td);
 2096         error = namei(&nd);
 2097         if (error)
 2098                 goto done;
 2099 
 2100         NDFREE(&nd, NDF_ONLY_PNBUF);
 2101         vp = nd.ni_vp;
 2102 
 2103         if (vn_isdisk(vp, &error)) {
 2104                 error = swapongeom(td, vp);
 2105         } else if (vp->v_type == VREG &&
 2106             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 2107             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
 2108                 /*
 2109                  * Allow direct swapping to NFS regular files in the same
 2110                  * way that nfs_mountroot() sets up diskless swapping.
 2111                  */
 2112                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
 2113         }
 2114 
 2115         if (error)
 2116                 vrele(vp);
 2117 done:
 2118         swdev_syscall_active = 0;
 2119         wakeup_one(&swdev_syscall_active);
 2120         mtx_unlock(&Giant);
 2121         return (error);
 2122 }
 2123 
 2124 static void
 2125 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev)
 2126 {
 2127         struct swdevt *sp, *tsp;
 2128         swblk_t dvbase;
 2129         u_long mblocks;
 2130 
 2131         /*
 2132          * If we go beyond this, we get overflows in the radix
 2133          * tree bitmap code.
 2134          */
 2135         mblocks = 0x40000000 / BLIST_META_RADIX;
 2136         if (nblks > mblocks) {
 2137                 printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n",
 2138                         mblocks);
 2139                 nblks = mblocks;
 2140         }
 2141         /*
 2142          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
 2143          * First chop nblks off to page-align it, then convert.
 2144          * 
 2145          * sw->sw_nblks is in page-sized chunks now too.
 2146          */
 2147         nblks &= ~(ctodb(1) - 1);
 2148         nblks = dbtoc(nblks);
 2149 
 2150         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
 2151         sp->sw_vp = vp;
 2152         sp->sw_id = id;
 2153         sp->sw_dev = dev;
 2154         sp->sw_flags = 0;
 2155         sp->sw_nblks = nblks;
 2156         sp->sw_used = 0;
 2157         sp->sw_strategy = strategy;
 2158         sp->sw_close = close;
 2159 
 2160         sp->sw_blist = blist_create(nblks, M_WAITOK);
 2161         /*
 2162          * Do not free the first two block in order to avoid overwriting
 2163          * any bsd label at the front of the partition
 2164          */
 2165         blist_free(sp->sw_blist, 2, nblks - 2);
 2166 
 2167         dvbase = 0;
 2168         mtx_lock(&sw_dev_mtx);
 2169         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
 2170                 if (tsp->sw_end >= dvbase) {
 2171                         /*
 2172                          * We put one uncovered page between the devices
 2173                          * in order to definitively prevent any cross-device
 2174                          * I/O requests
 2175                          */
 2176                         dvbase = tsp->sw_end + 1;
 2177                 }
 2178         }
 2179         sp->sw_first = dvbase;
 2180         sp->sw_end = dvbase + nblks;
 2181         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
 2182         nswapdev++;
 2183         swap_pager_avail += nblks;
 2184         swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
 2185         swp_sizecheck();
 2186         mtx_unlock(&sw_dev_mtx);
 2187 }
 2188 
 2189 /*
 2190  * SYSCALL: swapoff(devname)
 2191  *
 2192  * Disable swapping on the given device.
 2193  *
 2194  * XXX: Badly designed system call: it should use a device index
 2195  * rather than filename as specification.  We keep sw_vp around
 2196  * only to make this work.
 2197  */
 2198 #ifndef _SYS_SYSPROTO_H_
 2199 struct swapoff_args {
 2200         char *name;
 2201 };
 2202 #endif
 2203 
 2204 /*
 2205  * MPSAFE
 2206  */
 2207 /* ARGSUSED */
 2208 int
 2209 swapoff(struct thread *td, struct swapoff_args *uap)
 2210 {
 2211         struct vnode *vp;
 2212         struct nameidata nd;
 2213         struct swdevt *sp;
 2214         int error;
 2215 
 2216         error = priv_check(td, PRIV_SWAPOFF);
 2217         if (error)
 2218                 return (error);
 2219 
 2220         mtx_lock(&Giant);
 2221         while (swdev_syscall_active)
 2222             tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
 2223         swdev_syscall_active = 1;
 2224 
 2225         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
 2226             td);
 2227         error = namei(&nd);
 2228         if (error)
 2229                 goto done;
 2230         NDFREE(&nd, NDF_ONLY_PNBUF);
 2231         vp = nd.ni_vp;
 2232 
 2233         mtx_lock(&sw_dev_mtx);
 2234         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2235                 if (sp->sw_vp == vp)
 2236                         break;
 2237         }
 2238         mtx_unlock(&sw_dev_mtx);
 2239         if (sp == NULL) {
 2240                 error = EINVAL;
 2241                 goto done;
 2242         }
 2243         error = swapoff_one(sp, td->td_ucred);
 2244 done:
 2245         swdev_syscall_active = 0;
 2246         wakeup_one(&swdev_syscall_active);
 2247         mtx_unlock(&Giant);
 2248         return (error);
 2249 }
 2250 
 2251 static int
 2252 swapoff_one(struct swdevt *sp, struct ucred *cred)
 2253 {
 2254         u_long nblks, dvbase;
 2255 #ifdef MAC
 2256         int error;
 2257 #endif
 2258 
 2259         mtx_assert(&Giant, MA_OWNED);
 2260 #ifdef MAC
 2261         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
 2262         error = mac_system_check_swapoff(cred, sp->sw_vp);
 2263         (void) VOP_UNLOCK(sp->sw_vp, 0);
 2264         if (error != 0)
 2265                 return (error);
 2266 #endif
 2267         nblks = sp->sw_nblks;
 2268 
 2269         /*
 2270          * We can turn off this swap device safely only if the
 2271          * available virtual memory in the system will fit the amount
 2272          * of data we will have to page back in, plus an epsilon so
 2273          * the system doesn't become critically low on swap space.
 2274          */
 2275         if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
 2276             nblks + nswap_lowat) {
 2277                 return (ENOMEM);
 2278         }
 2279 
 2280         /*
 2281          * Prevent further allocations on this device.
 2282          */
 2283         mtx_lock(&sw_dev_mtx);
 2284         sp->sw_flags |= SW_CLOSING;
 2285         for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
 2286                 swap_pager_avail -= blist_fill(sp->sw_blist,
 2287                      dvbase, dmmax);
 2288         }
 2289         swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
 2290         mtx_unlock(&sw_dev_mtx);
 2291 
 2292         /*
 2293          * Page in the contents of the device and close it.
 2294          */
 2295         swap_pager_swapoff(sp);
 2296 
 2297         sp->sw_close(curthread, sp);
 2298         sp->sw_id = NULL;
 2299         mtx_lock(&sw_dev_mtx);
 2300         TAILQ_REMOVE(&swtailq, sp, sw_list);
 2301         nswapdev--;
 2302         if (nswapdev == 0) {
 2303                 swap_pager_full = 2;
 2304                 swap_pager_almost_full = 1;
 2305         }
 2306         if (swdevhd == sp)
 2307                 swdevhd = NULL;
 2308         mtx_unlock(&sw_dev_mtx);
 2309         blist_destroy(sp->sw_blist);
 2310         free(sp, M_VMPGDATA);
 2311         return (0);
 2312 }
 2313 
 2314 void
 2315 swapoff_all(void)
 2316 {
 2317         struct swdevt *sp, *spt;
 2318         const char *devname;
 2319         int error;
 2320  
 2321         mtx_lock(&Giant);
 2322         while (swdev_syscall_active)
 2323                 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
 2324         swdev_syscall_active = 1;
 2325  
 2326         mtx_lock(&sw_dev_mtx);
 2327         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
 2328                 mtx_unlock(&sw_dev_mtx);
 2329                 if (vn_isdisk(sp->sw_vp, NULL))
 2330                         devname = sp->sw_vp->v_rdev->si_name;
 2331                 else
 2332                         devname = "[file]";
 2333                 error = swapoff_one(sp, thread0.td_ucred);
 2334                 if (error != 0) {
 2335                         printf("Cannot remove swap device %s (error=%d), "
 2336                             "skipping.\n", devname, error);
 2337                 } else if (bootverbose) {
 2338                         printf("Swap device %s removed.\n", devname);
 2339                 }
 2340                 mtx_lock(&sw_dev_mtx);
 2341         }
 2342         mtx_unlock(&sw_dev_mtx);
 2343  
 2344         swdev_syscall_active = 0;
 2345         wakeup_one(&swdev_syscall_active);
 2346         mtx_unlock(&Giant);
 2347 }
 2348 
 2349 void
 2350 swap_pager_status(int *total, int *used)
 2351 {
 2352         struct swdevt *sp;
 2353 
 2354         *total = 0;
 2355         *used = 0;
 2356         mtx_lock(&sw_dev_mtx);
 2357         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2358                 *total += sp->sw_nblks;
 2359                 *used += sp->sw_used;
 2360         }
 2361         mtx_unlock(&sw_dev_mtx);
 2362 }
 2363 
 2364 static int
 2365 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
 2366 {
 2367         int     *name = (int *)arg1;
 2368         int     error, n;
 2369         struct xswdev xs;
 2370         struct swdevt *sp;
 2371 
 2372         if (arg2 != 1) /* name length */
 2373                 return (EINVAL);
 2374 
 2375         n = 0;
 2376         mtx_lock(&sw_dev_mtx);
 2377         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2378                 if (n == *name) {
 2379                         mtx_unlock(&sw_dev_mtx);
 2380                         xs.xsw_version = XSWDEV_VERSION;
 2381                         xs.xsw_dev = sp->sw_dev;
 2382                         xs.xsw_flags = sp->sw_flags;
 2383                         xs.xsw_nblks = sp->sw_nblks;
 2384                         xs.xsw_used = sp->sw_used;
 2385 
 2386                         error = SYSCTL_OUT(req, &xs, sizeof(xs));
 2387                         return (error);
 2388                 }
 2389                 n++;
 2390         }
 2391         mtx_unlock(&sw_dev_mtx);
 2392         return (ENOENT);
 2393 }
 2394 
 2395 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
 2396     "Number of swap devices");
 2397 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
 2398     "Swap statistics by device");
 2399 
 2400 /*
 2401  * vmspace_swap_count() - count the approximate swap usage in pages for a
 2402  *                        vmspace.
 2403  *
 2404  *      The map must be locked.
 2405  *
 2406  *      Swap usage is determined by taking the proportional swap used by
 2407  *      VM objects backing the VM map.  To make up for fractional losses,
 2408  *      if the VM object has any swap use at all the associated map entries
 2409  *      count for at least 1 swap page.
 2410  */
 2411 int
 2412 vmspace_swap_count(struct vmspace *vmspace)
 2413 {
 2414         vm_map_t map = &vmspace->vm_map;
 2415         vm_map_entry_t cur;
 2416         int count = 0;
 2417 
 2418         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
 2419                 vm_object_t object;
 2420 
 2421                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
 2422                     (object = cur->object.vm_object) != NULL) {
 2423                         VM_OBJECT_LOCK(object);
 2424                         if (object->type == OBJT_SWAP &&
 2425                             object->un_pager.swp.swp_bcount != 0) {
 2426                                 int n = (cur->end - cur->start) / PAGE_SIZE;
 2427 
 2428                                 count += object->un_pager.swp.swp_bcount *
 2429                                     SWAP_META_PAGES * n / object->size + 1;
 2430                         }
 2431                         VM_OBJECT_UNLOCK(object);
 2432                 }
 2433         }
 2434         return (count);
 2435 }
 2436 
 2437 /*
 2438  * GEOM backend
 2439  *
 2440  * Swapping onto disk devices.
 2441  *
 2442  */
 2443 
 2444 static g_orphan_t swapgeom_orphan;
 2445 
 2446 static struct g_class g_swap_class = {
 2447         .name = "SWAP",
 2448         .version = G_VERSION,
 2449         .orphan = swapgeom_orphan,
 2450 };
 2451 
 2452 DECLARE_GEOM_CLASS(g_swap_class, g_class);
 2453 
 2454 
 2455 static void
 2456 swapgeom_done(struct bio *bp2)
 2457 {
 2458         struct buf *bp;
 2459 
 2460         bp = bp2->bio_caller2;
 2461         bp->b_ioflags = bp2->bio_flags;
 2462         if (bp2->bio_error)
 2463                 bp->b_ioflags |= BIO_ERROR;
 2464         bp->b_resid = bp->b_bcount - bp2->bio_completed;
 2465         bp->b_error = bp2->bio_error;
 2466         bufdone(bp);
 2467         g_destroy_bio(bp2);
 2468 }
 2469 
 2470 static void
 2471 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
 2472 {
 2473         struct bio *bio;
 2474         struct g_consumer *cp;
 2475 
 2476         cp = sp->sw_id;
 2477         if (cp == NULL) {
 2478                 bp->b_error = ENXIO;
 2479                 bp->b_ioflags |= BIO_ERROR;
 2480                 bufdone(bp);
 2481                 return;
 2482         }
 2483         if (bp->b_iocmd == BIO_WRITE)
 2484                 bio = g_new_bio();
 2485         else
 2486                 bio = g_alloc_bio();
 2487         if (bio == NULL) {
 2488                 bp->b_error = ENOMEM;
 2489                 bp->b_ioflags |= BIO_ERROR;
 2490                 bufdone(bp);
 2491                 return;
 2492         }
 2493 
 2494         bio->bio_caller2 = bp;
 2495         bio->bio_cmd = bp->b_iocmd;
 2496         bio->bio_data = bp->b_data;
 2497         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
 2498         bio->bio_length = bp->b_bcount;
 2499         bio->bio_done = swapgeom_done;
 2500         g_io_request(bio, cp);
 2501         return;
 2502 }
 2503 
 2504 static void
 2505 swapgeom_orphan(struct g_consumer *cp)
 2506 {
 2507         struct swdevt *sp;
 2508 
 2509         mtx_lock(&sw_dev_mtx);
 2510         TAILQ_FOREACH(sp, &swtailq, sw_list)
 2511                 if (sp->sw_id == cp)
 2512                         sp->sw_id = NULL;
 2513         mtx_unlock(&sw_dev_mtx);
 2514 }
 2515 
 2516 static void
 2517 swapgeom_close_ev(void *arg, int flags)
 2518 {
 2519         struct g_consumer *cp;
 2520 
 2521         cp = arg;
 2522         g_access(cp, -1, -1, 0);
 2523         g_detach(cp);
 2524         g_destroy_consumer(cp);
 2525 }
 2526 
 2527 static void
 2528 swapgeom_close(struct thread *td, struct swdevt *sw)
 2529 {
 2530 
 2531         /* XXX: direct call when Giant untangled */
 2532         g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
 2533 }
 2534 
 2535 
 2536 struct swh0h0 {
 2537         struct cdev *dev;
 2538         struct vnode *vp;
 2539         int     error;
 2540 };
 2541 
 2542 static void
 2543 swapongeom_ev(void *arg, int flags)
 2544 {
 2545         struct swh0h0 *swh;
 2546         struct g_provider *pp;
 2547         struct g_consumer *cp;
 2548         static struct g_geom *gp;
 2549         struct swdevt *sp;
 2550         u_long nblks;
 2551         int error;
 2552 
 2553         swh = arg;
 2554         swh->error = 0;
 2555         pp = g_dev_getprovider(swh->dev);
 2556         if (pp == NULL) {
 2557                 swh->error = ENODEV;
 2558                 return;
 2559         }
 2560         mtx_lock(&sw_dev_mtx);
 2561         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2562                 cp = sp->sw_id;
 2563                 if (cp != NULL && cp->provider == pp) {
 2564                         mtx_unlock(&sw_dev_mtx);
 2565                         swh->error = EBUSY;
 2566                         return;
 2567                 }
 2568         }
 2569         mtx_unlock(&sw_dev_mtx);
 2570         if (gp == NULL)
 2571                 gp = g_new_geomf(&g_swap_class, "swap", NULL);
 2572         cp = g_new_consumer(gp);
 2573         g_attach(cp, pp);
 2574         /*
 2575          * XXX: Everytime you think you can improve the margin for
 2576          * footshooting, somebody depends on the ability to do so:
 2577          * savecore(8) wants to write to our swapdev so we cannot
 2578          * set an exclusive count :-(
 2579          */
 2580         error = g_access(cp, 1, 1, 0);
 2581         if (error) {
 2582                 g_detach(cp);
 2583                 g_destroy_consumer(cp);
 2584                 swh->error = error;
 2585                 return;
 2586         }
 2587         nblks = pp->mediasize / DEV_BSIZE;
 2588         swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
 2589             swapgeom_close, dev2udev(swh->dev));
 2590         swh->error = 0;
 2591         return;
 2592 }
 2593 
 2594 static int
 2595 swapongeom(struct thread *td, struct vnode *vp)
 2596 {
 2597         int error;
 2598         struct swh0h0 swh;
 2599 
 2600         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2601 
 2602         swh.dev = vp->v_rdev;
 2603         swh.vp = vp;
 2604         swh.error = 0;
 2605         /* XXX: direct call when Giant untangled */
 2606         error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
 2607         if (!error)
 2608                 error = swh.error;
 2609         VOP_UNLOCK(vp, 0);
 2610         return (error);
 2611 }
 2612 
 2613 /*
 2614  * VNODE backend
 2615  *
 2616  * This is used mainly for network filesystem (read: probably only tested
 2617  * with NFS) swapfiles.
 2618  *
 2619  */
 2620 
 2621 static void
 2622 swapdev_strategy(struct buf *bp, struct swdevt *sp)
 2623 {
 2624         struct vnode *vp2;
 2625 
 2626         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
 2627 
 2628         vp2 = sp->sw_id;
 2629         vhold(vp2);
 2630         if (bp->b_iocmd == BIO_WRITE) {
 2631                 if (bp->b_bufobj)
 2632                         bufobj_wdrop(bp->b_bufobj);
 2633                 bufobj_wref(&vp2->v_bufobj);
 2634         }
 2635         if (bp->b_bufobj != &vp2->v_bufobj)
 2636                 bp->b_bufobj = &vp2->v_bufobj;
 2637         bp->b_vp = vp2;
 2638         bp->b_iooffset = dbtob(bp->b_blkno);
 2639         bstrategy(bp);
 2640         return;
 2641 }
 2642 
 2643 static void
 2644 swapdev_close(struct thread *td, struct swdevt *sp)
 2645 {
 2646 
 2647         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
 2648         vrele(sp->sw_vp);
 2649 }
 2650 
 2651 
 2652 static int
 2653 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
 2654 {
 2655         struct swdevt *sp;
 2656         int error;
 2657 
 2658         if (nblks == 0)
 2659                 return (ENXIO);
 2660         mtx_lock(&sw_dev_mtx);
 2661         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2662                 if (sp->sw_id == vp) {
 2663                         mtx_unlock(&sw_dev_mtx);
 2664                         return (EBUSY);
 2665                 }
 2666         }
 2667         mtx_unlock(&sw_dev_mtx);
 2668     
 2669         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2670 #ifdef MAC
 2671         error = mac_system_check_swapon(td->td_ucred, vp);
 2672         if (error == 0)
 2673 #endif
 2674                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
 2675         (void) VOP_UNLOCK(vp, 0);
 2676         if (error)
 2677                 return (error);
 2678 
 2679         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
 2680             NODEV);
 2681         return (0);
 2682 }

Cache object: 7ab8c5930f3c48436bedb23917da1ad7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.